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General relativity predicts that black holes are described by the Kerr metric, which has integrable
geodesics. This property is crucial to produce accurate waveforms from extreme-mass-ratio inspirals.
Astrophysical environments, modifications of gravity, and new fundamental fields may lead to non-
integrable geodesics, inducing chaotic effects. We study geodesics around self-interacting rotating boson
stars and find robust evidence of nonintegrability and chaos. We identify islands of stability around
resonant orbits, where the orbital radial and polar oscillation frequency ratios, known as rotation numbers,
remain constant throughout the island. These islands are generically present in both the exterior and the
interior of compact boson stars. A monotonicity change of rotation curves takes place as orbits travel from
the exterior to the interior of the star. Therefore, configurations with neutron-star-like compactness can
support degenerate resonant islands. This anomaly is reported here for the first time, and it is not present in
black holes. Such configurations can also support extremely prolonged resonant islands that span from the
exterior to the interior of the star and are shielded by thick chaotic layers. We adiabatically evolve inspirals
using approximated post-Newtonian fluxes and find time-dependent plateaus in the rotation curves which
are associated with island-crossing orbits. Crossings of external islands give rise to typical gravitational-
wave glitches found in non-Kerr objects. Furthermore, when an inspiral is traversing an internal island that
is surrounded by a thick chaotic layer, a new type of simultaneous multifrequency glitch occurs that may be
detectable with space interferometers such as the Laser Interferometer Space Antenna and can serve as
evidence of an extreme-mass-ratio inspiral around a supermassive boson star.

DOI: 10.1103/PhysRevD.108.084062

I. INTRODUCTION

Ground-based gravitational-wave (GW) interferometers
are about to start a new observation run and will continue
detecting GW signals from the coalescence of compact
binaries [1–3] and possibly from other GW sources in the
years to come. To date, almost a hundred compact binary
mergers have been reported. Despite the fact that the
majority of events are well understood as either black-hole
(BH) or neutron-star (NS) or mixed BH-NS mergers, some
puzzling “mass-gap” events, such as GW190814 [4] and
GW190521 [5,6], challenge standard formation scenarios
and have motivated exotic alternatives (see, e.g., [7]). With
the GW event catalog ever increasing, the possibility of
detecting exotic compact objects (ECOs) other than BHs
and NSs is worth exploring [8,9].
We are now convinced that an important amount of

nonluminous exotic matter, known as dark matter [10–12],
is paramount in the formation [13] and amalgamation of
galaxies [14] as well as in determining the earliest, current,
and future state of the Universe [13,15–19]. This raises the
possibility of new fundamental particles comprising the
missing cosmological mass. With scalar fields predomi-
nantly used to model early Universe physics, the case arises

that such fields could form equilibrium condensates, held
together by their own gravity, through a mechanism known
as gravitational cooling [20,21]. Such prototypical class of
ECOs has been dubbed boson stars (BSs), and their
conceptualization dates back to the late 1960s [22–25]
and 1980s [26–33].
At the fundamental level, BSs are the simplest localized

configurations of a complex scalar field, governed by
classical equations; thus, even if they have not yet been
observed in nature, they still can serve as models for
compact objects ranging from particles to stars and less
dense galactic halos. In all these cases, BSs are endowed
with a balance between the dispersive nature of scalar
matter and the gravitational pull holding them together (see
[34–36] for reviews on various types of BSs). BSs do not
have an event horizon nor a singularity, are asymptotically
flat, and may exhibit stable light rings, isolated ergore-
gions, and superextremal spins, which can lead to new
GW phenomenology [36–42]. As a consequence, they are
considered among the best models of ECOs and a proxy
to test the nature of compact objects in the extreme-gravity
regime [8,43–45]. Another important motivation concerns
the fact that BSs (and their real-scalar counterparts,
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known as oscillons [46]) could form in the early Universe
[47,48] from large overdensities, being, thus, (meta)stable
relics of inflation [49,50] and compelling dark-matter
candidates [51,52].
Static BS configurations are linearly stable to pertur-

bations [38,40,53–57] and can consistently form dynami-
cally from diffuse initial states [33,58–61] as well as from
collisions and binary mergers [7,62–73]. On the other
hand, spinning BSs were found to be unstable toward a
bar-mode instability [21,74], unless scalar self-interaction
terms in the model are sufficiently strong [75]. This
instability is not present for rotating BSs made by a
massive vector field [74].
To date, a variety of bosonic potentials have been

considered [26,27,76–83], each one providing a different
relation between the BS maximummass and the underlying
field-theory parameters. As a rule of thumb, strong self-
interactions can make the maximum mass parametrically
larger than in the free-scalar case, motivating alternative
models for supermassive objects in galactic cores, which
can mimic the shadows [84–89] and particle orbits around
ordinary BHs [38,90].
Hence, it is of utmost importance to devise further

tests in order to distinguish BSs through orbital dynamics
and GW observations. In this work, we focus on extreme-
mass-ratio inspirals (EMRIs), consisting of a primary
supermassive compact object (which we assume to be a
self-interacting, compact, spinning BS) and a stellar-mass
compact secondary. So far, geodesic and inspiral studies
have been carried out at the equatorial plane of nonrotating
[37–39,91–93] and rotating BSs [94–96] (see also the
recent [97] for circular, equatorial EMRIs around hairy
BHs [98] interpolating between a Kerr BH and a BS
without self-interactions). The emitted GWs during circular
equatorial geodesics and EMRIs were also analyzed in
some BS models [37,38,97,99,100]. However, a geodesic
and inspiral analysis is lacking for generic, nonequatorial
and noncircular, trajectories around spinning BSs. Generic
orbits not only will help to further constrain the existence of
supermassive BSs through their considerably more intricate
waveform signal, but are also tools to examine the
integrability of the underlying geodesic equations that
govern particle motion. If geodesics around BSs are
integrable, then the evolution is regular and no chaotic
phenomena are present, as in the Kerr case. In this case,
geodesics and EMRIs between rotating BSs and Kerr BHs
will differ only by their different multipolar structure
[44,45,101–104]. Alternatively, if geodesics around rotat-
ing BSs break integrability, then direct and indirect chaotic
imprints emerge that are clearly distinguishable at both the
orbital [105–116] and GW level [117–119].
It is the main goal of this work to study generic orbits and

EMRIs around supermassive self-interacting BSs in order
to assess if their exotic multipolar structure [44,45,101–
104] breaks integrability and gives rise to imprints of chaos.

If geodesics around such objects are nonintegrable, then
GWobservations from future space-borne detectors like the
Laser Interferometer Space Antenna (LISA) [120–125],
TianQin [126], and Taiji [127,128] may lead to distinguish-
able effects that can break the degeneracy between super-
massive BHs and BSs in galactic centers.1 In what follows,
we adopt geometrized units so that G ¼ c ¼ 1.

II. GEODESICS AND CHAOS

Generic stationary and axisymmetric spacetimes can be
written as

ds2¼ gttdt2þ2gtφdtdφþgrrdr2þgθθdθ2þgφφdφ2; ð1Þ

where the metric tensor components are, in general,
functions of r and θ and the coordinate system
ðt; r; θ;φÞ can be, e.g., of Boyer-Lindquist type [130] or
quasi-isotropic [131]. The motion of a secondary point
particle orbiting the spacetime geometry of the primary
compact object [as defined by Eq. (1)] is described by the
geodesic equations

ẍκ þ Γκ
λνẋ

λẋν ¼ 0; ð2Þ

where Γκ
λν are the Christoffel symbols of spacetime, xκ is

the four-position vector of the orbit, and the overdots
denote differentiation with respect to proper time τ. The
geodesic equation (2) breaks down into four equations of
motion, one for each coordinate component of the particle’s
trajectory, xκðτÞ. This system of second-order, coupled
differential equations can be considerably simplified using
spacetime symmetries. The spacetime (1) assumed in this
work possesses two Killing vector fields resulting from
stationarity and axisymmetry (the metric tensor is t and φ
independent), yielding two conserved quantities through-
out geodesic motion, i.e., the specific energy and z
component of the angular momentum of the particle:

−E=m ¼ gttṫþ gtφφ̇; Lz=m ¼ gtφṫþ gφφφ̇; ð3Þ

where m is the mass of the orbiting particle. Rearranging
Eq. (3), we obtain two first-order, decoupled differential
equations for the t and φ momenta as

ṫ ¼ Egφφ þ Lzgtφ
mðg2tφ − gttgφφÞ

; φ̇ ¼ Egtφ þ Lzgtt
mðgttgφφ − g2tφÞ

; ð4Þ

which can be solved once rðτÞ and θðτÞ are known. The two
remaining equations of motion for r and θ are, in general,
coupled and of second differential order. Test particles in

1Note that also EMRIs around stellar-mass compact objects
would be potentially detectable by third-generation detectors
such as the Einstein Telescope if the secondary is a subsolar
compact object [129].
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geodesic motion provide a third constant of motion,
namely, the conservation of their rest mass (or, equiva-
lently, their four-velocity gλνẋλẋν ¼ −1), which leads to a
constraint equation of the form

ṙ2 þ gθθ
grr

θ̇2 þ Veff ¼ 0; ð5Þ

with Veff being a Newtonian-like potential:

Veff ≡ 1

grr

�
1þ gφφE2 þ gttL2

z þ 2gtφELz

m2ðgttgφφ − g2tφÞ
�

ð6Þ

that characterizes bound geodesic motion. When Veff ¼ 0,
the resulting curve is called the curve of zero velocity
(CZV), since ṙ ¼ θ̇ ¼ 0 there.
If a hypothetical rank-two (or higher-rank) Killing

tensor field exists, then the motion of rðτÞ and θðτÞ
decouples into first-order differential equations. A special
case where a rank-two Killing tensor exists is the Kerr
solution where the role of the separation constant is played
by the famous Carter constant [132]. However, since the
compact object we will assume throughout our analysis
has a different multipolar structure than that of a Kerr BH
(and, furthermore, it is known only numerically), it is
unlikely that a separation, Carter-like, constant (or any
other higher-rank Killing tensor) exists. Thus, to evolve
orbits, we will use the coupled second-order differential
equation system for r and θ, together with Eqs. (4) and (5),
without any further symmetry assumptions besides sta-
tionarity and axisymmetry.
The existence of Carter’s separation constant not

only is a useful tool to evolve trajectories in Kerr
spacetime faster, but rather implies an important aspect
of geodesics, namely, their integrability. Kerr spacetimes
have four degrees of freedom. Stationarity and axisym-
metry lead to the reduction of degrees of freedom to two.
Taking into account the existence of the Carter constant
and the conservation of the rest mass of the test particle
reduces the degrees of freedom of orbital motion to zero;
geodesics around Kerr BHs are integrable and do not
present chaotic features [105,106,108,111,112,117–
119,133]. Unfortunately, Carter’s symmetry is extremely
fragile and in many occasions is broken by simply
deforming the multipolar structure of spacetime by con-
sidering accretion disks and BH environments [134–140],
modifications of gravity [112,113], neutron stars [141–
144], exotic compact objects [145,146], or in a para-
metrized way by introducing agnostic deformations to
Kerr—a class of metrics called bumpy or non-Kerr
BHs [147–158]. In these cases, the integrability property
may be broken, leading to chaotic effects [133].
Full-blown, ergodic chaos is not expected to occur in
astrophysical scenarios, such as EMRIs, but nonintegra-
bilitylike effects are anticipated even when geodesics are

integrable [159–162] due to dissipation. This is mainly
due to the manifestation occurring around transient orbital
resonances which are expected to affect EMRI evolution
and parameter estimation, though nonintegrable EMRIs
are even more likely to amplify these effects and can
introduce clear chaotic phenomena [105–108,108–
111,117–119]. A generic orbit of an integrable system
can be described by its revolution frequency ωφ and two
librationlike frequencies: the frequency of oscillation
from the periapsis to the apoapsis and back, ωr, and
the oscillation frequency through the equatorial plane, ωθ.
Generic orbits possess irrational ratios of the above
frequencies and these orbits fill densely the available
phase space of a three-dimensional torus. On the other
hand, resonant (periodic) orbits have commensurate
(rational) ratios of orbital frequencies, which means that
the particular orbits are returning to their initial position
after some revolutions depending on their periodicity;
thus, they are not phase-space filling. When orbital
resonances are encountered during inspirals of equal mass
binaries, e.g., in the kilohertz band of LIGO/Virgo/
KAGRA detectors, they do not affect the evolution, since
the inspiral is extremely rapid. However, when the binary
is highly asymmetric, i.e., an EMRI, then the adiabatic
nature of the secondary’s motion can experience orbital
resonances for a significant number of cycles and lead to
substantial effects, such as cumulative dephasing and
putative erroneous parameter estimation [159–161].
When a nonintegrable perturbation is introduced to the

system, two theorems, namely, the Kolmogorov-Arnold-
Moser (KAM) [163,164] and Poincaré-Birkhoff [165]
theorems, dictate how the phase-space structure is altered
around resonant points. KAM theorem ensures that, when
the orbits are sufficiently away from resonances, the system
behaves as if it were integrable. The trajectories in the phase
space lie on a torus defined by the integrals of motion and
successive intersections of the orbits on a perpendicular
two-dimensional surface (the Poincaré surface of section)
form curves that organize around a common, fixed, central
point. These are called KAM curves and the whole
structure is known as a Poincaré map, whose central point
corresponds to a planar circular orbit. Close to periodic
orbits, the KAM curves disintegrate into two sets of
periodic points in the Poincaré map, in accord with the
Poincaré-Birkhoff theorem: the stable ones which are
surrounded by islands of stability (resonant islands) and
the unstable ones where chaotic orbits emanate and
surround the islands of stability with thin layers. The
whole structure around resonances of nonintegrable sys-
tems is called a Birkhoff chain (see Fig. 2 in [106] for an
illustration). The crucial aspect of resonant islands, and
their significance in EMRIs, is the fact that the rational ratio
of the orbital frequencies ωr=ωθ is shared throughout the
island for all geodesics that occupy it. Put in other words,
integrable EMRIs experience resonances that occupy a
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zero-volume point in phase space, while nonintegrable
EMRIs exhibit prolonged resonances where the secondary
is locked in perfect resonance for a rather significant
amount of revolutions (order of a few hundreds of cycles,
for typical mass ratios and depending on the non-Kerr
object [106,111,117–119]) without taking into account pre-
and postresonant effects [166] and conservative effects
from gravitational self-force [167] which are essential for
integrable EMRIs to show signs of transient resonant
phenomena.
The existence of ergodic chaos and islands of stability

around periodic points are direct and indirect signatures of
nonintegrability, respectively; therefore, sketching a
detailed Poincaré map can unravel if the system under
study is chaotic. When the perturbation introduces a slight
nonintegrable deformation to the system, there are other
techniques to assess if and at which initial conditions of
geodesics the aforementioned phenomena manifest them-
selves. The rotation number is one of the most helpful tools
to find regions of interest in order to search for islands of
stability. We calculate it by tracking the angle ϑ between
successive intersections on KAM curves, relative to the
fixed central point of the Poincaré map. The rotation
number is defined as the summation of all angles ϑ
measured between consecutive intersections, i.e., [133]

νϑ ¼
1

2πN

XN
i¼1

ϑi; ð7Þ

where N is the number of angles measured. When N → ∞,
Eq. (7) asymptotes to the orbital frequency ratio
νϑ ¼ ωr=ωθ. Calculating consecutive rotation numbers
for different initial conditions of orbits, by smoothly
varying one of the parameters of the system while keeping
the rest fixed, leads to a rotation curve.
Integrable systems show monotonic rotation curves,

while nonintegrable systems display discontinuities in
the monotonicity through the formation of transient pla-
teaus with a nonzero width when geodesics transverse
resonant islands. Inflection points can also appear when
trajectories pass through unstable periodic points.
Nevertheless, by changing the initial conditions properly,
the orbit can be driven through the island and give rise to a
plateau. So far, all studies have dealt with compact objects
that are either non-Kerr or bumpy in nature and either
possess an event horizon or have serious causal structure
pathologies. In the following sections, we will examine the
characteristic features of rotating self-interacting BSs with
geodesics and approximate EMRI evolutions in order to
first assess whether geodesic motion in such spacetimes is
nonintegrable and, then, to establish various phenomeno-
logical imprints of chaos in the associated GW signal.
Before we proceed, we note that all numerical evolution

have been performed with respect to the inertial time of the
detector at infinity and not with respect to proper time in

order to extract the corresponding GWemission of EMRIs.
To achieve that, we have transformed the equations of
motion from proper to inertial time by the use of the chain
rule for first and second derivatives with respect to proper
time, e.g., ṙ ¼ dr=dτ ¼ ðdr=dtÞðdt=dτÞ ¼ ṫr0, where we
have defined r0 ≡ dr=dt ¼ ṙ=ṫ. Equivalent equations hold
for θ, φ, and t as well as for the constraint equation (5).

III. SELF-INTERACTING ROTATING BSs

The equilibrium configurations of rotating BSs can be
constructed starting from the globallyUð1Þ-invariant action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− Lϕ

�
; ð8Þ

which describes the dynamics of a complex, massive scalar
field ϕ, minimally coupled to gravity. The Lagrangian Lϕ

considered in this work is characterized by a mass
parameter μ, plus quartic repulsive corrections, controlled
by the coupling λ, which add linearly to the kinetic term as

Lϕ ¼ −
1

2
gαβϕ�

;αϕ;β −
1

2
μ2jϕj2 − 1

4
λjϕj4: ð9Þ

The requirement of stationarity and axisymmetry leads to
the following ansatz for the scalar field:

ϕ ¼ ϕ0ðr; θÞeiðsφ−ΩtÞ; ð10Þ

where Ω > 0 is the field’s angular frequency, which
determines the phase evolution in time, while s is
an integer called the azimuthal (or rotational) winding
number and can be proven to correspond to the ratio
between the conserved angular momentum and particle
number [35,168,169]. The ansatz (10) ensures that the
stress-energy tensor Tαβ½gαβ;ϕ; ∂αϕ� does not depend on t
and φ and sources a spacetime metric with time and
azimuthal symmetry.
In this work, following [101,104], we consider spinning

BSs with large self-interactions, i.e., characterized by
λ=μ2 ≫ 1. In this limit, the ðr; θÞ scalar profile is approx-
imately constant in the star’s interior, and one can neglect
the radial and polar derivatives of the field (∂rϕ ∼ 0,
∂θϕ ∼ 0) while assuming ϕ ∼ 0 in the exterior. This allows
expressing the stress-energy tensor of the BS as that of a
perfect fluid and to define the radius as in ordinary stars.2

Furthermore, with an appropriate redefinition of the

2In the general case, the stress-energy tensor of a BS contains
anisotropic terms and the scalar field, although exponentially
decreasing, extends up to infinity, so that the radius is conven-
tionally defined as the value of the radial coordinate enclosing a
sufficiently large fraction (typically 99%) of the total mass
[24,25,170]. In our case, instead, the scalar field has compact
support and the radius is uniquely defined.
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variables and parameters, the coupling constants in the
Lagrangian can be factored out, so that each numerical
solution corresponds to a one-parameter family of con-
figurations, controlled by the effective mass parameter
MB ¼ ffiffiffi

λ
p

=μ2 [104]. The dimensionful physical quantities
characterizing each BS, such as its mass, radius, and energy
density, can be obtained from the dimensionless ones,
characterizing each numerical solution, by multiplying
them by the required power ofMB to match their dimension
in mass and scale correspondingly as it changes.
Adopting quasi-isotropic coordinates, the line element

(1) can be described through four independent functions
ðρ; γ;ω; αÞ of ðr; θÞ as

gttðr; θÞ ¼ −eγðr;θÞþρðr;θÞ

þ ωðr; θÞ2eγðr;θÞ−ρðr;θÞr2sin2θ; ð11aÞ

grrðr; θÞ ¼
gθθðr; θÞ

r2
¼ e2αðr;θÞ; ð11bÞ

gtφðr; θÞ ¼ −ωðr; θÞeγðr;θÞ−ρðr;θÞr2 sin2 θ; ð11cÞ

gφφðr; θÞ ¼ eγðr;θÞ−ρðr;θÞr2 sin2 θ: ð11dÞ

We constructed the solutions numerically following the
method described in [56,104] which makes use of an
integral representation of the Einstein equations to set up an
iterative integration scheme. The algorithm starts with a
solution corresponding to a nonrotating BS defined on a
two-dimensional grid of r∈ ð10−6; 10ÞMB [which typically
corresponds to r∈ ð10−5; 100ÞM in terms of the BS mass
M], θ∈ ð0; π=2Þ, and converges to a spinning configura-
tion, close to the initial one, within roughly 150 iterations,
with a relative error of Oð10−4Þ% for all metric functions
and the scalar profile. The details of the numerical
implementation are provided in [104].
The maximum mass that can be reached by these stars

scales as [26,104]

Mmax ∼ γðχÞMB ¼ γðχÞ
ffiffiffiffiffi
λℏ

p

m2
s
M3

p; ð12Þ

where ms ¼ μℏ is the mass of the boson, Mp is the
Planck mass, and γðχÞ is a Oð0.1Þ factor which depends
on the dimensionless spin χ ¼ J=M2 (where J is the
angular momentum of the solution). This means, for
instance, that, for λℏ ∼Oð10−80Þ and ms in the range
10−15 − 10−12 eV, the model allows for compact stellar
configurations with Mmax in the range 10–107M⊙. For λ as
large as λ ∼Oðℏ−1Þ, the same range of Mmax corresponds
to ms ∈ ð0.1; 100Þ MeV.
In what follows, we consider rapidly rotating super-

massive configurations with χ ∼ 0.8, the same mass, and
decreasing compactness, whose properties are listed in

Table I. All the configurations have topological genus 1
[104], at variance with their vector counterparts, spinning
Proca stars [171], which have instead a spherical topology
even when spinning.
The configuration of case 1 is the most compact one and

corresponds to the maximum-mass solution for χ ¼ 0.8.
A comparison with the Kerr solution, sharing the same
mass and spin, is shown in Fig. 1, in terms of the functions
Utt ≡ ðgtt þ 1Þ=2 and Urr ≡ ðgrr − 1Þ=2 evaluated on
the equatorial plane. The corresponding Kerr event hori-
zon and BS radius are also shown as well as the
Newtonian gravitational potential M=r for an object of
the same mass.
All the configurations in Table I are in a linearly

perturbative stable branch of the mass-frequency diagram.

TABLE I. Self-interacting, rotating BSs considered in this
work. The three configurations have the same dimensionless
spin and mass but different compactnesses and frequencies (due
to the different effective coupling MB). The compactness is
defined by C≡M=R, where R is the star’s perimeteral radius
[172]. The order of magnitude chosen for MB corresponds,
considering λ=μ2 ∼Oð100Þ ≫ 1, to a mass of the boson
ms ¼ ℏμ ∼ 10−14 eV.

M=M⊙ χ C Ω MB=M⊙

Case 1 106 0.8 0.25 0.73 8.5 × 106

Case 2 106 0.8 0.19 0.80 9.0 × 106

Case 3 106 0.8 0.16 0.82 1.0 × 107

Utt

Urr

H
o
ri
zo
n

B
S
ra
d
iu
s

Kerr BH

Newtonian

Rotating BS

0.5 1 5 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

r M

FIG. 1. Comparison between the Newtonian potential M=r
(black dashed line) and the equatorial radial profiles of Utt ≡
ðgtt þ 1Þ=2 andUrr ≡ ðgrr − 1Þ=2 for the Kerr metric (red dashed
line) and the rotating BS (blue solid line) corresponding to case 1.
The black solid and gray dashed vertical lines correspond to the
location of the Kerr horizon and the BS radius in the quasi-
isotropic radial variable r=M.
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It is known that BSs with no or weak self-interactions
are subject to a dynamical nonaxisymmetric instability
that develops on short timescales [21]. Such instability has
been shown to be quenched if the scalar self-interactions
are sufficiently strong [75]. This is precisely the limit in
which our solutions are obtained, with the explicit value of
λ=μ2 depending on the individual choices for λ and μ, once
MB is fixed. Rotating BSs in this regime have also recently
been formed dynamically in numerical simulations as a
result of a binary coalescence, starting from nonrotating
components in a quasicircular orbit [73].
Another source of instability is potentially linked to the

presence of light rings. It has been recently shown [173]
that exotic ultracompact objects, i.e., compact objects

featuring a light ring [8], are unstable under nonlinear
perturbations due to the presence of a stable photon orbit in
their interior, which traps massless perturbation modes
[155]. Light rings are found as stationary points of the
effective potentials

V� ∝
−gtφ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q
gφφ

; ð13Þ

where the plus (minus) sign corresponds to orbits that are
corotating (counterrotating) with the star. Among our three
configurations, only case 1 exhibits a pair of light rings
(one stable and one unstable) in the effective potential for
counterrotating orbits V−, as depicted in Fig. 2. Although
this likely makes this configuration prone to instability—
through either migration to a stable nonultracompact
configuration or collapse into a BH—the timescale of such
instability is unknown due to the absence of simulations for
these particular BS models. Furthermore, the frequency of
the star is close to the critical frequency for which no light
rings are featured, corresponding to an infinite timescale.
For these reasons, we chose to keep this solution as an
example of high-compactness spinning BS. In any case,
stable configurations near case 1 are expected to have
similar geodesic properties.
For completeness, in Fig. 3, we present the meridional

section of the energy density of the rotating BS cases
considered, where the relative compactness and star radii
are evident. All energy densities have been normalized with
respect to the maximum value reached by case 1.

IV. GEODESIC ANALYSIS OF
GENERIC ORBITS

Before embarking into the discussion of the results
obtained through geodesic evolutions of orbits around
rotating BSs, we report that the metric tensor components
of our three configurations have been constructed with

Case 1

Case 2

Case 3

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

r M

V
( r
)

FIG. 2. Equatorial effective potentials V−ðrÞ for the BS
configurations corresponding to our three case studies. The BS
in case 1 has two light rings, corresponding to the stationary
points V 0

−ðrÞ ¼ 0, one of which is unstable and outside the star,
while the other is stable and inside it. Stationary points of V−ðrÞ
correspond to counterrotating circular photon orbits, while Vþ
(not shown here) is associated to corotating photon orbits which
are not present for these configurations.

FIG. 3. Meridional section showing the energy density distribution ϵ of our representative BSs (from left to right with decreasing
compactness: cases 1, 2, and 3), normalized to the largest value ϵmax (attained in case 1).
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varying number of grid points on the r and θ coordinates to
test convergence. The islands of stability and corresponding
plateau widths at resonance in rotation curves reported
below converge to≲1% as we increased the number of grid
points from 300 × 200 to 1000 × 700. Interestingly, the
island and plateau widths converge from below, meaning
that more grid points lead to slightly larger islands till
convergence occurs, which guarantees their existence
regardless of the grid resolution and, therefore, ensures
nonintegrability. For all simulations presented herein, we
find that the constraint equation (5) is satisfied to within one
part in 108 for the first 5000–10,000 revolutions (and
intersections through the equatorial plane, depending on
the initial conditions and BS configuration).
Finally, in all cases, we fix the mass ratio of the EMRI to

m=M ¼ 10−6 and choose the initial energy and z compo-
nent of the angular momentum as E=m ¼ 0.95 and
Lz=m ¼ 3M, respectively.

A. Case 1

Case 1 is a representative example for a compact
spinning BS. The Poincaré map shown in Fig. 4 clearly
shows that rotating BSs with large compactness are non-
integrable, since around resonances such as νϑ ¼ 1=2; 2=3
islands of stability form that encapsulate stable periodic
points of geodesics.
From the maps, we calculate the rotation curves for two

different choices of initial radial velocity, one with ṙð0Þ ¼
r0ð0Þ ¼ 0 and one with ṙð0Þ ¼ 0.1, shown in Fig. 5. The
rotation curves for this configuration looks quite similar to
those found in [106,112,119], i.e., an inflection point
around the 2=3 resonance and a plateau at 1=2 resonance
when ṙð0Þ ¼ 0. The absence of an event horizon allows for
bound geodesics even inside the BS, with its radius
designated with a vertical dashed line, surprisingly next
to where the 1=2 plateau resides. Therefore, the first non-
BH feature is the existence of resonant islands even inside

FIG. 4. Left: Poincaré map of a secondary with m ¼ 1M⊙ orbiting around a compact rotating BS with M ¼ 106M⊙ and C ¼ 0.25
while the rest of the configuration quantities are stated in Table I (case 1). The secondary’s conserved energy and angular momentum are
E=m ¼ 0.95 and Lz=m ¼ 3M, respectively. The fixed initial conditions chosen here are ṙð0Þ ¼ 0 and θð0Þ ¼ π=2, and θ̇ð0Þ is defined
by the constraint equation to guarantee bound motion while rð0Þ is varied. Black curves that surround the central fixed point of the map
designate intersections of generic orbits through the equatorial plane, with different initial rð0Þ, while colored curves designate
intersections that belong to different resonant islands of stability. Right: enlargement of the leftmost region where the 1=2 island of
stability resides. Similar encapsulated structure is found for the rest of the islands.

FIG. 5. Left: rotation curve corresponding to the same system as in Fig. 4. The vertical dashed line represents the radius of the BS,
while the inset enlarges the surrounding region of the 1=2 plateau. Right: the same as in the left panel but with ṙð0Þ ¼ 0.1. The initial
velocity gives access to the 2=3 island of stability.
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the star. Another interesting feature is the change in
monotonicity close to plunge3 for case 1, which has also
been observed for Kerr BHs with soft scalar hair and BSs in
the study of epicyclic frequencies [174]. The inflection
point at rotation number 2=3 for ṙð0Þ ¼ 0, in the left panel
in Fig. 5, designates the passage of an orbit between two
edges of resonant islands, where there is an unstable
periodic point. Changing the initial radial velocity to
ṙð0Þ ¼ 0.1, as we show for the rotation curve in Fig. 5
(right panel), the phase-space trajectory crosses the island
and a plateau at 2=3 appears.

B. Case 2

As we slightly decrease the compactness of the BS, the
non-BH effects are further enhanced. For an intermediate
compactness rotating BS (case 2), the Poincaré map,

shown in Fig. 6, displays a much more intricate structure
around subdominant resonances. First, the radius of the
star increases; therefore, orbits are allowed to exist in its
interior, which is precluded for BHs, and should lead to
more prominent effects. Intriguingly, due to the afore-
mentioned phenomenon, here we find for the first time
degenerate resonant islands—namely, islands of stability
occurring for two different ranges of the radial coordinate.
In particular, Fig. 6 shows the typical exterior 2=3 island
as well as two sets of Birkhoff chains for the 4=7
resonance: one in the exterior and one in the interior of
the BS.
The rotation curve in Fig. 7 for ṙð0Þ ¼ 0 (left panel)

confirms all the above. Decreasing the compactness leads
to a more prominent change in monotonicity when the
secondary enters the star. This, in turn, allows for degen-
erate plateaus in both the interior and the exterior of the
star’s geodesics, with the interior plateau being wider than
the exterior one. Again, choosing a different initial velocity,
we can turn the inflection point of 2=3 resonance into a
plateau, since the velocity pushes the orbit to traverse the
island.

FIG. 6. Left: the same as in Fig. 4 but for case 2 (intermediate compactness C ¼ 0.19). Right: enlargement of the leftmost region where
the 4=7 island of stability resides. Similar encapsulated structure is found for the rest of the islands.

FIG. 7. Left: rotation curve corresponding to the same system as in Fig. 5. The horizontal dashed line represents the radius of the BS,
while the inset enlarges the surrounding region of the external 4=7 plateau. Right: the same as in the left panel but with ṙð0Þ ¼ 0.058.
The initial velocity gives access to the 2=3 island of stability.

3We refer to plunge for the orbits that exit the CZV (the
separatrix). In the BH case, these orbits end up plunging into the
horizon, while in BSs there might be cases in which plunging
orbits escape to infinity.
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C. Case 3

Case 3 is probably the most interesting one. Its relatively
smaller compactness allows for a plethora of new phenom-
ena in both Poincaré maps (Fig. 8) and rotation curves
(Fig. 9). The radius of the BS increases even more, and the
CZVenters deep inside the star where bound geodesics are
still possible. This leads to a multitude of dominant and
subdominant resonances, as shown in the top left panel in
Fig. 8, as well as further degenerate Birkhoff chains. In the
top right and bottom left panels, an enlargement of the
interior 5=8 and 4=7 islands is presented. Probably
the most interesting feature is displayed in the bottom
right panel. Two islands of stability appear, namely, the
2=3 (in red) and the interior 13=20 part of the island (in
pink). Furthermore, we find a visible chaotic layer that
surrounds the 2=3 island, designated with scattered black
points. Their source is the unstable periodic point at
ṙð0Þ ¼ 0 and rð0Þ ∼ 3.31M. To the best of our knowledge,
this is the first case in which a chaotic layer appears for a
motivated model of compact object without any pathol-
ogies. This layer should give rise to significant effects on
rotation curves and eventual EMRIs crossing through the
particular 2=3 island when the fluxes will be taken into
account [117–119].

Figure 9 shows the significantly modified rotation curves
with respect to a typical non-Kerr BH (see, e.g., [105–
109,111–114,119]). Degenerate 4=7 plateaus are visible in
the interior and exterior of the star as well as a robust
internal plateau for the 5=8 resonance. Although finding its
external counterpart requires extreme fine-tuning, it is
guaranteed that such region exists in the exterior.
Closing in to the plunge (i.e., the inner boundary of the
CZV), deep inside the star, a very large inflection point
appears, which after enlarging (see Fig. 9, bottom left)
reveals a thick chaotic layer with ill-defined rotation
numbers. We also find a couple of extremely subdominant
islands for the 13=20 (also shown in Fig. 8) and 15=23
resonances. Even more interestingly, by assuming an
appropriate initial velocity for the geodesics, we managed
to find, for the first time, an island (which leads to a
plateau) that begins from the exterior of the star and ends in
the interior. Its width (∼2.6M in quasi-isotropic or ∼3.6M
in Boyer-Lindquist coordinates) is so widespread that it
supersedes any other plateau ever found in non-Kerr
spacetimes, where the widest one found is of the order
of ∼0.05M (in Boyer-Lindquist coordinates) and barely
compares with the plateaus for case 1 (2=3 resonance) and
case 2 (4=7 resonance) island widths. Nevertheless, we

FIG. 8. Top left: the same as in Figs. 4 and 5 but for case 3 (smaller compactness, C ¼ 0.16). Top right: enlargement of the region
where the leftmost 5=8 island of stability resides. Bottom left: enlargement of the region where the leftmost 4=7 island of stability
resides. Bottom right: enlargement of a region of the Poincaré map on the top left where a chaotic layer is present, shown with scattered
black points that emanate from the unstable 2=3 periodic point with ṙð0Þ ¼ 0, and parts of two islands of stability, namely, the 2=3
and 13=20.
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need to point out that the width of each island found in this
and other similar studies are initial-condition dependent,
according to their multiplicity. Therefore, maximizing their
width is a tedious task. A better method would be to fix an
initial condition, such as ṙð0Þ ¼ 0, and cross the islands
forming beyond the central periodic point of the Poincaré
map. In a geodesic analysis, this is perfectly doable in
normal timescales and without accumulating significant
error during the orbital evolution, though an inspiral
trajectory close to the plunge is much faster to produce
with minimized numerical error, in contrast to the islands
on the right side of the central point where the fluxes are
much smaller and the evolution time needs to be increased a
lot, which, in turn, gives rise to larger errors.
For completeness, in Fig. 10, we present all rotation

curves obtained with ṙð0Þ ¼ 0 and varying r=M, together
with the rotation curve of a Kerr BH with χ ¼ 0.8. The
differences between BH orbits and noncompact rotating
BSs are evident, and the BSs present novel features due to
the absence of an event horizon. For fixed E and Lz, we find
that even the most compact configuration considered differs
dramatically from that of Kerr, while the rest completely
disengage with the typical behavior of a Kerr rotation
curve. Perhaps a rotation curve in the lines of those

FIG. 10. Combined rotation curves of a secondary with m ¼
1M⊙ orbiting around a rotating BS with M ¼ 106M⊙, varying
compactness C, and χ ¼ 0.8. The secondary’s conserved energy
and angular momentum are E=m ¼ 0.95 and Lz=m ¼ 3M,
respectively. The fixed initial conditions chosen here are ṙð0Þ ¼
0 and θð0Þ ¼ π=2, and θ̇ð0Þ is defined by the constraint equation
to guarantee bound motion, while rð0Þ is varied. The horizontal
dashed lines represents the radii of each BS configuration. For
comparison, we include the rotation curve of a Kerr BH with the
same spacetime and geodesic parameters.

FIG. 9. Top left: rotation curve corresponding to the same system as in Fig. 8. The vertical dashed line represents the radius of the BS,
while the inset enlarges the surrounding region of the external 4=7 plateau. Top right: enlarged part of the rotation curve on the top left
figure on the subdominant resonances νϑ ¼ 5=8 and 4=7 in descending order. Bottom left: enlarged part of the rotation curve on top left
figure at the chaotic layer of the unstable periodic point for 2=3 resonance. A further enlargement is shown in the inset of two extremely
subdominant islands with νϑ ¼ 15=23 and 13=20 in descending order. Bottom right: rotation curve for the same parameters and initial
conditions as in the top left figure but with ṙð0Þ ¼ 0.155. The initial velocity gives access to the 2=3 island of stability.
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presented in [106,112] may seem more similar to that of
case 1 BS but still the existence of the radius, the change in
monotonicity when the orbits enters the star, the degenerate
plateaus, and the existence of an observable chaotic layer
should make rotating BSs have a contrasting and discern-
ible behavior of geodesics when compared to those of non-
Kerr spacetimes.

V. ADIABATIC INSPIRAL AND WAVEFORMS

Inspiral in the EMRI limit can be conveniently described
within BH perturbation theory [167,175]. Owing to the
hierarchy of scales, the dynamics can be studied as a small
perturbation of the geodesic motion of the secondary test
mass around the primary object. To leading order in the
mass ratio, one could evolve geodesic quantities adiabati-
cally by taking into account dissipation due to radiative
degrees of freedom. Higher-order corrections require
including conservative and, in general, self-force effects
during the inspiral [167,175–178].
While this program has been extremely successful for

standard EMRIs around a Kerr BH within general relativity,
going beyond the standard paradigm is much more chal-
lenging, even at the leading order. Indeed, dissipative
corrections are computed using the Teukolsky formalism
[179–181], which allows separating the perturbations of a
Kerr BH in general relativity and computing fluxes through
numerically integration of inhomogeneous ordinary differ-
ential equations with a point-particle source term
[182,183]. This technology has been widely tested in the
frequency [184–186] and time domain [187–190].
However, it heavily relies on the separability of the
perturbation equations, which does not occur if the back-
ground is not described by the Kerr metric as in our case
(which is, in addition, known only numerically). Likewise,
the gravitational self-force was computed up to second
order in perturbations [175,191,192] for orbits around BHs
[177,193], but the case of ECOs is an uncharted territory.
In the absence of a consistent framework to study EMRI

dynamics around a non-Kerr spinning object, here we use
the only framework available at the moment, namely,
approximate semirelativistic inspirals [194,195] and wave-
forms with methods known as “kludge” schemes [196–
198]. Kludge waveforms are constructed through the
so-called numerical kludge scheme, namely, by combining
flat spacetime weak-field (PN) GW emission together with
a fully relativistic treatment for the secondary’s motion.

A. Numerical kludge scheme

To approximate EMRIs around rotating BSs, we integrate
the second-order dynamical system for r, θ, augmented with
weak-field PN fluxes for the energy and angular momentum
loss due to GW emission [194,195,199]. This treatment,
though approximate and valid only for small orbital veloc-
ities, takes into account the dominant contribution of the

secondary’s radiative backreaction to the primary’s geom-
etry, at second PNorder, and results in an adiabatic evolution
of the EMRI. During the evolution, the orbit is treated, at
small timescales, as a geodesic, while for longer timescales
the trajectory is slowly driven through consecutively
damped geodesics. This scheme has been shown to perform
well when compared to Teukolsky-based waveforms of
EMRIs [198].
BSs have nontrivial multipolar structure which differs

from the one of a Kerr BH [44,45,101–104]. At second PN
order, the kludge scheme [194] involves the mass quadru-
pole moment M2. Thus, to construct a more faithful
(though still approximate) inspiral around a rotating BS,
we augment the fluxes with its modified mass quadrupole
moment (see [105,106,117,118,200,201]). This kludge
scheme, together with the modified mass quadrupole
moment, has recently been examined and found to provide
results qualitatively equivalent to evolutions with instanta-
neous self-force in non-Kerr electromagnetic analogs,
which indicates that this method can, in principle, describe
resonance and island crossings in nonintegrable EMRIs
with sufficient accuracy [202].
We employ linear variations of E and Lz in an iterative

way, such that [117,118,203]

E1 ¼
Eð0Þ
m

þ
�
dE
dt

�				
t¼0

NrTr; ð14Þ

Lz;1 ¼
Lzð0Þ
m

þ
�
dLz

dt

�				
t¼0

NrTr; ð15Þ

where Eð0Þ and Lzð0Þ are the energy and z component of
the angular momentum at t ¼ 0, respectively. In turn,
hdE=dtijt¼0 and hdLz=dtijt¼0 are the averaged PN fluxes
calculated at the beginning of the inspiral, through the
complicated equations outlined in [118,195]. Nr is the
number of radial periods elapsed between each update of
(14) and (15), which improves the scheme and includes
cumulative nonlinear variations, while Tr is the radial
period of the EMRI. Equations (14) and (15) are iterated
along the whole EMRI evolution with appropriate choices
of Nr and Tr to obtain the dissipative orbit. If the system
was integrable, then, through the evolution of the Carter
constant, we would be able to also evolve the rest of the
components of the angular momentum, namely, Lx and Ly,
which are imprinted in Carter’s constant. Our case, though,
is nonintegrable and lacks a separation Carter-like constant;
therefore, we have no explicit way of evolving Lx and Ly,
but rather we keep them constant.
Even though, due to dissipation, the constraint equa-

tion (5) is not anymore a constant of motion (that can be
monitored to assess the accuracy of the numerical scheme),
we have tested numerous random time instants of the
inspirals obtained with the aforementioned scheme from
which we extract the instantaneous position and velocity
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vectors of the orbit, E and Lz, and calculate (5) for these
values. We then compare the resulting constraint with the
one obtained by evolving a geodesic with the aforemen-
tioned parameters of the same time instants as initial
conditions. For all cases, we find that the new dissipated
constraint is satisfied to within one part in 107 for the first
∼104 revolutions. Through geodesic evolutions of suc-
cessive time instants of an inspiral, we can built dis-
sipative Poincaré maps with adiabatically decreasing E
and Lz and, therefore, calculate time-dependent rotation
curves [111,118].

B. GW modeling

To present the phenomenological imprints of inspiraling
secondaries onto supermassive BSs, we employ the quadru-
pole approximation. In the traceless and transverse gauge,
the metric perturbations read (e.g., [131])

hij ¼
2

d

d2Qij

dt2
; ð16Þ

where Qij is the symmetric and trace-free (STF) mass
quadrupole tensor, which can be written as

Qij ¼
�Z

xixjTttðt; xkÞd3x
�
STF

; ð17Þ

with t the coordinate time of the secondary source and

Tttðt; xiÞ ¼ mδð3Þ½xi − ZiðtÞ�: ð18Þ

Here, we employ the approximation where quasi-isotropic
coordinates at infinity are identified with spherical ones as
ZðtÞ ¼ ðxðtÞ; yðtÞ; zðtÞÞ, where

xðtÞ ¼ rðtÞ sin θðtÞ cosϕðtÞ; ð19Þ

yðtÞ ¼ rðtÞ sin θðtÞ sinϕðtÞ; ð20Þ

zðtÞ ¼ rðtÞ cos θðtÞ; ð21Þ

and then transform them from spherical to Euclidean
coordinates that describe the secondary’s trajectory.
An incoming wave from an EMRI onto an interferometer

can be projected in two polarizations, þ and ×, by
introducing two unit vectors p̂ ¼ n̂ × ẑ=jn̂ × ẑj and q̂ ¼
p̂ × n̂ (here, × is the cross product of two vectors and
should not be confused with the cross polarization symbol
of the incoming GW), which are defined in terms of a third
unit vector n̂ that points from the EMRI source to the
detector. Finally, the unit vector ẑ designates the spin
direction of the BS. The triplet p̂; q̂; n̂ forms an orthonormal
basis from which the polarization tensor components are
defined as

ϵijþ ¼ pipj − qiqj; ϵij× ¼ piqj þ pjqi ð22Þ

and allow us to write the metric perturbation in the
quadrupole approximation as

hijðtÞ ¼ ϵijþhþðtÞ þ ϵij×h×ðtÞ; ð23Þ

where hþ;× are the plus and cross polarizations, respec-
tively, of the incoming GW. The GW components are
then expressed in terms of the position ZiðtÞ, velocity
viðtÞ ¼ dZi=dt, and acceleration aiðtÞ ¼ d2Zi=dt2 vectors.
One finally obtains

hþ;×ðtÞ ¼
2m
d

ϵþ;×
ij ½aiðtÞZjðtÞ þ viðtÞvjðtÞ�: ð24Þ

LISA’s response to an incident GW event is correlated
with the antenna pattern functions Fþ;×

I;II ðtÞ, describing the
motion of the detector on its respective spacecraft channels
I and II (see Refs. [112,204,205] for details). The total
waveform detected by a LISA-like interferometer reads

hI;IIðtÞ ¼
ffiffiffi
3

p

2
½Fþ

I;IIðtÞhþðtÞ þ F×
I;IIðtÞh×ðtÞ�: ð25Þ

We assume a detector that lies at a luminosity distance d
with fixed orientation n ¼ ð0; 0; 1Þ with respect to the
EMRI source and that the primary’s polar and azimuthal
angles are fixed at the equatorial plane. The data streams
that will be considered in what follows will contain the GW
together with stationary and Gaussian noise. For simplicity,
wewill further assume that the two data stream channels are
uncorrelated; thus, we will abide to a single-channel
approximation of our detector.

VI. EMRIs AROUND A SPINNING BS

In this section, we discuss the effects of nonintegrability
and chaos on EMRI evolution and GW emission. Even
though approximate, the results shown below demonstrate
the basic features of the chaotic phenomena taking place in
rotating BSs. Since the most interesting cases of the BSs
constructed are cases 1 and 3, we will focus on them from
now on. We fix Eð0Þ=m ¼ 0.95 and Lzð0Þ=m ¼ 3M as
initial parameters of the secondary in Eqs. (14) and (15),
respectively, and perform a different numbers of updates
depending on how quick the inspiral evolves, namely, how
close we are to the inner boundary of the CZV (separatrix).
Note that in some cases the inspiral would occur inside

the BS. This is a striking difference with respect to the BH
case, in which the signal disappears after the particle has
crossed the horizon. We can, therefore, continue the
evolution as long as the orbits do not cross the separatrix,
where the inspiral plunges.
It is worth noticing that the potential inside the BS is

approximately constant (see Fig. 1) and not particularly
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strong, which justifies the use of PN fluxes even inside the
star. For EMRIs around Kerr, the overlap between PN and
Teukolsky-based waveforms starts to completely deterio-
rate typically when the periapsis radius rp ∼ 5M (in Boyer-
Lindquist coordinates) or smaller [198], but in the BH case
the potential is stronger, as shown in Fig. 1, due to the
larger compactness at the horizon. Thus, our PN approxi-
mation should be accurate enough also inside the star all the
way to the edge of the CZV, especially for the least compact
configurations. Furthermore, we stress that we are only
considering radiation-reaction effects, neglecting environ-
mental effects such as dynamical friction and accretion
within the BS [38] as well as direct (nongravitational)
coupling between the secondary and the scalar field, both
of which might significantly contribute to the inspiral.

A. Sustained resonances

A first interesting result arises when we ignore the
updates on the flux, Eqs. (14) and (15), an approximation
that has been considered in various analyses [105,106,108].
This simplification leads to the following linearly varied
fluxes:

EðtÞ ¼ Eð0Þ
m

þ
�
dE
dt

�				
t¼0

t; ð26Þ

LzðtÞ ¼
Lzð0Þ
m

þ
�
dLz

dt

�				
t¼0

t: ð27Þ

Such assumption inevitably leads to sustained resonances
that cannot exist in Kerr [206], where the secondary is
trapped in a resonant island for an extremely long

(potentially infinite) time. In Fig. 11, we present one such
case, where a 10 month inspiral spends 1 month evolving
normally and 9 months in perfect resonance. It never
eventually escapes the island, at least for the timescale
over we have evolved the EMRI. In order to identify the
trapping more easily, Fig. 11 presents a stroboscopic
depiction; i.e., from the time series of the full dissipative
Poincaré map, only every third consequent point is kept due
to the multiplicity of the 2=3 resonance.
The initial position for a sustained resonance to occur is

not fine-tuned, but rather a quite large region of initial
conditions rð0Þ∈ ½6.46; 6.58�M exists (which corresponds
to ½7.47; 7.59�M in Boyer-Lindquist coordinates), when
fixing the rest of the parameters as ṙð0Þ ¼ 0.155 and
θð0Þ ¼ π=2 and defining θ̇ð0Þ through the constraint
equation (5). Similar results have recently been found in
[111] for linear variations of the fluxes like Eq. (26). Even
if the range of initial conditions giving such sustained
resonances is not negligible, in practice such sustained
resonances are an artifact due the assumption of low-order
energy and angular-momentum fluxes throughout the
evolution. Namely, the linear approximation in energy
and angular momentum is valid as long as the trajectory
of the EMRI does not get too far from the initial geodesic,
on which the orbital elements and fluxes have been
initialized.
By taking into account updates (from 50 to 150 for some

representative cases) on the fluxes for the aforementioned
radial range, which effectively includes nonlinear terms on
the fluxes, all sustained resonances vanish. Of course, we
cannot exclude the possibility that the region of sustained
resonances either shrinks significantly or hides into a
different range of initial conditions, although we consider

FIG. 11. Left: sustained resonance for case 3, with mass ratio m=M ¼ 10−6, and simplified linear fluxes without any updates as given
in Eqs. (14) and (15). The secondary’s initial parameters and conditions are Eð0Þ=m ¼ 0.95, Lzð0Þ=m ¼ 3M, rð0Þ ¼ 6.5M,
ṙð0Þ ¼ 0.155, and θð0Þ ¼ π=2, while θ̇ð0Þ is defined from the constraint equation (5). The total evolution time is t ¼ 5 × 106M ∼
10 months. The linearly dissipative inspiral spends roughly 1 month off resonance and 9 months in perfect resonance. Here, we have
chosen a stroboscopic depiction for the trapping to be more easily identified; i.e., from the time series of the full Poincaré map, only
every third consequent point is kept. Right: the same as in the left panel but starting from a point of the inspiral where the 1 month off
resonance has lapsed and the orbit enters the (putatively) eternal resonance.
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this option as unlikely. Note also that putative sustained
resonances should persist (and not disappear) as the
number of flux updates is increased. A similar case was
recently studied for an EMRI analog in [202], where lower-
order flux approximations gave rise to sustained resonan-
ces, whereas, when higher-order terms were involved, the
sustained resonances disappeared.

B. Time-dependent rotation curves

Figures 12 and 13 show typical, time-dependent, island
crossings for cases 1 and 3. In Fig. 12, the nonzero initial
velocity leads to the EMRI crossing the 2=3 island in the
exterior of the case 1 configuration. The plateau is finite
and lasts for around 200 revolutions before it exits the

island. The fact that the rotation number decreases with
time shows that the orbital motion is outside of the star and
tends toward circularization. On the other hand, in Fig. 13,
we show the dissipative rotation curve of the 4=7 island
crossing which resides inside the BS of case 3. The fluxes
have increased at this point significantly; therefore, the
EMRI evolves faster. Nevertheless, the secondary spends
∼100 cycles in perfect resonance which is extraordinary for
a subdominant resonance. Equivalently, the fact that these
orbits are inside the star and both the eccentricity and
rotation numbers increase justifies why the dissipative
rotation curve increases with time.4

The final and most interesting scenario examined for
case 3 is the very large plateau that arises when ṙð0Þ ¼
0.155 that begins from the exterior and ends in the interior
of the BS. Even though one would expect a dissipative
rotation curve with a plateau that lasts for thousands of
cycles, the existence of a thick chaotic layer around the
island induces a significant alteration to the rotation curve,
which we find here for the first time. In Fig. 14, we present
the behavior of the wide 2=3 island. On the left, we show
that, instead of a plateau, we encounter mostly the chaotic
layer [regardless of the initial condition rð0Þ], where the
rotation numbers are ill defined. Nonetheless, there are
points (marked in red in the enlarged inset in the left panel
in Fig. 14) that actually enter the island. To make sure that
these points do enter the resonance, we plot on the right the
corresponding KAM curves of these points. As shown, they
form islands with tips that do not touch; therefore, the
EMRI is not occupying the chaotic layer, unlike the rest of
the black points in the inset in Fig. 14 that correspond to
orbits residing in the chaotic layer. What seems to occur
here is a strong chaotic shielding which does not allow the
EMRI to spend continuous time intervals inside the island.
Even so, we should expect interesting GW imprints for all
cases discussed above and especially those from case 3,
which take place in the interior of the rotating BS. We
present those effects in the next section.
We stress that our results are based on PN fluxes and

neglect effects other than radiation reaction within the BS,
e.g., dynamical friction and accretion, which can never-
theless be added into the evolution.

C. GW frequency evolution

After obtaining the inspirals for cases 1 and 3, it is
straightforward to use Eq. (25) in order to find the
approximate GW emitted by such EMRIs. The time-
domain waveforms are Fourier transformed to the

FIG. 12. External 2=3 resonant island crossing for case 1. To
produce the inspiral, we have updated the fluxes 300 times. The
secondary’s initial parameters and conditions are Eð0Þ=m ¼
0.95, Lzð0Þ=m¼3M, rð0Þ¼5.026M, ṙð0Þ¼ 0.1, and θð0Þ¼ π=2,
while θ̇ð0Þ is defined from the constraint equation (5). The EMRI
spends ∼200 cycles in resonance.

FIG. 13. Internal 4=7 resonant island crossing for case 3. To
produce the inspiral, we have updated the fluxes 250 times. The
secondary’s initial parameters and conditions are Eð0Þ=m ¼
0.95, Lzð0Þ=m ¼ 3M, rð0Þ ¼ 4.06025M, and ṙð0Þ ¼ 0, θð0Þ ¼
π=2 while the θ̇ð0Þ is defined from the constraint equation (5).
The EMRI spends ∼100 cycles in resonance.

4It has been shown that, before plunge, Kerr EMRIs enter a
short phase of increasing eccentricity [195]. In our case, due to
the absence of an event horizon, the eccentric EMRI can enter the
star and the eccentricity continues increasing and leads to orbits
as those found in [94]. Since the eccentricity is directly propor-
tional to the periapsis-apoapsis oscillation frequency ωr, the
rotation number increases as well.
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frequency domain where the frequency evolution of the
inspiral can be constructed. Here, we follow [117–119] and
construct the spectrograms by performing consecutive
short-time Fourier transforms, with appropriate window
sizes and offsets in order to maximize the quality of the
resulting figures.
In Fig. 15, we present the most typical glitch waveform

for case 1, where the BS is rather compact and mimics a
non-Kerr BH. Its fundamental and first-harmonic frequency
evolution display the standard modulation that occurs when
the EMRI crosses the 2=3 island (that lies on the exterior of
the rotating BS and lasts for 200 revolutions). This should
lead to a significant dephasing with respect to an integrable
EMRI evolution that crosses the same resonance. The
resemblance with glitches found in [117,118] for non-
Kerr spacetimes is remarkable. Therefore, since we use the
hybrid kludge scheme and the quadrupole formula, in this
case it would be almost impossible to distinguish between

FIG. 15. Frequency evolution of an EMRI around rotating BS from case 1, through the 2=3 resonant island with parameters and initial
conditions as in Fig. 12. As a reference, the approximate GWs (fundamental frequency in the left panel and first harmonic in the right
panel) are detected at luminosity distance d ¼ 100 Mpc.

FIG. 14. Left: interior 2=3 resonant island crossing for case 3. To produce the inspiral, we have updated the fluxes 200 times. The
secondary’s initial parameters and conditions are Eð0Þ=m ¼ 0.95, Lzð0Þ=m ¼ 3M, rð0Þ ¼ 6.5M, ṙð0Þ ¼ 0.155, and θð0Þ ¼ π=2, while
θ̇ð0Þ is defined from the constraint equation (5). The EMRI spends ∼10 cycles on and off the resonant island and ∼100 revolutions in the
vicinity of the 2=3 Birkhoff chain until the chaotic layer and island are crossed. Right: the produced KAM curves from the red dots
shown in the inset in the left panel. All of them (namely, ten points) belong to the 2=3 resonant island.

FIG. 16. The same as Fig. 15 but for the rotating BS
configuration of case 3, through the 4=7 interior resonant island
with parameters and initial conditions as in Fig. 13.
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non-Kerr BHs or rotating BS based only on these glitches.
Fortunately, case 3, the less compact configuration we have
constructed, changes this picture completely. Figure 16
shows the frequency evolution of an EMRI through the
internal 4=7 island. The frequency evolution becomes
nonlinear due to the acceleration of the fluxes and the
EMRI frequencies after the glitch increase toward a chirp.
Finally, we examine the spectrogram of an EMRI

crossing the internal 2=3 resonant island that corresponds
to the inspiral shown in Fig. 14. The GW frequency
modulation shown in Fig. 17 is the first one of its kind
found in any nonintegrable spacetime so far. We observe
not only similar nonlinear frequency evolution as a function
of time for the strongest Fourier peaks (fundamental and
first harmonic) as in Fig. 16, but also linear-in-time
subdominant frequency peaks that evolve and glitch in a
similar manner. We have performed the same inspiral for
two different initial conditions rð0Þ—one that lies outside
and one that lies inside the range of sustained resonances (if
linear fluxes are assumed)—and the resulting spectrogram
is qualitatively the same as that shown in Fig. 17. This
feature is significantly different from all the other glitches
found in previous nonintegrable spacetimes and is asso-
ciated to the fact that the plateau in the dissipative rotation
curve is replaced with an observable chaotic layer with
glimpses of island occupancy.
When an orbit is fully chaotic and resides in a chaotic sea

[133], then we expect rotation curves and spectrograms to
be rendered useless, since no well-defined rotation numbers
and discrete GW frequencies exist [201,207]. On the other
hand, when an orbit is close to a slightly chaotic region but
otherwise not a fully chaotic part of phase space, such as
the chaotic layer that shields the interior 2=3 island of case
3, the waveform and its frequency content resemble a lot
those of a regular orbit, with discrete Fourier peaks and
indistinguishable effects of chaos in the time-domain
waveform. The only key difference is that the discrete
Fourier peaks are not comprised by single harmonics (for
geodesics) but rather harmonics that are broken down to

subpeaks. The spectrum, nevertheless, remains discrete.
This has been shown in [207] for a secondary particle with
spin orbiting around a Schwarzschild BH (see Figs. 4, 10,
11, and 13 therein), although in that case this behavior
disappears as the secondary spin is treated perturbatively, as
also requested for consistency within the perturbative
expansion in the mass ratio (see, e.g., [208]). It is, therefore,
interesting that we recover the same feature, that is a
slightly chaotic region that embeds the island, but other-
wise normal generic orbits around this region, discrete
Fourier spectra, and harmonics with multiple peaks but in
rotating BS spacetimes (where motion is not even inte-
grable in a perturbative sense). This is the reason why
Fig. 17 has such a distinctive and peculiar nature, which can
be explained by the effects discussed in [207]. If we
consider the effects on the spectrogram and the dissipative
evolution through the Birkhoff chain, the EMRIs spends
around 100 cycles to cross it and ten cycles in perfect
resonance. Yet, a Birkhoff chain is composed of both stable
and unstable periodic points, and the chaotic layer helps to
amplify the frequency glitch in a significant way, with
frequency jumps as large as ∼0.07 mHz for the most
dominant fundamental Fourier peak evolution, which is
almost one order of magnitude larger than any other
frequency glitches presented here and also higher than
those found in [117,118] for various deformation param-
eters that were either exaggerated or chosen arbitrarily. Our
case presents a well-motivated model of ECOs that has a
precise formation scenario; thus, the results presented here
can be used in the future as a test bed to understand if weak
or strong (or no) chaos exists in GW observations.

VII. CONCLUSIONS

The detection of EMRIs by LISA [121] and other space-
borne detectors [126–128] will provide for the first time an
extremely accurate mapping of the primary’s spacetime
geometry, due to the large mass hierarchy that creates the
conditions for long-lasting inspirals with continuously

FIG. 17. The same as Fig. 15 but for the rotating BS configuration of case 3, through the 2=3 interior Birkhoff chain with parameters
and initial conditions as in Fig. 14.
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observable GWemission. The associated signal will present
very rich phenomenology [123] like the appearance of
resonances [105,107,108,111] and, remarkably, carries
information about spacetime symmetries [106,112].
The observation of these systems will also help to

decide if BHs are the only compact objects in the
Universe or if other exotic configurations exist in nature.
The different multipolar structure, relative to Kerr BHs,
can lead to fascinating phenomena around resonances
such as frequency modulation and GW glitches [117], in
particular, for those spacetimes that lack a Carter constant
(or any other higher-rank Killing tensor) that would
guarantee the integrability of geodesics. So far, only
bumpy and non-Kerr solution of general relativity—
that are plagued with pathologies [118,119] and do not
come from a well-motivated, first-principle theory—
have been analyzed in order to inspect their different
phenomenology.
Here, we considered for the first time one of the most

well-behaved and simple compact object that may as well
exist in our Universe, namely, rotating BSs. These exotic
objects, which lack an event horizon or singularities, have a
clear formation mechanism and can serve as prototypical
BH mimickers. They also constitute compelling dark
matter candidates and could have formed in the early
Universe, e.g., as remnants of inflation.
While the majority of analyses for BSs have been

performed for equatorial orbits, here we took a different
turn on examining supermassive self-interacting rotating
BSs in the context of EMRIs for generic orbits (without
constraints on the orbital plane or eccentricity). In an
attempt to study geodesics that are peculiar enough to
be distinguishable from those around Kerr BHs, we evolved
geodesics around and inside supermassive rotating con-
figurations and studied their GW signatures. We have built
numerically three such configurations with representative
values of the spin and compactness.
Our geodesic analysis reveals the existence of resonant

islands (with finite width) and Birkhoff chains in the phase
space of orbits, which signals that rotating BSs are non-
integrable. We also found that compact rotating BSs behave
similarly to non-Kerr BHs up to the point where the
geodesic enters the star smoothly and the geodesic structure
becomes qualitatively different. Decreasing the compact-
ness makes things much more different between rotating
BSs and non-Kerr BHs. First, the geodesic phase space
hosts many orbits that reside in the star’s interior, where
the rotation curve exhibits a change in monotonicity and
begins to increase due to the increment of eccentricity
[94]. The latter effect leads to a newly found phenomenon,
that is, the existence of degenerate islands of stability, in
the interior and the exterior of the star, with the same
rotation number. We have also found regions in the phase
space of geodesics where there exist not only a plethora of
resonant islands, but also a thin chaotic layer surrounding

the most dominant 2=3 island of stability. This is, to our
knowledge, the first time that a full Birkhoff chain appears
in a general relativistic setup, which has important
implications in GWs emitted by EMRIs that cross this
region. With appropriate initial conditions, we find that
the 2=3 island encounters a plateau in the rotation curve,
where the geodesic enters the island in the exterior and
exits in the interior of the star, a fascinating outcome of the
fact that the compactness of the BS of case 3 (albeit as
large as a typical neutron star) is relatively smaller than in
the other cases.
To achieve some initial estimates of the elementary

structure of approximate waveforms from such rotating
BSs, and especially for generic inspirals that cross transient
resonances, we use the quadrupole approximation to
model GWs and evolve the inspiral, with augmented PN
fluxes to account for the modified multipolar structure of
our configurations [45,104]. Despite these approximations,
the phenomenology of the inspiral and GW signal is
expected to be robust.
At first sight with a linear approximation of the fluxes,

we stumble upon inspirals that enter the 2=3 island, in a
generous range of initial conditions rð0Þ, and never exit the
resonance, as also found in [111] but in a much smaller
radial domain. However, when we consistently update
fluxes during the inspiral (though in a discretized way
after some number of revolutions), higher-order terms seem
to destroy such sustained resonances. Although unlikely,
we cannot unequivocally exclude the existence of other
regions of phase space where such resonances occur even
when updates in the fluxes are introduced. We sketch the
dissipative rotation curves by using time instants of each
EMRI as initial condition to a geodesic evolution and find
that external resonant islands are indistinguishable with
those occurring in non-Kerr objects [117–119]. The pla-
teaus that characterize islands situated in the interior of the
star are approached from below in the rotation curves,
which then reprise a monotonically increasing behavior.
This corresponds to a reversed time and radial dependence
with respect to the rotation curves in the neighborhood of
external islands, related to the nonzero energy-density
distribution inside the star. Such monotonicity reversal
also pairs with the different evolution of the eccentricity.
Indeed, inside the star, eventually a point is reached where
the circularization of orbits has lapsed and the eccentricity
increases with decreasing radius, in contrast to what
happens in the exterior. The most prominent island of all
found to date, the one for case 3 that has a record width of
2.6M (in quasi-isotropic coordinates), is even more com-
plicated due to chaotic shielding. The EMRI does not enter
and stay in the island but rather oscillates between on and
off island states. It manages to do so at least ten times
during which the evolution drives the orbit around the
chaotic layer till the secondary eventually exits the par-
ticular part of the Birkhoff chain.
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Overall, the time spent in these cases spans from 200
cycles in external resonances, where the evolution is
adiabatically slow, to around 100 cycles in the interior
of the star, when the Birkhoff chain is taken into account as
a part of the whole chaotic KAM curve (and not just the
island with the periodic stable point at its center).
When the EMRI crosses a resonant island, all the above

effects are imprinted onto the EMRI waveform either in a
typicalway, analogous toothernon-Kerr systems,or asnovel
signatures that designate the existence of a supermassive BS
primary. GW signals from the exterior islands are qualita-
tively indistinguishable from those in non-Kerr EMRIs, a
result which is expected from the close similarity in the
rotation curves discussed above. The case of internal motion
is, instead, quite different. Even subdominant resonant
islands introduce significant nonlinear frequency modula-
tion, because theorbits are close to exiting theCZV(see, e.g.,
Fig. 16). The widest resonant island of case 3 has a very
specialbehavior imprinted in theGWwhentheEMRIcrosses
it. The proximity of the orbits to the otherwise mild (but still
observable) chaotic layer leads to an effect in theGWFourier
peaks first found in [207]. Moderate chaotic layers do not
produce continuous GW spectra, as fully chaotic orbits do,
but rather discrete sets of harmonics that are broken down to
subharmonics. This phenomenon is evident inFig. 17,where
two simultaneous glitches occur under to the evolution of
each subfrequency due tomild chaos. The underlying reason
is, again, the fact that the EMRI is close to crossing a thin
chaotic region. This turns each single harmonic of the
frequency content of the approximated GW signal into
multiple subpeaks that arise in the spectrogram in the
particular fashion shown in Fig. 17. The most prominent
(the brightest) one, which leads to a frequency glitch of
Oð0.1Þ mHz, renders all exterior glitches subdominant and
should affect significantly the orbital evolution and eventual
parameter estimation. Yet, we stress that our results are
qualitative and should be extended with more accurate
inspiral and waveform modeling.
In this respect, it would be very interesting to perform

proper perturbation theory around a spinning BS, although

nonseparability of the equations makes the flux computa-
tion quite challenging compared to the Teukolsky case for a
Kerr BH. Nevertheless, our results provide solid evidence
that chaos does exist in EMRIs around rotating BSs, and
the fact that this is a quite compelling model for ECOs
should drive us to further understand these objects as well
as their effects in geodesics and EMRI dynamics.
Along these lines, it would be relevant to include

environmental effects such as dynamical friction and
accretion [38,136–138] and assess their impact on the
chaotic motion and EMRI signal. Finally, although we
focused on a specific model of BS with large quartic
interactions, we expect to find the same qualitative features
in other spinning BS models, spinning Proca stars, and, in
fact, all spinning ECOs where geodesic motion is most
likely nonintegrable. In particular, we expect the same (and
perhaps even more prominent) signatures of chaotic motion
for EMRIs in generic orbits around BH microstates
predicted in the fuzzball scenario (see [209] for a recent
review), due to their rich multipolar structure and breaking
of the axial and equatorial symmetry [210–214].
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