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We investigate thermodynamics of static and spherically symmetric black holes (BHs) in the Horndeski
theories. Because of the presence of the higher-derivative interactions and the nonminimal derivative
couplings of the scalar field, the standard Wald entropy formula may not be directly applicable. Hence,
following the original formulation by Iyer and Wald, we obtain the differentials of the BH entropy and the
total mass of the system in the Horndeski theories, which lead to the first law of thermodynamics via the
conservation of the Hamiltonian. Our formulation covers the case of the static and spherically symmetric
BH solutions with the static scalar field and those with the linearly time-dependent scalar field in the shift-
symmetric Horndeski theories. We then apply our results to explicit BH solutions in the Horndeski theories.
In the case of the conventional scalar-tensor theories and the Einstein-scalar-Gauss-Bonnet theories, we
recover the BH entropy obtained by the Wald entropy formula. In the shift-symmetric theories, in the case
of the BH solutions with the static scalar field, we show that the BH entropy follows the ordinary area law
even in the presence of the nontrivial profile of the scalar field. On the other hand, in the case of the BH
solutions where the scalar field linearly depends on time, i.e., the stealth Schwarzschild and Schwarzschild-
(anti—)de Sitter (AdS) solutions, the BH entropy also depends on the profile of the scalar field. By use of
the entropy, we find that there exists some range of the parameters in which a Schwarzschild-AdS BH
with nontrivial scalar field is more thermodynamically stable than a Schwarzschild-(AdS) BH without
scalar field in general relativity. Finally, we consider the Horndeski theories minimally coupled to the
U(1)-invariant vector field, where BH solutions contain the mass and the electric charge, and clarify the
conditions under which the differential of the BH entropy is integrable in spite of the presence of the two

independent charges.
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I. INTRODUCTION

General relativity (GR) is known as the unique gravi-
tational theory in four dimensions which only contains
2 degrees of freedom (d.o.f.) of the metric and preserves
the Lorentz symmetry [1]. GR has been tested by local
experiments as well as astrophysical probes [2], while the
future gravitational-wave (GW) astronomy [3] and black
hole (BH) shadow measurements [4] will allow us to clarify
gravitational physics in the so-called strong field regimes as
in the vicinity of BHs and neutron stars [5—8]. On the other
hand, the standard cosmological model based on GR has
been plagued by tensions of today’s measurements [9,10],
which led to the question of the validity of GR on cosmo-
logical distance scales. In order to solve these tensions,
gravitational theories other than GR have been extensively
studied [2,5,11,12].

One of the simplest and most robust modifications to GR
are provided by scalar-tensor (ST) theories that possess a
scalar field (denoted by ¢) d.o.f. as well as the metric tensor
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(denoted by g,,) d.o.f. [13]. Traditionally, ST theories that
include (non)canonical kinetic terms and/or nonminimal
coupling to the spacetime curvature have been applied to
inflationary universe and/or dark energy models (see, e.g.,
Refs. [11,12,14,15]). The framework of the ST theories
have been extensively generalized by the (re)discovery of
the Horndeski theories [16—-18], which are known as the
most general ST theories with second-order equations of
motion, despite the existence of higher-derivative inter-
actions of the scalar field ¢ and the nonminimal derivative
coupling to the spacetime curvature. The Horndeski the-
ories are characterized by the four independent coupling
functions G,345(¢.X), where X :=—(1/2)g""V, ¢V, ¢
represents the canonical kinetic term of the scalar field,
with V, being the covariant derivative associated with the
metric g,,. The framework of the Horndeski theories
has been extended to the degenerate higher-order scalar-
tensor (DHOST) theories [19,20] and beyond-DHOST
theories [21-24], which eliminate the Ostrogradski ghosts
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by imposing the degeneracy conditions among the higher-
derivative equations of motion. The existence of BH
solutions and their properties will be very important in
distinguishing such new class of ST theories from the
theoretical perspectives. This offers an interesting possibil-
ity for probing the possible deviation from GR in strong
field regimes.

In GR, the uniqueness theorem states that an asymp-
totically flat, stationary, and axisymmetric BH is described
by the Kerr solution, which is characterized only by mass
and angular momentum [25-27]. This is reduced to the
Schwarzschild solution in the limit of static and spherically
symmetric spacetime. The BH no-hair theorem states that
only the BH solutions are Schwarzschild or Kerr solutions
in the case of vacuum spacetime. We can extend the
theorem to the case with a scalar field, assuming an
appropriate condition on the potential. It also holds for
the various ST theories with a canonical scalar field ¢
[28,29] and a generalized kinetic term [30], as well as a
scalar field nonminimally coupled to the scalar curvature
F(¢)R [31-34]. In the shift-symmetric Horndeski theories
that are invariant under the constant shift transformation
¢ — ¢ + c, where the functions G, ;3 4 5 depend only on X,
Ref. [35] showed that a no-hair result of static and
spherically symmetric BH solutions holds under the fol-
lowing hypotheses: (i) the scalar field shares the same
symmetry as the static and spherically symmetric metric;
(i1) the spacetime is asymptotically flat with a vanishing
radial derivative y'(r) — 0 at spatial infinity (r — o0);
(iii) the norm of the Noether current associated with the
shift symmetry J,,J* is finite on the BH event horizon; (iv) a
canonical kinetic term X is present in the Lagrangian; and
(v) the X derivatives of G, 3 4 5 contain only positive or zero
powers of X. If we violate at least one of the conditions
given above, it is possible to realize hairy BH solutions
endowed with nontrivial scalar hair. The no-hair theorem
for the static and spherically symmetric BH solutions has
been extended to the case of the shift-symmetric beyond-
Horndeski theories in Ref. [36]. The no-hair theorem in the
shift-symmetric Horndeski theories for BH solutions has
been generalized to the case of the stationary and axisym-
metric BHs in Ref. [37].

For a scalar field with the linear dependence on time ¢ of
the form ¢ = gt +w(r) with ¢ being constant, which
evades hypothesis (i), there exist the stealth Schwarzschild
solution [38—40] and the BH solutions with asymptotically
(anti-)de Sitter [(A)dS] spacetimes [38,41]. If the asymp-
totic flatness of spacetime is not imposed, which evades
hypothesis (ii), the linear quartic derivative coupling X in
G, gives rise to the exact hairy BH solutions with an
asymptotic geometry mimicking the Schwarzschild-AdS
spacetime [42-45]. For the coupling G5  In |X|, which is
equivalent to the linear coupling to the Gauss-Bonnet (GB)
term ¢RZ%y [46], where

RéB = R2 - 4R/%l/ + R;zwaﬁ (1)
is the GB term, there exists the asymptotically flat hairy BH
solution whose metric components are corrected by the GB
coupling [47,48]. There also exists an asymptotically flat
BH solution in the model where G4(X) D (—X)!'/? [49].
These solutions arise from the violation of hypothesis (v).
We note that there also exist the hairy BH solutions for
non-shift-symmetric GB couplings e~“/RZ; with ¢ being
constant [50-52] and for BH scalarization models that
occur for Z,-symmetric coupling functions [53-68].

The linear stability analysis of the static and spherically
symmetric BH solutions in the Horndeski theories have
been performed in the literature, e.g., [69—71]. These linear
stability conditions have been applied to various static and
spherically symmetric BH solutions with the nontrivial
profile of the scalar field in the Horndeski theories in
Refs. [72,73]. In generic Horndeski theories, static and
spherically symmetric BH solutions with a nonvanishing
constant kinetic term on the horizon X # 0 inevitably suffer
from a ghost or gradient instability [73], including the
solutions discussed in Refs. [42—45]. On the other hand, it
was shown that within the perturbative regime the static and
spherically symmetric BH solutions in ST theories with the
power-law couplings to the GB invariant are free from the
ghost or gradient instability, which include asymptotically
flat BH solutions in the shift-symmetric theory with the
linear coupling to the GB invariant G5(X) o In |X| [47,48].
However, in the models where the scalar field linearly
depends on time, e.g., the stealth Schwarzschild solution
[38,41], the standard linear perturbation analysis cannot be
applied because the perturbations become infinitely
strongly coupled [74,75]. Thus, we will apply another
way to see BH stability, that is, BH thermodynamics. When
we have two BH solutions, we can compare their entropies
and then argue that the BH solution with smaller entropy is
more unstable than the other BH solution with larger
entropy. In this paper, we will focus on BH thermody-
namics in the Horndeski theories. Although the Wald
entropy formula [76] has been useful for computing the
BH entropy in the covariant gravitational theories that
contain the dependence on the Riemann tensor, this may
not be directly applicable to the Horndeski theories because
of the presence of the derivative interactions of the scalar
field and the nonminimal derivative couplings of the scalar
field to the spacetime curvature tensors [77,78]. The terms
that contain the spacetime curvature tensors may be
replaced with the higher derivatives of the scalar field with
use of the properties of the Riemann tensor and the partial
integration of the action. The apparent dependence of the
action on the spacetime curvature tensors may be modified
before and after a partial integration, although the action
after the partial integration is equivalent to that before the
partial integration under the assumption of no contribution
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from the boundaries. In this work, following the original
formulation by Iyer and Wald [79], we will construct
the BH thermodynamics in the Horndeski theories from
the first principle. Since the Horndeski theories preserve the
four-dimensional diffeomorphism invariance, there exists
the associated Noether charge potential, whose explicit
form was obtained in Ref. [80]. Since the Noether charge
potential is independent of the apparent modification of
the action by the partial integration, this should be able to
provide the unique description of the first law of BH
thermodynamics and the BH entropy. Iyer and Wald
showed that the variation of the Hamiltonian is given by
that of the Noether charge potential evaluated on the boun-
daries, i.e., in our case, the BH event horizon and spatial
infinity [79]. The conservation of the total Hamiltonian
of the BH system reproduces the first law of the BH
thermodynamics. Our theorem will be able to be applied to
both the shift-symmetric and non-shift-symmetric subclass
of the Horndeski theories. Previously, for a subclass of the
Horndeski theories with the nonminimal coupling to the
Einstein tensor GV ,¢V ¢, the Iyer-Wald formulation has
been applied for the BH solutions without the electric field
in Refs. [77,78] and with the electric field in Ref. [81]. The
Iyer-Wald formulation has also been applied to the planar
BH solutions in some classes of the Horndeski theories in
arbitrary dimensions [82]. Our analysis will cover the
whole Horndeski theories and be able to apply all the
static and spherically symmetric BH solutions, including
those with the linearly time-dependent scalar field in the
shift-symmetric theories [38,41].

The paperis constructed as follows: In Sec. 11, we apply the
formulation by Iyer and Wald to the Horndeski theories. In
Sec. III, we discuss the entropy and mass for the static and
spherically symmetric BH solutions with the static scalar
field in the Horndeski theories. In Sec. IV, we discuss the
entropy and mass of the system for the BH solutions with the
linearly time-dependent scalar field in the shift-symmetric
Horndeski theories. In Sec. V, we investigate thermodynam-
ical stability of the stealth Schwarzschild BH solutions and
the Schwarzschild-(A)dS BH solutions with the linear time
dependence in the shift-symmetric Horndeski theories,
which are discussed in Sec. IV. In Sec. VI, we consider
the Horndeski theories minimally coupled to the U(1)-
invariant vector field, where BH solutions contain the mass
and the electric charge, and clarify the conditions under
which the differential of the BH entropy is integrable in spite
of the presence of the two independent charges. Finally,
Sec. VIIis devoted to giving a brief summary and conclusion.

II. IYER-WALD FORMULATION IN THE
HORNDESKI THEORIES

A. The Horndeski theories

We consider the Horndeski theories [16—18] whose
action is composed of four independent parts,

5
S = / dhxy/=gL = / dxy=9Yy L (2)
i=2
with the Lagrangian densities given by

Ly = Gy(¢, X), 3)
Ly = =G3(¢, X)L, (4)

Ly = Gald XOR +Gax(9.X) (O8] = (99| (5)

1
Ls=Gs(.X) G = Gsx (¢ X)[(Og)* =30¢(¢" §p)
+20 b5 $,°). (6)

where g,, is the spacetime metric, R and G, are the
Ricci scalar and Einstein tensor associated with the metric
9uw» Tespectively, ¢ is the scalar field, ¢, =V,¢,
¢ =V, V, ¢, and so on are the short-hand notation for
the covariant derivatives of the scalar field, with Vﬂ being
the covariant derivative associated with the metric g,,. X
represents the canonical kinetic term X := —(1/2)g"* ¢, ¢,
with use of the short-hand notation, and G, 3 45(¢, X) are
the free functions of ¢ and X. We also define ¢*, := ¢"%¢,,,
¢;w = gba¢ﬂm and D¢ = gﬂy¢ﬂy'

B. The Noether charge potential associated

with the diffeomorphism invariance

The variation of the action (2) is given by

oS = / d4x\/—g(EW5g”’“ + Eyop+V,J*),  (7)

where the equations of motion of the metric and scalar
field, E,, = 0 and E, = 0, respectively, can be found in
Ref. [18], for instance, and the boundary current is given
by [80]

JH = ZJZV (8)

which is composed of the parts from the Lagrangians (3)—(6),

Ty = =Goxdpo9, ©)
1
Ty = =5 Ga(b" = 25, +2VV5¢p)
+ 6¢pG3xOpd" + 5¢VH G, (10)
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Ty = GaxOp(b¢" =25 ,) + 2GuxTIpV* (5¢) — 2VH (Gax )¢

+ Guxx (¢aﬂ¢aﬁ — (0¢p)*) "6 + Gax (297 ¢p° — P P) Y, — 2Gax PV ,6¢
+ 2V, (Gux )0 — YV, Gy + G,V B + §VFG, — G4 VIY — GuxRPpH o, (11)

1 1
J5 =2 Gsx ¢ dap(hg" — 26/ ¢p,) — 5 90sCsx U (2747 — 7 )

— [Gs (OB (67 + 2969 — 25,) + 3 V¥ Gy (O o

1

1
+5 Gsx ™ oy V"' 5ep — 5 SV [Gsx(¢ap)’] + GsxOp*V, 56

— 8¢V, (GsxLp™) — Gsx "5V 60 + 6¢V* (Gsx ")

6

b £ Goal(O8) =300 (huy)? + 2oy 50 + 3 Gxth 24 = 47 )8,

1 1 1 1
- hpav”(GSQyw) + G5¢apvahfw - E G5¢pavﬂhpo— + 5 []/mvﬂ (GS¢pa) - 5 G5¢W/vvb +3 f)vu(G5¢m/)

2

1 1 1 1 1
- §G5D¢vpf)pﬂ + Ef)p”vp(GSD(ﬁ) + §G5D¢V“f) - EI)V"(GSng) = Gsh,,G"Pp° + EGsf)paG’m(ﬁ”

— 0¢GNV G5 + GsG"'V 6 — ¢ Gsx G’ P o,

where we have defined the variation of the metric tensor with
respect to the independent integration constants by

I)ﬂl/ = 59/41/’ [)”D = gﬂpguo.f)pﬂ’ I) = .gpﬁf]po" (13)

We also define the dual 3-form to J# by

5
Oupy = J"€uapy = Eappy " = Z 80/3#7']/(2)‘ (14)
i—2

Since the Horndeski theories (2) with Egs. (3)—(6) are
invariant under the four-dimensional diffeomorphism trans-
formation, x* — x* 4 &“(x*), there exists the associated
Noether charge potential. Under the diffeomorphism trans-
formation, the variations of the metric and scalar field are,
respectively, given by

bfti) = 559/41/ = 'Cfg;u/ = 2v(}4£l/) ’ 5§¢ = £§¢ = 5”¢/4 ’ (15)

and with use of the on-shell gravitational equations of motion
E,, =0,J ’(‘ g can be written in terms of the total derivative of

the Noether charge potential K’(‘g) ie.,

5
Jy - L=2V,K! =23 VK

i=2

—
=
=
v
N

where each individual contribution is given by

(12)
|
Koy =0, (17)
K5 = —G:¢"¢" (18)

Kl o = 2Gx[Op& ¢ — Ep' ] + 28V Gy + G4V,
(19)

v 1 y ,
K/Zs)(g) = _EGSX[(DCbZ _¢(ﬁ¢aﬁ)§u¢

+2(8 9,0 —OdE,) 9™ 9]
+8'V,(977Gs) =&,V (¢ Gs) = &'V¥(Gsg)
1
+505(256G”"¢”—2(Vg§”)¢”"—D¢V”§”)- (20)
We then define the dual 2-form of the Noether charge
potential K’(‘g) [80],
5

— vo_ (i)
Oyap = _eaﬂﬂvKl(t:) = Z; Q6\ap (21)

We also define the 2-form tensor where the first index of ©,,4
defined in Eq. (14) is contracted by the infinitesimal diffeo-
morphism transformation &, by

igf@aﬂ = él/@uaﬁ = _gaﬂﬁyjﬂéy = gaﬂm/‘]ﬂgy' (22)

We now consider the variation of the dual Noether charge
potential with respect to the physical parameters subtracted
by Eq. (22),
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5Q(§) lfgaﬁ_ < a/f/w )+£aﬁ;w] & )

(¢
i( (eapn KL ))+saﬁ,wf()év>.

1

(23)

The integration of Eq. (23) on the boundaries of the Cauchy
surface gives rise to the variation of the Hamiltonian [76,79].

C. Static and spherically symmetric
black hole solutions

We consider the static and spherically symmetric sol-
utions whose metric is written by

2
ds? = —h(ndi + 3 4 2y doede,  (24)

f(r)
where ¢ and r are the temporal and radial coordinates, and
Yapd0°dO = dO* + sin® d¢?® represents the metric of the
unit two-sphere. We assume that the spacetime contains the
event horizon at r = r,, where

f(r)

m —— = const.

ror h(r)
SH =M, — SHy

i b
—/dQ(é(rz\/;K(§)> +r2\/;ﬂ§])
5
- / oy <5<r2ﬁ1<£’5]@> +r2\/§1£§)5’]>

i=2
where dQ := sin 8dfd¢p and the subscript H represents the
quantities associated with the horizon. The variation of
the Hamiltonian on the horizon and at the infinity can be
identified with the variation of the total mass of the system
My and BH entropy Sy in the Horndeski theories as

(25)

r—oo

5Hoo - 6MH7 6HH — TH(H)(SSHv (28)
where Ty represents the Hawking temperature of the

given BH solution,

W)y

i¥y4 (29)

Thm) =
The conservation of the total Hamiltonian 6H = O repro-
duces the first law of the BH thermodynamics in the
Horndeski theories,

h el R g

In the case where h(r) and f(r) have several roots, we
assume that r,, corresponds to the largest positive root, and
in the entire domaln outside the event horizon r, < r < co
the two metric functions f(r) and h(r) are regular and
positive. For the scalar field, we will consider the two
Ansditze: the static Ansatz (31) or the Ansatz with the linear
time dependence (35), where the latter can be applied only
for the shift-symmetric Horndeski theories. In this back-
ground (24), we assume that & corresponds to the timelike
Killing vector field & = (1,0,0,0).

The variations of the metric and scalar field of a given
BH solution can be written in terms of those of the
integration constants

oh 5f 1of
by =—-0h==) ——bc; B,=—=-—7) ~*dc,
" —~ac; e
a¢
Sp=>) —&
=35

where ¢;’s are integration constants of the BH solutions, for
instance, the position of the event horizon r,.

As shown in Refs. [76,79], with use of Eq. (23), the
variation of the Hamiltonian with respect to the integration
constants in a specific solution is given by the contributions
from the boundaries, i.e., the horizon r — rg and infin-
ity r —> oo,

., =0, (26)

r—=ry

. (27)

r—=ry

o i) o)

[

TH(H)5SH - 6MH (30)

We note that in some classes of the Horndeski theories
GWs may propagate with speeds different from the speed
of light. In such a case, there was the argument that the
Hawking temperature should be evaluated on the horizon of
the effective metric for GWs, which are disformally related
to the original metric g, [78]. Here, we choose the surface
gravity for the original metric g,, as the Hawking temper-
ature (29) as in the case of GR. The first reason is because
photons and other massless particles as the products of the
Hawking evaporation would propagate along the light
cones of the original metric g,,. The second reason is
because there is no unique choice of the frames where GWs
travel with the speed of light. Especially, the conformal
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transformation does not modify the speeds of GWs, but
redshifts or blueshifts the Hawking temperature.

1. The case of the static scalar field

We now compute the integrand of Eq. (27). First, we
focus on the solution with the static scalar field

h i Bt er
—5<r2 ?K(g))—rz\/}—:ﬂf]
—2r2\/§{——fu/

—5—fG4+2[f< 28y + — &,/)

4h

2

Jw
— fy'owGagy +

¢ =w(r). (31)

Under the variation (26), the integrand of the variation of
the Hamiltonian (27) is given by

[f(4h + 1l )oy — rh(2f 8y’ + w'5f)]Gsx
] ¢+ 2h = Dh+ rfl)éy = 2rh(foy’ + w'sf)|Gax

(—f(8h -+ rit Yoy + rh(2f 8y’ + y'8f)]|Gag

2rh

213

+ fru;z [—f(h+ rh)ow + rh(2f6w’ +w'5f)|Gaxx + fl/jh [(=2((f = V)h +rfh)oy + rh(4foy’ + 3y'6f)|Gs,
” 2,25
IV (P2(6hoy — 3Hoy) — y/of + F(Hoy + h(=20y/ + 5y/o))|Gse + 1L G,

213 34

+ J;rvth 2k 4 rl)ow = rh(2fSw’ +y'6f)|Gspx =75, [f (2hdy" = Hoy) + hl//’csf}Gsxx}- (32)
¢ = qt+y(r). (35)

2. The case of the scalar field with linear
time dependence

Second, we consider the shift-symmetric Horndeski
theories invariant under the constant shift ¢ — ¢ + ¢ with
¢ being constant, which correspond to the theories without
the dependence on ¢ in the coupling functions,

G, = G,(X),
G, = G4(X),

G; = G5(X),
Gs = Gs(X).

There is the Noether current associated with the shift

symmetry,
Ll ()
-9 a¢;4 ‘ a¢;w ‘

The theory (33) admits the static and spherically symmetric
BH solutions with the linearly time-dependent scalar field
[38-41],'

(33)

JH = (34)

'Because of the linear time dependence, the Ansatz for the
scalar field (35) does not respect the symmetry of the spacetime,
£:¢0 # 0, where & corresponds to the timelike Killing vector,
while £:g,, = 0. However, in deriving the variation of the
Hamiltonian (27), the symmetry £:¢) = 0 is not imposed [79]
and hence our formulation can be applied to the solutions with the
scalar field (35).

For the metric Ansatz (24), the radial component of
the Noether current associated with the shift symmetry
is given by

= WGy + s |~ R PR G
21
F 21— 011G
2 2.
+ 2LV — (]G
VL n
+ 27212 [q (f_ 1) + (1 - 3f)fhl// ]GSX
3h/ ”
LBVt )G (36)

21212

For the given Ansatz of the metric and scalar field, Egs. (24)
and (35), we can show that the (z,r) component of the
metric equations is proportional to J” [38—40], and hence
we have to impose

J"=0. (37)

The variation of the scalar field is given by
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5 = Sy (r). (38)

We note that since ¢ is not the integration constant but
the constant appearing in the Ansatz of the scalar field
|

compatible within the shift symmetry, we do not need
to take the variation of ¢ into consideration. Under the
variation (26), the integrand of the variation of the
Hamiltonian (27) is given by

h h h
-5 (ﬂ%l@) - rz\/%ﬂﬂf’] = 2r2\/;{ Z ;’1’2 [%6h + B2 (2fw'Sy’ + y5f)]|Gax

_5_fG4 fw
p

2h2
3W/3

4 2h2

We note that, with the condition (37), the terms that are
explicitly proportional to Sy vanish.

III. BLACK HOLES WITH THE STATIC
SCALAR FIELD

In this section, we focus on several classes of the
Horndeski theories giving rise to the BH solutions with
the static scalar field (31).

A. General relativity
For GR with the cosmological constant A,

1 1
Gy = ,
* 7 162G

G3 — GS — O, (40)

Equation (32) reduces to

—5(#[ K \/ grl — — \/5 oo (4D

In GR, the Schwarzschild-(A)dS solutions given by

f()=h(r)=1-32G=~N -7 w(r)=0. (42)
r

are the unique static and spherically symmetric BH solution.

Since r, is only the integration constant, using Eq. (26),

Sf = f’f 5ry and 8h = §6r,. Evaluating Eq. (28) with use
of Eq (27) we obtain the first law of thermodynamics,

1
—(1=riN)sr,,  (43)

Th(Gr)0SGr = OMGRr = Te

where the Hawking temperature (29) is given by
Thor) = To(1 — rA). Here we introduce the Hawking
temperature of a Schwarzschild BH in GR defined by

(fow' +W5f)G4x+f

2/2

{@*6h + W*(2fy' Sy’ +y"*5f)} Gaxx

{6]( 1)8h + h*(6f%y/'sy' —y"6f + fy/(=26y" + 5¢/5f))} Gsx

{q*6h + I*2fw'6y’ + yw"?6f)}Gsxx + 5 51//J } (39)

1
4xr,’

T, := (44)

We shall also use the mass and BH entropy of a
Schwarzschild BH in GR given by

M ‘=%7 (45)
2
r

So :?", (46)

as reference. )

Thus, 6Sgr = ’"‘7 ory =3¢ L 6Ay, where Ay = 47rr is
the area of the BH event horizon, and hence by 1ntegrat1ng
it we recover the area law

SGR = SOv (47)

where we set the integration constant so that we have
the vanishing BH entropy Sgg — O in the limit of the
vanishing horizon radius r, — 0. The mass of the system is
also given by

1
MGR—Mo(l—gAr?]), (48)

which coincides with the total mass of the BH, where we
set the integration constant so that we have the vanishing
mass Mgr — 0 in the limit of the vanishing horizon radius
ry = 0.

B. Scalar-tensor theory with nonminimal coupling

As the next simplest example, we consider the ST theory
with nonminimal coupling to the scalar curvature

L= wo($)(R-2V(h)) +nX, (49)
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which is equivalent to the Horndeski theory with

G, =nX-2w(p)V($), Gi=w(¢), G3=Gs=0, (50)

where w(¢) and V(¢) are the nonminimal coupling
function and the potential of the scalar field, respectively.
Equation (32) reduces to

_5<7‘2\/J§KE%]>—7‘2\/]§J[[€"]
:2r2\/§{(_w(’l{/)_%’w(l)(w))5f

L [h’w“)(w) —hw’(n+2w<2)(w))} 5w—fw(‘>(w)5w’},

2h
(51)

where @™ (¢) and V) (¢) denote the n(=1,2,...)th-
order derivatives of w(¢) and V(¢) with respect to ¢p. We
assume that V(¢) and @(¢) have their local minima at
¢ =0,ie., VIU(0) = 0and ' (0) = 0. Note that, even if
V) (¢hy) = 0and V) (¢hy) = O for an arbitrary constant ¢,
we can always make ¢, = O after a suitable shift of ¢.
There is the Schwarzschild-(A)dS solution with the trivial
scalar field,

VgO) . w(r)=0.

(52)

£(r) = h(r) =1-32 (3= r3V(0)) -

Since r, is only the integration constant, using Eq. (26),

of = %érg and 6h = %&g. Evaluating Eq. (28) with use
g g

of Eq. (27), we obtain the first law of BH thermodynamics,

1
Thw)0S = 6My = ~— (1= 2V(0))ér,,  (53)

2G v
where @(0) = 1/(162G) with G being the gravitational
constant, and the Hawking temperature (29) is given by

Ty = To(1 = r2V(0)). Thus, 88y = 225r, = 1=6Ay,
where Ay = 47rr§ is the area of the BH event horizon,
and hence by integrating it we recover the area law (47).

The mass of the system is given by

1
My = M0<1 —gV(O)r§>, (54)
which coincides with the mass of the BH.
C. The Einstein scalar-Gauss-Bonnet theory

As one of the nontrivial examples, we consider the
Einstein-scalar-GB (EsGB) theory,

L

- ]671'G R + 1’]X + k(¢) (Rz - 4RaﬂRaﬂ + RaﬂMDR(l/}ﬂD)9

(55)

which is equivalent to the class of the Horndeski theories
with

G, = nX + 8k ($)X*(3 — InX),
Gy = 4kO) ()X (7 = 3InX),
1
=—— +4kD(P)X(2-InX
G, 1671G+ k=) ()X ( nX),
Gs = -4k () In X, (56)

where k(¢p) is the coupling function, and k")(¢) denotes
the n(= 1,2, ...)th-order derivative of k(¢) with respect to
¢. This theory has been applied, for instance, to the models
of spontaneous scalarization of BHs [53-68]. Equation (32)
reduces to

h i by
—5<r2\/;K(§))—r2\/;J[§]

_ h{_r+327zG(1—3f)k(1>(y/)w’

f 87Gr>

of

_r{_h {4(f— DK (w) +hy' (0 =8(f = 1)k® (w)) | 3y
n w k<1>(1,,)51,/}. (57)

In the case where the scalar field is regular at the event
horizon, r = r,, and the solutions can be expanded in the
vicinity of r = r, as
h(r) = hy(ry)(r—ry) + ha(ry)(r = ry)?
+ (’)((r -~ ry)3) q. (58)

f(r) :fl(rg)(r_rg)+f2(rg)(r_rg)2
+0((r=r,?). (59)

w(r) = wu(ry) +wi(rg)(r—ry)
Fuslr)r=r)? +0((r=1,)*),  (60)

where the coefficients h,(r,), fi(r,), and w(r,)
(i=1,2,3---) are, in general, functions of r, and
wy(r,) represents the amplitude at the horizon, which is
also a function of r,. On the horizon r = r,, Eq. (57)
reduces to
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h h
2 [tr] 2 ¥

:%Ghl(m <”g + 322Gk [WH(rg)]W#?) ory.

(61)

Since the Hawking temperature (29) is given by Ty =

\/h/(:f]zf ) \/h'(;”if ") the differential of the BH
entropy is given by

Thu)0Su
h i b
:/dg<—5(r2¢1<@)_rz\/;J[§]>Hrg
J1(rg)hi(r,) oy (ry)
= (rg—|—32ﬂGk(1>[ w(r)] grgg )5rg,
(62)
and hence

2 0
oSy = g (Vq + 322Gk i (ry) Wg(”ﬁ)arq‘ (63)

g

By integrating it, we obtain the BH entropy
T (2
S = (13 + 642Gkl (r,)])

= SO<1 + 64’.F—7§Gk[‘//H(rg>]>’ (64)

which agrees with the result by applying the standard Wald
entropy formula (see, e.g., Refs. [54,63]). Here, we fix a
constant in integration such that lim, _ok[yy(r,)] = 0.

We should note that there is an ambiguity in the definition
of the coupling function k(¢) by adding an arbitrary
constant. We can use this freedom to satisfy the above
condition.

Thus, the thermodynamic properties of scalarized BHs
also remain the same as those argued in the literature
[54,63]. We emphasize that, although the actions (55) and
(56) are equivalent up to the difference in total derivative
terms, the dependence of the actions on the spacetime
curvature appears to be different. Nevertheless, the results
here indicate that, even though the higher-derivative inter-
actions of the scalar field and the nonminimal derivative
couplings to the spacetime curvature are present in a
description of the theory, by following the original
approach of Iyer and Wald and computing the Noether
charge potential associated with the diffeomorphism invari-
ance, we could reproduce the results independent of the
apparent difference in the action by the total derivative

terms. We would like to emphasize that, not only in the case
of the EsGB theories, but also in the case of other classes of
the Horndeski theories, we should have to obtain the same
value of the BH entropy from the two different descriptions
of the same theory, whose actions differ by the total
derivative terms. For instance, we have explicitly confirmed
that the coincident entropy of a BH solution can be
obtained in the two different descriptions of the same
class of the Horndeski theories given by (G4, Gs) =
(e + ¢’X.0) and (G4, Gs) = (155 . —'¢p) with ¢ being
constant, which are equivalent to each other up to the total
derivative terms and also equivalent to the scalar-tensor
model with the nonminimal derivative coupling to the
Einstein tensor ¢'G*¢,¢,.

Moreover, since the original action (55) does not include
the higher-derivative interactions and the nonminimal
derivative couplings of the scalar field to the spacetime
curvature, this description may be regarded as the “min-
imal” one. Thus, in general, we expect that the thermody-
namic properties obtained by applying the standard Wald
entropy formula to a minimal description could be obtained
from an equivalent nonminimal description of the same
theory, including the higher-derivative interactions of the
scalar field and/or the nonminimal derivative couplings to
the spacetime curvature, by applying the general scheme
employed in this work originally developed by Iyer
and Wald.

1. Non-shift-symmetric EsGB theory

By solving the set of the equations of motion near the
horizon r = r,, y; in Eq. (60) can be found as [50-52]

1
N 64ﬂGrgk(l>[l//H(rg)]

15362Gk™) D
—r§+\/r3— i nm(r"” - (69)

"1

X

where we choose the branch that recovers the Schwarzschild
solution in the limit of k" [y (r,)] — 0. Thus, in order for a
nontrivial BH solution to exist, we have to impose

S 15362Gk WV [y (r,)]
> . .

4
Ty

(66)

Let us consider the limit of the absence of the BH horizon

ry = 0. Assuming the regularity of %W in the limit of

r,— 0, ie, y/H(rg) does not blow up as r, = 0, in the
same limit, the second term in the differential (63) vanishes
faster than the first term. Hence, we obtain the vanishing
entropy as the usual area law, by choosing the integration

constant so that Sy — 0 in the limit of r, — 0.
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In the large distance regions r — oo, the general vacuum
solution in the EsGB theory (55) can be expanded as

W)= _2Mr(rg) 4JTG71M( )Q( 0)? +O<%>’ (67)
(=1 2./\/lr(rg) N 471'7]G§(rg)2 . 4ﬂGnM£§g)Q(r9)2
+ 0(%) (68)
pr) =l + S M)
| QUr)I-4M(r)? + 226Gy Q(r,)")
373

+0 (%) , (69)

where we assume that the asymptotic amplitude y,(r,),
the Arnowitt-Deser-Misner (ADM) mass M(r,), and the
scalar charge Q(r,) are the pure functions of the horizon
radius r,. From Eq. (57), we obtain the differential of the
energy

h hotier
M = /dQ( ( f (5)>—r2\£ﬂ£]>rm

= 5(/\/1 (rg) +47GnQ(ry)wi(ry))or,. (70)
In addition to a nontrivial hairy BH solution, we find a
trivial Schwarzschild BH solution with ¢ = ¢ (constant)
when the coupling function k(¢) in the EsGB theory allows
the existence of ¢, such that k(!)(¢,) = 0. On the other
hand, if k(!)(¢) # 0 for any values of the scalar field ¢, a
trivial Schwarzschild spacetime is no longer a solution in
EsGB theory. We find only a nontrivial hairy BH solution.

2. Shift-symmetric EsGB theory

In the shift-symmetric EsGB theories k(¢) = a¢, where
a is the constant, Eq. (64) reduces to

64raG

/3
Sy = E(rf, + 64xGayy) = S, <1 + WH)- (71)

g

Although even in the shift-symmetric theories the general
BH solution could be expanded in the vicinity of the event
horizon r = r, as Egs. (58)-(60), wy does not have any
physical meaning and hence is not a solution of r,. Thus,
we may set the second term in Eq. (71) to zero, by requiring
that Sy — 0 in the limit of r, — 0. We then recover the area
law Sy = S, given by Eq. (47). We note that in the shift-
symmetric 4D scalar-tensor Einstein-GB theories, recently

it was argued that the BH entropy is also given by the area
law [83].

In the large distance regions r — oo, in the expansion
(67)—~(69), w4, also has no physical dependence on r, in the
shift- symmetric theories, and hence Eq. (70) reduces to
oM = ( )6r By integrating this, M = ﬂ, namely,
the thermodynarmc energy coincides with the ADM mass.

D. The irrational coupling model

Finally, we consider the irrational coupling model,

GXAG1+(X)1GGO
- —_— = _— 2 = —
2T TG T T e T T T ST
(72)
Equation (32) reduces to
h h
2 [tr] 2 r
a2 ui) - e
h 1
=712 |- ——6 5 73
Howgror oo} 09

Requiring that the radial component of the Noether current
associated with the shift symmetry vanishes,

T =-nfw )+ Y —0 )

the term proportional to dy in Eq. (73) vanishes, and hence
Eq. (73) reduces to —5(}’2\/'1([” \/.J el =

As the vacuum solution satisfying Eq. (74), there exists the
exact BH solution [49]

£r) = hr) =1 -39 Al (rg—

s 7’] r
(=Y 75)

r*ny/ f(r)

Following similar steps, evaluating Eq. (28) with use of
Eq. (27), we obtain the first law of BH thermodynamics,

87Ga?
=), g
nr

g

82Ga*> Ar,
nry 3

ory
TH(H)(‘SSH — 5MH - (1 - A +

2G

where the Hawking temperature (29) of the Horndeski BHs
is given by

(77)

8rGa
TH(H):T0<1—72A+ z >

!1

By integrating 6Sy = 276r,/G, we obtain the area law
(47), where we set the integration constant so that we have
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Sy — 0 in the limit of the vanishing horizon radius r, — 0.
The mass of the system is given by
87Ga®  Ar?
My =My 1- -7, 78
(e

which coincides with the total mass of the BH. We note that
the contribution of the scalar field to the ADM mass, which
corresponds to the second term in Eq. (78), is always
negative, as long as the kinetic term of the scalar field has
the correct sign 7 > 0. This indicates the onset of the ghost
instability, which has been observed in the linear stability
analysis of the solution (75) performed in Ref. [72].
Since the Schwarzschild-(A)dS metric with the trivial
scalar field is not a solution in the theory (72), there is no
other counterpart to compare thermodynamic quantities.

IV. BLACK HOLES WITH LINEARLY
TIME-DEPENDENT SCALAR FIELD

A. Shift- and reflection-symmetric theories
without cosmological constant

We first focus on subclass of the shift- and reflection-
symmetric Horndeski theories, which is invariant under
the transformations ¢ — ¢ + ¢, with ¢ being constant and
¢ — —¢, and explicitly given by
G2 - Gz(X), G4 - G4(X), G3 - G5 - O (79)
We assume the static and spherically symmetric spacetime
(24) and the linearly time-dependent scalar field (35). In
this case, Eq. (39) reduces to

h (1] h ter
—5<r2\/;K(§)>—r2\/;J[§]

- ﬁ{‘@ 4= 4f‘” WV toy' -y 5f)Gax
f r
2 2 /2
2B PO I oy )G | (0

We focus on the stealth Schwarzschild solution [38,39],
given by

f:h:l—ﬁ’ X:—’
r 2

y(r) =2qm[\f—\/r_gaf°tanh(\/zf)]’ (81)

which exists under the conditions

G, (‘9 = Gy <q;> = 0. (82)

Evaluating Eq. (28) with use of Eq. (27), we obtain the first
law of thermodynamics,

TH(H)ésH - 6MH

-l (£) vl

Since the Hawking temperature (29) is given by Ty =
Ty = by integrating 6Sy with respect to r,, we obtain
the BH entropy

¢ 7
Sy = 167GS, <G4 (?> — PGy (?) > (84)

where S is defined in Eq. (46), and we set the integration
constant so that we have the vanishing BH entropy Sy — 0
in the limit of the vanishing horizon radius r, — 0. On the
other hand, by integrating 6My with respect to r,, we
obtain the mass of the system,

7’ s
MH = 167[GMO <G4 <7> - q2G4X (?) > ’ (85)

where M, is defined in Eq. (45), and we set the integration
constant so that we have the vanishing mass My — 0 in the
limit of the vanishing horizon radius r, — 0.

For a more explicit comparison, we consider the specific

model [38],

47rr ’

g

1
X)=——+pX, 86

GX) == +/X.  (86)
which trivially satisfies the conditions (82). The BH entropy
and total mass of the system of the stealth Schwarzschild
solutions, Egs. (84) and (85), respectively, reduce to
S = So(1 —82Gq*B), My = My(1 -82Gq*pB). (87)
In the same theory (86), there is also the GR Schwarzschild
solution with the trivial scalar field, with the BH entropy
and mass,

Ser = So- Mgr = My, (88)
respectively. We will discuss the thermodynamic properties
of the stealth Schwarzschild solutions in Sec. VA.

B. Shift- and reflection-symmetric theories
with cosmological constant (A # 0)

We focus on the specific shift- and reflection-symmetric
subclass of the Horndeski theories (79), such that

A 1
832G’ Gy(X) =——+pBX. (89)

X) =nX -
Gz()'l 162G
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where A is the cosmological constant and f is the coupling
constant. We assume the static and spherically symmetric
spacetime (24) and the linearly time-dependent scalar field
(35). Then, Eq. (39) reduces to

h r h t gr|
—6<r2\/;KE§)]) —rz\/J—:J[f]
—, \/5 1h{ —4rBf2hy Sy

[ 26+ h<$ + 3ﬂfw’2>}5f}. (90)

There exist the Schwarzschild-(A)dS solutions

w'(r) = q— =, (O1)

n+ 2pA
A B = . 2
2 17\ 16xGpy (92)

Thus, for f > 0 (f < 0), we obtain the Schwarzschild-AdS
(dS) solutions.

Assuming that # > 0 and G > 0, for non-negativity
inside the square root of g, we require

A>A. (93)

Evaluating Eq. (28) with use of Eq. (27), we obtain the first
law of BH thermodynamics,

(28 + ron)(=n + 2BA) 5

T oSy = oMy = — R
H(H)OSH H 8Gpn g

(94)
and the Hawking temperature (29) is given by

_ T0(1 —l—%rﬁ). (95)

Thus, the BH entropy for the Schwarzschild-(A)dS sol-
utions in the Horndeski theory is given by

20 + rﬁn

Tron = g2, 5

_arg ) 2p
Su=grt =200 =3 (1-28). 9

where we set the integration constant so that we have
Sy — 0 in the limit of the vanishing horizon radius r, — 0.

In this theory (89), there is also the GR Schwarzschild-
(A)dS solution,

fer(r) = her(r)

A Ty A
—1—§r2—7<1—§r5)

irrespective of f and #, the BH entropy is given by
Scr = So. In the limit of A = A, where ¢ =0 and the
scalar field is trivial, we recover the Schwarzschild-(A)dS
solutions in GR and obtain the area law (47).

On the other hand, the mass of the system is given by

W(r) =0, (97)

ro(n = 2BA)(rgn + 6f)
24Gpn

LB o

MH:

2

where we set the integration constant so that we have
My — 0 in the limit of the vanishing horizon radius
r, — 0, which disagrees with the total mass of the stealth

g
A
M0(1—§r§>, (99)

BH given by

except for A = A. For the GR Schwarzschild (A)dS BHs
(97), we obtain Mgg = Mo(1 — % r2). We will discuss the
thermodynamic properties of the Schwarzschild-(A)dS
solutions in Sec. V B.

Mgy = 12,BG ——(rgn+6p) =

C. Shift-symmetric theories with the coincident
speeds of GWs with the speed of light

Finally, we focus on the subclass of the shift-symmetric
Horndeski theories satisfying the requirement that the
propagation speed of GWs is equal to the speed of light,
i.e., gy = ¢, whose Lagrangian density is given by

1
L=——R+Gy(X) -

e Gy(X)Og.  (100)

We assume the static and spherically symmetric spacetime
(24) and the linearly time-dependent scalar field (35). In
this case, Eq. (39) reduces to

- 5(r2 \/§K£g> —r? \/éj[tgr]
h 1
= ?{ <_ 872Gr §G3XWB> of =

- f2G3xw’261//’} :

>y

5 Gaxdh

(101)
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We focus on the stealth Schwarzschild solution (81), which
exists under the conditions

(2) =0 (%) = (L) 0. (10

where Eq. (101) further reduces to

—5<r2\/§1<£;’>]> - r2\/]ﬁ:ﬂ’§’] = ﬂ/é%af. (103)

Evaluating Eq. (28) with use of Eq. (27), we obtain the first

law of thermodynamics Ty)6Sy = oMy = Z—g, where

Thmy = Ty from Eq. (29). By integrating them, the mass
and entropy are, respectively, given by

MH - Mo, SH - So, (104)
where we set the integration constant so that we have
Sy — 0 and My — 0 in the limit of r, — 0. Hence, we
conclude that both BH solutions are equally stable from the
viewpoint of BH thermodynamics.

V. THERMODYNAMICAL INSTABILITY
OF BLACK HOLES WITH LINEARLY
TIME-DEPENDENT SCALAR FIELD

As for application of the results presented in Sec. IV, we
discuss thermodynamical instability by use of the BH
entropy. When some gravitational theory contains two
(or more) BH solutions, the comparison of the BH entropy
will tell us which BH solution is thermodynamically
favored. In GR, the uniqueness of the Kerr(-Newman)
BH solution is not held when we include non-Abelian field
and/or other fields. In this case, there exist hairy BH
solutions such as colored BHs [84—87]. We can then study
their stability by a perturbation analysis whose result is
consistent with the simple argument by thermodynamical
analysis; that is, if the entropy of the first BH solution is
smaller than that of the second BH solution, at least the first
black hole is thermodynamically unstable [88-92].

In the present Horndeski theories, we may discuss
thermodynamical instability when there exist two or more
BH solutions. As we discussed in Sec. IV, there are BH
solutions with a linearly time-dependent scalar field.
In this section, we discuss thermodynamical stability of
those BHs. Especially, for the BH solutions discussed in
Secs. IVA and IV B, it is argued that perturbations around
them are infinitely strongly coupled, and the linear pertur-
bation theory could not be trusted at the arbitrary low
energy scales [74,75]. Thus, the stability of the stealth
solution is unclear at the level of the linearized analysis.
However, through the analysis presented in this subsection,
we will mention the thermodynamical instabilities of these
solutions.

A. Shift- and reflection-symmetric theories
without cosmological constant (A =0)

In this subsection, we consider the Horndeski theory
given by Eq. (86). When we assume a linearly time-
dependent scalar field, there exist two Schwarzschild
solutions: one is the GR Schwarzschild BH with the mass
and entropy given by Eq. (88) and the other is the stealth
Schwarzschild BH (the Horndeski Schwarzschild BH)
with mass and entropy given by (87). When we compare
these two entropies (Sggr,Sy) at the same mass value
Mgr = My, we can easily find

SGr
SH=—"—. 105
Hop - 82Gq*p (105)

Hence, we obtain the following results:

Sy > S when f > 0,
{ H GR p (106)

Sy < Sgr when g < 0.

As a result, we conclude that the Horndeski Schwarzschild
BH is more thermodynamically stable than the GR
Schwarzschild BH when > 0, while the result is the
opposite if f < 0.

B. Shift- and reflection-symmetric theories
with cosmological constant (A # 0)

Here we discuss the Horndeski theory given by Eq. (89).
When we assume a linearly time-dependent scalar field,
there exist the two Schwarzschild-(A)dS solutions: one is
the Schwarzschild-(A)dS solution with the cosmological
constant A, and the other is that with the effective
cosmological constant A = —5/2f given by Eq. (92).
We have two different Schwarzschild-(A)dS solutions as
discussed before and summarize the thermodynamical
variables for two BH solutions as follows:

(i) Schwarzschild-(A)dS solution with A [GR

Schwarzschild-(A)dS BH],

Ar!z]
maSS:MGR:MO I—T R

entropy: Sgr = So,
temperature: Thygr) = (1 — Arg)T. (107)

where M|, and S are defined in Egs. (45) and (46),
and T, := ;— represents the Hawking temperature
9

in the Schwarzschild background with the horizon
radius r,.
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(ii) Schwarzschild-(A)dS solution with A [Horndeski
Schwarzschild-(A)dS BH],

A\ A+ A
mass: My = My 1 ——2 | ———,
H ( 3>2A
. S SA+A
entropy : =S)———,
PY- On 05X

temperature: Ty = (1 — Ar2)T. (108)
Since A > A, we can classify the solutions into three cases:
(1) A2A>0 (f<0), 2) A>0,A<0 (B>0), and
(3)0>A>A (f>0). In case 1, two BH solutions are
Schwarzschild-dS solutions, while in case 3, we find
two Schwarzschild-AdS solutions. We shall discuss their
thermodynamical instabilities below. For case 2, since one
is the Schwarzschild-dS solution and the other is the
Schwarzschild-AdS solution, the boundary conditions are
completely different. We may not expect any phase
transition between them. We introduce the curvature radii

¢ and 7, which are defined by ¢ = ./3/esA and
¢ = \/3/ex A, where €, and €5 are the signs of A and

A, respectively.

LA>A>0
In this case, £ < 7, and the thermodynamical variables
are given by

}"2

MGR:MO(I_{TZ>7 SGR:SO’

3r§
Ter) = | 1-—2 ) To- (109)
s\ 2+ ¢* 242
3r2
Thm) = (1'_??§>7b (110)

In order to discuss thermodynamical stability, we plot the
mass-entropy diagram, which is given in Fig. 1 for the case
of 7/¢ = 1.1.

For a given mass M, the entropy of the GR
Schwarzschild-dS BH with A is always larger than that
of the Horndeski Schwarzschild-dS BH with A. This
means that the Horndeski Schwarzschild-dS BH is more
thermodynamically unstable than the GR Schwarzschild-
dS BH. We expect thermodynamical phase transition
from the Horndeski Schwarzschild-dS BH to the GR
Schwarzschild-dS BH. Since there exists a scalar field ¢
outside the Horndeski Schwarzschild-dS BH, the scalar
field propagates away to infinity when the transition occurs.
If the entropy is conserved, the mass energy decreases by
the emission of a scalar field. In general, we expect that the

cs

1.2
1.0
0.8
0.6

0.4

0.2

005 01 015 02 GM
l

FIG. 1. The entropy of the GR Schwarzschild-dS BH (the red
curve) and that of the Horndeski Schwarzschild-dS BH (the blue
curve) in terms of the mass.

entropy increases as well as the mass energy decreases, and
the Horndeski Schwarzschild-dS BH transits to the GR
Schwarzschild-dS BH in the upper-left direction in the
diagram.

22A<A<0

In this case, both BHs are dEscribed by the
Schwarzschild-AdS solutions with £ > ¢, and the thermo-
dynamical variables are given by

2
MGR:M0<1+_Q>7 Ser = So»

f2
3r2
Thor) = (1+f§>75, (111)
g\ &2+ 7
MH:MO<1+?Z)2/2’ R 7
3r?
Thm) = <1+'?5)7b‘ (112)

We plot the mass-entropy diagram, which is given for
the case of /¢ = 0.9 [in Fig. 2(a)] and 0.1 [in Figs. 2(b)
and 2(c)].

In this case, two curves Sgr (M) and Sy (M) intersect at
some critical mass Mgg.y, beyond which Sgg > Sg. In an
asymptotically AdS spacetime, there exists another critical
mass Mpp, below which the Schwarzschild-AdS BH
evaporates to thermal radiation in AdS space via the
Hawking-Page transition [93]. In the present case, since
there are two Schwarzschild-AdS BH solutions, we find
two critical masses, Myp(gr) and Mpp(y), corresponding to
the GR Schwarzschild-AdS BH and the Horndeski
Schwarzschild-AdS BH, respectively. We find that
MHP(GR) > MHP(H)- In the limit of 7 — Z, the critical
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FIG. 2. The entropy of the GR Schwarzschild-AdS BH (the red curve) and that of the Horndeski Schwarzschild-AdS BH (the blue
curve) in terms of the mass: (a) the case of £/¢ = 0.9; (b) for £/ = 0.1; (c) the enlarged version of (b). The dotted curves are thermal
AdS phases via Hawking-Page transition, while the solid curves denote “large” Schwarzschild-AdS BH phases.

horizon radius r gy becomes £/ /5, which is smaller than
the HP transition radius rgpgr) = ¢/ v/3. We then find
Mgru < Mup(gr)- As a result, we can classify into two
cases: (1) Myp(Gr) > Mupm) > Mcru, and (2) Mypcr) >
Mgry > Mupwy- If v, < £/¢ < 1, we find case 1, while

when 0 < #/f <t,, we obtain case 2. The critical
value r, is given by the root of the equation
& +3th 1612 -4 =0, ie., r,~048835 We then
find the following various evolution scenarios depending
the coupling constants:

(i) Case (1), t, <7/¢ < 1: Below Mgpy, we find

only thermal radiation in AdS space, in which the
effective cosmological constant is fixed by A, while
in the range of Mgry <M < Mpp), it is also
thermal radiation in AdS space but with the cos-
mological constant A. In the range of Mypr) >
M > Mpp), the Horndeski Schwarzschild-AdS
BH will evaporate via the Hawking-Page transition,
finding thermal radiation in AdS space but with the
cosmological constant A. When M > Mypgg), the
Horndeski Schwarzschild-AdS BH will evolve into
the GR Schwarzschild-AdS BH via thermal phase
transition.
Case (2), 0 < £/¢ < ry: Below Myp(y), we find
only thermal radiation in AdS space, in which the
effective cosmological constant is fixed by A just as
in case 1. In the range of Mypyyy < M < Mgr.p, we
find the transition from thermal radiation in AdS
space with A into the stable Horndeski Schwarzs-
child-AdS BH. In the range of Mppr) > M >
Mpp(s), the Horndeski Schwarzschild-AdS BH will
evaporate into thermal radiation in AdS space with A.
When M > Mypcr), the Horndeski Schwarzschild-
AdS BH will evolve into the GR Schwarzschild-AdS
BH via thermal phase transition just as in case 1.

(ii)

C. Relation between the cases of A=0 (Sec. VA)
and of A # 0 (Sec. VB)

In order to discuss the relation between the
Schwarzschild BH and Schwarzschild (A)dS BH discussed
in the two previous subsections, we rewrite the mass and
entropy by use of f and ¢. From Eq. (92), we find

2+ A+A
=—_ =1-8zGq¢*p.
222 2A 7Gap

(113)

Using this relation and Egs. (109)-(112), we obtain the
relation between the masses Mgr and My and that of the
entropies Sgr and Sy as

r2
MGR:MO(l :F?gz>, SGR:SO’ (114)
}"2
My = M, <1 F zg)(l - 81Gq*p),
Su = So(1 - 82G4’p). (115)

where F correspond to the Schwarzschild-dS BH and
Schwarzschild-AdS BH, respectively. When we take the
limit of A, A — 0(¢,7 — o), we find the same relation
(87) of the masses and entropies of the stealth
Schwarzschild BH and GR Schwarzschild BH.

As discussed in Sec. V B, for the Schwarzschild-AdS
BH (# > 0), Sy > Sgr in the small mass limit, while for the
Schwarzschild-dS BH (f < 0), the relation becomes the
opposite, which is consistent with thermodynamical insta-
bility of the Schwarzschild BH discussed in Sec. VA.
We note that the Schwarzschild BH does not show the
Hawking-Page transition, and the BH with larger entropy
becomes more stable than the other.
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VI. BLACK HOLE THERMODYNAMICS
OF CHARGED BLACK HOLES

BH solutions discussed so far contained only one
independent charge, i.e., the mass of the BH, or equiv-
alently, the radius of the BH event horizon. In order to
discuss BH thermodynamics with two or more independent
charges, in this section we will focus on the Horndeski
theories minimally coupled to the U(1)-invariant vector
field. In such theories, BH solutions could contain at least
two independent charges, the mass and electric (and/or
magnetic) charges. Here, we will focus on the electrically
charged BH solution as an extension of the earlier
work [81].

We will extend the general formulation presented in
Sec. II and derive the Noether change potential associated
with the diffeomorphism invariance, including the contri-
bution of the general U(1)-invariant vector field. We will
then apply our formulation to static and spherically
symmetric charged BH solutions and obtain the variations
of the Hamiltonian evaluated at the horizon and in the
spatial infinity. As a concrete example of charged BH
solutions, we will consider the extension of the irrational
coupling model discussed in Sec. [II D minimally coupled
to the ordinary Maxwell field. We show that in this model
the differential of the BH entropy is integrable and the first
law of the BH thermodynamics is recovered.

We will then consider the general reflection- and shift-
symmetric class of the Horndeski theories minimally
coupled to the Maxwell field and clarify the general
conditions under which the differential of the BH entropy
is integrable in the presence of the two independent
charges.

A. The Noether charge potential with the
U(1)-invariant vector field

We consider the Horndeski theory minimally coupled to
a U(1)-invariant vector field,

S = /d“x\/—_gﬁ
= /d4X\/__g<i['i+GA(}—)>’ (116)
i—2

where L£; (i =2, 3, 4, 5) are given given by (3)—(6), and
G4 (F) is the general U(1)-invariant Lagrangian density for
the vector field A, given as the general function of

1
F = —Zg“ﬂgf““FaﬂFﬂb, (117)

with F,, :=0d,A, —d,A, being the electromagnetic field
strength. The variation of the action (116) is given by

68 = /d“xw/—g(Em,ég”” + E,0¢

+ V,(Gy s F*,)0A" +-V ,JF), (118)

where the equation of motion of the vector field is given by
V,(GarF*,) =0 with Gyr:=%2, and the boundary
current is given by

J = (119)

5
n n
2ot

where J’(‘i> (i=2,3,4,5) is given by Eqgs. (9)—(12), and

i = =Gy rF'5A,. (120)
We also define the dual 3-form to J# as in Eq. (14).

Under the diffeomorphism transformation,
x# 4 E#(x*), the variations of the metric and scalar field
are given by Eq. (15) and that of the vector field is given by
8:A, = E°V,A, +A,V,A°, respectively. Using the back-
ground equations of motion, under the diffeomorphism
transformation, we obtain

Xt —

5
" _ [bu] _ [vu] [vu]
T —&L=2V, K[} =2V, <ZzK(i)(é> +KA(§)> . (121)

where each individual contribution from the Horndeski
theories is given by Egs. (17)—(20), and the Noether charge
potential for the vector field is given by

1

Kl = 5 Gar P AL,

(©)A (122)
respectively. We then define the dual 2-form of the Noether
charge potential K’;g) as in Eq. (21), and the 2-form tensor

where the firstindex of ©,,,; defined in Eq. (14) is contracted
by the infinitesimal diffeomorphism transformation &, by
Eq. (22). We then consider the variation of the dual Noether
charge potential with respect to the physical parameters
subtracted by Eq. (22) as in Eq. (23). The integration of
Eq. (23) on the boundaries of the Cauchy surface gives rise to
the variation of the Hamiltonian [76,79].

As the background, we consider the static and spheri-
cally symmetric solutions whose metric is written by
Eq. (24), where the functions A(r) and f(r) contain the
common largest root at r = r, > 0 corresponding to the
position of the BH event horizon, and f(r) >0 and
h(r) > 0 for r > r,. For the scalar field, we focus on the
static Ansarz (31) for simplicity. For the U(1)-invariant
vector field, we assume the following Ansatz:

A, = (Ay(r),0,0,0), (123)
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which only gives rise to the electric field F,, = Aj(r).
We choose the gauge such that the value of Ay(r) vanishes
on the horizon r=r, ie., Ay(r,) =0. We assume
that & corresponds to the timelike Killing vector field,
& =(1,0,0,0).

The variations in terms of the integration constants can
be written as Eq. (26) and 64,(r) = >_; aAo"C(_'> Sc;, where
c;’s are integration constants of the BH solutions, which
include the position of the event horizon r, and the electric
charge Q. With use of Eq. (23), the variation of the
Hamiltonian with respect to the integration constants is
given by the contributions from the horizon r — r, and
infinity r — o0, 6H = 6H, — OHy, where 6H, and Hy
are given by Eq. (27). The conservation of the Hamiltonian
'H = 0 yields

B

0Hy = SHy. (124)
B. The Einstein-Maxwell theory

As the simplest example without the dynamical scalar
field ¢ = 0, we consider the Einstein-Maxwell theory with
the cosmological constant A,

A 1

e =, G:G :O’ = ,
87G G 162G’ > °° Ga=7F

(125)

under which Eq. (32) reduces to

h i ot e
—5<r2\/;K(5))—r2\/;ﬂ§]

B AlnAy(r)
- ?{_[8ncr+ 200 Fﬂr)
LR 5y Al O] (120

In the theory (125), there exists the Reissner-Nordstrom—de
Sitter solution,

f(r) = h(r)
AL I L 4GP
=1 3" +r<3( 3+ r,A) . >
47GQ? 1ol
T o B

which satisfies the gauge condition Ay(r,) = 0.
The variation of the Hamiltonian on the horizon » = r,
yields

9

ory )
5HH == TH(H)(SSH == % 1- rgA -

2
4”rG2Q } . (128)

g

where the Hawking temperature (29) is given by
Tym) = To(1 —rjA - 4”?—2@) Thus, we obtain the inte-

grable relation 5Sy = (Zﬂjrg /G)ér,, as the proportionality
coefficient (2zr,/G) does not depend on the electric charge
Q. As a consequence, we obtain the area law Eq. (47),
where we set the integration constant so that we have
Sy — 0 in the limit of the vanishing horizon radius r, — 0.

The variation of the Hamiltonian at the infinity » — oo
yields

oM, oMy,
Ho = —1L6r, = My — —115
Hoo ary rg H aQ Q

where @ == —47(Ao(r — 00) = A(r,)) = —4rA(r = )
describes the difference in the electric potential between the
infinity » — oo and the horizon r = r, .2 and the mass of the
total system is given by

47GQ? _ A_”?y) (130)

My =M,| 1
H 0<+ r 3

which coincides with the total ADM mass of the BH
spacetime. The conservation of the Hamiltonian H = 0,
Eq. (124), yields the first law of thermodynamics for the
electrically charged BH,

Th)3Su = My — ®60. (131)

C. The irrational coupling model with the
U(1)-invariant vector field

We then consider the irrational coupling model with the
minimally coupled U(1)-invariant vector field,

1
872G’ 7 162G
G3:G5:0, GA:F,

G, =nX — + a(-X)z,

(132)

under which Eq. (32) reduces to

’If we choose another gauge condition for Ay(r) such that
Ay(r,) # 0, the variation of the Hamiltonian at r = r,, 6Hy,
includes a term proportional to 6Q as well as the right-hand side
of Eq. (128). However, the same term proportional to 6Q will also
appear in the variation of the Hamiltonian in the limit of » — oo,
O0H,, as well as the terms in Eq. (129). Thus, in the conservation
of the Hamiltonian (124) this gauge-dependent term proportional
to 60 cancels, leading to the first law of BH thermodynamics as
Eq. (131), as expected.
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h i ho e
—6<r2\/?1((5)) - rz\/fj[g]
_ oo Jhf 1 Ag(r)Ag(r)
-7 f{ |:871’Gr+

21(r) ]5f (r)
A0 5, FA)
2h(r)?

h(r)
- J’éw(r)},

Sh(r) — 8Ay(r)

(133)

where the radial component of the Noether current asso-
ciated with the shift symmetry J" is given by Eq. (74). We
note that the model (132) corresponds to an extension of
Eq. (72) with the Maxwell field, discussed in Sec. III D.
There exists the exact BH solution with the electric
charge Q,

which satisfies A(r,) = 0.
The variation of the Hamiltonian on the horizon r = r,
yields

g

or 4rG 202
5HH - TH(H)5SH - 2—5 |:1 - rgA — 5 <Q2 ——>:| R

where the Hawking temperature (29) is given by
Tym) = To(1 = rgA - 4’:—2G(Q2 —%)) As in the case of

the Einstein-Maxwell theory, in Eq. (135), the terms
proportional to the variation 6Q vanish. We obtain the
integrable relation 6Sy = (27r,/G)dr, and the proportion-
ality coefficient (2zr,/G) does not depend on the electric
charge 0, and as a consequence, we obtain the area law
(47) in spite of the existence of the two independent
charges.

The variation of the Hamiltonian at the infinity » — oo
yields Eq. (129), where ®y = —47Aq(r — o) in our
gauge condition describes the difference in the electric
potential between the infinity r — co and the horizon
r =r,, and the mass of the system is given by

4rG 202 Ar?
MH=M0<1+ = <Q2—“>—”>, (136)
ry n 3

which coincides with the total ADM mass of the BH
spacetime. The conservation of the Hamiltonian (124)
yields the first law of thermodynamics for the charged
BH (131) as in the Einstein-Maxwell theory.

D. The reflection- and shift-symmetric model
with the U(1)-invariant vector field

Finally, we consider the general reflection- and shift-
symmetric class of the Horndeski theories with the min-
imally coupled U(1)-invariant vector field

G, = g,(X) G, = ! + g4(X)
2= 0 > 4~ 162G 94
G3 = G5 = 0, GA = .7:, (137)

where g,(X) and g,(X) are general functions of the kinetic
term X, under which Eq. (32) reduces to

of(r)

(138)

e \/EH L A aXa(r)) 26 W Pur () — SR () e (Ko(r)
fl [82Gr 2h(r) r
FPDAPAND) - FA)
+ 2h(l‘)20 5h( )_W&AO(’.)—FJ&:{/(’.)
YOV () +f(r)w/(r)zg4,xx<xo<r>>}5w/<r>},

where X, (r) := —(f(r)/2)y'(r)? is the background value of the kinetic term X and the nontrivial radial component of the
Noether current associated with the shift symmetry is given by
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J"=—=f(ry'(r)gax(Xo(r))

# 2= FOO) + OOl (Kolr)
YOO
r2h(r) 4XX '

We note that the model (132) corresponds to a particular
case of the general model (137). Requiring that the back-
ground solution satisfies f(r) = h(r), the equation of
motion for Ay(r) can be analytically integrated as

(140)

where the integration constant Q represents the electric
charge and we choose the integration constant to satisfy the
gauge condition Ay(r,) = 0. We assume the existence of
the charged BHs that can be expanded near the event
horizon r = r, as

f(r)=h(r)
:h1<rgaQ)(r_rg)+h2<rg’Q)(r_rg>2+0[<r_rg)3]’
W(r):l//lﬂ(rg? )\/r_rg+l//3/2(rgv )(r_rg)%

+O[(r—rg)%], (141)

where the coefficients /;(r,, Q) (i = 1,2, ...) and y;(r,. Q)
(j=1/2,3/2,...) are, in general, the functions of r, and Q,
so that X takes a nonzero constant value at the horizon,

1
Xo(r)=Xoo+0[r—r,]:= —ghlw%ﬂ%—(’)[r—rg]. (142)

We require that the background solution satisfies " = 0, so
that the norm of the Noether current J*.7, = (J")*/h(r)
remains finite in the horizon limit r — Tgs and then obtain at
the leading order

2r50, x(Xo0) +4(1 = ryhy)gax(Xo0)

+ 1ty 1294.xx(Xo,0) = 0. (143)

The variation of the Hamiltonian on the horizon r = r, yields

SHH — TH(H)ésH
r,h
=22 [14162Ggu(Xoo) +47Ghy2gsx (Xoo) | o7,
(144)
where the Hawking temperature (29) is given by

Ty = hi/(4x), and hence

2nr, 5
6SH = ? 1 + 1671'Gg4(X0,0> +4ﬂGth%g4,X(XO,O) 5}’9.

(145)
Since the proportionality coefficient in Eq. (145) can depend

on (Q, in general, the differential (145) may not be
integrable [81]. However, since

0 |68 X
0 {6—;:} = =327%r,[94.x(X00) + 2X0.094.xx(X00)] a_go,
(146)

there are two cases where the differential of the entropy is
integrable. The first case to satisfy the integrability condition
% [6Sy/dr)] = 0is

9ax(Xo0) +2X0094 xx(X00) = 0. (147)

The second case to satisfy % [6Sy/6r,] = 0 is given by

0Xoo

00

namely, the kinetic term evaluated on the horizon r = r, does

not depend on Q. Condition (148) is essentially an extension

of the result found for a particular choice of the g,(X)

function, namely, ¢4(X) = c¢'X with ¢’ being constant,

discussed in Ref. [81]. We note that the model discussed

in Sec. VIC with g4(X) = av/—X satisfies both conditions

(147) and (148), since from Eq. (134) we find that X = — %7
does not depend on Q.

0, (148)

VII. SUMMARY AND CONCLUSIONS

We have investigated thermodynamics of static and
spherically symmetric BHs in the Horndeski theories.
Although the Wald entropy formula has been useful for
computing the BH entropy in the covariant gravitational
theories that contain the dependence only on the Riemann
tensors as the higher-derivative terms, this may not be
directly applicable to the Horndeski theories because of the
presence of the derivative interactions and the nonminimal
derivative couplings of the scalar field to the spacetime
curvature tensors. The terms that contain the spacetime
curvature tensors may be eliminated with use of the
properties of the Riemann tensor, and the apparent depend-
ence of the action on the spacetime curvatures may be
modified before and after a partial integration. Thus,
following the original formulation by Iyer and Wald, we
have employed the Noether charge potential associated
with the diffeomorphism invariance. The variation of the
Noether charge potential on the boundaries is related to
the variation of the Hamiltonian. The variations of the
Hamiltonian on the BH event horizon and at the spatial

084061-19



MASATO MINAMITSUII and KEI-ICHI MAEDA

PHYS. REV. D 108, 084061 (2023)

infinity, respectively, give rise to the differentials of the
entropy of the BH and the total mass of the system, and the
conservation of the total Hamiltonian leads to the first law
of the BH thermodynamics. Our formulation could be
applied to the whole of the Horndeski theories including the
EsGB theories and the shift-symmetric theories, which
provide the stealth Schwarzschild BH solutions with the
linearly time-dependent scalar field. In the case of the
EsGB theories, our formulation has recovered the standard
Wald entropy formula, although the description of the
EsGB theory in the context of the Horndeski theories
appears to be different from the original action by the
difference in the total derivative terms.

We have divided our analysis into two parts. The first
part is about the static and spherically symmetric BH
solutions with the static scalar field in the Horndeski
theories, which may not be shift symmetric. The second
part is about those with the linearly time-dependent scalar
field in the shift-symmetric Horndeski theories. In the latter
case, in order to satisfy the radial-temporal component of
the gravitational equations, the radial component of the
Noether current associated with the shift symmetry has to
vanish. Taking this into consideration, we showed that the
variation of the Noether charge potential associated with
the diffeomorphism invariance does not depend on time,
even if the scalar field has a linear time dependence. This
reflects the fact that in such static and spherically sym-
metric BH solutions there was no radial heat flux onto the
BH horizon.

The results in the former part are summarized in Table 1.
Besides GR and the conventional ST theory with the trivial
scalar field, we evaluated the BH entropy and the total mass
of the system for the static and spherically symmetric BHs

TABLE L.

with nontrivial profile of the scalar field in the shift-
symmetric ESGB theory and in the shift-symmetric theory
where the function G4(X) contains the term proportional to
v/=X. In both cases, we showed that the BH entropy was
given by the area law despite the existence of the nontrivial
profile of the scalar field.

The results in the latter part are summarized in Table II.
We have studied the BH entropy and the mass in the stealth
Schwarzschild solution and the Schwarzschild-(A)dS sol-
ution with the linearly time-dependent scalar field. In both
cases, we have found that the BH entropy does not obey the
area law and the total mass of the system does not coincide
with the BH mass from the metric.

In theory V and theory VI in Table I, there exists a trivial
Schwarzschild solution without scalar field. Then we have
discussed the thermodynamic stability of the stealth
Schwarzschild BHs. We have shown that its stability
depends on the sign of the nonminimal derivative cou-
pling to the spacetime curvature. In the case of the
Schwarzschild-dS BH, we have shown the Horndeski
Schwarzschild-dS BHs are always thermodynamically
unstable and transit to the GR Schwarzschild-dS BH. In
the case of the Schwarzschild-AdS BHs, we have found
that the thermodynamical phase diagram becomes more
complicated than the previous case, because of the exist-
ence of the Hawking-Page phase transition, and crucially
depends on the ratio of the (effective) cosmological con-
stants, i.e., the ratio of the Horndeski AdS radius Z and the
GR AdS radius #, where we always have # < #. We have
shown that, in the case where Z is not much less than Z, the
Horndeski Schwarzschild-AdS BH is always thermody-
namically unstable and decays into either the GR
Schwarzschild-AdS BH or the AdS spacetime filled with

Thermodynamical properties of BHs with/without static scalar field are summarized. In the case of non-shift-symmetric

EsGB BH (theory III), if k()(¢,) = 0 where ¢, is some constant, there exists a trivial Schwarzschild BH, while when k(!)(¢) # 0 for
any real ¢, the nontrivial solution is unique. Note that we can make ¢, = O after a suitable shift of ¢. The former class of non-shift-
symmetric theory III includes scalarized BH solutions for the Z,-symmetric coupling models [53-68], while the latter of the non-shift-
symmetric theory III includes hairy BH solutions in the exponential coupling models [50-52]. The shift-symmetric class of theory III
corresponds to the linear coupling model [47,48]. Hawking temperature 7'y, mass M, and entropy S of nontrivial ESGB BH are given by
numerical solutions. Theory I (GR with/without A) is also listed as a reference.

Theory BH Scalar field Temperature 7'y Mass M Entropy §
I GR without A Schwarzschild Trivial Ty := #ﬂ, Mg = 2'—& Sp = ’%zf
GR with A Schwarzschild-(A)dS ~ Trivial (1-Ar3)T, (1-4r2)M, So
Conventional scalar-tensor . _ 5 V(0)
I theories Schwarzschild-(A)dS ¢=0 (1- V(())rg)TO (1- o) rz M, So
Non-shift-  41)(g) = Asymptotically flat  Hairy /il (Egs. (58)~(60)) ~ ADM mass (] + %W)SO
I symmetric Schwarzschild ¢ = Py Ty M, So
EsGB KD($)#0  Asymptotically flat  Hairy /77 (Eqs. (58)-(60)  ADM mass (] 4 S0ty g
Shift-symmetric EsGB Asymptotically flat Hairy ﬁ\/ f1hy (Egs. (58)—(60)) ADM mass So
IV Horndeski with G, = /=X Asymptotically (A)dS  Hairy (1-AP2+ %) T, (1-272- %) M, So
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TABLE II.  Thermodynamical properties of BHs with linearly time-dependent scalar field in shift-symmetric Horndeski theories
are summarized. The scalar field has linear time dependence as ¢ = gt + w(r). In theory VI, since A := —ziﬂ, we find
1 -82Gq*f =3 (1+4). Ty, My, and S are defined in Table I.
Theory BH Scalar field Temperature Ty Mass M Entropy §
G1(X), G4(X) with . . 2 2
> p Schwarzschild Hairy Ty 1 =S4\ | — Gud’\g
Vv G (%) =Gx(%5) =0 ( Ga 2) 0 ( e 2) 0
. Hairy T (1 -8zGqg*p)M (1 -8zGq*p)S,
_ 1 0 0 0
Gy(X) = oo + X Schwarzschild Trivial T, M, S,
VI G0 =X - g TR s (=RAATy  (1-8GEp)(1 2Ry (1-82GLH)S,
s 1d- o n+ g9 379
Gy(X) = ]61[ o+ BX Schwarzschild-(A)dS g =,/ ]76” o
Trivial (1= AT, (1-4r2)M, So
VII G,(X),G5(X) with ¢, =1 Schwarzschild Hairy Ty M, So

thermal radiation. On the other hand, in the case where the
ratio of Z to ¢ is smaller than a critical value, there is a
certain range of the BH mass where the Horndeski
Schwarzschild-AdS BH is thermodynamically more stable
than the GR Schwarzschild-AdS BH, while for the BH
mass larger than that in this range the Horndeski
Schwarzschild-AdS BH decays into either the GR
Schwarzschild-AdS BH or the AdS spacetime with thermal
radiation.

While BH solutions discussed so far contain only one
independent charge, i.e., the mass or, equivalently, the
horizon radius, in Sec. VI we have briefly discussed
thermodynamics in the BHs with two independent charges
in the Horndeski theories. More concretely, we have
focused on the Horndeski theories minimally coupled to
the U(1)-invariant vector field, where BH solutions contain
the two independent charges, the mass and the electric
charge. By extending the general formulation presented in
Sec. 1I, we have derived the Noether change potential
associated with the diffeomorphism invariance, including
the contribution of the U(1)-invariant vector field with the
nonlinear kinetic term. As a concrete example of charged
BH solutions in the Horndeski theories, we have considered
the extension of the irrational coupling model discussed in
Sec. I D minimally coupled to the Maxwell field and
showed that, in spite of the presence of the two independent
charges, the differential of the entropy is integrable and the
ordinary area law is recovered. Finally, in the general
reflection- and shift-symmetric class of the Horndeski

theories with the minimally coupled U(1)-invariant vector
field, we have clarified the general conditions under which
the differential of the BH entropy is integrable in the
presence of the two independent charges. We have shown
that, in the case where the kinetic term of the scalar field
evaluated on the horizon does not depend on the electric
charge, the differential of the BH entropy is integrable.

There would be various extensions of our present
work, which include the cases of the stationary and
axisymmetric BHs in the Horndeski theories and the
nontrivial BHs in the healthy ST theories beyond the
Horndeski theories [19-21]. We hope to come back to
these cases in our future work.
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