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The Einstein equivalence principle (EEP) underpins all metric theories of gravity. One of its key aspects
is the local position invariance of nongravitational experiments, which is captured by the gravitational
redshift. The iconic gravitational redshift experiment places two fermionic systems, used as clocks, in
different gravitational potentials and compares them using the electromagnetic field. However, the
electromagnetic field itself can be used as a clock, by comparing the phases acquired by two optical pulses
propagating through different gravitational potentials. A fundamental point in the implementation of a
space-based large-distance optical interferometric experiment is the suppression of the first-order Doppler
effect, which dominates the weak gravitational signal necessary to test the EEP. Here, we propose a novel
scheme to suppress it by subtracting the phase-shifts measured in a one-way and two-way configuration
between a ground station and a satellite. We present a detailed analysis of this technique within the post-
Newtonian framework and perform simulations of its performance using realistic satellite orbits and state-
of-the-art fiber technology at the telecom wavelength of 1550 nm.
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I. INTRODUCTION

Light, apart from the ad hoc applications of corpuscular
analogies, is insensitive to Newtonian gravity. The situation
is conceptually very different in general relativity (GR): in
all metric theories of gravity, electromagnetic (EM) wave
propagation depends on the spacetime background [1–3].
In the short wavelength limit, light rays [4], which are
characteristic curves of the wave equation, model classical
and quantum beams, as well as trajectories of single
photons [4–6]. On curved backgrounds, the short-wave
asymptotic expansion identifies rays as null geodesics
[1,3]. However, near the surface of our planet the gravi-
tational effects appear at the c−2 post-Newtonian order,
where c is the speed of light. Much stronger kinematic
effects often mask these second-order terms.
For example, the optical version of the Colella-

Overhauser-Werner (COW) experiment [7] was proposed

in [8]. Using communication between a spacecraft and a
ground station to realize the Mach-Zehnder interferometer
(the experimentwas suggested in [9] as a possible component
of theQEYSSATmission [10]), it is possible to obtain a large
gravitationally induced phase shift,

φgr ¼ ΔUω0τl ≈ −
gh
c2

2π

λ
nl: ð1Þ

In this scheme a photon time-bin superposition [11] is sent
from a ground station onEarth to a spacecraft. Both terminals
are equipped with a fiber-based interferometer of equal
temporal imbalance τl ¼ nl=c (with n ¼ 1.5 the refractive
index of the fiber and l the length of the delay line), to
temporally recombine the two time bins and obtain an
interference pattern depending on the gravitational phase-
shift φgr ¼ Δωτl [12], where the frequency shift Δω is
derived in Eq. (2). Here we approximated the difference of
the dimensionless gravitational potential as −gh=c2, with g
the Earth’s gravity and h the satellite altitude, and λ ¼
2πc=ω0 is the sentwavelength. The order ofmagnitude of the
gravitational redshift is about 1 rad, supposing λ ¼ 1550 nm,
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l ¼ 1.2 km, and an altitude h ¼ 1500 km (which corre-
sponds toΔU ≈ −1.3 × 10−10 [13]). The expected signal lies
in a measurable regime, and an optical precision of δφgr ≈
10 μrad is experimentally achievable provided a number of
detected photons N fulfilling N ≳ 1=δφ2

gr [14].
However, a careful analysis of the optical COW experi-

ment in [15] showed that the first-order Doppler effect is
roughly 105 times stronger than the desired signal φgr.
Moreover, in this setting the kinematic and gravitational
effects are ineludibly linked [12]. This first-order Doppler
effect was recently measured by exploiting large-distance
precision interferometry along space channels [16], which
represents a resource for performing fundamental tests of
quantum mechanics in space, as in [8,17–20], for future
space-based scientific missions, such as LISA [21], and
space-based quantum cryptography [22–27].
A novel proposal for the extraction of the gravitational

contribution to the phase is the subject of the present work.
Our goal—direct observation of the effects of gravity in an
optical interferometric experiment—is part of the efforts to
design new tests of the equivalence principle. We now
review its formulation and connection to the gravitationally
induced phase, and then outline the structure of the
following discussion.
The Einstein equivalence principle (EEP) is the founda-

tion of all metric theories of gravity, including general
relativity [1–3,28,29]. The principle is comprised of three
statements. The first—weak equivalence principle—states
that the trajectory of a freely falling test body is indepen-
dent of its internal composition. The other two statements
deal with outcomes of nongravitational experiments
performed in freely falling laboratories where self-
gravitational effects are negligible. The second statement
—local Lorentz invariance—asserts that such experiments
are independent of the velocity of the laboratory where the
experiment takes place. The third statement—local position
invariance (LPI)—asserts that “the outcome of any local
nongravitational experiment is independent of where and
when in the Universe it is performed” [29].
Tests of the “when” part of the EEP bound the variability

of the nongravitational constants over cosmological time-
scales [30–32]. The “where” part was expressed in
Einstein’s analysis [33] of what in modern terms is a
comparison of two identical frequency standards in two
different locations in a static gravitational field. The so-
called redshift implied by the EEP affects the locally
measured frequencies of a spectral line that is emitted at
location 1 with the proper frequency ω0 and then detected
at location 2 with ω0. The redshift can be parametrized as

Δω
ω0

¼ ð1þ αÞΔU þOðc−3Þ; ð2Þ

where Δω ≔ ω0 − ω0 and ΔU ≔ U2 −U1, where Ui ≔
−ϕN

i =c
2 has the opposite sign of theNewtonian gravitational

potential ϕN
i at the emission (1) and detection (2), while

α ≠ 0 accounts for possible violations of LPI. In principle, α
may depend on the nature of the clock that is used tomeasure
the redshift [2,29,31]. For example, the standard model
extension (SME) includes all possible Lorentz- and CPT-
violating terms preserving the fundamental SUð3Þ ×
SUð2Þ × Uð1Þ gauge invariance and power-counting renor-
malizability [34]. The SME contains constrained parameters
whose different combinations may lead to α ≠ 0, as well as
different couplings of the Standard Model parameters and
gravity [35–37].
A typical redshift experiment involves a pair of clocks,

naturally occurring [38] or specially designed [39–45],
whose readings are communicated by EM radiation. It
should be noted that the leading term in Eq. (2) is the same
in all metric theories of gravity. Evaluating Δω=ω0 to a
higher order in the post-Newtonian approximation leads to
expressions that depend on the specifics of the theory and
are different between general relativity and alternative
metric theories of gravity [2,3]. Therefore, as we detail
in Sec. III, the absolute violation of LPI in terms of a single
parameter is meaningfully defined in the near-Earth experi-
ments only up to the level of 10−5.
This level of precision of the measurements of α is

already well-established [2,29,42,43]. Moreover, compari-
son of colocated ultraprecise clocks, using two different
atoms (hydrogen and cesium) for their working transitions,
allowed for a bound on the difference αH − αCs with the
precision of 2 × 10−7 [42].
These estimations of α are based on implicit or explicit

assumptions on the standard propagation of the EM
radiation [37]. Furthermore, parameters of the models with
dark matter directly coupling to the EM field are also
constrained using atomic measurements [46]. As a matter
of principle, once the possibility of LPI violation is enter-
tained, there is no reason for it to be the same for all fields
of the Standard Model, and the distinct coefficients in the
symmetry-violating terms in SME are generally considered
[34,35]. Hence, different types of experiments, which
employ a single EM source and compare optical phase
differences between beams of light traversing different
paths in a gravitational field, provide a complementary test
of LPI. Our analysis is purely classical. However, it can be
adopted to describe the state transformation of photonic
qubits.
The rest of this paper is organized as follows. The

frequency shift of Eq. (2) underpins the phase difference
whose extraction we outline in Sec. II. This protocol forms a
novel test of the EEP exploiting a single EM source and a
double large-distance interferometric measurement per-
formed at two different gravitational potentials. Section III
discusses in detail how by comparing the phase shifts
obtained at a satellite and on Earth, it is possible to overcome
the first-order Doppler effect and obtain the gravitational
contribution. Section IV presents simulations that are based
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on the orbits of existing andproposed satellites, anddiscusses
the current technological limitations of the scheme.

II. DESCRIPTION OF THE PROPOSAL AND OF
THE DOPPLER-CANCELLATION SCHEME

A possible setup for our proposal is sketched in Fig. 1
and is based on the satellite interferometry experiment
realized in [16]. Such an interferometric measurement is
obtained by sending a light pulse through a cascade of two
fiber-based Mach-Zehnder interferometers (MZIs) of equal
temporal imbalance τl. After the first MZI the pulse is split
into two temporal modes, called short (S) and long (L)
depending on the path taken in the first MZI. The equal
imbalance of the two MZIs guarantees that the two pulses
are recombined at the output of the secondMZI, where they
are detected. The combination of the possible paths the
pulses may take leads to a characteristic detection pattern
comprising three possible arrival times for each pulse. The
first (third) peak corresponds to the pulses that took the
S (L) path in both the MZIs, while the midpeak is due to
the pulse that took the S path in the first interferometer and
the L path in the subsequent one, or vice versa. Hence,
interference is expected only in the central peak, due to the
indistinguishability of the two possibilities.
Such an interference is modulated by the phase-difference

φ accrued in the propagation by the two interfering paths, that
depends on the relative motion between the ground station
(GS) and the spacecraft (SC), as depicted in Fig. 1, and on the
difference in gravitational potentials, as we will detail in the

following. From the ratio of the intensity of the central peak
to the lateral ones an estimation ofφ can be obtained [16]. To
realize this interferometric measurement, the coherence time
of the source τc must be, at the same time, much shorter than
the temporal imbalance τl ≈ τGSl ≈ τSCl introduced by the
single delay line, and longer than themismatchΔτl ≔ τSCl −
τGSl between the two interferometers (which cannot be
perfectly identical), i.e.

Δτl < τc ≪ τl: ð3Þ

We will show in Appendix A how the setting of the source
can be chosen such that Eq. (3) is satisfied.
Furthermore, we will assume that a free-space to single-

mode fiber coupling system is implemented to guarantee
the spatial overlap of the interfering beams, resulting in
high-interference visibility (the interferometric visibility is
further discussed in Appendix D). The latter assumption
seems to be very demanding from an experimental point of
view. However, it was recently demonstrated that it is
possible to couple into single-mode fibers a laser beam
coming from satellites [47,48]. Indeed, by using an
adaptive optics (AO) system [48], it is possible to correct
the wavefront distortion induced by turbulence and to
mitigate losses and intensity fluctuations at the receiver.
We note that, as discussed below, the phase-difference φ is
not affected by turbulence. More technical details on the
experimental setup, attesting to the feasibility of our
proposal within a decade, are given in Appendix A.
The Doppler-cancellation scheme is based on the fact

that the one-way phase-difference φSC contains both the
first-order Doppler shift and higher-order terms including
the gravitational contribution U2 − U1 ≡USC −UGS,
while the two-way phase-difference, φGS, contains only
Doppler terms since the gravitational contribution is
canceled out at the leading order in the two-way trip.
The first-order Doppler terms are eliminated by manipu-
lating the corresponding data sets from the GS and SC in a
manner similar to the time-delay interferometry techniques
in [49]. The key feature allowing for this is that the ratio of
first-order Doppler terms in φSC and φGS is exactly equal to
two (see below).
Hence, using the linear combination

S ≔ φSC −
1

2
φGS ð4Þ

of the two phase differences φSC and φGS, that are obtained
from an interferometric measurement of the kind described
above, a bound on α will be retrieved. This procedure
parallels the data processing techniques used in the Gravity
Probe A experiment [50]. Here φSC is measured at detector
A located on the SC, while φGS is measured at detector B
located at the GS by exploiting the reflection of the sent

Ω Earth
rotation

GS
1

SC
2

GS
3

Spacecraft trajectory

n̂12

n̂23

�v1

�v2

�v3

FIG. 1. Top: scheme of the proposal. Both the ground station
(GS) and the spacecraft (SC) are equipped with a Mach-Zehnder
interferometer (MZI) of equal delay line l and an adaptive optics
(AO) system for fiber injection. Bottom: geometry of the experi-
ment: v⃗1 is the velocity of the GS at the emission at potentialU1; v⃗2
is the velocity of the SC at the detection on the satellite at potential
U2; v⃗3 is the velocity of the GS at the detection of the beam
retroreflected by the corner-cube retroreflector (CCR) on the SC,
which occurs at potential U3 ¼ U1. Approximating Earth’s
angular velocity Ω as constant, jv⃗1j2 ¼ jv⃗3j2. Vectors n̂12 and
n̂23 are the Newtonian propagation directions of the light pulses.
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beam obtained with a corner-cube retroreflector (CCR)
mounted on the SC (Fig. 1).
The explicit form of the signal is derived in the next

section and in Appendix B, resulting in

S
ω0τl

¼ ð1þ αÞðU2 − U1Þ þ
1

2
ðβ22 − β21Þ

þ β⃗1 · ðβ⃗1 − β⃗2Þ − ðd2 − d1Þ2 − Tðn̂12 · a⃗1Þ
− ððβ⃗2 − β⃗1Þ2 − ðd2 − d1Þ2Þ

τl
4T

; ð5Þ

where α parametrizes the violation of LPI, β⃗i ≔ v⃗i=c,
di ≔ n̂12 · β⃗i, T is the zeroth-order time-of-flight between
the GS and the SC, a⃗1 ¼ dβ⃗1=dt is the centripetal accel-
eration of the GS at 1, and the other quantities are specified
in Fig. 1.

III. PHASE-SHIFT ESTIMATION IN THE
PARAMETRIZED POST-NEWTONIAN

APPROXIMATION

A. Notation

We present a detailed analysis of the phases to be
measured by exploiting the parametrized post-Newtonian
(PPN) formalism [1–3] using the notation of [15]. The
expansion order is labeled by the parameter ϵ, which is set
to 1 at the end of the calculation. The PPN formalism
applied to near-Earth experiments implies ϵ ≈ 10−5, since
Earth’s gravitational potential is defined to be of the order
ϵ2 and U⊕ ¼ GM⊕=ðc2R⊕Þ ≈ 10−10 [2] (the subscript ⊕
refers to Earth). It is worth noticing that the absolute value
of the GS and SC velocities vi=c are also bounded by 10−5,
and are thus on the order of ϵ. Another important scale
parameter is given by the ratio μ ≔ τl=T between the delay-
line imbalance and the zeroth-order time-of-flight. For an

imbalance of l ¼ 1.2 km, as used in the following, we
have μ ≈ 10−3.
At this level of precision, we can ignore the effects of the

gravitational field of other bodies in the Solar System,
approximate the spacetime around the Earth as static, and
consider only the leading (i.e. second order in ϵ) post-
Newtonian effects. Thus, the non-vanishing components of
the metric in the PPN approximation are [1–3,28]

g00 ¼ −1þ 2U; gij ¼ δijð1þ 2UÞ; ð6Þ
where the gravitational potential around Earth includes the
quadrupole term [28]

U ≔ Uðr; θÞ ¼ GM⊕

c2r

�
1 −

1

2
J2

R2
⊕

r2
ð3 cos2 θ − 1Þ

�
ð7Þ

with J2 ¼ 1.083 × 10−3 the normalized quadrupole
moment. The off-diagonal terms in the PPN-metric are of
the order ϵ3, while the next-order correction to g00 is of the
order ϵ4 [2,3]. Taking these and higher-order terms into
account allows to obtain the frequency-shift with arbitrary
precision. Unlike the universal ϵ2 term, the ϵ3 and higher-
order terms depend on the specific EEP-conforming metric
theory used [2,3].
Unit (Euclidean) vectors n̂ij describing light propagation

direction carry double subscripts indicating the starting (i)
and ending (j) points of the geodesic segment followed by
the pulse. More details on light propagation in the PPN
formalism are reported in Appendix B 1.
Since we deal with short time intervals, we use an Earth-

centered inertial system as the standard reference frame
with coordinates ðt; x⃗Þ. For brevity we refer to this system
as the “global” reference frame (GRF), distinguishing it
from the local frames that are established at the GS and the
SC along their world lines parametrized by their proper
times τGS and τSC [Fig. 2 (left)], which are distinguished by

FIG. 2. Left: spacetime diagram with a single null geodesic segment connecting the emission and detection points lying along the
ground station and the spacecraft worldlines (sμGS and sμSC, respectively). Center: spacetime diagram for the one-way phase-shift. We
define: T ≔ t2 − t1 (zeroth-order time-of-flight from the GS to the SC) and T� ≔ t2� − t1� . Right: spacetime diagram for the two-way
phase-shift. We define: T̄ ≔ t2̄ − t1̄, P

0 ≔ t3� − t2̄, and P ≔ t3 − t2. The coordinates ðt; xÞ refer to the GRF. The x-axis represents all
three spatial directions.
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superscripts. Quantities that are expressed in the GRF will
usually carry no superscripts. On the other hand, the
subscripts refer to the location of a particular event; for
example 1 and 3 occur at the GS, while 2 happens at the SC
(see Fig. 1). In the following calculation we use the
coordinates x⃗1 and x⃗2, the velocities v⃗1 and v⃗2, and
accelerations a⃗1 and a⃗2 at the points 1 and 2 and suppose
the time-of-flight T is known.
Coordinate-time and proper-time intervals are defined as

tij ≔ tj − ti and τij ≔ τj − τi, respectively, and are related
through the line element

−dτ2 ¼ ð−1þ 2UÞdt2 þ v2

c2
dt2 þOðϵ3Þ; ð8Þ

where τ is the proper time of a local observer (at the GS or
SC) that moves with the velocity v⃗ ¼ cβ⃗. Hence,

τij ¼
�
1 −

1

2
β2i −Ui

�
tij; ð9Þ

is exact at Oðϵ2Þ, provided that vitij ≲ ϵri and aitij ≲ ϵvi.

B. How to evaluate the phase shift

The most effective way to estimate the phase-shift for the
interfering beams in Fig. 1 is to use the spacetime diagrams
of Fig. 2 [12]. Within the geometric optics description of
[1,4], the scalar amplitude of a monochromatic wave can be
written as ψðt; x⃗Þ ¼ Aðt; x⃗ÞeiΦðt;x⃗Þ, where the phase Φðt; x⃗Þ
is a scalar function satisfying the eikonal equation, which is
the Hamilton-Jacobi equation for massless particles [1,4]. If
we consider a single null geodesic segment that connects
two points belonging to two timelike trajectories—ðte; x⃗eÞ
and ðtd; x⃗dÞ in Fig. 2 (left)—it follows that the accumulated
phase can be evaluated indifferently at the emission (e) or
detection (d) point:

ϕ½e → d� ¼ ϕGRFðtd; x⃗dÞ ¼ ϕGRFðte; x⃗eÞ: ð10Þ

Since the phase is a scalar, it can be evaluated in either the
local frames established at the SC or at the GS according to

ϕ½e → d� ¼ ϕSC½τSCd ; x⃗SCd ðτSCd Þ�
¼ ϕGS½τGSe ; x⃗GSe ðτGSe Þ� ¼ ϕ0 − ω0τ

GS
e : ð11Þ

In the above expression the form of the phase is expressed
in the GS-frame. The 4-wave vector is given by kμ ¼ ∂μΦ,
and the emitted frequency is ωGS ≡ ω0 ¼ −uμGSkμ, where
uμGS is the 4-velocity of the frame and ϕ0 is an initial phase.
In our setting, this recipe implies to back-propagate the

light trajectory from the final detection point (2� for
the one-way measurement and 3� for the two-way one)
to the GS worldline, and to take into account the presence
of the delay line (of proper time τl) in the path [see Fig. 2].

It is worth noticing that, since the two waves associated to
the two possible paths are required to interfere at the same
spacetime event, the backpropagation implies that the two
points where the phase is estimated at the GS are actually
two different spacetime events for the two paths.
Furthermore, we can apply the machinery described above
to pulses of light, since they are obtained as superposition
of plane waves [12].

C. One-way phase difference

The spacetime diagram of the two beams A1 and A2

interfering after the one-way trip at the point 2� ≔ ðt2� ; x⃗2� Þ
is represented in Fig. 2 (center). A2 is the path followed by
the pulse that leaves the GS at 1, reaches the SC at 2, and
ends at 2� by taking the delay line on the satellite just before
detection. Hence, the phase-shift at point 2�, given path A2,
taking into account the delay line (d:l.), and the back-
propagation (b:p.) is

ϕ½A2� ¼ ϕSC½2�jA2�
¼d:l:ϕSC½τSC2 ≔ τSC2� − τl; x⃗SCðτSC2 Þ�
¼b:p:ϕGS½τGS1 ; x⃗GSðτGS1 Þ�
¼ð11Þϕ0 − ω0τ

GS
1 : ð12Þ

On the other hand, path A1 is followed by the pulse that
arrives at 2� while leaving the GS at 1� after having taken
the delay line on the ground. Thus, its accumulated phase is

ϕ½A1� ¼ ϕSC½2�jA1�
¼b:p:ϕGS½τGS1� ; x⃗GSðτGS1� Þ�
¼d:l:ϕGS½τGS1� − τl; x⃗GSðτGS1� − τlÞ�
¼ð11Þϕ0 − ω0ðτGS1� − τlÞ: ð13Þ

The phase-difference for the one-way measurement
performed at the SC is

φSC ≔ ϕ½A2� − ϕ½A1� ¼ ω0ðτGS1� − τGS1 − τlÞ; ð14Þ

where τGS1� − τGS1 ≡ τGS11� is related to coordinate time inter-
val t11� by Eq. (9) and

t11� þ T� ¼ T þ t22� ð15Þ

holds, with τSC22� ≡ τl. In the Appendix B 2 we evaluate φSC

by expanding the unknown quantities in powers of ϵ (these
are the time-of-flight T� of the delayed pulse, its Newtonian
propagation direction n̂1�2� and the coordinate-time interval
t11�) and by using the equations describing the motion of
the SC and the light propagation in the PPN approximation.
We obtain
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φSC ¼ −ω0T1 þ φð2Þ
SC ; ð16Þ

where the first-order Doppler correction is given by

T1 ¼ n̂12 · ðβ⃗2 − β⃗1Þτl: ð17Þ

The detailed calculation and the explicit form of the

second-order term φð2Þ
SC are given in Appendix B 2.

D. Two-way phase difference

The spacetime diagram of the two beams B1 and B2

interfering after the two-way trip at the spacetime event 3� ≔
ðt3� ; x⃗3� Þ is represented in Fig. 2 (right). Analogously to the
one-way shift, for the B2 path (delay line on the ground just
before detection) we have that

ϕ½B2� ¼ ϕGS½3�jB2�
¼d:l:ϕGS½τGS3 ≔ τGS3� − τl; x⃗GSðτGS3 Þ�
¼b:p:ϕGS½τGS1 ; x⃗GSðτGS1 Þ�
¼ð11Þϕ0 − ω0τ

GS
1 ; ð18Þ

while for the pathB1 (delay line on the ground at the start) we
have that

ϕ½B1� ¼ ϕGS½3�jB1�
¼b:p:ϕGS½τGS

1̄
; x⃗GSðτGS

1̄
Þ�

¼d:l:ϕGS½τGS
1̄

− τl; x⃗GSðτGS1̄ − τlÞ�
¼ð11Þϕ0 − ω0ðτGS1̄ − τlÞ: ð19Þ

Hence, the phase difference for the two-way measurement
realized at the GS is given by

φGS ≔ ϕ½B2� − ϕ½B1� ¼ ω0ðτGS1̄ − τGS1 − τlÞ; ð20Þ

where τGS
1̄

− τGS1 ≡ τGS
11̄

is related to t11̄ by Eq. (9), and

t11̄ þ T̄ þ P0 ¼ T þ Pþ t33� : ð21Þ

with τGS33� ≡ τl. With a procedure analogous to the one of the
one-way phase-shift, we finally obtain

φGS ¼ −2ω0T1 þ φð2Þ
GS; ð22Þ

whereφð2Þ
GS and the detailed calculation are explicitly given in

the Appendix B 3.
The first-order term φð1Þ

GS ≔ −2ω0T1 is exactly what has
been measured in [16]. As anticipated above, the ratio of
the first-order terms in φSC and φGS is exactly two, thus

allowing for the Doppler-cancellation strategy that is
summarized in Eq. (4).
The effects of the length mismatch between the loops are

the main practical limitation of the scheme and are
discussed in Appendix C.

IV. SIMULATIONS

We present the numerical estimation of the signal in
Eq. (5) by exploiting the orbit of existing and simulated
satellites, covering a wide range of orbital parameters. The
first two satellites are currently used by the International
Laser Ranging Service (ILRS) [51]. The satellite laser
ranging (SLR) technique allows for a high-accuracy esti-
mation of the distance of such satellites by measuring the
time-of-flight of laser pulses that are sent from a GS on
Earth, then retroreflected by the CCRs mounted on the
orbiting terminal, and finally collected by the same GS.
ILRS makes available the consolidated prediction format
[52] files for SLR orbit, containing the geocentric (inertial
Earth-centered) position of the satellites at a given time. We
chose to perform the simulation using two satellites placed
in different orbits: Ajisai (circular orbit) and Galileo 201
(eccentric orbit). In particular, Ajisai has an altitude of
about 1500 km, as used in the estimation of the expected
gravitational phase-shift after Eq. (1). The used GS is the
Matera Laser Ranging Observatory (MLRO) [53] of the
Italian Space Agency, that was exploited for various
demonstrations of the feasibility of satellite quantum
communications [16,17,25,54–57].
Two other simulations use satellites that are placed on a

highly eccentric elliptical orbit, known as Molniya orbit.
This orbit is well suited for telecommunications in polar
regions and has therefore been exploited by the Soviet
Union for placing its satellites. Satellites on these orbits
spend most of their time close to the apogee, with rapid
passages at the perigee. We specialized our analysis on the
Molniya 1-87 satellite [58], whose orbit has an inclination
of 63.6° and an eccentricity of 0.68. Since all existing
satellites placed on Molniya orbits are visible from the
northern hemisphere only at perigee, we decided to
simulate the orbit of a Molniya-like satellite spending most
its time above the southern hemisphere and passing on top
of the MLRO at the apogee (called S-Molniya).
All the orbits are simulated using the open source Orekit

space dynamics library [59], that can both simulate an orbit
starting from the two-line elements (TLE) or the Keplerian
orbital parameters and reproduce real passages as seen from
an actual GS on Earth.
The upper panels of Fig. 3 show the signal S=ðω0τlÞ

from Eq. (5) as a function of the time passage for the
satellites, while the bottom panel are the signals estimated
by supposing that such terminals are equipped with an
interferometer providing a delay line of l ¼ 1.2 km (so n ¼
1.5 implies τl ≈ 6 μs) and that the initial wavelength is
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λ ¼ 2πc=ω0 ¼ 1550 nm. This choice of the parameters τl
and ω0 brings the strength of the signal in Eq. (5) into a
measurable regime on the order of a few radians.
While the signal S=ðω0τlÞ is of the same order of

magnitude for all the orbits, very low-eccentricity orbits
for which ΔU ¼ U2 −U1 ≈ const (e.g., Ajisai) are not
suitable in practice, since the lack of variability in ΔU
prevents its separation from the constant offset ω0τlδl that
is due to the mismatch δl ≔ ðτSCl − τGSl Þ=τGSl of the delay
lines, as discussed in Appendix C.

V. CONCLUSIONS

Our proposal allows for the cancellation of the first-order
Doppler effect in optical redshift experiments. However,
this proposal still faces two important practical issues. First,
atmospheric turbulence is a limiting factor for large-
distance optical interferometry. However, the planned
temporal delay between the two pulses is four orders of
magnitude lower than the conventional millisecond thresh-
old of the turbulence correlation time [60]. As a result, both
the interfering beams suffer through the same random noise
that is canceled in measuring φSC and φGS. In fact, the same
scale difference was successfully exploited in [16].
Second, the two delay lines cannot be perfectly identical.

However, by exploiting commercially available fiber
stretchers at each MZI and by monitoring in real-time

the first-order interference with a stabilization laser of long
coherence time (see Appendix A for more details), it is
possible to phase-stabilize the two MZIs and achieve a
relative precision δl of the order of 10−6, which for
l ¼ 1.2 km translates into an absolute difference of
1 mm. It is worth noting that the capability of controlling
the relative length of two arms of 1 km balanced interfer-
ometer with a precision of 1 mm has been reported in [61],
and this technique can be adapted to unbalanced interfer-
ometers, provided an appropriate frequency reference is
supplied to the two terminals (see Appendix A). In this case
the measured signal gets a constant offset ω0τlδl, that can
be reliably estimated and eliminated by using SLR data.
Moreover, the additional variable term of the order δl can
be eliminated similarly to the second-order Doppler terms
(see Appendix C).
Concluding, in this work we propose an optical scheme

to suppress the first-order Doppler effect in order to
measure the gravitational redshift with satellite systems.
The possibility of testing gravitational physics using optical
interferometric measurements between moving terminals
represents an important point in the study of Einstein’s
theory and can lead to new tests of its interplay with
quantum mechanics through the exploitation of quantum
optical effects. The recent advancements in satellite optical
technologies make this proposal both attractive and feasible
with current technologies.

1 × 10–101 × 10–10 1 × 10–10 1 × 10–10

FIG. 3. Results obtained with, from left to right, Ajisai (inclination 50°, eccentricity 0.001, altitude 1490 km), Galileo 201 (inclination
50°, eccentricity 0.158, altitude ranging from 17,000 km to 26,210 km), Molniya 1-87 (inclination 63.6°, eccentricity 0.68, altitude
ranging from 2000 to 38,000 km) and an hypothetical satellite on a South Pole Molniya-like orbit (the same parameters as Molniya 1-87,
but with perigee on the northern hemisphere) seen from MLRO. Upper panels show the signals ΔU ¼ U2 −U1 and S=ðω0τlÞ from
Eq. (5) (with α ¼ 0) as a function of the passage time. Bottom panels show the signal S expected with a delay line and wavelength
λ ¼ 1550 nm.
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APPENDIX A: MORE DETAILS ON THE
EXPERIMENTAL SETUP

Here we provide some experimental details in order to
attest to the feasibility of our proposal. First, we address the
problem of stabilizing two strongly unbalanced MZI under
the assumption that the length of the two delay lines can be
kept equal at the required precision. Second, since the MZIs
have to be implemented with single-mode fibers to allow
for strong imbalances and to achieve a good overlap of the
interfering beams, we will sketch a possible single-mode
fiber-injection system exploiting adaptive optics. It is worth
noticing that the proposed system is feasible with current
technology given the maturity of fiber components at
1550 nm.

1. Details of the interferometers

The MZI of both terminals employ two optical fibers
(where one is a fiber spool much longer than the other)
sandwiched between two 50=50 fiber beam splitters. In
addition, one arm of the interferometer is equipped with a
fiber stretcher (f.s.) in order to finely tune the imbalance to
l ¼ 1.2 km. Note that a suitable laser emitting pulses with
short coherence time (≈1 ps) can be employed before the
launch to ensure that the relative imbalance between the
two delay lines is of the order of 1 mm, by measuring
the imbalance δl of the single MZI [17] with high-
resolution superconducting nanowire single-photon detec-
tors (SNSPDs). It is worth noting that commercial fiber
stretchers can provide down to 0.1 μm of minimum step,
so that, in principle, δl=l ≈ 10−10.
To phase-stabilize the MZIs and keep the relative

imbalances between the two to the required precision of
δl ¼ Δτl=τl ≈ 10−6, an auxiliary stabilization (S) laser with
central frequency νS and bandwidth ΔνS is employed at
each terminal to monitor in real-time the first-order
interference. The stabilization laser is assumed to be
characterized by a coherence time τSc much longer than
the target imbalance τl, hence τSc ≫ τl. For example, since

τl ¼ 6 μs, a laser with a bandwidth of ΔνS ≪ 1=
ffiffiffiffiffiffiffiffiffi
4πτ2l

q
≈

50 kHz at a wavelength of 1560 nm is suitable for this task.
With such a stabilization laser one can lock the optical
phase of the interferometer with a precision of the order
of ΔνS=νS ≈ 10−10.

Given the system described above, it is possible to ensure
that the relative mismatch of the SC’s delay line (τSCl ) the
GS’s delay line (τGSl ≡ τl) is at most δl ¼ Δτl=τl ≈ 10−6.
Having fixed τl ¼ 6 μs, we have that Δτl ≈ 10 ps, and we
can define the parameters of the signal source by requiring
that 10 ps < τc ≪ 1 μs to fulfill Eq. (3). Hence, a suitable
signal source is a 1550 nm fiber-coupled laser with a
repetition rate of 100 Hz, average power of 10 W (energy
pulse of 100 mJ), coherence time τc of 10 ns, and linewidth
of Δν ≈ 37.5 MHz. Recent experiments have demonstrated
that such a source is feasible with current technology
[62,63]. In order to reach the required optical precision
δφgr ≈ 10 μrad, it is necessary to detect N ≳ 1=δφ2

gr ≈ 1010

photons. Since a 100 mJ pulse at 1550 nm contains
approximately 8 × 1017 photons, the system can work with
losses up to almost 80 dB. Note that standard fibers at
1550 nm introduce a tolerable amount of losses even with
strong imbalances, since the attenuation coefficient is about
0.2 dB=km at this wavelength. In order to achieve the
required signal-to-noise ratio, it is necessary to use a low
noise InGaAs photodiode.

2. Details of the fiber-injection system

The free-space propagation of light through turbulent
atmosphere affects the quality of the beam wavefront,
which has to be corrected before being coupled to the SMF.
To accomplish such a task we envisage to use an adaptive
optics system like the one implemented in [48] and
sketched in Fig. 4.
This system is based on the exploitation of an additional

beacon laser at a wavelength a few nanometers apart from
the signal one (e.g., 1545 nm). This additional beam shares
the same free-space optical path of the signal beam, and is
used as feedback for the adaptive optics system. At the
detection, the beacon beam can be filtered out from the
signal beam by using wavelength-division-multiplexer
(WDM) filters, which provide down to 0.1 nm of band-
width separation. Figure 4 shows the expansion of the
closed-loop adaptive optics box introduced in the top panel
of Fig. 1. The input (In) of the AO system is the aberrated
beam wavefront collected by a telescope (sketched as a

FIG. 4. AO system needed for the free-space to SMF coupling.
The beam splitter (BS) can be replaced by a dichroic mirror if the
beacon laser has a different wavelength than the signal beam.
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lens), while the output (Out) is the corrected and colli-
mated beam to be coupled to the SMF. The first element of
the AO box is a lens whose focal length is chosen in order
to reduce and collimate the incoming beam. The light is
then reflected by a fast steering mirror (FSM) and a
deformable mirror (DM) before passing a beam splitter
(BS). The transmitted path exits from the AO box and
provides the collimated and corrected beam to be coupled
to the SMF, while the reflected path is collected by a
camera (CAM) and a wave front sensor (WFS). The CAM
could be a camera or a position-sensitive-detector to
measure the wandering of the beam at the focal plane
and thus the low-order tilt due to turbulence, while the
WFS could be a Shack-Hartmann sensor or a self-
referenced interferometer to estimate the higher-order
aberrations. The two signals generated by the CAM
and the WFS drive the FSM and the DM in order to
correct for low- and high-order aberrations of the
wavefront.
The actual parameters of the AO box must be carefully

chosen and they depend primarily on the level of expected
turbulence, the dimensions of the beams, the optical power
collected by the telescope and the velocity of the closed
loop. In our scheme the working parameters of the two AO
systems, one at the SC and the other at the GS, will be quite
different, since the first has to correct the upgoing beam
sent from the GS to the SC (about 40 dB of losses in a
realistic scenario), while the other must be optimized for
the go and return two-way path (about 80 dB of losses).
However, since the AO system exploits an additional
beacon beam, the required optical power is not an actual
limitation for it to work.
As noticed in [64], with long distance uplink propagation

(≳1000 km) the turbulence coherence area at the satellite
receiver is much larger than the typical receiver aperture
size. In these cases, only a tip/tilt correction without AO on
the satellite is sufficient for an optimal coupling into the
single-mode fiber.
Since the optical payload of the SC and the required

electronics comprise commercially available devices and
telecom-compatible fiber technology, we can envisage that
our proposal is feasible within a decade and with no
prohibitive costs.

APPENDIX B: LIGHT PROPAGATION IN THE
LEADING-ORDER PPN FORMALISM AND

DETAILED CALCULATION OF THE SIGNAL

We first review the essential formulas describing light
propagation in the post-Newtonian approximation and then
evaluate the phase differences for the one-way and two-way
trips described in the main text. To simplify the notation,
we use the convention G ¼ c ¼ 1, and write M instead of
M⊕. Some intermediate expressions contain explicit factors
of ϵ to make the separation of orders more transparent.
These are set to unity at the end of the calculation.

1. Summary of the post-Newtonian results

An extended treatment of light propagation in the PPN
formalism can be found in [2,3]. Light-ray trajectories from
ðtin; x⃗inÞ to ðt; x⃗) (with PPN parameter γ ¼ 1) are para-
metrized as

x⃗ðtÞ ¼ x⃗in þ n̂ðt − tinÞ þ x⃗ð2ÞðtÞ; ðB1Þ

where x⃗ð2ÞðtÞ is the correction to the Newtonian straight
propagation and the boundary condition gives x⃗ð2ÞðtinÞ ¼ 0.
Splitting x⃗ð2ÞðtÞ into its parallel and perpendicular compo-
nent relative to n̂ as

x⃗ð2Þk ðtÞ ≔ ½n̂ · x⃗ð2ÞðtÞ�n̂≡ xð2Þk ðtÞn̂; ðB2Þ

x⃗ð2Þ⊥ ðtÞ ≔ x⃗ð2ÞðtÞ − x⃗ð2Þk ðtÞ; ðB3Þ

then the two equations

dxð2Þk
dt

¼ −2U; ðB4Þ

d2x⃗ð2Þ⊥
dt2

¼ 2∇U − 2n̂ðn̂ ·∇UÞ; ðB5Þ

supplemented by the initial condition dx⃗ð2ÞðtinÞ=dt ¼ 0,
serve as a basis for the subsequent calculations.
The gravitational potential of a pointlike Earth can be

approximated by

U ≈ UðrÞ ≔ M⊕

jx⃗in þ n̂ðt − tinÞj
≡M⊕

r
; ðB6Þ

yielding

dx⃗ð2Þ

dt
¼ −2UðrÞn̂ − 2

Md⃗
d2

�
x⃗ · n̂
r

−
x⃗in · n̂
rin

�
; ðB7Þ

where

d⃗ ≔ n̂ × ðx⃗in × n̂Þ ¼ x⃗in − ðn̂ · x⃗inÞn̂; ðB8Þ

is the vector joining the center of the Earth and the point of
closest approach of the unperturbed ray. Substituting
Eq. (B1) into Eq. (B7) and integrating from tin to t yields

x⃗ð2ÞðtÞ ¼ −2Mn̂ ln
ðt − tinÞ þ n̂ · x⃗in þ rðtÞ

n̂ · x⃗in þ rin

− 2
Md⃗
d2

�
rðtÞ − rin −

x⃗in · n̂
rin

ðt − tinÞ
�
: ðB9Þ
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2. Light propagation for the one-way trips

Here we derive the phase φSC to order ϵ2. The setup is
depicted in Fig. 2 (center). The main quantity of interest is
thus τGS11� , which is related to the global time interval t11� via
Eq. (9) as

τGS11� ¼ t11�
�
1 −

1

2
v21 −U1

�
; ðB10Þ

where the rearranged Eq. (15) gives

t11� ¼ T þ t22� − T�: ðB11Þ

Using the coincidence of the beams A1 and A2 at ðt2� ; x⃗2� Þ,
the phase is expressed only in terms of the quantities that
are observed at the events 1 and 2.
With the precision of Oðϵ2Þ, the trajectory of the SC is

x⃗SCðtÞ ¼ x⃗2 þ v⃗2ðt − t2Þ þ
1

2
a⃗2ðt − t2Þ2 þOðϵ3Þ; ðB12Þ

hence by using Eq. (9) we find

x⃗2� ≔ x⃗SCðt2� Þ ¼ x⃗2 þ v⃗2τl þ
1

2
a⃗2τ2l þOðϵ3Þ: ðB13Þ

Similarly, the trajectory of the GS is

x⃗GSðtÞ ¼ x⃗1 þ v⃗1ðt − t1Þ þ
1

2
a⃗1ðt − t1Þ2 þOðϵ3Þ; ðB14Þ

and so

x⃗1� ≔ x⃗GSðt1� Þ ¼ x⃗1 þ v⃗1t11� þ
1

2
a⃗1t211� þOðϵ3Þ: ðB15Þ

We comment on the relative importance of various terms at
the end of this section.
The quantities T� and t11� are expanded in powers of ϵ

T� ¼ T þ ϵT1 þ ϵ2T2; ðB16Þ

t11� ¼ τl þ ϵδ1 þ ϵ2δ2: ðB17Þ

Using Eq. (9) again we find that with the required precision

τl ≡ τSC22� ¼ t22�
�
1 −

1

2
v22 − U2

�
; ðB18Þ

so that

t22� ¼ τl
�
1þ 1

2
v22 þ U2

�
; ðB19Þ

and using Eq. (B11) the relations

δ1 ¼ −T1; ðB20Þ

δ2 ¼ −T2 þ τl
�1
2
v22 þU2

�
; ðB21Þ

are established.
For the emission from the GS we find the closest

approach vector in Eq. (B9) is d⃗ ¼ x⃗GS, with x⃗in being
x⃗1 and x⃗1� for the respective pulses. The pulse A2 starts at
x⃗in ¼ x⃗1, hence

x⃗2 ¼ x⃗1 þ n̂12T þ χ⃗↑ðx⃗1; n̂12; TÞ; ðB22Þ

where we rewrote theOðϵ2Þ terms coming from Eq. (B9) as

χ⃗↑ðx⃗1; n̂12; TÞ ≔ −2Mn̂12 ln
T þ n̂12 · x⃗1 þ jx⃗1 þ n̂12Tj

n̂12 · x⃗1 þ r1

− 2
Md⃗1
d21

�
jx⃗1 þ n̂12Tj − r1 −

n̂12 · x⃗1
r1

T

�
;

ðB23Þ

with d⃗1 ¼ n̂12 × ðx⃗1 × n̂12Þ. The structure of this second-
order term ensures that it will cancel with its respective
counterparts in the key expressions below.
The delayed pulse A1 leaves the GS at 1� in the

Euclidean direction

n̂1�2� ¼ n̂12 þ ϵν⃗�1 þ ϵ2ν⃗�2: ðB24Þ

As it is required to have unit length, the corrections to n̂12
satisfy

n̂12 · ν⃗�1 ¼ 0; 2n̂12 · ν⃗�2 þ ν�21 ¼ 0: ðB25Þ

Using the parameters specifying its trajectory and noting
that r1 ≡ r1� , as well as that the post-Newtonian corrections
to the light trajectory are already of the order of ϵ2—so that
the corrections due to difference in n̂1�2� and T� from n̂12
and T, respectively, are of the order ϵ3 and can be ignored—
it follows that

x⃗2� ¼ x⃗1� þ n̂1�2�T� þ χ⃗↑ðx⃗1; n̂12; TÞ

¼ x⃗1 þ v⃗1t11� þ
1

2
a⃗1t211� þ n̂1�2�T� þ χ⃗↑ðx⃗1; n̂12; TÞ:

ðB26Þ

To find T� and n̂1�2� up to the second order using only
quantities at the events 1 and 2, we match Eq. (B13)—using
x⃗2 given by Eq. (B22)—with Eq. (B26). As a result

n̂12Tþ v⃗2τlþ
1

2
a⃗2τ2l ¼ v⃗1t11� þ

1

2
a⃗1t211� þ n̂1�2�T�: ðB27Þ

Expanding it order-by-order in ϵ results in the final six
equations
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v⃗2τl ¼ v⃗1τl þ n̂12T1 þ ν⃗�1T; ðB28Þ

and

1

2
a⃗2τ2l ¼ −v⃗1T1 þ

1

2
a⃗1τ2l þ ν⃗�2T þ ν⃗�1T1 þ n̂12T2; ðB29Þ

where we used Eq. (B20). Using the first of the relations
(B25) with (B28) results in

T1 ¼ n̂12 · ðv⃗2 − v⃗1Þτl ¼ ðd2 − d1Þτl; ðB30Þ

and

ν⃗�1 ¼ ðv⃗2 − v⃗1Þ
τl
T
− n̂12

T1

T
¼ τl

T
ððv⃗2 − v⃗1Þ − n̂12ðd2 − d1ÞÞ;

ðB31Þ

where dk ≔ n̂12 · v⃗k. We see that T1=T ∼ jν⃗�1j ¼ OðϵμÞ.
Using the second of the relations (B25) after taking the

inner product of n̂12 with both sides of Eq. (B29) results in

T2 ¼
1

2
n̂12 · ða⃗2 − a⃗1Þτ2l þ d1T1 þ

1

2
ν�21 T

¼ 1

2
ða2 − a1Þτ2l þ d1ðd2 − d1Þτl

þ τ2l
2T

ððv⃗2 − v⃗1Þ2 − ðd2 − d1Þ2Þ; ðB32Þ

where ak ≔ n̂12 · a⃗k, and

ν⃗�2 ¼
�
1

2
a⃗2τ2l þ v⃗1T1 −

1

2
a⃗1τ2l − ν⃗�1T1 − n̂12T2

�.
T:

ðB33Þ

Note that in our setting the second term on the right-hand
side of Eq. (B32) dominates the other two by a factor of the
order T=τl ¼ μ−1 ≈ 103. Even so, the subdominant terms
are an order of magnitude larger than ϵ3, and hence should
be kept. The terms proportional to τ2l are absent from the
expressions in [12] where it was assumed that τl ≲ ϵ.
Using Eqs. (B20) and (B21) we get

t11� ¼ τl þ δ1 þ δ2

¼ τl − T1 − T2 þ τl
�1
2
v22 þU2

�
¼ τl

�
1þ 1

2
v22 þU2

�
− T1 − T2; ðB34Þ

which is related to τGS11� by Eq. (B10). Hence,

τGS11�−τl¼−T1þτl

�
1

2
ðv22−v21ÞþU2−U1

�
−T2; ðB35Þ

where the term T1 is responsible for the first-order Doppler
effect in the phase difference at the SC

φSC ¼ ω0ðτGS11� − τlÞ ¼ −ω0T1 þ φð2Þ
SC ðB36Þ

with

φð2Þ
SC ¼ ω0τl

�
1

2
ðv22 − v21Þ þU2 − U1 − T2=τl

�
: ðB37Þ

3. Light propagation for the two-way trips

Here we derive the phase φGS to order ϵ2. The setup is
depicted on Fig. 2 (right). The main quantity of interest is
now τGS

11̄
, which is related to the global time interval t11̄ via

Eq. (9), where the rearranged Eq. (21) gives

t11̄ ¼ T − T̄ þ P − P0 þ t33� ðB38Þ

Using coincidence of the beams B1 and B2 at ðt3� ; x⃗3� Þ the
phase is expressed only in terms of quantities that are
observed at the events 1 and 2.

4. Definition of the relevant quantities

The relevant parameters for the 2 → 3 part of the B2

trajectory are the propagation direction

n̂23 ¼ −n̂12 þ ϵν⃗1 þ ϵ2ν⃗2; ðB39Þ

that satisfies the relations

n̂12 · ν⃗1 ¼ 0; −2n̂12 · ν⃗2 þ ν21 ¼ 0; ðB40Þ

and the time-of-flight from the SC to the GS

P ¼ T þ ϵΔ1 þ ϵ2Δ2: ðB41Þ

In general the pulse B1 departs at the moment t1̄ ≠ t1� .
The difference in the times of departure between B1 and B2

in the global time frame can be decomposed as

t11̄ ¼ τl þ ϵδ̄1 þ ϵ2δ̄2; ðB42Þ

while the position of the GS at the moment t1̄ is

x⃗1̄ ¼ x⃗1 þ v⃗1t11̄ þ
1

2
a⃗1t211̄: ðB43Þ

The flight time from 1̄ to 2̄ is

t1̄ 2̄ ¼ T̄ ¼ T þ ϵT̄1 þ ϵ2T̄2; ðB44Þ

and the launch direction is given by

n̂1̄ 2̄ ¼ n̂12 þ ϵν⃗1 þ ϵ2ν⃗2: ðB45Þ
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The pulse reflected at t2̄ is directed along

n̂2̄3� ¼ −n̂12 þ ϵν⃗01 þ ϵ2ν⃗02; ðB46Þ

and the travel takes

P0 ¼ T þ ϵΔ0
1 þ ϵ2Δ0

2: ðB47Þ

The normalization conditions for the direction vectors
result in

n̂12 · ν⃗1 ¼ 0; 2n̂12 · ν⃗2 þ ν⃗21 ¼ 0; ðB48Þ

n̂12 · ν⃗01 ¼ 0; −2n̂12 · ν⃗02 þ ν021 ¼ 0: ðB49Þ

Equation (B38) relates the first- and the second-order
terms of the various time intervals. From Eq. (9) we have

τl ≡ τGS33� ¼ t33�
�
1 −

1

2
v21 − U1

�
; ðB50Þ

so that

t33� ¼ τl

�
1þ 1

2
v21 þ U1

�
: ðB51Þ

As a result,

δ̄1 ¼ Δ1 − T̄1 − Δ0
1 ðB52Þ

and

δ̄2 ¼ Δ2 þ τl

�
1

2
v21 þU1

�
− T̄2 − Δ0

2: ðB53Þ

Additional relations between these quantities are obtained
by matching the spacetime coordinates of various events
that are obtained by two different methods.

5. 2 → 3 parameters

Six independent parameters are obtained from the
expressions for x⃗3. On the one hand, the GS motion implies

x⃗3 ¼ x⃗1 þ v⃗1ðT þ PÞ þ 1

2
a⃗1ðT þ PÞ2

¼ x⃗1 þ 2v⃗1T þ v⃗1Δ1 þ 2a⃗1T2: ðB54Þ

On the other hand, an expression for x⃗3 is obtained by
following the light pulse B2. For the downward motion the
closest distance to the centre of the Earth is still r3 ≡ r1,
hence the post-Newtonian correction to the trajectory is

χ⃗↓ ≔ χ⃗↓ðx⃗2; n̂23; PÞ ¼ 2Mn̂12 ln
r1 − n̂12 · x⃗1
r2 − n̂12 · x⃗2

− 2
Md⃗1
d21

�
r1 − r2 þ

n̂12 · x⃗2
r2

T

�
; ðB55Þ

where here and in the following we use the fact that T ¼
T̄ ¼ P ¼ P0 to leading order. We also rewrite

χ⃗↑ ≔ χ⃗↑ðx⃗1; n̂12; TÞ ¼ −2Mn̂12 ln
r2 þ n̂12 · x⃗2
r1 þ n̂12 · x⃗1

− 2
Md⃗1
d21

�
r2 − r1 −

n̂12 · x⃗1
r1

T

�
: ðB56Þ

In the above expressions we use the leading-order identity
x⃗2 ¼ x⃗1 þ n̂12T. Finally, an alternative expression for x⃗3 is

x⃗3 ¼ x⃗1 þ n̂12T þ n̂23Pþ χ⃗↑ þ χ⃗↓

¼ x⃗1 − n̂12Δ1 þ ν⃗1T

− n̂12Δ2 þ ν⃗1Δ1 þ ν⃗2T þ χ⃗↑ þ χ⃗↓: ðB57Þ

Comparison of Eqs. (B54) and (B57) leads to the identi-
fication of the first-order terms as

2v⃗1T ¼ ν⃗1T − n̂12Δ1; ðB58Þ

resulting in

Δ1 ¼ −2d1T; ðB59Þ

and

ν⃗1 ¼ −2n̂12d1 þ 2v⃗1: ðB60Þ

The second-order equation is

v⃗1Δ1þ2a⃗1T2¼−n̂12Δ2þ ν⃗1Δ1þ ν⃗2Tþ χ⃗↑þ χ⃗↓; ðB61Þ

which results in

Δ2 ¼ −d1Δ1 − 2a1T2 þ 1

2
ν21T þ χ↑ þ χ↓; ðB62Þ

where χ↑;↓ ≔ n̂12 · χ⃗↑;↓ and

ν⃗2 ¼ ðv⃗1Δ1 þ 2a⃗1T2 þ n̂12Δ2 − ν⃗1Δ1 − χ⃗↑ − χ⃗↓Þ=T:
ðB63Þ
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6. 1̄ → 2̄ parameters

At order ϵ2 the two expressions for the SC position x⃗2̄ are

x⃗2̄ ¼ x⃗1̄ þ n̂1̄ 2̄T̄ þ χ⃗↑ðx⃗1̄; n̂1̄ 2̄; T̄Þ
¼ x⃗1̄ þ n̂12T þ ν⃗1T þ n̂12T̄1

þ ν⃗2T þ ν⃗1T̄1 þ n̂12T̄2 þ χ⃗↑ðx⃗1; n̂12; TÞ; ðB64Þ

where

x⃗1̄ ¼ x⃗1 þ v⃗1ðτl þ δ̄1Þ þ
1

2
a⃗1τ2l ; ðB65Þ

and

x⃗2̄ ¼ x⃗2 þ v⃗2ðt2̄ − t2Þ þ
1

2
a⃗2ðt2̄ − t2Þ2

¼ x⃗1 þ n̂12T þ χ⃗↑ðx⃗1; n̂12; TÞ þ v⃗2ðτl þ δ̄1 þ T̄1Þ

þ 1

2
a⃗2τ2l ; ðB66Þ

as this is where the SC is at the moment t2̄ ¼ t1̄ þ T̄. The
first six equations (which contain seven variables) are

v⃗1τl þ ν⃗1T þ n̂12T̄1 ¼ v⃗2τl; ðB67Þ

at order ϵ and

v⃗1δ̄1 þ
1

2
a⃗1τ2l þ ν⃗2T þ ν⃗1T̄1 þ n̂12T̄2

¼ v⃗2ðδ̄1 þ T̄1Þ þ
1

2
a⃗2τ2l ; ðB68Þ

at order ϵ2.
We get from the first-order equations (which are self-

contained)

T̄1 ¼ ðd2 − d1Þτl ≡ T1; ðB69Þ

ν⃗1 ¼ ððv⃗2 − v⃗1Þ − n̂12ðd2 − d1ÞÞτl=T ≡ ν⃗�1: ðB70Þ

The second-order term T̄2 is given below after we identify δ̄1.

7. 1̄ → 2̄ → 3� vs 1 → 2 → 3 → 3� parameters

Since the difference between τl ≡ τGS33� and t33� is on the
order of ϵ2, following the GS leads to

x⃗3� ¼ x⃗3 þ v⃗3τl þ
1

2
a⃗3τ2l ; ðB71Þ

where the second-order expression for v⃗3 is

v⃗3 ¼ v⃗1 þ 2a⃗1T: ðB72Þ

Since τl=T ∼ μ ∼ 10−3, we discard the term in the correc-
tion of the velocity and since a⃗3 ¼ a⃗1 þOðϵ3Þ, we set
a⃗3 ¼ a⃗1. Hence,

x⃗3� ¼ x⃗1 − n̂12Δ1 þ ν⃗1T − n̂12Δ2 þ ν⃗1Δ1 þ ν⃗2T

þ χ⃗↑ þ χ⃗↓ þ v⃗1τl þ a⃗1τl
�
2T þ 1

2
τl
�
: ðB73Þ

This expression should be matched with the result of
tracing B1 from 2̄ to 3�,

x⃗3� ¼ x⃗2̄ þ n̂2̄3�P
0 þ χ⃗↓ðx⃗2̄; n̂2̄3� ; P0Þ

¼ x⃗2̄ − n̂12T − n̂12Δ0
1 þ ν⃗01T

− n̂12Δ0
2 þ ν⃗01Δ0

1 þ ν⃗02T þ χ⃗↓ðx⃗2; n̂23; PÞ; ðB74Þ

that, by using Eq. (B66), becomes

x⃗3� ¼ x⃗1 þ χ⃗↑ þ v⃗2ðτl þ δ̄1 þ T̄1Þ þ
1

2
a⃗2τ2l

− n̂12Δ0
1 þ ν⃗01T − n̂12Δ0

2 þ ν⃗01Δ0
1 þ ν⃗02T þ χ⃗↓: ðB75Þ

From the coincidence of the beams at x⃗3� we obtain a
further six equations,

−n̂12Δ1 þ ν⃗1T þ v⃗1τl ¼ −n̂12Δ0
1 þ ν⃗01T þ v⃗2τl; ðB76Þ

at order ϵ, and

− n̂12Δ2 þ ν⃗1Δ1 þ ν⃗2T þ a⃗1τl

�
2T þ 1

2
τl

�

¼ −n̂12Δ0
2 þ ν⃗01Δ0

1 þ ν⃗02T þ v⃗2ðδ̄1 þ T̄1Þ þ
1

2
a⃗2τ2l ;

ðB77Þ

at order ϵ2. From Eq. (B76) we get

Δ0
1 ¼ Δ1 þ ðd2 − d1Þτl ¼ −2d1T þ ðd2 − d1Þτl ðB78Þ

[note that ðΔ0 − ΔÞ=T ∼OðϵμÞ] and

ν⃗01 ¼ ν⃗1 þ ðn̂12ðΔ0
1 − Δ1Þ þ ðv⃗1 − v⃗2ÞτlÞ=T

¼ ν⃗1 þ ðn̂12ðd1 − d2Þ þ v⃗1 − v⃗2Þτl=T
¼ ν⃗1 − ν⃗�1; ðB79Þ

and calculation of the first-order terms is completed by

δ̄1 ¼Δ1−Δ0
1− T̄1¼−2ðd2−d1Þτl≡2δ1¼−2T1: ðB80Þ

This is the basis for the Doppler cancellation scheme.
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Now we combine this result with Eq. (B68) to obtain

T̄2 ¼ −2d1δ1 −
1

2
a1τ2l þ

1

2
ν21T þ d2δ1 þ

1

2
a2τ2l

¼ ðd2 − d1Þð2d1 − d2Þτl þ
1

2
ða2 − a1Þτ2l

þ 1

2
ððv⃗2 − v⃗1Þ2 − ðd2 − d1Þ2Þτ2l =T: ðB81Þ

From Eq. (B77) we get

− Δ2 þ
1

2
ν21T þ a1τl

�
2T þ 1

2
τl
�

¼ −Δ0
2 þ

1

2
ν021 T þ d2ð2δ1 þ T1Þ þ

1

2
a2τ2l : ðB82Þ

Using Eq. (B79) we obtain

ν021 ¼ ν21 þ 2ν⃗1 · ðv⃗1 − v⃗2Þτl=T þOðϵ2μ2Þ: ðB83Þ

Applying Eqs. (B30) and (B80) as 2δ1 þ T1 ¼ δ1 ¼ ðd2 −
d1Þτl to the above result leads to

Δ0
2¼Δ2−2a1τlTþ ν⃗1 · ðv⃗1− v⃗2Þτlþd2δ1þ

1

2
ða2−a1Þτ2l :

ðB84Þ

Using Eq. (B60) this expression reduces to

Δ2 − Δ0
2 ¼ 2a1τlT − ν⃗1 · ðv⃗1 − v⃗2Þτl

þ d2ðd2 − d1Þτl −
1

2
ða2 − a1Þτ2l

¼ 2a1τlT − ð2d1 − d2Þðd2 − d1Þτl
− 2v⃗1 · ðv⃗1 − v⃗2Þτl −

1

2
ða2 − a1Þτ2l : ðB85Þ

8. Phase difference at the GS

By noting that

τGS
11̄

¼ t11̄
�
1 −

1

2
v21 − U1

�
¼ ðτl − 2T1 þ δ̄2Þ

�
1 −

1

2
v21 −U1

�
¼ τl − 2T1 þ

�
δ̄2 − τl

�1
2
v21 þ U1

��
; ðB86Þ

we can write

τGS
11̄

− τl ¼ −2T1 þ
�
δ̄2 − τl

�
1

2
v21 þ U1

��
≕ − 2T1 þ Δð2Þ; ðB87Þ

where Δð2Þ is defined according to Eq. (B53) as

Δð2Þ ≔ Δ2 −Δ0
2 − T̄2

¼ 2a1τlT − 2ð2d1 − d2Þðd2 − d1Þτl − 2v⃗1 · ðv⃗1 − v⃗2Þτl
− ða2 − a1Þτ2l −

1

2
ððv⃗2 − v⃗1Þ2 − ðd2 − d1Þ2Þτ2l =T:

ðB88Þ

In the end, the phase difference at the GS results

φGS ¼ ω0ðτGS11̄ − τlÞ ¼ −2ω0T1 þ φð2Þ
GS ðB89Þ

with

φð2Þ
GS ¼ ω0Δð2Þ: ðB90Þ

9. The signal

Having the explicit expressions for φSC and φGS up to the
second order, we obtain

S¼φSC−
1

2
φGS¼φð2Þ

SC −
1

2
φð2Þ
GS

¼ω0

�
τl

�
1

2
ðv22−v21ÞþU2−U1

�
−T2−

1

2
Δð2Þ

�
ðB91Þ

that explicitly reads

S
ω0τl

¼ U2 −U1 þ
1

2
ðv22 − v21Þ

þ v⃗1 · ðv⃗1 − v⃗2Þ − ðd2 − d1Þ2 − a1T

−
τl
4T

ððv⃗2 − v⃗1Þ2 − ðd2 − d1Þ2Þ; ðB92Þ

and leads to Eq. (5).

APPENDIX C: UNEQUAL DELAY LINES

As discussed above, it is impossible for two delay lines
to be perfectly identical. We characterize the difference in
the proper propagation times as

τGSl ¼ τl; τSCl ¼ τl þ Δτl ≔ τlð1þ δlÞ; ðC1Þ

and we assume that the relative difference of the delay lines
is at most of the order

δl ¼
τSCl − τGSl

τGSl
¼ Δτl

τl
≲ 10−6 ∼ ϵ6=5: ðC2Þ

The analysis of the two-way trip (Appendix B 3) does
not change. On the other hand, for the one-way trip
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(Appendix B 2) we now have instead of Eq. (B18) the
following relation

τlð1þ δlÞ≡ τSC22� ¼ t22�
�
1 −

1

2
v22 −U2

�
; ðC3Þ

so that Eq. (B19) becomes

t22� ¼ τl
�
1þ δl þ

1

2
v22 þ U2

�
: ðC4Þ

The rest of the calculations proceed as before, resulting in
the departure coordinate time (GRF) of the beam A1. Using
the results for T1 and T2 we get

t11� ¼ τl
�
1þ δl þ

1

2
v22 þ U2

�
− T1 − T2: ðC5Þ

Accordingly,

τSC11� − τl ¼ −T1 þ τl
�
δl þ

1

2
ðv22 − v21Þ þ U2 −U1

�
− T2;

ðC6Þ

where the term T1 is responsible for the first-order Doppler
effect in the phase difference at the SC

φSC ¼ ω0ðτSC11� − τlÞ ¼ −ω0T1 þ ω0τlδl þ φð2Þ
SC ; ðC7Þ

ω0τlδl a constant offset, and the higher-order corrections
related to the mismatch of the delay times are at least of the
order Oðϵ3Þ.
Effects of the constant delay line mismatch Δl ¼ lδl can

be removed by data processing. However, a random time-
varying mismatch can wash out the imprints of the
gravitational redshift (and the second-order effects in
general). The most immediate source of randomness are
the temperature fluctuations that give

Δδl ≈ κΔT ; ðC8Þ

where κ is the thermal expansion coefficient and ΔT is the
onboard temperature fluctuation during one passage of the
satellite. Given the results of Sec. IV, having Δδl ∼ 10−11

allows for the identification of second-order effects, and
Δδl ∼ 10−13 − 10−15 allows for precision measurements of
the gravitational redshift. If κ ∼ 10−7 − 10−9 K−1 and the
maximal temperature variation ΔT ∼ 10−5 K as in the
desiderata list of the ORTIS mission [65], then not only
identification ofΔU, but also putting the EM-based bounds
on α is possible. Current results from the pathfinder
missions [66,67] reliably set ΔT ≲ 10−3, bringing an all-
optical measurement of the gravitational redshift into the
realm of possibility.

APPENDIX D: INTERFERENCE VISIBILITY

Besides the spatial overlap of the interfering beams (that
is granted by the use of single-mode fibers at the two
terminals), the different arrival times at the detector can
cause a decrease in the interferometric visibility V, limiting
the precision of phase estimation to δφgr ≈ 1=ðV ffiffiffiffi

N
p Þ,

where N is the number of detected photons. Since we
are dealing with optical pulses whose line width is much
smaller than the central frequency, it is possible to perform
all calculations in the monochromatic approximation used
in Sec. III and evaluate the visibility by looking at the
overlap between the backpropagated pulses at the two
different starting points (in the GS reference frame).
Following the conventions of [16], we define the

envelope function of a Gaussian pulse centered in tA as

AtAðtÞ ¼
ffiffiffiffiffiffiffi
1

πτ2c

4

s
exp

�
−
ðt − tAÞ2

2τ2c

�
; ðD1Þ

where τc is the coherence time of the pulse. The overlap
between two pulses centered at tA and tB, respectively, is
given by the integral

V ¼
ffiffiffiffiffiffiffi
1

πτ2c

s Z
dt exp

�
−
ðt − tAÞ2

2τ2c

�
exp

�
−
ðt − tBÞ2

2τ2c

�

¼ exp

�
−
ðtA − tBÞ2

4τ2c

�
: ðD2Þ

From this formula and using the conventions of Sec. III,
it is possible to calculate the visibility in the one-way and in
the two-way configuration, as

Vone−way ¼ exp

�
−
ðτGS11� − τlÞ2

4τ2c

�
; ðD3Þ

V two−way ¼ exp

�
−
ðτGS

11̄
− τlÞ2
4τ2c

�
: ðD4Þ

By inserting, respectively, Eqs. (B34) and (B86) in the
above equations, we obtain at leading order

Vone−way ≈ exp

�
−
T2
1

4τ2c

�
¼ exp

�
−
ðd2 − d1Þ2τ2l

4τ2c

�
; ðD5Þ

V two−way ≈ exp

�
−
T2
1

τ2c

�
¼ exp

�
−
ðd2 − d1Þ2τ2l

τ2c

�
: ðD6Þ

As evident from the previous equations, the visibility
depends on ðτl=τcÞ2. We have verified that, given an
imbalance τl ¼ 6 μs and a coherence time of τc ¼ 10 ns,
the visibility is higher than 99% for all studied trajectories
and its effect can be neglected.
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