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We consider accretion of charged test matter by rotating, magnetic black holes and discuss a number of
aspects in which the interaction of the angular momentum contained in the electromagnetic field and the
spin of the hole plays a fundamental role. First, we argue that such a black hole tends to lose its angular
momentum by accreting charges while remaining globally neutral. Then, we show that accretion can
happen in a superradiant manner via an enhanced Penrose process. In particular, we find that the regions
from which energy and angular momentum can be extracted contain the axis of rotation and, in some cases,
consist of floating bubbles disconnected from the black hole itself. Finally, we address the question of
whether extremal dyonic rotating black holes can be overcharged or overspun via accretion of arbitrary
matter and prove that this cannot happen if the null-energy condition holds. We conclude by discussing
some future research directions.
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I. INTRODUCTION

Understanding the strong field regime of gravitation, as
well as its interaction with matter and other fundamental
forces, raises one of the main challenges of modern
physics. The complexity of this problem is in sharp contrast
with one of the deepest predictions of general relativity
(GR), which establishes that all quiescent black holes in the
Universe are uniquely described by a simple solution of the
field equations. If one considers the coupling of gravitation
to electromagnetism, described by the Einstein-Maxwell
theory, then this solution, the Kerr-Newman (KN) black
hole [1,2], has four independent parameters consisting of its
mass M, angular momentum J, and electric and magnetic
charges Q and P [3–6]. Given the unquestionable impor-
tance of this result, it comes as no surprise that KN black
holes have captured the interest of theoretical astrophys-
icists for decades [7–12], and that nowadays, in the dawn of
gravitational wave astronomy, they play a prominent role in
searches of beyond vacuum GR physics from ringdown
analysis [13,14] and in modeling signatures of dark matter
[15–25], as well as in providing a well-defined setup for
nonvacuum numerical simulations of black hole coales-
cences [26–29]. Besides, there are reasons to believe that
charged black holes could play an important role in high-
energy astrophysical phenomena such as cosmic rays [30].
The vast majority of black holes in the Universe are

expected to be neutral. On the one hand, Schwinger pair
creation and friction with interstellar medium would most
likely lead a black hole toward quickly losing any amount
of electric charge it may have accumulated [31] and, even
though there are well-known astrophysical mechanisms

through which black holes accrete and retain a net amount
of electric charge, this is very small in realistic scenarios
[32–34].On the other hand,magnetic charges are to date only
theoretical (yet robust) predictions. However, there are
compelling reasons to believe that magnetic monopoles
were produced in the early Universe (primordial monopoles)
[35]. It is possible that black holes formed at that time could
have absorbed some net amount of magnetic monopoles or
that were formed directly from the collapse of the latter, thus
turning the magnetic monopole problem of cosmology into a
problem of magnetic primordial black holes [36]. Since
magneticmonopoles are less likely to pair create than electric
charges, those black holes would have Hawking evaporated
until reaching extremality and could have remained until
today, perhaps contributing to a fraction of the dark matter in
the Universe [23,25,37,38]. Besides, from a theorist’s per-
spective it is desirable to retain full generality when possible,
so in this work we will allow black holes to rotate and carry
electric and magnetic charges without further ado.
From electric-magnetic duality it follows that, in iso-

lation, one can restrict to purely electric black holes without
loss of generality. However, if there are more charges, the
purely electric setup is no more the most general one, e.g. it
does not include, via duality, the interaction of an electric
particle and a magnetic black hole. As is well known, the
electromagnetic field created by electric and magnetic
charges placed together exhibits some remarkable proper-
ties, and coupling those to a strong gravitational field is a
very interesting problem both from a fundamental and an
observational perspective.
The purpose of this work is to study the interaction of

charged test matter with magnetic (or more generally,
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dyonic) black holes. In Secs. II and III we revisit the motion
of charged particles in the background of a dyonic KN
black hole and show that, when immersed in an ionized
medium, a magnetic rotating black hole tends to lose its
angular momentum by accreting electric charges while
remaining globally neutral (unlike the case of magnetized
black holes [32]). Together with this paper, we have also
made available a Mathematica package implementing our
solutions for generic plunging and bound trajectories [39],
following the methods in [40–45]. In Sec. IV we show that
accretion can lead to superradiant phenomena, and that the
Penrose process is greatly enhanced if the black hole rotates
and possesses magnetic charge. In particular, we show that
it is possible to extract both energy and angular momentum
from the hole in axisymmetric processes, such as matter
ejection along the axis of rotation. We also identify new
“floating” regions of spacetime from which energy can be
extracted (regions where “negative energy states” exist) that
are disconnected from the black hole and the mechanical
ergoregion. Finally, in Sec. V we consider whether dyonic,
extremal rotating black holes could develop a naked
singularity by overcharging or overspinning them via
accretion, thus incurring a contradiction with the weak
cosmic censorship conjecture. We begin by revisiting the
case of in-falling particle matter (first considered in [46])
and show it is a spin-spin repulsion mechanism that
prevents a violation of cosmic censorship. Then, incorpo-
rating recent developments in dealing with magnetic
charges in covariant phase space [47], we are able to
provide a simple proof that, regardless of the nature of the
in-falling matter, extremal dyonic black holes cannot be
overcharged or overspun as long as the null-energy con-
dition is satisfied. We conclude in Sec. VI by discussing our
results as well as some future directions.

II. DYONIC BLACK HOLES AND THE MOTION
OF CHARGED PARTICLES

The motion of a point particle with mass m, electric
charge e and magnetic charge g is governed by the equation

ua∇aub ¼
1

m
ðeFba − g⋆FbaÞua: ð1Þ

Carter decoupled and solved formally these equations on
the dyonic Kerr-Newman spacetime in [48].1 In this section
we give an alternative derivation in terms of variables that
make manifest gauge and duality invariance, are not
specific of the dyonic Kerr-Newman solution and have a
close relation to the laws of black hole mechanics (see
Sec. V and [47,52,53]). However, it is convenient to first
introduce the dyonic KN solution and some elements of
notation.

In Boyer-Lindquist coordinates, the line element takes
the familiar form

ds2 ¼ −
Δ − a2sin2θ

Σ
dt2 − 2asin2θ

�
r2 þ a2 − Δ

Σ

�
dtdϕ

þ
�ðr2 þ a2Þ2 − Δa2sin2θ

Σ

�
sin2θdϕ2 þ Σ

Δ
dr2

þ Σdθ2; ð2Þ

where the angular coordinate is canonically normalized,
ϕ ∼ ϕþ 2π, and

Δ¼ r2 − 2Mrþ a2 þQ2 þP2; Σ¼ r2 þ a2cos2θ; ð3Þ

while the Maxwell potential can be expressed as

A ¼ −
Qr
Σ

ðdt − asin2θdϕÞ þ P cos θ
Σ

ðadt − ðr2 þ a2ÞdϕÞ:
ð4Þ

Here, a ¼ J=M where M and J are the Arnowitt-
Deser-Misner (ADM) mass and angular momentum, while
Q and P are the black hole’s electric and magnetic charge,
defined as

Q ¼ 1

4π

Z
S2
⋆F; P ¼ 1

4π

Z
S2
F; ð5Þ

where S2 is any surface of constant r. Provided that
M2 ≥ a2 þQ2 þ P2, the outer horizon is at2

rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ða2 þQ2 þ P2Þ

q
; ð6Þ

and it coincides with the Killing horizon of the Killing
vector field

k ¼ ∂t þ ΩH∂ϕ; ð7Þ

where ΩH ¼ a=ðr2H þ a2Þ is the angular velocity of the
black hole as measured by an observer at infinity. In order
to keep electric-magnetic duality manifest, it is useful
to collect ðF;⋆FÞ, ðP;QÞ and ðg; eÞ in two-component
vectors

FI ¼
�

F

⋆F

�
; QI ¼

�
P

Q

�
; qI ¼

�
g

e

�
; ðI ¼ 1; 2Þ;

ð8Þ

and introduce the Euclidean and symplectic metrics

1This problem has been reconsidered independently later on in
the literature, see e.g. [49–51].

2If M2 < a2 þQ2 þ P2, then the spacetime exhibits a naked
singularity, as discussed in Sec. V.
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δIJ ¼
�
1 0

0 1

�
; ΩIJ ¼

�
0 1

−1 0

�
: ð9Þ

Electric-magnetic duality transformations are generated by
two-dimensional rotations SIJ ∈ SOð2Þ,

SIJ ¼
�

cos α sin α

− sin α cos α

�
; α∈R; ð10Þ

with respect to which FI, QI, qI behave as vectors
VI → SIJVJ. Under these transformations the metrics (9)
remain invariant, that is,

δIJ ¼ SKISLJδKL; ð11Þ

ΩIJ ¼ SKISLJΩKL: ð12Þ

Then, (1) takes the form

ua∇aub ¼
1

m
ΩIJFI

baq
Jua; ð13Þ

which is manifestly duality invariant. Furthermore, in
substituting (4) on the right-hand side of (13) one finds
that the equations of motion only depend on the following
invariant combinations of the charges3:

δ ¼ δIJQIqJ ¼ Qeþ Pg; ð14Þ

Ω ¼ ΩIJQIqJ ¼ Pe −Qg: ð15Þ

δ and Ω can be seen as a measure of the “electric-electric”
and “electric-magnetic” interactions, respectively. In par-
ticular, Ω ¼ 0 in the case that both the particle and the hole
are purely electric, while δ ¼ 0 if, say, the hole is purely
magnetic and the particle is purely electric (and the same is
true for any configuration related to these cases by a duality
transformation).
Next, we want to construct quantities that are constant

along trajectories satisfying (13). This follows if there is a
Killing vector field X that leaves invariant the Maxwell
field strength, £XFI ¼ 0. Indeed, to such X one can
associate a duality vector

PI
X ¼

�
PX

P̃X

�
; ð16Þ

whose components are functions defined by the equation4

∇aPI
X ¼ −XbFI

ba; ð17Þ

and it then follows that the quantity

CX ¼ uaXa þ 1

m
ΩIJPI

Xq
J ð18Þ

is constant along trajectories satisfying (13). As long as the
spacetime is asymptotically flat, it is always possible to
choose the asymptotic boundary conditionZ

S2∞

PI
XdΩ ¼ 0; ð19Þ

where S2∞ denotes an asymptotic 2-sphere, so PI
X is

uniquely determined. With this choice, PX and P̃X are
the electric and magnetic momentum maps of X, following
the terminology of [47,52,53], which are closely related
to the electric and magnetic potentials of the black hole
when X is the generator of the event horizon (see Sec. V).
Besides being manifestly duality invariant, the conserved
quantities (18) have the advantage of being independent of
the choice of gauge of the Maxwell potential Aμ. This
property is particularly desirable when considering mag-
netically charged black holes, where the gauge potentials
are necessarily singular even in the exterior of the black
hole. Another class of constant of motion might be
available if the spacetime exhibits a Stäckel-Killing tensor
Kμν [48,54], defined by the properties

Kab ¼ Kba; ∇ðaKbcÞ ¼ 0; ð20Þ

KcðaFc
bÞ ¼ 0; Kcða⋆Fc

bÞ ¼ 0: ð21Þ

If such tensor exists, then

C ¼ Kabuaub ð22Þ

is a constant of motion, as can be readily verified. Applying
the discussion above (which is not specific to any solution)
to the case of dyonic KN black holes, one finds that there
exist four independent constants of motion [48]. One of
them follows from the fact that the metric itself is a Stäckel-
Killing tensor, and the corresponding constant of motion
(22) gives nothing but the usual mass-shell condition for a
point particle. There are two other constants of the type (18)
and follow from the Killing vector fields ∂t and ∂ϕ, with
associated electric momentum maps

PtðP;QÞ ¼ −
Qr − Pa cos θ

Σ
; ð23Þ

PϕðP;QÞ ¼ Qarsin2θ − ða2 þ r2ÞP cos θ
Σ

; ð24Þ

while the magnetic ones are simply obtained as P̃tðP;QÞ ¼
PtðQ;−PÞ and P̃ϕðP;QÞ ¼ PϕðQ;−PÞ. A fourth, less

3As well as P2 þQ2, which is a background quantity.
4That PI

X exists locally is guaranteed by the fact that dFI ¼ 0
and £XFI ¼ 0. If the spacetime is simply connected then PI

X is
also globally defined and unique up to a shift by a constant.

MAGNETIC BLACK HOLES: FROM THOMSON DIPOLES TO THE … PHYS. REV. D 108, 084064 (2023)

084064-3



obvious constant follows from the Stäckel-Killing tensor
[48,55,56]

Kab ¼ 2ΣlðanbÞ þ r2gab; ð25Þ

where

l ¼ r2 þ a2

Δ
∂t þ ∂r þ

a
Δ
∂ϕ; ð26Þ

n ¼ 1

2Σ
½ðr2 þ a2Þ∂t − Δ∂r þ a∂ϕ�; ð27Þ

are principal null vectors of aKinnersley tetrad (we recall that
the dyonic KN solution is of Petrov type D, just as the
vacuum Kerr solution). The tensor (25) has the same form as
the usual Killing tensor of Kerr [56] (which may be seen as a
consequence of the Killing-Yano tensor of type D metrics
[57]), and it can be verified that it also satisfies the algebraic
condition (21).We choose towork in terms of the energy and
angular momentum per unit mass and a generalization of the
usual Carter constant [55] defined, respectively, as

E ≡ −uað∂tÞa −
1

m
ΩIJPI

tqJ

¼ −uað∂tÞa þ
rδ − aΩ cos θ

mΣ
; ð28Þ

L≡ uað∂ϕÞa þ
1

m
ΩIJPI

ϕq
J

¼ uað∂ϕÞa þ
arδsin2θ −Ωðr2 þ a2Þ cos θ

mΣ
; ð29Þ

K≡ uaubKab − ðL − aEÞ2: ð30Þ

Then, using the Mino-Carter time dτ ¼ Σdλ [58] as a curve
parameter and introducing z ¼ cos θ, the equations of
motion can be decoupled and cast in the form

�
dr
dλ

�
2

¼ ðmðEðr2 þ a2Þ − aLÞ − rδÞ2
m2

− Δðr2 þ ðaE − LÞ2 þKÞ
≡ RðrÞ; ð31Þ�

dz
dλ

�
2

¼ K − z2K −
z2ðΩ2 þm2L2Þ þ 2mΩLz

m2

þ azð1 − z2Þ 2EΩ − amzð1 − E2Þ
m

≡ ZðzÞ; ð32Þ
dϕ
dλ

¼ ΩzþmðL − aEð1 − z2ÞÞ
mð1 − z2Þ

−
a
mΔ

ðδrþ amL −mða2 þ r2ÞEÞ; ð33Þ

dt
dλ

¼ ða2 þ r2Þmða2 þ r2ÞE − amL − δr
mΔ

þ a
mðL − aEð1 − z2ÞÞ þ Ωz

m
: ð34Þ

At this point, it is worth pointing out a few differences
with respect to the motion of uncharged particles. First,
both the energy and the angular momentum of the
particle receive electromagnetic contributions proportional
to δ and Ω. Quite remarkably, if Ω ≠ 0 the angular
momentum is nonzero even if the particle lies along the
axis ðθ ¼ 0; πÞ. This striking feature plays an important
role in our work as discussed below, and it is a well-
known consequence of placing together electric and
magnetic charges. Another difference concerns the inter-
pretation of K. In the case of neutral particles, one finds
that bound (E2 < 1) geodesics with K ¼ 0 are necessarily
confined to the equator z ¼ 0, which is clearly not true if
Ω ≠ 0, even if the black hole is nonrotating a ¼ 0. Thus,
unless the configuration is purely electric or neutral,K can no
more be interpreted as a measure of off-equatorial motion.
However, either charged or neutral particles that hit the
curvature singularity (the ring r2 þ a2z2 ¼ 0) must have
K ¼ 0 and L ¼ aE,5 as follows immediately by requiring
that Rð0Þ ≥ 0 and Zð0Þ ≥ 0.

III. ACCRETION BY ROTATING MAGNETIC
BLACK HOLES

A main goal of this work is studying aspects of accretion
of electrically charged matter by magnetic black holes that
have no counterpart in the well-understood purely electric
or neutral cases. Therefore, in this section we focus on
black holes with magnetic charge only, P, while surround-
ing particles are assumed to carry only electric charge e
(this corresponds to setting δ ¼ 0 and Ω ¼ Pe in the
invariant variables introduced above). However, before
considering a gravitating system it is worth revisiting
one of the more salient features of the electromagnetic
field created by an electric charge e and a magnetic charge g
put together at rest separated by some distance. Such a
system was considered by Thomson back in 1904 [59] (and
therefore we will refer to it as Thomson’s dipole) who
pointed out that, in spite of being axially symmetric and
static, the electromagnetic field possesses a nonvanishing
angular momentum which is independent of the distance
between charges. It is given by

J⃗ ¼ 1

4π

Z
R3

r⃗ ∧ ðE⃗ ∧ B⃗Þdx3 ¼ −eg r̂; ð35Þ

5The latter of these conditions is specific of the KN solution,
and is not necessary in vacuum Kerr.
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where r̂ is the unit vector pointing from the magnetic
charge into the electric one. This surprising fact pro-
vides a way of obtaining Dirac’s quantization condition
by assuming that jJ⃗j is quantized in half-integer units of ℏ
[60,61], so6

2ge=ℏ ¼ 0;�1;�2;…∈Z: ð36Þ

One way of generalizing this picture to include gravitation
consists in replacing the magnetic point charge g by a
magnetic black hole with charge P. This was first envisaged
in [63] and independently later on in [64], where the
authors considered the process of dropping an electric
charge radially into a nonrotating magnetic black hole (see
also [65]). Initially, when the charge and the hole are
infinitely far apart, the total angular momentum is precisely
that of a Thomson dipole (35). As the particle falls radially,
the electromagnetic field exerts a torque on the hole, which
starts spinning. The initial angular momentum keeps being
transferred into the hole until, eventually, the particle
crosses the horizon and what is left is a dyonic Kerr-
Newman black hole with angular momentum equal to that
of the initial Thomson dipole. In other words, one can (rather
strikingly) spin up a nonrotating magnetic black hole by
dropping radially an electric particle into it.7 The main
purpose of this section is to understand how the previous
picture changes if the magnetic black hole is allowed to
possess finite (even maximal) angular momentum and from
that derive what are the most distinctive features of accretion
of electric matter by rotating, magnetic black holes.
A first observation is that, even though the metric is

invariant under an equatorial Z2 transformation, the field
strength picks a sign

Fμνðr; π − θÞ ¼ −Fμνðr; θÞ; ð37Þ

which can be seen as a consequence of the dipolar structure
of the electric field created by a rotating magnetic charge.
This is unlike electric KN black holes, both asymptotically
flat and magnetized [66,67], where F is invariant under a Z2

transformation. An immediate consequence of this is that,
unlike rotating magnetized electric black holes, rotating
magnetic ones will not tend to grow a net amount of
electric charge when immersed on an ionized homogeneous
medium. Indeed, the symmetry (37) implies that the mirror
image with respect to the equatorial plane of any solution,

ðtðτÞ; rðτÞ;θðτÞ;ϕðτÞÞ↦ ðtðτÞ; rðτÞ;π− θðτÞ;ϕðτÞÞ, is itself
a solution for a particle with opposite charge. Hence, for
every plunging trajectory of a particle with charge e there is
another one for a particle with charge −e so no net charge
is expected to accumulate in the hole (see Fig. 1). This
conclusion also follows by inspection of the black hole’s
electric potential ϕ, which as discussed in Sec. V is given by

ϕ ¼ −PkjH; ð38Þ
where k ¼ ∂t þ ΩH∂ϕ is the Killing vector that generates the
event horizon H, and Pk ¼ Pt þ ΩHPϕ is the associated
electric momentum map [see (23)]. If the black hole has no
electric charge, as in our case, then ϕ vanishes, thus
indicating that accretion of a net electric charge is not
energetically favored. This is in contrast with the case of
magnetized electric KN black holes, where imposing the
vanishing of the electric potential (the corresponding Pk
evaluated at the horizon) requires endowing the hole with a
certain amount of electric charge [68].
We have established that the black hole tends to accrete

the same amount of positive and negative charges, thus
remaining globally neutral. Now we shall argue that in such
process the black hole reduces its angular momentum. For
simplicity, we restrict the discussion to particles whose
motion is confined to the axis, θ ¼ 0; π. Just as a Thomson
dipole, the angular momentum per unit mass of such
particles is [see (29)]

L ¼
�−Pe=m ðif θ ¼ 0Þ
þPe=m ðif θ ¼ πÞ ; ð39Þ

and the Lorentz force per unit mass they are subject to can
be written as

uμ∇μur ¼
e
m
Fr

νuν ¼ aL
2rΔðrÞ

ðr2 þ a2Þ3 u
t: ð40Þ

Outside the horizon ΔðrÞ > 0 and a future-directed time-
like trajectory has ut > 0 (see Sec. IV), so the force (40) is
repulsive or attractive depending on whether a and L have
equal or opposite sign, respectively (although we consid-
ered motion along the axis, similar reasoning can in fact be

FIG. 1. This figure shows the evolution of two pairs of electric
particles on a magnetic KN black hole. Each pair has two
particles with identical initial conditions at the equator, but
opposite charge signs. As discussed in the text, the motion of
positive and negative charges are the mirror image of each other
with respect to the equator.

6The half-integer, as opposed to just integer quantization is
rather unnatural. However, the angular momentum of a Thomson
dipole in a more physical scenario than that of two point charges
at rest leads to the right integer quantization [62].

7In fact, in [64] it was speculated that a fraction of the rotation
of nowadays neutral black holes could be due to magnetic
charges.
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applied to a particle at any point in the exterior of the hole).8

That is, a rotating magnetic black hole tends to accrete
charges whose angular momentum differs in sign with that
of the hole itself, thus reducing its angular momentum.
In sum, if the magnetic black hole is allowed to rotate,

the picture one is left with is quite the opposite of that
envisaged in [63,64], where a nonrotating black hole is
spun up by absorbing electric charge. Instead, a rotating
magnetic black hole immersed on an homogeneous, ion-
ized medium tends to lose its angular momentum by
accreting charges of opposite signs (even along the rotation
axis, resembling the radial collapse of a Thomson dipole)
keeping its net electric charge equal to zero. Reducing
the angular momentum of a black hole via accretion is
conspicuously reminiscent of the Penrose process, and it is
interesting to explore how the latter works if the black hole
also possesses magnetic charge. In Sec. IV we consider this
issue for magnetic KN black holes and show that there exist
novel regions in spacetime from which energy and angular
momentum can be extracted. These have no counterpart,
either in the mechanical Penrose process [70] or in its
magnetized version [71], since they can contain the axis of
rotation and can be disconnected from the black hole itself.

IV. THE PENROSE PROCESS

Since its conception [70], the Penrose process has played
a prominent role in guiding our intuition when studying
dynamical systems involving black holes. In its original
and simplest version, it consists of extracting “rotational”
energy from the hole by mining the so-called ergoregion, a
region in the vicinity of the hole where particles are allowed
to be in negative energy states relative to asymptotic
observers. The Penrose process generalizes naturally to
the case that in-falling matter are waves of arbitrary kind, in
a phenomenon known as superradiance, whose discovery
potential is invaluable (see e.g. [72] and references therein).
At first sight, the Penrose process seems to provide a

simple explanation of some high-energy phenomena in
which black holes are expected (or known) to be involved,
such as active galactic nuclei, relativistic jets and high- and
ultrahigh-energy cosmic rays. However, it was soon real-
ized [73,74] that, in order to be a viable process for
extracting energy and angular momentum from the hole,
the velocities of the decays (or breakups) at the ergoregion
need to be in the relativistic regime v > 1=2, and in any
case the efficiency of the process is bounded to≲20%. This
is true for the mechanical Penrose process, which only
involves a neutral rotating black hole. A much different

situation arises if the black hole is immersed on an
homogeneous magnetic field [32], yielding the so-called
magnetized Penrose process, which was first envisaged in
[71]. In that case, the resulting electric field (due to the
twisting of magnetic field lines induced by the hole’s
rotation) enhances the Penrose process if the particles
resulting from a decay are charged. Assuming that the
magnetic field is created by reasonable matter orbiting the
hole, the breakup velocities in the decay need no more be
relativistic for the magnetized Penrose process to be viable,
and efficiencies can be much larger than the aforemen-
tioned 20% [30]. However, it is well known that a rotating
black hole immersed in an homogeneous magnetic field
will accrete a net amount of electric charge, and this turns
out to suppress significantly energy extraction [75].
Besides, the fact that the magnetized Penrose process relies
on having a black hole which is not in isolation makes the
system quite difficult to model.9 Alternatively, one could
enhance energy extraction while keeping the hole in
isolation by allowing it to possess a net amount of electric
charge. Unfortunately, in that situation the hole would
quickly discharge via Schwinger pair creation [31].
Here we consider endowing the hole with magnetic

charge. This is qualitatively different from the cases dis-
cussed above, since energy extraction is greatly enhanced
(as shown below) while keeping the black hole in isolation,
and no discharge mechanism is expected to neutralize the
hole since magnetic monopoles are much less likely to
pair create than electric charges. Of course, as discussed in
the Introduction the price to pay is the a priori exotic
primordial origin of the magnetic charges. For the sake of
completeness, we shall derive the main equations for the
most general charge configurations first and then specialize
them to the case of a magnetic black hole and electrically
charged particles.
The four-velocity of a particle at a given point can be

parametrized using ur; uθ;L, while the fourth degree of
freedom is fixed using the timelike condition and requiring
that the particle’s trajectory is future oriented, which in
Boyer-Lindquist coordinates simply amounts to imposing
ut > 0.10 Then, the energy per unit mass is no more a free
parameter but a function given by

8It is also natural to wonder whether this spin-spin repulsive
force could balance the gravitational attraction between two
rotating black holes with comparable masses, one carrying
electric charge and the other magnetic one. To the best of our
knowledge, nonextremal solutions of this nature need an addi-
tional “dilatonic force” to prevent the collapse [69].

9One simplification consists in regarding the magnetic field as
an external one with unknown source, which gives valid
predictions in the vicinity of the hole and it is possible to account
for the full backreaction by using the Ernst-Wild solution [66,67].
Another option consists in working perturbatively and modeling
the magnetic field with a specific matter source [71,76], which is
an asymptotically flat setup but makes it difficult to account
for backreaction.

10This can be seen by defining the so-called zero angular
momentum observer U ¼ − dtffiffiffiffiffiffi

−gtt
p , which is timelike and future

oriented everywhere outside the hole. The requirement that a
timelike trajectory uμ is also future oriented is 0 > Uμuμ ¼
−ut=

ffiffiffiffiffiffiffiffi
−gtt

p
.
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Eður; uθ;LÞ ¼ −
1

m
ΩIJPI

tqJ −
gtϕ
gϕϕ

�
L −

1

m
ΩIJPI

ϕq
J

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δsin2θ
gϕϕ

�
1þ ðL − 1

mΩIJPI
ϕq

JÞ2
gϕϕ

þ grrðurÞ2 þ gθθðuθÞ2
�s
: ð41Þ

It is easy to see that outside the event horizon there are
states with E < 0 (of course, as in the usual Penrose
process, this is not in contradiction with having positive
kinetic energy with respect to a local inertial observer). We
want to find the regions of spacetime where particles with a
given angular momentum L can be in a negative energy
state, since it is in those regions where decays or breakups
could lead to energy and angular momentum extraction.
From (41), it is clear that the minimal energy states are
those with ur ¼ uθ ¼ 0. So, with that choice, the zero-
energy level sets given by (41) enclose the regions where
negative energy states are allowed.
Let us focus on the case of an electric particle with

charge e and a purely magnetic black hole of charge P, so
Q ¼ g ¼ 0. We fix the overall scale by setting M ¼ 1 and
introduce the extremality parameter

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2 − P2

p
; ð42Þ

so ϵ ¼ 0 for extremal black holes and ϵ ¼ 1 for neutral,
nonrotating ones. We find negative energy states for values
of L with opposite sign to that of a, similar to the
mechanical Penrose process. There are two regimes of
L, defined by the value of the angular momentum of the
Thomson dipole (see Fig. 2):

(i) 0 < jLj < jPe=mj: in this regime, the presence of
the magnetic charge deforms the region of negative
energy states by enlarging it along the directions
determined by certain conjugate values of the axial
angle, θ0 and π − θ0, with θ0 ∈ ð0; π=2Þ. θ0 goes
from the equator θ0 ¼ π=2 for jLj ≈ 0 (where there
are no negative energy states) and approaches the
rotation axis θ0 ¼ 0 as jLj → jPe=mj.

(ii) jLj ¼ jPe=mj: when the angular momentum is
precisely that of the Thomson dipole, we find that
the region of negative energy states includes the
rotation axis. This leads to the quite remarkable
possibility of extracting angular momentum (and of
course energy) from a hole in a process that is
entirely axisymmetric (e.g. a decay happening along
the axis). This condition is also the requirement one
finds for the existence of motion on the axis.

(iii) jLj > jPe=mj: in this case, we find a similar
situation to that of the first regime, where now θ0 →
π=2 as jLj → ∞, and the region of negative energy
states converges to the mechanical ergoregion. This
is as expected, since for large L at fixed a, P and e

the mechanical effects dominate over the electro-
magnetic ones.

For all values of L, we notice that the region of negative
energy states at the equator θ ¼ π=2 is unaffected by P,
since the momentum maps vanish there (we recall that in
this discussion the electric black hole charge is set to
Q ¼ 0),

Ptðθ ¼ π=2Þ ¼ Pϕðθ ¼ π=2Þ ¼ 0: ð43Þ

On the other hand, for jLj ¼ jPe=mj there exist negative
energy states along the rotation axis. Such states do not
exist in the mechanical case and, furthermore, carry angular
momentum. Expanding in powers of e=m (which may be
motivated by the fact that for an electron e=m ≈ 2 × 1021)
one finds that the negative energy states along the axis
extend up to

rmax ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaPe=mj

p
; ð44Þ

which is largest when aP is maximized (as expected
since the magnitude of the electric field is roughly
given by aP). For a fixed extremality parameter ϵ, this
happens at a ¼ P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ϵ2Þ=2

p
, so for small ϵ one has

a ¼ P ≈ 0.707. The magnification of the region of negative
energy states for that choice of parameters can be clearly
seen in Fig. 2.
We shall also comment on the case where the black

hole is endowed not only with magnetic but also electric
charge11 (then the particle can be chosen to be purely
electric without loss of generality). The monopolar electric
field enhances the Penrose process and allows both energy
and charge extraction even if the black hole is nonrotating.
If, in addition, the black hole rotates and possesses
magnetic charge, the electric field picks a dipolar piece
which, in the neighborhood of one of the components of the
rotation axis (θ ¼ 0 or θ ¼ π), opposes the monopolar one.
Interestingly, this balance of electric fields leads to the
existence of floating regions of negative energy states (see
Fig. 3). That is, after a decay, one of the products can
reach a negative energy state which is an orbit confined
to a neighborhood of the axis and that never crosses the
horizon. Even though that particle never falls into the hole,

11In the absence of an external magnetic field the hole is
expected to quickly lose its electric charge, although some
amount could be retained via the Witten effect [77].
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the other product of the decay can reach infinity and energy
is extracted from the system (in such process there is
also extraction of electric charge, but not of angular
momentum). Regions of negative energy states that are

disconnected from the horizon were also found recently
in [75] in the case of rotating magnetized black holes
(i.e. rotating black holes immersed in an external magnetic
field). Those are toroidal regions centered around the hole

FIG. 2. Regions of negative energy states of an electric particle with e=m ¼ �100 (red for positive, green for negative) in a rotating
magnetic black hole with M ¼ 1, Q ¼ 0, ϵ ¼ 10−3. The columns correspond to the spin parameters a ¼ 0.3, 0.707, 0.99 and the
corresponding positive value of magnetic charge P determined by (42), while rows display different values of the particle’s angular
momentum mL=Pjej ¼ −0.9;−1;−1.1. The contours show the regions of negative energy states given by (41) with ur ¼ uθ ¼ 0 (see
text). The outermost contour is the zero-energy level, and subsequent inner curves decrease by ΔE ¼ −0.5 the value of the energy level,
following the color scale. In the same conventions, blue contours correspond to a neutral particle, so they are associated with the
mechanical Penrose process.
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and symmetric with respect to the equator, while the ones
found here associated with magnetic black holes are simply
connected bubble-shaped regions and centered at a point of
the axis. Particles trapped in negative energy regions which
are disconnected from the horizon are expected to release
more energy via synchrotron radiation and follow an evolu-
tion driven by electromagnetic radiation reaction [78,79].
We leave a detailed study of this issue for future work.

We conclude this section with some remarks about the
bounds on the velocity of the breakup and the efficiency of
the Penrose process. For completeness, we shall do so for
the most general charge configuration of both the hole and
the particle. A simple computation shows that the specific
energy E of a particle with mass m and charge qI that is the
product of a decay of a particle with specific energy E0,
mass m0 and charge qI0 must satisfy [71,74]

−
1

m
ΩIJPI

tqJ þ γðvÞ
"
E0 þ

1

m0

ΩIJPI
tqJ0 − v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ

�
E0 þ

1

m0

ΩIJPI
tqJ0

�
2

s #

≤ E

≤ −
1

m
ΩIJPI

tqJ þ γðvÞ
"
E0 þ

1

m0

ΩIJPI
tqJ0 þ v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ

�
E0 þ

1

m0

ΩIJPI
tqJ0

�
2

s #
; ð45Þ

where v is the absolute value of the velocity of the product
in the frame of the decaying particle and γðvÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor. Applying (45) to the decay of a neutral
particle into electric charges along the rotation axis of a
magnetic black hole, one finds that the lower bound can be
negative (and therefore energy extraction is actually pos-
sible) only if v satisfies

v >
1 − α2

1þ α2
; α≡ ðe=mÞaP

ðe0=m0ÞaPþ ðr2H þ a2ÞE0

: ð46Þ

In particular, v can be arbitrarily close (or equal) to zero if
jαj ≥ 1. This is true for a process taking place along the
rotation axis, and similar conclusions can be deduced for
processes in the enlarged regions of negative energy states.
As noted above, one exception are processes happening at
the equator θ ¼ π=2, where (43) holds and the bounds on v
are the same as in the mechanical Penrose process.
Similarly, it is easy to see from (41) and (45) that the
efficiency of energy extraction η≡ ðmE −m0E0Þ=m0E0

can be made significantly larger than that of the mechanical
Penrose process for decays happening off the equator,
while at the equator the bounds on the efficiency remain
the same. Nevertheless, an astrophysically meaningful
discussion about the bounds on both v and η requires
having some expected values for P=M and P=J, an issue
that lies beyond the scope of our work and that is left for
future research.
Finally, we remark that similar to the mechanical Penrose

process the amount of energy that can be extracted from the
hole is bounded by the irreducible mass, defined asM2

IRR ¼
AH=16π ¼ ða2 þ r2HÞ=4 where AH is the area of a spatial
section of the horizon. Indeed, in a Penrose process
involving the decay of a charged particle one has δMIRR ≥
0 (in agreement with the second law of black hole
mechanics). At the same time,

M2 ¼
�
MIRR þ P2 þQ2

4MIRR

�
2

þ J2

4M2
IRR

≥ M2
IRR; ð47Þ

so the amount of energy that can be extracted from the hole
is necessarily smaller than M −MIRR.

FIG. 3. Region of negative energy states for a black hole with
parameters M ¼ 1, a ¼ 0.9, Q ¼ −0.085, and P ¼ −0.16. The
particle’s charge to mass ratio is e=m ¼ 100 and its angular
momentum per unit mass is L ¼ −Pe=m ¼ 16. The outermost
red contour corresponds to the zero-energy surface and the
successive inner ones decrease the energy by −0.1, following
the color scale. The purple contour is the mechanical ergosurface.
As explained in the text, the attractive gravitational and coulomb
forces are compensated by the repulsive dipolar force, thus
leading to disconnected regions of negative energy states.
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V. COSMIC CENSORSHIP

In this last section, we approach a more fundamental
question, that of whether accretion of electric matter by
magnetic black holes could lead to the formation of a naked
singularity, thus incurring a contradiction with the weak
cosmic censorship [70]. In general, understanding whether
the latter is true given some reasonable physical assumptions
stands as one of themajor challenges in gravitational physics.
While it has been proven rigorously for specific choices of
matter fields and under certain symmetry assumptions [80], a
proof of sufficient generality is still elusive. A less formal, yet
physically illuminating approach consists in testing the
conjecture via a gedanken experiment in which one tries
to overcharge or overspin an extremal black hole (say, an
extremal electric KN black hole) via a physical process, such
as accretion of a (probably fine-tuned) matter wave. Wald
considered this in [81] for electric KN black holes in the case
where the in-falling matter is pointlike but is allowed to
possess electric charge as well as internal spin. The work
concludes robustly that no naked singularity can formby such
accretion process, a fact that can be interpreted intuitively as
due to the electric force and the centrifugal barrier preventing
the absorption ofmatter thatwouldovercharge or overspin the
hole. Subsequently, the authors in [82] were able to construct
an elegant argument to extend those conclusions to the case of
arbitrary in-fallingmatter, as long as thenull-energycondition
is respected.This argumentwas later formalized and extended
to higher orders in theperturbations in [83],which allowed the
authors to prove that cosmic censorship is also not violated in
a gedanken experiment where the hole is arbitrarily close to
(but not quite at) extremality.12

However, the works [81–83] mentioned above consider
only purely electric scenarios (i.e. electrically charged black
holes accreting electric matter and configurations related to
this by electric-magnetic duality) so their conclusions do not
apply, in principle, to the case we are concerned with in this
work, which is that of a magnetic black hole accreting
electrically charged matter. In fact, Lorentz forces in such
setup can be very different from those in a purely electric
case, and they might even be exactly vanishing as in the case
of an electric charge falling radially into a magnetic non-
rotating black hole (the magnetic Reissner-Nordström black
hole). In addition, we have also shown that there are novel
ways of inducing rotation into the hole which are drastically
different from just transference of orbital angular momen-
tum. These observations make worth exploring whether
rotating magnetic black holes are safe from developing a
naked singularity. In this discussion, we shall restore full
generality and consider extremal dyonic black holes, as well
as dyonic in-falling matter.

Given an extremal dyonic black hole, the question is
whether an in-falling fluctuation can be such that the
induced change on the black hole parameters oversaturate
the extremality bound, that is, whether the perturbation can
violate the inequality

ðM2 þ a2ÞδM ≥ MðQδQþ PδPÞ þ aδJ: ð48Þ
Hiscock [46] was the first (to the best of our knowledge)

to address this issue in the case of pointlike in-falling
charges.13 Following the general strategy devised in [81], it
was shown that a violation of the weak cosmic censorship
cannot occur. Although the proof is satisfactory and general
(within the class of matter considered), it is illustrative to
discuss in more detail a particular process in order to gain
intuition about what mechanism protects cosmic censorship
in this case. Let us restrict to an extremal rotating magnetic
black hole (so Q ¼ 0) and consider dropping through the
axis (θ ¼ 0) an electric charge that is initially at rest at
infinity, which fixes E ¼ 1. As discussed above [see (39)],
such particle carries an angular momentum given by
L ¼ −Pe=m. Choosing the sign of the charge so that
La > 0, the particle will spin up the hole, if accreted, and
potentially violate the extremality bound. Notice that this
way of inducing angular momentum into the hole is
qualitatively different from the usual transference of orbital
angular momentum, since it only involves motion along the
axis, so no centrifugal barrier prevents the particle from
approaching the horizon. However, in (40) we showed that
the hole’s electric field produces a spin-spin repulsion, so a
particle that would spin up the hole feels a repulsive force.
Particles that could violate cosmic censorship in this
process by entering the hole have

1 <
a

M2 þ a2
L; ð49Þ

but using (31) it is easy to show that in that case the
trajectory has a turning point outside the horizon.14

Explicitly said, the spin-spin repulsion prevents from
crossing the horizon particles that would contradict (48)
by overspinning the hole.
The case of in-falling matter consisting of a charged

scalar field was considered in [87] and later on in [88], and
neutral and charged Dirac fields were considered in
[89,90], respectively. While in the scalar case one reaches
the same conclusions as for particle matter, it turns out that
Dirac fields could make the black hole turn into a naked
singularity. As argued in [90], however, this is due to the
fact that the Dirac field does not satisfy the null-energy
condition (an artifact of regarding Dirac’s equation as
describing a classical field).

12Quite crucially, this implies that in gedanken experiments of
the type proposed in [84] it is necessary to perform a complete,
second order computation (see [83,85] and references therein for
a brief overview on this issue).

13This problem was reconsidered independently later on in
[86], reaching the same conclusions.

14The turning point would be precisely at the horizon if
1 ¼ a

M2þa2 L, which preserves the extremality condition.
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Our purpose in this section is to extend the above results
to the most general setup within the Einstein-Maxwell
theory, that is, that of an extremal dyonic KN black hole
accreting matter of arbitrary kind. We shall do so by
following the strategy envisaged in [82,83], and imple-
menting the covariant phase space techniques introduced in
[47] (building on previous works [53,91–94]) which allows
one to account for both electric and magnetic type con-
tributions to the conserved charges in a gauge- and duality-
invariant guise (see also [95–98] for generalizations that
also account for more general notions of charges, including
scalar and Fermionic ones).
Consider a fluctuation that arises as a solution of the

Einstein-Maxwell equations (linearized around an exact
electrovacuum solution, such as the dyonic KN black hole)
sourced by a linear dyonic current,

δðGab − TEM
ab Þ ¼ 8πTab

dδFI ¼ −4π⋆jI; ð50Þ

where δFI is the linear variation of the field strength
vector (8),

jI ¼
�
jðgÞ
jðeÞ

�
ð51Þ

is the dyonic density current. Now, assume that the back-
ground spacetime contains a stationary and axisymmetric
black hole, whose event horizon is a Killing horizon of a
Killing vector field k ¼ ∂t þ ΩH∂ϕ for some constant ΩH,
and consider a three-dimensional surfaceΣ that extends from
a spacelike 2-sphere at the horizon S2H to an asymptotic
2-sphere S2∞. By exploiting the symmetries of the theory at
hand, one can construct a fundamental identity that any such
fluctuation must satisfy on Σ [99,100]. In [47] it was under-
stood how to includemagnetic type contributions in a gauge-
and duality-invariant guise, and here we have extended the
identity by including source terms (a detailed derivation in
the metric formulation of gravity, as opposed to the vielbein
one used in [47], can be found in the Appendix). It reads

δM −ΩHδJ ¼ ϕIΩIJδQJ −
Z
S2H

h
δQGR

k þ ιkΘGR
i
þ
Z
Σ
½PI

kΩIJ⋆jJ − kaTabϵb�: ð52Þ

Here, δM and δJ are the variations of the ADMmass and
angular momentum induced by the fluctuation,

ϕI ¼ −PI
kjH; δQI ¼ 1

4π

Z
S2H

δFI ð53Þ

are the electromagnetic potentials and the variation of the
charges of the hole enclosed by S2H, respectively, and QGR

k

and ΘGR are the GRs Noether-Wald charge and symplectic
potential (whose form is given in the Appendix but is not
needed here). As an example of application, for a vacuum
fluctuation the last integral on the right-hand side of (52)
vanishes while the first one gives ðκ=8πÞδAH [100], so one
finds the first law of black hole mechanics where the first
term on the right-hand side are gauge-invariant work terms
of both electric and magnetic types in a duality-invariant
combination.
At this point, we can follow [83] and define our

fluctuation from its initial data on a Cauchy slice Σ0 that
extends from a 2-sphere at the horizon S2H0

to infinity. We
take sources that are compactly supported and initially far
enough from the black hole, so that the fluctuation vanishes
at S2H0

, and assume for simplicity that all of the matter
eventually falls inside the black hole. The 3-surface Σ on
which we will apply the fundamental identity (52) is taken
as follows: It starts at S2H0

and extends along the horizon
until all of the matter has crossed it. Then it becomes spatial
and extends all the way to infinity (see Fig. 4).

Since the fluctuation vanishes at S2H0
, the first term and

the first integral on the right-hand side of (52) vanish and
one is left with

δM −ΩHδJ ¼
Z
Σ∩H

½PI
kΩIJ⋆jJ − kaTabϵb�

¼ −ϕIΩIJ

Z
Σ∩H

⋆jJ −
Z
Σ∩H

kaTabϵb ð54Þ

¼ ϕIΩIJδQJ
flux −

Z
Σ∩H

kaTabϵb; ð55Þ

where in the second line we used the zeroth law of the
electromagnetic field (i.e. that ϕI ¼ −PI

kjH is constant on

FIG. 4. The horizonH is in purple, the initial Cauchy slice Σ0 in
orange, Σ is in black, with its inner boundary denoted by a black
dot, and the source’s trajectory is in green.
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H, see [47] and the Appendix), and in the third line we used
that δQI

flux ¼ −
R
Σ∩H⋆jI is the net amount of charge that

has crossed the horizon [see (50)]. Finally,

−
Z
Σ∩H

kaTabϵb ¼
Z
Σ∩H

VakbTabϵ̃;

where Va is future directed and normal to the horizon, so it
is proportional to ka, and ϵ̃ is the volume form on H [101].
That is, the right-hand side is manifestly non-negative if
Tab satisfies the null-energy condition. If the latter holds,
one arrives at

δM − ΩHδJ − ϕIΩIJδQJ
flux ≥ 0:

Identifying δQI
flux with the total amount of accreted charge

δQI and evaluating the formula on an extremal dyonic KN
background, one arrives precisely at (48), thus showing that
no violation of the weak cosmic censorship takes place if
the energy-momentum tensor of the in-falling matter
satisfies the null-energy condition.

VI. DISCUSSION

In this work we have considered the accretion of charged
test matter by rotating dyonic black holes. We have
uncovered a rich phenomenology, where the interaction
of the angular momentum contained in the electromagnetic
field and the spin of the hole plays a fundamental role.
Focusing on magnetic black holes, we have shown that
when immersed on an ionized medium the hole tends to
lose its angular momentum by accreting charges, but that it
does so while remaining globally neutral. We have also
shown that accretion can happen in a superradiant manner
and that energy and angular momentum can be extracted
from the hole via a Penrose process that is greatly enhanced
due to the dipolar electric field created by the rotating
magnetic charge of the hole. The regions that can accom-
modate negative energy states extend much further than the
mechanical ergoregion and may even contain the rotation
axis or be disconnected from the hole. Finally, we have
addressed the issue of whether extremal dyonic rotating
black holes can be overcharged or overspun via matter
accretion and have provided a proof that answers it in the
negative as long as the in-falling matter respects the null-
energy condition, but is otherwise completely general.
It would be interesting to analyze in greater detail the

observational potential of some of the remarkable phenom-
ena that magnetic black holes lead to. Besides the Penrose
process in its original version discussed here, which
involves the decay or disruption of in-falling matter, energy
extraction via the products of a collision (the “collisional”
Penrose process [102]) can also lead to exciting phenom-
enology [103–105] that is worth understanding in the case
where the black hole is endowed with some magnetic

charge. It would also be interesting to study superradiant
phenomena beyond particle matter. To that end, our
equations in Sec. V allow a fully gauge- and duality-
invariant analysis for arbitrary in-falling matter without the
need of reducing the equations of motion to decoupled
master ordinary differential equations (which is not always
possible anyways), along the lines of [90]. Finally, working
out the gravitoelectromagnetic waveforms resulting from
coalescences involving electric and magnetic black holes is
of great interest for multimessenger astronomy. The
Newtonian regime allows an interesting analytic approach
to this problem [106–110], but future space-based detectors
such as LISA also motivate considering extreme mass ratios
[111], where both relativistic and strong field effects are
crucial. Work along these lines is on the way.

Using the same methods outlined and used in [40–44] we
solve these equations analytically for generic plunging and
bound geodesics in terms of Jacobi elliptic functions; a
Mathematica package implementing our solutions has also
been made available alongside this paper [39]. Our code is
built using the same structure as the KerrGeodesics package of
the Black Hole Perturbation Toolkit [112].
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APPENDIX: FUNDAMENTAL VARIATIONAL
IDENTITY OF DYONIC BLACK HOLES

In this appendix we provide a detailed derivation of
the identity (52) (we follow the notation introduced in
[99,100]). Consider the Einstein-Maxwell Lagrangian,

L½g; A� ¼ 1

16π
ðR − F2Þϵ; ðA1Þ

which is both covariant and gauge invariant. We proceed by
regarding Aa as a local 1-form on spacetime, instead of a
global connection on aUð1Þ bundle. However, our equations
do not make any assumption on the gauge of Aa and, as
shown below, this approach allows one to include magnetic
type terms which have been missed or are not defined, in
moregeneral treatments of theories onprincipal fiber bundles
[113]. The linear automorphisms of this theory (essentially,
spacetime diffeomorphisms and internal gauge transforma-
tions) can be parametrized by a vector field ξa and a function
P, and their action on gab and Aa reads
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δξgab ¼ −£ξgab; δξ;PA ¼ −ðιξF þ dPÞ: ðA2Þ

Equivalently, in terms of the gauge parameter

χðξ; A;PÞ≡ ιξA − P ðA3Þ

the action on Aa takes the more familiar form δξ;PA ¼
−£ξAþ dχ. Eventually we will be setting ξa ¼ ka and
P ¼ Pk, where ka and Pk are the background quantities
corresponding to the Killing generator of the horizon and the
electric momentummap, respectively. However, we proceed
by first deriving all the identities associated with the
symmetry (A2) off shell, for arbitrary ξa and P. Writing
the general first variation of the Lagrangian as

δL ¼ δL
δΦ

δΦþ dΘðδΦÞ; ðA4Þ

where Φ denotes all fields (in our case just gab and Aa), and
specializing it to a fluctuation generated by ðξa;PÞ as in (A2)
one finds, on the one hand,

δξ;PL ¼ −£ξL ¼ −dðιξLÞ: ðA5Þ

On the other hand, from Noether’s second theorem [114],

δL
δΦ

δξ;PΦ ¼ dSξ;P; ðA6Þ

whereSξ;P is a 3-form that is homogeneous in δL=δΦ and its
derivatives. It follows that

dðΘðδξ;PΦÞ þ ιξLþ Sξ;PÞ ¼ 0; ðA7Þ

and this leads to the so-called Noether-Wald charge Qξ;P

associated with ðξa;PÞ, defined by [existence of suchQξ;P ,
and that it is a local function of the fields, is guaranteed given
some technical assumptions [115] which are met in our
theory (A1)]

dQξ;P ¼ Θðδξ;PΦÞ þ ιξLþ Sξ;P : ðA8Þ

These quantities can be computed for the Lagrangian (A1)
and read

16π
δL
δΦ

δΦ ¼ EabδgabϵþE ∧ δA; ðA9Þ

16πΘðδΦÞ ¼ −4⋆F ∧ δAþ 16πΘGR; ðA10Þ

16πSξ;P ¼ PEþ 2ξbEabϵa; ðA11Þ

16πQξ;P ¼ 16πQGR
ξ þ 4P⋆F; ðA12Þ

where

Eab ¼ Gab − TEM
ab ; ðA13Þ

E ¼ 4d⋆F ðA14Þ

TEM
ab ¼ FacFc

b þ ⋆Fac⋆Fc
b; ðA15Þ

16πΘGR ¼ ⋆θGR; ðA16Þ
θGRa ¼ ðδcaδdb − gabgcdÞδΓb

cd; ðA17Þ
16πQGR

ξ ¼ ⋆dξ; ðA18Þ
and the notation ϵaTa means contraction with the first index
of the volume form, while for the Hodge dual we use
⋆Tabc ¼ ϵabcdTd. The fundamental identity follows from
the first variation of (A8) given a fixed choice of para-
meters ξa andP, that is, δξa ¼ 0 and δP ¼ 0. (One could be
more general as in [47] and allow P to be field dependent
and have a nontrivial variation, see also [113]. However,
the final results are unchanged and we find it more con-
venient to proceed as indicated.) Writing the variation in the
most convenient form, though, requires some massaging.
Consider first the term ιξδL. One has

ιξδL ¼ £ξΘðδΦÞ − dðιξΘðδΦÞÞ þ ιξ

�
δL
δΦ

δΦ
�
; ðA19Þ

wherewe used (A4) and Cartan’s formula £ξ ¼ ιξdþ dιξ. In
turn, £ξΘðδΦÞ can be written as

£ξΘðδΦÞ ¼−δξ;PΘðδΦÞþ 1

16π
ðιξδAÞE−

1

4π
d½ðιξδAÞ⋆F�;

ðA20Þ
where we have defined δξ;PδA according to

δξ;PδA ¼ δξ;PðA0 − AÞ ¼ −ðιξF0 þ dPÞ
þ ðιξF þ dPÞ ¼ −ιξδF: ðA21Þ

Putting all these together, the first variation of (A8) can be
cast in the form

d

�
δQGR

ξ þ ιξΘGRþ 1

4π
Pδð⋆FÞ− 1

4π
ιξð⋆FÞ∧ δA

�

¼ωðδΦ;δξ;PΦÞþ ιξ

�
δL
δΦ

δΦ
�
þ ιξδA

16π
Eþ δSξ;P ; ðA22Þ

where

ωðδΦ; δξ;PΦÞ≡ δΘðδξ;PΦÞ − δξ;PΘðδΦÞ: ðA23Þ
It is important to notice that, from (A2) and (A21), one has
½δ; δξ;P � ¼ 0 and this implies that ωðδΦ; δξ;PΦÞ is skew
symmetric and bilinear in δΦ and δξ;PΦ (what can beverified
from direct computation, too).
Consider now an asymptotically flat black hole solution

of (A1), whose event horizon H is a Killing horizon of
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some vector field ka, and assume that ka is a symmetry
of the Maxwell field too, in the gauge-invariant sense
£kF ¼ 0. Then, one has the associated electric and mag-
netic momentum maps Pk and P̃k, defined as in (17), that
satisfy a zeroth law ðPkjH; P̃kjHÞ ¼ constant [47]. In such
background, setting ðξa;PÞ ¼ ðka;PkÞ one has

δkgab ¼ 0; δk;Pk
A ¼ 0; ðA24Þ

and we emphasize that no assumption has been made on
the gauge of Aa. Thus, for a generic fluctuation (A22)
reduces to

d

�
δQGR

k þ ιkΘGR þ 1

4π
Pkδð⋆FÞ −

1

4π
ιkð⋆FÞ ∧ δA

�
¼ δSk;Pk

: ðA25Þ

The cancellations on the right-hand side follow from the
fact that the background space is on shell, so Eab ¼ 0
and E ¼ 0, and because of (A24) and the fact that
ωðδΦ; δk;Pk

ΦÞ is homogeneous in δk;Pk
Φ. Next, the idea

is to evaluate the integral of (A25) on some suitable
3-surface Σ, with boundaries at the horizon and at infinity.
However, given that one also wants to consider variations
of the magnetic charge of the black hole, it is inconsistent to
assume that δA is regular outside the black hole (indeed, if
δF ¼ dδA where δA is regular everywhere on a 2-sphere
that encloses the hole, then by the Stokes theorem the
integral of δF on that sphere must vanish and there is no
variation of magnetic charge). This introduces complica-
tions in applying the Stokes theorem on the left-hand side
of (A25): the surface Σ and its boundaries should be chosen
such that δA is smooth there. Instead, one can rewrite (A25)
in a more convenient form by noticing that

−ιkð⋆FÞ ∧ δA ¼ dP̃k ∧ δA ¼ −P̃k ∧ δF þ dðP̃k ∧ δAÞ:
ðA26Þ

Then, in terms of the notation introduced in Sec. II,
Eq. (A25) becomes

d

�
δQGR

k þ ιkΘGR þ 1

4π
PI

kΩIJδFJ

�
¼ δSk;Pk

; ðA27Þ

thus making manifest both gauge and duality invariance.
The quantities δFI are physical (and therefore regular), so
no issue arises in applying the Stokes theorem on the left-
hand side of (A27).
Consider now a fluctuation that is a solution of the

(linearized) Einstein-Maxwell equations in the presence
of a linear source that has both electric and magnetic charge,

δðGab − TEM
ab Þ ¼ 8πTab;

dδFI ¼ −4π⋆jI: ðA28Þ

In principle, these equations contradict the hypotheses in
which (A27) has been derived, since we assumed local
existence of δA (even though no assumption has been made
about its properties), which is incompatible with dδF ≠ 0.
This can be circumvented by making the sources purely
electric via a duality rotation [e.g. for a particle this would be
achieved with a rotation of angle α ¼ − arctanðg=eÞ], apply
(A27) and then rotate the result back to a general duality
frame.15Asimple computationyields that the right-hand side
of (A27) is

δSk;Pk
¼ −PI

kΩIJ⋆jJ þ kaTabϵb; ðA29Þ

so one is left with

d
�
δQGR

k þ ιkΘGR þ 1

4π
PI

kΩIJδFJ

�
¼ −PI

kΩIJ⋆jJ þ kaTabϵb: ðA30Þ

The only thing remaining is to integrate (A30) on a sui-
table hypersurface Σ. We shall take it as a simply connected
3-surface with boundary ∂Σ ¼ S2H⊔S2∞, where S2∞ is a
2-sphere at infinity and S2H is some spatial 2-sphere at the
horizon.UsingStokes theoremon the left-hand side,wehave

Z
S2∞

�
δQGR

k þ ιkΘGR þ 1

4π
PI

kΩIJδFJ

�
¼

Z
S2H

�
δQGR

k þ ιkΘGR þ 1

4π
PI

kΩIJδFJ

�
þ
Z
Σ
½−PI

kΩIJ⋆jJ þ kaTabϵb�: ðA31Þ

Assuming that the fluctuations ðδgab; δFIÞ are regular and asymptotically flat, the integral at infinity gives

Z
S2∞

�
δQGR

k þ ιkΘGR þ 1

4π
PI

kΩIJδFJ

�
¼

Z
S2∞

½δQGR
k þ ιkΘGR� ¼ ΩHδJ − δM; ðA32Þ

15An alternative is to repeat our derivation starting from a “democratic” formulation of electromagnetism [95,116], although the
results should be precisely the same.
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where in the first step we used that PI
k satisfy the asymptotic boundary condition (19), and the last equality was established

in [100] (see also [114]), where M and J are the ADM mass and angular momentum. At the horizon, we have

Z
S2H

�
δQGR

k þ ιkΘGR þ 1

4π
PI

kΩIJδFJ

�
¼ −ϕIΩIJδQJ þ

Z
S2H

½δQGR
k þ ιkΘGR�; ðA33Þ

where we used the constancy of PI
k at H by virtue of the zeroth law and have introduced the electromagnetic potentials

ϕI ¼ −PI
kjH. We thus get the desired identity

δM − ΩHδJ ¼ ϕIΩIJδQJ −
Z
S2H

½δQGR
k þ ιkΘGR� þ

Z
Σ
½PI

kΩIJ⋆jJ − kaTabϵb�: ðA34Þ
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