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We investigate thermodynamics of static and spherically symmetric black holes (BHs) in the Horndeski
theories. Because of the presence of the higher-derivative interactions and the nonminimal derivative
couplings of the scalar field, the standard Wald entropy formula may not be directly applicable. Hence,
following the original formulation by Iyer and Wald, we obtain the differentials of the BH entropy and the
total mass of the system in the Horndeski theories, which lead to the first law of thermodynamics via the
conservation of the Hamiltonian. Our formulation covers the case of the static and spherically symmetric
BH solutions with the static scalar field and those with the linearly time-dependent scalar field in the shift-
symmetric Horndeski theories. We then apply our results to explicit BH solutions in the Horndeski theories.
In the case of the conventional scalar-tensor theories and the Einstein-scalar-Gauss-Bonnet theories, we
recover the BH entropy obtained by the Wald entropy formula. In the shift-symmetric theories, in the case
of the BH solutions with the static scalar field, we show that the BH entropy follows the ordinary area law
even in the presence of the nontrivial profile of the scalar field. On the other hand, in the case of the BH
solutions where the scalar field linearly depends on time, i.e., the stealth Schwarzschild and Schwarzschild-
(anti–)de Sitter (AdS) solutions, the BH entropy also depends on the profile of the scalar field. By use of
the entropy, we find that there exists some range of the parameters in which a Schwarzschild-AdS BH
with nontrivial scalar field is more thermodynamically stable than a Schwarzschild-(AdS) BH without
scalar field in general relativity. Finally, we consider the Horndeski theories minimally coupled to the
Uð1Þ-invariant vector field, where BH solutions contain the mass and the electric charge, and clarify the
conditions under which the differential of the BH entropy is integrable in spite of the presence of the two
independent charges.
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I. INTRODUCTION

General relativity (GR) is known as the unique gravi-
tational theory in four dimensions which only contains
2 degrees of freedom (d.o.f.) of the metric and preserves
the Lorentz symmetry [1]. GR has been tested by local
experiments as well as astrophysical probes [2], while the
future gravitational-wave (GW) astronomy [3] and black
hole (BH) shadow measurements [4] will allow us to clarify
gravitational physics in the so-called strong field regimes as
in the vicinity of BHs and neutron stars [5–8]. On the other
hand, the standard cosmological model based on GR has
been plagued by tensions of today’s measurements [9,10],
which led to the question of the validity of GR on cosmo-
logical distance scales. In order to solve these tensions,
gravitational theories other than GR have been extensively
studied [2,5,11,12].
One of the simplest and most robust modifications to GR

are provided by scalar-tensor (ST) theories that possess a
scalar field (denoted by ϕ) d.o.f. as well as the metric tensor

(denoted by gμν) d.o.f. [13]. Traditionally, ST theories that
include (non)canonical kinetic terms and/or nonminimal
coupling to the spacetime curvature have been applied to
inflationary universe and/or dark energy models (see, e.g.,
Refs. [11,12,14,15]). The framework of the ST theories
have been extensively generalized by the (re)discovery of
the Horndeski theories [16–18], which are known as the
most general ST theories with second-order equations of
motion, despite the existence of higher-derivative inter-
actions of the scalar field ϕ and the nonminimal derivative
coupling to the spacetime curvature. The Horndeski the-
ories are characterized by the four independent coupling
functions G2;3;4;5ðϕ; XÞ, where X ≔ −ð1=2Þgμν∇μϕ∇νϕ
represents the canonical kinetic term of the scalar field,
with ∇μ being the covariant derivative associated with the
metric gμν. The framework of the Horndeski theories
has been extended to the degenerate higher-order scalar-
tensor (DHOST) theories [19,20] and beyond-DHOST
theories [21–24], which eliminate the Ostrogradski ghosts

PHYSICAL REVIEW D 108, 084061 (2023)

2470-0010=2023=108(8)=084061(23) 084061-1 © 2023 American Physical Society

https://orcid.org/0000-0002-0643-2758
https://orcid.org/0000-0003-0520-1576
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.084061&domain=pdf&date_stamp=2023-10-27
https://doi.org/10.1103/PhysRevD.108.084061
https://doi.org/10.1103/PhysRevD.108.084061
https://doi.org/10.1103/PhysRevD.108.084061
https://doi.org/10.1103/PhysRevD.108.084061


by imposing the degeneracy conditions among the higher-
derivative equations of motion. The existence of BH
solutions and their properties will be very important in
distinguishing such new class of ST theories from the
theoretical perspectives. This offers an interesting possibil-
ity for probing the possible deviation from GR in strong
field regimes.
In GR, the uniqueness theorem states that an asymp-

totically flat, stationary, and axisymmetric BH is described
by the Kerr solution, which is characterized only by mass
and angular momentum [25–27]. This is reduced to the
Schwarzschild solution in the limit of static and spherically
symmetric spacetime. The BH no-hair theorem states that
only the BH solutions are Schwarzschild or Kerr solutions
in the case of vacuum spacetime. We can extend the
theorem to the case with a scalar field, assuming an
appropriate condition on the potential. It also holds for
the various ST theories with a canonical scalar field ϕ
[28,29] and a generalized kinetic term [30], as well as a
scalar field nonminimally coupled to the scalar curvature
FðϕÞR [31–34]. In the shift-symmetric Horndeski theories
that are invariant under the constant shift transformation
ϕ → ϕþ c, where the functions G2;3;4;5 depend only on X,
Ref. [35] showed that a no-hair result of static and
spherically symmetric BH solutions holds under the fol-
lowing hypotheses: (i) the scalar field shares the same
symmetry as the static and spherically symmetric metric;
(ii) the spacetime is asymptotically flat with a vanishing
radial derivative ψ 0ðrÞ → 0 at spatial infinity (r → ∞);
(iii) the norm of the Noether current associated with the
shift symmetry JμJμ is finite on the BH event horizon; (iv) a
canonical kinetic term X is present in the Lagrangian; and
(v) the X derivatives ofG2;3;4;5 contain only positive or zero
powers of X. If we violate at least one of the conditions
given above, it is possible to realize hairy BH solutions
endowed with nontrivial scalar hair. The no-hair theorem
for the static and spherically symmetric BH solutions has
been extended to the case of the shift-symmetric beyond-
Horndeski theories in Ref. [36]. The no-hair theorem in the
shift-symmetric Horndeski theories for BH solutions has
been generalized to the case of the stationary and axisym-
metric BHs in Ref. [37].
For a scalar field with the linear dependence on time t of

the form ϕ ¼ qtþ ψðrÞ with q being constant, which
evades hypothesis (i), there exist the stealth Schwarzschild
solution [38–40] and the BH solutions with asymptotically
(anti–)de Sitter [(A)dS] spacetimes [38,41]. If the asymp-
totic flatness of spacetime is not imposed, which evades
hypothesis (ii), the linear quartic derivative coupling X in
G4 gives rise to the exact hairy BH solutions with an
asymptotic geometry mimicking the Schwarzschild-AdS
spacetime [42–45]. For the coupling G5 ∝ ln jXj, which is
equivalent to the linear coupling to the Gauss-Bonnet (GB)
term ϕR2

GB [46], where

R2
GB ≔ R2 − 4R2

μν þ R2
μναβ ð1Þ

is the GB term, there exists the asymptotically flat hairy BH
solution whose metric components are corrected by the GB
coupling [47,48]. There also exists an asymptotically flat
BH solution in the model where G4ðXÞ ⊃ ð−XÞ1=2 [49].
These solutions arise from the violation of hypothesis (v).
We note that there also exist the hairy BH solutions for
non-shift-symmetric GB couplings e−cϕR2

GB with c being
constant [50–52] and for BH scalarization models that
occur for Z2-symmetric coupling functions [53–68].
The linear stability analysis of the static and spherically

symmetric BH solutions in the Horndeski theories have
been performed in the literature, e.g., [69–71]. These linear
stability conditions have been applied to various static and
spherically symmetric BH solutions with the nontrivial
profile of the scalar field in the Horndeski theories in
Refs. [72,73]. In generic Horndeski theories, static and
spherically symmetric BH solutions with a nonvanishing
constant kinetic term on the horizon X ≠ 0 inevitably suffer
from a ghost or gradient instability [73], including the
solutions discussed in Refs. [42–45]. On the other hand, it
was shown that within the perturbative regime the static and
spherically symmetric BH solutions in ST theories with the
power-law couplings to the GB invariant are free from the
ghost or gradient instability, which include asymptotically
flat BH solutions in the shift-symmetric theory with the
linear coupling to the GB invariant G5ðXÞ ∝ ln jXj [47,48].
However, in the models where the scalar field linearly
depends on time, e.g., the stealth Schwarzschild solution
[38,41], the standard linear perturbation analysis cannot be
applied because the perturbations become infinitely
strongly coupled [74,75]. Thus, we will apply another
way to see BH stability, that is, BH thermodynamics. When
we have two BH solutions, we can compare their entropies
and then argue that the BH solution with smaller entropy is
more unstable than the other BH solution with larger
entropy. In this paper, we will focus on BH thermody-
namics in the Horndeski theories. Although the Wald
entropy formula [76] has been useful for computing the
BH entropy in the covariant gravitational theories that
contain the dependence on the Riemann tensor, this may
not be directly applicable to the Horndeski theories because
of the presence of the derivative interactions of the scalar
field and the nonminimal derivative couplings of the scalar
field to the spacetime curvature tensors [77,78]. The terms
that contain the spacetime curvature tensors may be
replaced with the higher derivatives of the scalar field with
use of the properties of the Riemann tensor and the partial
integration of the action. The apparent dependence of the
action on the spacetime curvature tensors may be modified
before and after a partial integration, although the action
after the partial integration is equivalent to that before the
partial integration under the assumption of no contribution
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from the boundaries. In this work, following the original
formulation by Iyer and Wald [79], we will construct
the BH thermodynamics in the Horndeski theories from
the first principle. Since the Horndeski theories preserve the
four-dimensional diffeomorphism invariance, there exists
the associated Noether charge potential, whose explicit
form was obtained in Ref. [80]. Since the Noether charge
potential is independent of the apparent modification of
the action by the partial integration, this should be able to
provide the unique description of the first law of BH
thermodynamics and the BH entropy. Iyer and Wald
showed that the variation of the Hamiltonian is given by
that of the Noether charge potential evaluated on the boun-
daries, i.e., in our case, the BH event horizon and spatial
infinity [79]. The conservation of the total Hamiltonian
of the BH system reproduces the first law of the BH
thermodynamics. Our theorem will be able to be applied to
both the shift-symmetric and non-shift-symmetric subclass
of the Horndeski theories. Previously, for a subclass of the
Horndeski theories with the nonminimal coupling to the
Einstein tensorGμν∇μϕ∇νϕ, the Iyer-Wald formulation has
been applied for the BH solutions without the electric field
in Refs. [77,78] and with the electric field in Ref. [81]. The
Iyer-Wald formulation has also been applied to the planar
BH solutions in some classes of the Horndeski theories in
arbitrary dimensions [82]. Our analysis will cover the
whole Horndeski theories and be able to apply all the
static and spherically symmetric BH solutions, including
those with the linearly time-dependent scalar field in the
shift-symmetric theories [38,41].
The paper is constructed as follows: InSec. II,weapply the

formulation by Iyer and Wald to the Horndeski theories. In
Sec. III, we discuss the entropy and mass for the static and
spherically symmetric BH solutions with the static scalar
field in the Horndeski theories. In Sec. IV, we discuss the
entropy andmass of the system for the BH solutions with the
linearly time-dependent scalar field in the shift-symmetric
Horndeski theories. In Sec. V, we investigate thermodynam-
ical stability of the stealth Schwarzschild BH solutions and
the Schwarzschild-(A)dS BH solutions with the linear time
dependence in the shift-symmetric Horndeski theories,
which are discussed in Sec. IV. In Sec. VI, we consider
the Horndeski theories minimally coupled to the Uð1Þ-
invariant vector field, where BH solutions contain the mass
and the electric charge, and clarify the conditions under
which the differential of the BH entropy is integrable in spite
of the presence of the two independent charges. Finally,
Sec.VII is devoted to giving a brief summary and conclusion.

II. IYER-WALD FORMULATION IN THE
HORNDESKI THEORIES

A. The Horndeski theories

We consider the Horndeski theories [16–18] whose
action is composed of four independent parts,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ¼

Z
d4x

ffiffiffiffiffiffi
−g

p X5
i¼2

Li; ð2Þ

with the Lagrangian densities given by

L2 ≔ G2ðϕ; XÞ; ð3Þ

L3 ≔ −G3ðϕ; XÞ□ϕ; ð4Þ

L4 ≔ G4ðϕ; XÞRþG4Xðϕ; XÞ
h
ð□ϕÞ2 − ðϕαβϕαβÞ

i
; ð5Þ

L5≔G5ðϕ;XÞGμνϕ
μν−

1

6
G5Xðϕ;XÞ½ð□ϕÞ3−3□ϕðϕαβϕαβÞ

þ2ϕα
βϕβ

ρϕρ
α�; ð6Þ

where gμν is the spacetime metric, R and Gμν are the
Ricci scalar and Einstein tensor associated with the metric
gμν, respectively, ϕ is the scalar field, ϕμ ¼ ∇μϕ,
ϕμν ¼ ∇μ∇νϕ, and so on are the short-hand notation for
the covariant derivatives of the scalar field, with ∇μ being
the covariant derivative associated with the metric gμν. X
represents the canonical kinetic term X ≔ −ð1=2Þgμνϕμϕν

with use of the short-hand notation, and G2;3;4;5ðϕ; XÞ are
the free functions of ϕ and X. We also define ϕμ

ν ≔ gμαϕαν,
ϕμν ≔ gναϕμ

α, and □ϕ ≔ gμνϕμν.

B. The Noether charge potential associated
with the diffeomorphism invariance

The variation of the action (2) is given by

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðEμνδgμν þ Eϕδϕþ∇μJμÞ; ð7Þ

where the equations of motion of the metric and scalar
field, Eμν ¼ 0 and Eϕ ¼ 0, respectively, can be found in
Ref. [18], for instance, and the boundary current is given
by [80]

Jμ ¼
X5
i¼2

JμðiÞ; ð8Þ

which is composed of the parts from theLagrangians (3)–(6),

Jμð2Þ ¼ −G2Xϕ
μδϕ; ð9Þ

Jμð3Þ ¼ −
1

2
G3ðhϕμ − 2hμνϕν þ 2∇μδϕÞ

þ δϕG3X□ϕϕμ þ δϕ∇μG3; ð10Þ
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Jμð4Þ ¼ G4X□ϕðhϕμ − 2hμνϕνÞ þ 2G4X□ϕ∇μðδϕÞ − 2∇μðG4X□ϕÞδϕ
þ G4XXðϕαβϕαβ − ð□ϕÞ2ÞϕμδϕþG4Xð2ϕμρϕσ − ϕρσϕμÞhρσ − 2G4Xϕ

μν∇νδϕ

þ 2∇νðG4Xϕ
μνÞδϕ − hμν∇νG4 þ G4∇νhμν þ h∇μG4 −G4∇μh −G4XRϕμδϕ; ð11Þ

Jμð5Þ ¼
1

4
G5Xϕ

αβϕαβðhϕμ − 2hμνϕνÞ −
1

2
hρσG5X□ϕð2ϕσμϕρ − ϕσρϕμÞ

−
1

4
G5Xð□ϕÞ2ðhϕμ þ 2∇μδϕ − 2hμνϕνÞ þ

1

2
∇μ½G5Xð□ϕÞ2�δϕ

þ 1

2
G5Xϕ

αβϕαβ∇μδϕ −
1

2
δϕ∇μ½G5XðϕαβÞ2� þ G5X□ϕϕμν∇νδϕ

− δϕ∇νðG5X□ϕϕμνÞ −G5Xϕ
μσϕνσ∇νδϕþ δϕ∇νðG5Xϕ

μσϕνσÞ

þ 1

6
G5XX½ð□ϕÞ3 − 3□ϕðϕαβÞ2 þ 2ðϕαβÞ3�ϕμδϕþ 1

2
G5Xϕ

ν
σð2ϕσμϕρ − ϕσρϕμÞhρν

− hρσ∇σðG5ϕ
μρÞ þ G5ϕσρ∇σhρμ −

1

2
G5ϕρσ∇μhρσ þ 1

2
hρσ∇μðG5ϕρσÞ −

1

2
G5ϕ

μν∇νhþ
1

2
h∇νðG5ϕ

μνÞ

−
1

2
G5□ϕ∇ρhρμ þ

1

2
hρμ∇ρðG5□ϕÞ þ 1

2
G5□ϕ∇μh −

1

2
h∇μðG5□ϕÞ −G5hρσGμρϕσ þ 1

2
G5hρσGρσϕμ

− δϕGμν∇νG5 þ G5Gμν∇νδϕ − δϕG5XGρσϕρσϕ
μ; ð12Þ

wherewe have defined the variation of the metric tensor with
respect to the independent integration constants by

hμν ¼ δgμν; hμν ¼ gμρgνσhρσ; h ¼ gρσhρσ: ð13Þ

We also define the dual 3-form to Jμ by

Θαβγ ≔ Jμεμαβγ ¼ εαβμγJμ ¼
X5
i¼2

εαβμγJ
μ
ðiÞ: ð14Þ

Since the Horndeski theories (2) with Eqs. (3)–(6) are
invariant under the four-dimensional diffeomorphism trans-
formation, xμ → xμ þ ξμðxμÞ, there exists the associated
Noether charge potential. Under the diffeomorphism trans-
formation, the variations of the metric and scalar field are,
respectively, given by

hðξÞμν ¼δξgμν≔Lξgμν¼2∇ðμξνÞ; δξϕ≔Lξϕ¼ξμϕμ; ð15Þ

andwith use of the on-shell gravitational equations ofmotion
Eμν ¼ 0, JμðξÞ can bewritten in terms of the total derivative of

the Noether charge potential Kμν
ðξÞ, i.e.,

JμðξÞ − ξμL ¼ 2∇νK
½νμ�
ðξÞ ¼ 2

X5
i¼2

∇νK
½νμ�
ðiÞðξÞ; ð16Þ

where each individual contribution is given by

Kμν
ð2ÞðξÞ ¼ 0; ð17Þ

Kμν
ð3ÞðξÞ ¼ −G3ξ

μϕν; ð18Þ

Kμν
ð4ÞðξÞ ¼ 2G4X½□ϕξμϕν − ξσϕ

σμϕν� þ 2ξμ∇νG4 þG4∇μξν;

ð19Þ

Kμν
ð5ÞðξÞ ¼−

1

2
G5X½ð□ϕ2−ϕαβϕαβÞξμϕν

þ2ðξρϕρσ−□ϕξσÞϕσμϕν�
þξμ∇σðϕνσG5Þ−ξσ∇μðϕνσG5Þ−ξμ∇νðG5□ϕÞ

þ1

2
G5ð2ξσGσμϕν−2ð∇σξ

μÞϕνσ−□ϕ∇μξνÞ: ð20Þ

We then define the dual 2-form of the Noether charge
potential Kμν

ðξÞ [80],

QðξÞαβ ≔ −ϵαβμνK
μν
ðξÞ ¼

X5
i¼2

QðiÞ
ðξÞαβ: ð21Þ

Wealso define the 2-form tensorwhere the first index ofΘναβ

defined in Eq. (14) is contracted by the infinitesimal diffeo-
morphism transformation ξν, by

iξΘαβ ≔ ξνΘναβ ¼ −εαμβνJμξν ¼ εαβμνJμξν: ð22Þ
We now consider the variation of the dual Noether charge
potential with respect to the physical parameters subtracted
by Eq. (22),
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δQðξÞαβ − iξΘαβ ¼−
�
δ
�
εαβμνK

μν
ðξÞ
�
þ εαβμνJμξν

�

¼−
X5
i¼2

�
δ
�
εαβμνK

μν
ðiÞðξÞ

�
þ εαβμνJ

μ
ðiÞξ

ν

�
:

ð23Þ

The integration of Eq. (23) on the boundaries of the Cauchy
surface gives rise to the variation of the Hamiltonian [76,79].

C. Static and spherically symmetric
black hole solutions

We consider the static and spherically symmetric sol-
utions whose metric is written by

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2γabdθadθb; ð24Þ

where t and r are the temporal and radial coordinates, and
γabdθadθb ≔ dθ2 þ sin2 θdφ2 represents the metric of the
unit two-sphere. We assume that the spacetime contains the
event horizon at r ¼ rg, where

hðrgÞ ¼ fðrgÞ ¼ 0; lim
r→rg

fðrÞ
hðrÞ ¼ const: ð25Þ

In the case where hðrÞ and fðrÞ have several roots, we
assume that rg corresponds to the largest positive root, and
in the entire domain outside the event horizon rg < r < ∞
the two metric functions fðrÞ and hðrÞ are regular and
positive. For the scalar field, we will consider the two
Ansätze: the static Ansatz (31) or the Ansatz with the linear
time dependence (35), where the latter can be applied only
for the shift-symmetric Horndeski theories. In this back-
ground (24), we assume that ξμ corresponds to the timelike
Killing vector field ξμ ¼ ð1; 0; 0; 0Þ.
The variations of the metric and scalar field of a given

BH solution can be written in terms of those of the
integration constants

htt ¼−δh¼−
X
j

∂h
∂cj

δcj; hrr ¼−
δf
f2

¼−
1

f2
X
j

∂f
∂cj

δcj;

hab ¼ 0; δϕ¼
X
j

∂ϕ

∂cj
δcj; ð26Þ

where cj’s are integration constants of the BH solutions, for
instance, the position of the event horizon rg.
As shown in Refs. [76,79], with use of Eq. (23), the

variation of the Hamiltonian with respect to the integration
constants in a specific solution is given by the contributions
from the boundaries, i.e., the horizon r → rg and infin-
ity r → ∞,

δH≔ δH∞−δHH

¼−
Z

dΩ
�
δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
þ r2

ffiffiffi
h
f

s
J½tξr�

�����
r→∞

þ
Z

dΩ
�
δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
þ r2

ffiffiffi
h
f

s
J½tξr�

�����
r→rg

¼−
Z

dΩ
X5
i¼2

�
δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðiÞðξÞ

�
þ r2

ffiffiffi
h
f

s
J½tðiÞξ

r�
�����

r→∞
þ
Z

dΩ
X5
i¼2

�
δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðiÞðξÞ

�
þ r2

ffiffiffi
h
f

s
J½tðiÞξ

r�
�����

r→rg

; ð27Þ

where dΩ ≔ sin θdθdφ and the subscript H represents the
quantities associated with the horizon. The variation of
the Hamiltonian on the horizon and at the infinity can be
identified with the variation of the total mass of the system
MH and BH entropy SH in the Horndeski theories as

δH∞ ¼ δMH; δHH ¼ THðHÞδSH; ð28Þ

where THðHÞ represents the Hawking temperature of the
given BH solution,

THðHÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðrgÞf0ðrgÞ

p
4π

: ð29Þ

The conservation of the total Hamiltonian δH ¼ 0 repro-
duces the first law of the BH thermodynamics in the
Horndeski theories,

THðHÞδSH ¼ δMH: ð30Þ

We note that in some classes of the Horndeski theories
GWs may propagate with speeds different from the speed
of light. In such a case, there was the argument that the
Hawking temperature should be evaluated on the horizon of
the effective metric for GWs, which are disformally related
to the original metric gμν [78]. Here, we choose the surface
gravity for the original metric gμν as the Hawking temper-
ature (29) as in the case of GR. The first reason is because
photons and other massless particles as the products of the
Hawking evaporation would propagate along the light
cones of the original metric gμν. The second reason is
because there is no unique choice of the frames where GWs
travel with the speed of light. Especially, the conformal
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transformation does not modify the speeds of GWs, but
redshifts or blueshifts the Hawking temperature.

1. The case of the static scalar field

We now compute the integrand of Eq. (27). First, we
focus on the solution with the static scalar field

ϕ ¼ ψðrÞ: ð31Þ

Under the variation (26), the integrand of the variation of
the Hamiltonian (27) is given by

− δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ 2r2

ffiffiffi
h
f

s �
−
1

2
fψ 0δψG2X þ fψ 0δψG3ϕ þ

fψ 02

4rh
½fð4hþ rh0Þδψ − rhð2fδψ 0 þ ψ 0δfÞ�G3X

−
δf
r
G4 þ

1

2

	
f

�
−2δψ 0 þ h0

h
δψ

�
− ψ 0δf



G4ϕ þ

fψ 0

r2h
½ððf − 1Þhþ rfh0Þδψ − 2rhðfδψ 0 þ ψ 0δfÞ�G4X

− fψ 0δψG4ϕϕ þ
fψ 02

2rh
½−fð8hþ rh0Þδψ þ rhð2fδψ 0 þ ψ 0δfÞ�G4ϕX

þ f2ψ 03

r2h
½−fðhþ rh0Þδψ þ rhð2fδψ 0 þ ψ 0δfÞ�G4XX þ fψ 0

2r2h
½−2ððf − 1Þhþ rfh0Þδψ þ rhð4fδψ 0 þ 3ψ 0δfÞ�G5ϕ

þ fψ 02

4r2h
½f2ð6hδψ 0 − 3h0δψÞ − hψ 0δf þ fðh0δψ þ hð−2δψ 0 þ 5ψ 0δfÞÞ�G5X þ f2ψ 02δψ

r
G5ϕϕ

þ f2ψ 03

2r2h
½fð2hþ rh0Þδψ − rhð2fδψ 0 þ ψ 0δfÞ�G5ϕX −

f3ψ 04

4r2h
½fð2hδψ 0 − h0δψÞ þ hψ 0δf�G5XX

�
: ð32Þ

2. The case of the scalar field with linear
time dependence

Second, we consider the shift-symmetric Horndeski
theories invariant under the constant shift ϕ → ϕþ c with
c being constant, which correspond to the theories without
the dependence on ϕ in the coupling functions,

G2 ¼ G2ðXÞ; G3 ¼ G3ðXÞ;
G4 ¼ G4ðXÞ; G5 ¼ G5ðXÞ: ð33Þ

There is the Noether current associated with the shift
symmetry,

J μ ¼ 1ffiffiffiffiffiffi−gp
	
∂L
∂ϕμ

−∇ν

�
∂L
∂ϕμν

�

: ð34Þ

The theory (33) admits the static and spherically symmetric
BH solutions with the linearly time-dependent scalar field
[38–41],1

ϕ ¼ qtþ ψðrÞ: ð35Þ

For the metric Ansatz (24), the radial component of
the Noether current associated with the shift symmetry
is given by

J r ¼ −fψ 0G2X þ f
2rh2

	
−q2rh0 þ fhð4hþ rh0Þψ 02



G3X

þ 2fϕ0

r2h
½ðf − 1Þhþ rfh0�G4X

þ 2f2ψ 0

r2h2
½q2rh0 − fhðhþ rh0Þψ 02�G4XX

þ fh0

2r2h2
½q2ðf − 1Þ þ ð1 − 3fÞfhψ 02�G5X

þ f3h0ψ 02

2r2h2
ð−q2 þ fhψ 02ÞG5XX: ð36Þ

For the given Ansatz of the metric and scalar field, Eqs. (24)
and (35), we can show that the ðt; rÞ component of the
metric equations is proportional to J r [38–40], and hence
we have to impose

J r ¼ 0: ð37Þ

The variation of the scalar field is given by

1Because of the linear time dependence, the Ansatz for the
scalar field (35) does not respect the symmetry of the spacetime,
£ξϕ ≠ 0, where ξμ corresponds to the timelike Killing vector,
while £ξgμν ¼ 0. However, in deriving the variation of the
Hamiltonian (27), the symmetry £ξϕ ¼ 0 is not imposed [79]
and hence our formulation can be applied to the solutions with the
scalar field (35).
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δϕ ¼ δψðrÞ: ð38Þ

We note that since q is not the integration constant but
the constant appearing in the Ansatz of the scalar field

compatible within the shift symmetry, we do not need
to take the variation of q into consideration. Under the
variation (26), the integrand of the variation of the
Hamiltonian (27) is given by

−δ

 
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

!
− r2

ffiffiffi
h
f

s
J½tξr� ¼ 2r2

ffiffiffi
h
f

s �
−
fψ 0

4h2
½q2δhþ h2ð2fψ 0δψ 0 þ ψ 02δfÞ�G3X

−
δf
r
G4 −

2fψ 0

r
ðfδψ 0 þ ψ 0δfÞG4X þ f2ψ 02

rh2
fq2δhþ h2ð2fψ 0δψ 0 þ ψ 02δfÞgG4XX

þ fψ 0

4r2h2
fq2ðf − 1Þδhþ h2ð6f2ψ 0δψ 0 − ψ 02δf þ fψ 0ð−2δψ 0 þ 5ψ 0δfÞÞgG5X

−
f3ψ 03

4r2h2
fq2δhþ h2ð2fψ 0δψ 0 þ ψ 02δfÞgG5XX þ 1

2
δψJ r

�
: ð39Þ

We note that, with the condition (37), the terms that are
explicitly proportional to δψ vanish.

III. BLACK HOLES WITH THE STATIC
SCALAR FIELD

In this section, we focus on several classes of the
Horndeski theories giving rise to the BH solutions with
the static scalar field (31).

A. General relativity

For GR with the cosmological constant Λ,

G2 ¼ −
1

8πG
Λ; G4 ¼

1

16πG
; G3 ¼ G5 ¼ 0; ð40Þ

Equation (32) reduces to

−δ
�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr� ¼ −r2

ffiffiffi
h
f

s
δf

8πGr
: ð41Þ

In GR, the Schwarzschild-(A)dS solutions given by

fðrÞ¼ hðrÞ¼ 1−
rg
3r

ð3− r2gΛÞ−
Λ
3
r2; ψðrÞ¼ 0; ð42Þ

are the unique static and spherically symmetric BH solution.
Since rg is only the integration constant, using Eq. (26),
δf ¼ ∂f

∂rg
δrg and δh ¼ ∂h

∂rg
δrg. Evaluating Eq. (28) with use

of Eq. (27), we obtain the first law of thermodynamics,

THðGRÞδSGR ¼ δMGR ¼ 1

2G
ð1 − r2gΛÞδrg; ð43Þ

where the Hawking temperature (29) is given by
THðGRÞ ¼ T0ð1 − r2gΛÞ. Here we introduce the Hawking
temperature of a Schwarzschild BH in GR defined by

T0 ≔
1

4πrg
: ð44Þ

We shall also use the mass and BH entropy of a
Schwarzschild BH in GR given by

M0 ≔
rg
2G

; ð45Þ

S0 ≔
πr2g
G

; ð46Þ

as reference.
Thus, δSGR ¼ 2πrg

G δrg ¼ 1
4G δAH, where AH ≔ 4πr2g is

the area of the BH event horizon, and hence by integrating
it we recover the area law

SGR ¼ S0; ð47Þ

where we set the integration constant so that we have
the vanishing BH entropy SGR → 0 in the limit of the
vanishing horizon radius rg → 0. The mass of the system is
also given by

MGR ¼ M0

�
1 −

1

3
Λr2g
�
; ð48Þ

which coincides with the total mass of the BH, where we
set the integration constant so that we have the vanishing
mass MGR → 0 in the limit of the vanishing horizon radius
rg → 0.

B. Scalar-tensor theory with nonminimal coupling

As the next simplest example, we consider the ST theory
with nonminimal coupling to the scalar curvature

L ¼ ωðϕÞðR − 2VðϕÞÞ þ ηX; ð49Þ
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which is equivalent to the Horndeski theory with

G2¼ηX−2ωðϕÞVðϕÞ; G4¼ωðϕÞ; G3¼G5¼0; ð50Þ

where ωðϕÞ and VðϕÞ are the nonminimal coupling
function and the potential of the scalar field, respectively.
Equation (32) reduces to

−δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
−r2

ffiffiffi
h
f

s
J½tξr�

¼2r2

ffiffiffi
h
f

s ��
−
ωðψÞ
r

−
ψ 0

2
ωð1ÞðψÞ

�
δf

−
f
2h

h
h0ωð1ÞðψÞ−hψ 0ðηþ2ωð2ÞðψÞÞ

i
δψ−fωð1ÞðψÞδψ 0

�
;

ð51Þ

where ωðnÞðϕÞ and VðnÞðϕÞ denote the nð¼ 1; 2;…Þth-
order derivatives of ωðϕÞ and VðϕÞ with respect to ϕ. We
assume that VðϕÞ and ωðϕÞ have their local minima at
ϕ ¼ 0, i.e., Vð1Þð0Þ ¼ 0 and ωð1Þð0Þ ¼ 0. Note that, even if
Vð1Þðϕ0Þ ¼ 0 andωð1Þðϕ0Þ ¼ 0 for an arbitrary constant ϕ0,
we can always make ϕ0 ¼ 0 after a suitable shift of ϕ.
There is the Schwarzschild-(A)dS solution with the trivial
scalar field,

fðrÞ ¼ hðrÞ ¼ 1−
rg
3r

ð3− r2gVð0ÞÞ−
Vð0Þ
3

r2; ψðrÞ ¼ 0:

ð52Þ

Since rg is only the integration constant, using Eq. (26),

δf ¼ ∂f
∂rg

δrg and δh ¼ ∂h
∂rg

δrg. Evaluating Eq. (28) with use

of Eq. (27), we obtain the first law of BH thermodynamics,

THðHÞδSH ¼ δMH ¼ 1

2G
ð1 − r2gVð0ÞÞδrg; ð53Þ

where ωð0Þ ¼ 1=ð16πGÞ with G being the gravitational
constant, and the Hawking temperature (29) is given by

THðHÞ ¼ T0ð1 − r2gVð0ÞÞ. Thus, δSH ¼ 2πrg
G δrg ¼ 1

4G δAH,
where AH ¼ 4πr2g is the area of the BH event horizon,
and hence by integrating it we recover the area law (47).
The mass of the system is given by

MH ¼ M0

�
1 −

1

3
Vð0Þr2g

�
; ð54Þ

which coincides with the mass of the BH.

C. The Einstein scalar-Gauss-Bonnet theory

As one of the nontrivial examples, we consider the
Einstein-scalar-GB (EsGB) theory,

L ¼ 1

16πG
Rþ ηX þ kðϕÞðR2 − 4RαβRαβ þ RαβμνRαβμνÞ;

ð55Þ

which is equivalent to the class of the Horndeski theories
with

G2 ¼ ηX þ 8kð4ÞðϕÞX2ð3 − lnXÞ;
G3 ¼ 4kð3ÞðϕÞXð7 − 3 lnXÞ;

G4 ¼
1

16πG
þ 4kð2ÞðϕÞXð2 − lnXÞ;

G5 ¼ −4kð1ÞðϕÞ lnX; ð56Þ

where kðϕÞ is the coupling function, and kðnÞðϕÞ denotes
the nð¼ 1; 2;…Þth-order derivative of kðϕÞ with respect to
ϕ. This theory has been applied, for instance, to the models
of spontaneous scalarization of BHs [53–68]. Equation (32)
reduces to

−δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
−r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s �
−
rþ32πGð1−3fÞkð1ÞðψÞψ 0

8πGr2
δf

−
f
r2h

	
4ðf−1Þh0kð1ÞðψÞþhψ 0ðr2η−8ðf−1Þkð2ÞðψÞÞ



δψ

þ8fðf−1Þ
r2

kð1ÞðψÞδψ 0
�
: ð57Þ

In the case where the scalar field is regular at the event
horizon, r ¼ rg, and the solutions can be expanded in the
vicinity of r ¼ rg as

hðrÞ ¼ h1ðrgÞðr − rgÞ þ h2ðrgÞðr − rgÞ2

þO
�
ðr − rgÞ3

�
q; ð58Þ

fðrÞ ¼ f1ðrgÞðr − rgÞ þ f2ðrgÞðr − rgÞ2

þO
�
ðr − rgÞ3

�
; ð59Þ

ψðrÞ ¼ ψHðrgÞ þ ψ1ðrgÞðr − rgÞ
þ ψ2ðrgÞðr − rgÞ2 þO

�
ðr − rgÞ3

�
; ð60Þ

where the coefficients hiðrgÞ, fiðrgÞ, and ψ iðrgÞ
(i ¼ 1; 2; 3 � � �) are, in general, functions of rg, and
ψHðrgÞ represents the amplitude at the horizon, which is
also a function of rg. On the horizon r ¼ rg, Eq. (57)
reduces to
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�
−δ
�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
−r2

ffiffiffi
h
f

s
J½tξr�

�
r→rg

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrgÞh1ðrgÞ

p
8πG

�
rgþ32πGkð1Þ½ψHðrgÞ�

∂ψHðrgÞ
∂rg

�
δrg:

ð61Þ

Since the Hawking temperature (29) is given by THðHÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0ðrgÞf0ðrgÞ

p
4π ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1ðrgÞf1ðrgÞ

p
4π , the differential of the BH

entropy is given by

THðHÞδSH

¼
Z

dΩ
�
−δ
�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

�
r→rg

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrgÞh1ðrgÞ

p
2G

�
rgþ32πGkð1Þ½ψHðrgÞ�

∂ψHðrgÞ
∂rg

�
δrg;

ð62Þ

and hence

δSH ¼ 2π

G

�
rg þ 32πGkð1Þ½ψHðrgÞ�

∂ψHðrgÞ
∂rg

�
δrg: ð63Þ

By integrating it, we obtain the BH entropy

SH ¼ π

G

�
r2g þ 64πGk½ψHðrgÞ�

�
¼ S0

�
1þ 64πG

r2g
k½ψHðrgÞ�

�
; ð64Þ

which agrees with the result by applying the standard Wald
entropy formula (see, e.g., Refs. [54,63]). Here, we fix a
constant in integration such that limrg→0 k½ψHðrgÞ� ¼ 0.
We should note that there is an ambiguity in the definition
of the coupling function kðϕÞ by adding an arbitrary
constant. We can use this freedom to satisfy the above
condition.
Thus, the thermodynamic properties of scalarized BHs

also remain the same as those argued in the literature
[54,63]. We emphasize that, although the actions (55) and
(56) are equivalent up to the difference in total derivative
terms, the dependence of the actions on the spacetime
curvature appears to be different. Nevertheless, the results
here indicate that, even though the higher-derivative inter-
actions of the scalar field and the nonminimal derivative
couplings to the spacetime curvature are present in a
description of the theory, by following the original
approach of Iyer and Wald and computing the Noether
charge potential associated with the diffeomorphism invari-
ance, we could reproduce the results independent of the
apparent difference in the action by the total derivative

terms. Wewould like to emphasize that, not only in the case
of the EsGB theories, but also in the case of other classes of
the Horndeski theories, we should have to obtain the same
value of the BH entropy from the two different descriptions
of the same theory, whose actions differ by the total
derivative terms. For instance, we have explicitly confirmed
that the coincident entropy of a BH solution can be
obtained in the two different descriptions of the same
class of the Horndeski theories given by ðG4; G5Þ ¼
ð 1
16πG þ c0X; 0Þ and ðG4; G5Þ ¼ ð 1

16πG ;−c
0ϕÞ with c0 being

constant, which are equivalent to each other up to the total
derivative terms and also equivalent to the scalar-tensor
model with the nonminimal derivative coupling to the
Einstein tensor c0Gμνϕμϕν.
Moreover, since the original action (55) does not include

the higher-derivative interactions and the nonminimal
derivative couplings of the scalar field to the spacetime
curvature, this description may be regarded as the “min-
imal” one. Thus, in general, we expect that the thermody-
namic properties obtained by applying the standard Wald
entropy formula to a minimal description could be obtained
from an equivalent nonminimal description of the same
theory, including the higher-derivative interactions of the
scalar field and/or the nonminimal derivative couplings to
the spacetime curvature, by applying the general scheme
employed in this work originally developed by Iyer
and Wald.

1. Non-shift-symmetric EsGB theory

By solving the set of the equations of motion near the
horizon r ¼ rg, ψ1 in Eq. (60) can be found as [50–52]

ψ1 ¼
1

64πGrgkð1Þ½ψHðrgÞ�

×

"
−r2g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4g −

1536πGkð1Þ½ψHðrgÞ�2
η

s #
; ð65Þ

wherewe choose the branch that recovers the Schwarzschild
solution in the limit of kð1Þ½ψHðrgÞ� → 0. Thus, in order for a
nontrivial BH solution to exist, we have to impose

r4g ≥
1536πGkð1Þ½ψHðrgÞ�2

η
: ð66Þ

Let us consider the limit of the absence of the BH horizon

rg → 0. Assuming the regularity of ∂ψHðrgÞ
∂rg

in the limit of

rg → 0, i.e., ψHðrgÞ does not blow up as rg → 0, in the
same limit, the second term in the differential (63) vanishes
faster than the first term. Hence, we obtain the vanishing
entropy as the usual area law, by choosing the integration
constant so that SH → 0 in the limit of rg → 0.
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In the large distance regions r → ∞, the general vacuum
solution in the EsGB theory (55) can be expanded as

hðrÞ¼ 1−
2MðrgÞ

r
þ4πGηMðrgÞQðrgÞ2

3r3
þO

�
1

r4

�
; ð67Þ

fðrÞ ¼ 1 −
2MðrgÞ

r
þ 4πηGQðrgÞ2

r2
þ 4πGηMðrgÞQðrgÞ2

r3

þO
�
1

r4

�
; ð68Þ

ψðrÞ ¼ ψ∞ðrgÞ þ
QðrgÞ
r

þMðrgÞQðrgÞ
r2

−
QðrgÞ½−4MðrgÞ2 þ 2πGηQðrgÞ2�

3r3

þO
�
1

r4

�
; ð69Þ

where we assume that the asymptotic amplitude ψ∞ðrgÞ,
the Arnowitt-Deser-Misner (ADM) mass MðrgÞ, and the
scalar charge QðrgÞ are the pure functions of the horizon
radius rg. From Eq. (57), we obtain the differential of the
energy

δM ¼
Z

dΩ
�
−δ
�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

�
r→∞

¼ 1

G
ðM0ðrgÞ þ 4πGηQðrgÞψ 0

∞ðrgÞÞδrg: ð70Þ

In addition to a nontrivial hairy BH solution, we find a
trivial Schwarzschild BH solution with ϕ ¼ ϕ0 (constant)
when the coupling function kðϕÞ in the EsGB theory allows
the existence of ϕ0 such that kð1Þðϕ0Þ ¼ 0. On the other
hand, if kð1ÞðϕÞ ≠ 0 for any values of the scalar field ϕ, a
trivial Schwarzschild spacetime is no longer a solution in
EsGB theory. We find only a nontrivial hairy BH solution.

2. Shift-symmetric EsGB theory

In the shift-symmetric EsGB theories kðϕÞ ¼ αϕ, where
α is the constant, Eq. (64) reduces to

SH ¼ π

G
ðr2g þ 64πGαψHÞ ¼ S0

�
1þ 64παG

r2g
ψH

�
: ð71Þ

Although even in the shift-symmetric theories the general
BH solution could be expanded in the vicinity of the event
horizon r ¼ rg as Eqs. (58)–(60), ψH does not have any
physical meaning and hence is not a solution of rg. Thus,
we may set the second term in Eq. (71) to zero, by requiring
that SH → 0 in the limit of rg → 0. We then recover the area
law SH ¼ S0 given by Eq. (47). We note that in the shift-
symmetric 4D scalar-tensor Einstein-GB theories, recently

it was argued that the BH entropy is also given by the area
law [83].
In the large distance regions r → ∞, in the expansion

(67)–(69), ψ∞ also has no physical dependence on rg in the
shift-symmetric theories, and hence Eq. (70) reduces to

δM ¼ M0ðrgÞ
G δrg. By integrating this, M ¼ MðrgÞ

G , namely,
the thermodynamic energy coincides with the ADM mass.

D. The irrational coupling model

Finally, we consider the irrational coupling model,

G2 ¼ ηX−
Λ

8πG
; G4 ¼

1

16πG
þαð−XÞ12; G3¼G5¼ 0:

ð72Þ
Equation (32) reduces to

− δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s �
−

1

8πGr
δf þ J rδψ

�
: ð73Þ

Requiring that the radial component of the Noether current
associated with the shift symmetry vanishes,

J r ¼ −ηfðrÞψ 0ðrÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2fðrÞp

α

r2
¼ 0; ð74Þ

the term proportional to δψ in Eq. (73) vanishes, and hence

Eq. (73) reduces to −δðr2
ffiffi
h
f

q
K½tr�

ðξÞ Þ−r2
ffiffi
h
f

q
J½tξr�¼− r

8πGδf.

As the vacuum solution satisfying Eq. (74), there exists the
exact BH solution [49]

fðrÞ ¼ hðrÞ ¼ 1−
8πGα2

r2η
−
Λ
3
r2−

1

r

�
rg−

8πGα2

ηrg
−
Λr3g
3

�
;

ψ 0ðrÞ ¼
ffiffiffi
2

p
α

r2η
ffiffiffiffiffiffiffiffiffi
fðrÞp : ð75Þ

Following similar steps, evaluating Eq. (28) with use of
Eq. (27), we obtain the first law of BH thermodynamics,

THðHÞδSH ¼ δMH ¼ δrg
2G

�
1 − r2gΛþ 8πGα2

ηr2g

�
; ð76Þ

where the Hawking temperature (29) of the Horndeski BHs
is given by

THðHÞ ¼ T0

�
1 − r2gΛþ 8πGα2

ηr2g

�
: ð77Þ

By integrating δSH ¼ 2πδrg=G, we obtain the area law
(47), where we set the integration constant so that we have
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SH → 0 in the limit of the vanishing horizon radius rg → 0.
The mass of the system is given by

MH ¼ M0

�
1 −

8πGα2

ηr2g
−
Λr2g
3

�
; ð78Þ

which coincides with the total mass of the BH. We note that
the contribution of the scalar field to the ADMmass, which
corresponds to the second term in Eq. (78), is always
negative, as long as the kinetic term of the scalar field has
the correct sign η > 0. This indicates the onset of the ghost
instability, which has been observed in the linear stability
analysis of the solution (75) performed in Ref. [72].
Since the Schwarzschild-(A)dS metric with the trivial

scalar field is not a solution in the theory (72), there is no
other counterpart to compare thermodynamic quantities.

IV. BLACK HOLES WITH LINEARLY
TIME-DEPENDENT SCALAR FIELD

A. Shift- and reflection-symmetric theories
without cosmological constant

We first focus on subclass of the shift- and reflection-
symmetric Horndeski theories, which is invariant under
the transformations ϕ → ϕþ c, with c being constant and
ϕ → −ϕ, and explicitly given by

G2 ¼ G2ðXÞ; G4 ¼ G4ðXÞ; G3 ¼ G5 ¼ 0: ð79Þ

We assume the static and spherically symmetric spacetime
(24) and the linearly time-dependent scalar field (35). In
this case, Eq. (39) reduces to

−δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s �
−
2δf
r

G4−
4fψ 0

r
ðfδψ 0 þψ 0δfÞG4X

þ2f2ψ 02

rh2
fq2δhþh2ð2fψ 0δψ 0 þψ 02δfÞgG4XX

�
: ð80Þ

We focus on the stealth Schwarzschild solution [38,39],
given by

f ¼ h ¼ 1 −
rg
r
; X ¼ q2

2
;

ψðrÞ ¼ 2q
ffiffiffiffi
rg

p 	 ffiffiffi
r

p
− ffiffiffiffi

rg
p

arctanh

� ffiffiffiffi
rg
r

r �

; ð81Þ

which exists under the conditions

G2

�
q2

2

�
¼ G2X

�
q2

2

�
¼ 0: ð82Þ

Evaluating Eq. (28) with use of Eq. (27), we obtain the first
law of thermodynamics,

THðHÞδSH ¼ δMH

¼ 8π

�
G4

�
q2

2

�
− q2G4X

�
q2

2

��
δrg: ð83Þ

Since the Hawking temperature (29) is given by THðHÞ ¼
T0 ¼ 1

4πrg
, by integrating δSH with respect to rg, we obtain

the BH entropy

SH ¼ 16πGS0

�
G4

�
q2

2

�
− q2G4X

�
q2

2

��
; ð84Þ

where S0 is defined in Eq. (46), and we set the integration
constant so that we have the vanishing BH entropy SH → 0
in the limit of the vanishing horizon radius rg → 0. On the
other hand, by integrating δMH with respect to rg, we
obtain the mass of the system,

MH ¼ 16πGM0

�
G4

�
q2

2

�
− q2G4X

�
q2

2

��
; ð85Þ

where M0 is defined in Eq. (45), and we set the integration
constant so that we have the vanishing massMH → 0 in the
limit of the vanishing horizon radius rg → 0.
For a more explicit comparison, we consider the specific

model [38],

G2ðXÞ ¼ 0; G4ðXÞ ¼
1

16πG
þ βX; ð86Þ

which trivially satisfies the conditions (82). The BH entropy
and total mass of the system of the stealth Schwarzschild
solutions, Eqs. (84) and (85), respectively, reduce to

SH ¼ S0ð1− 8πGq2βÞ; MH ¼M0ð1− 8πGq2βÞ: ð87Þ

In the same theory (86), there is also the GR Schwarzschild
solution with the trivial scalar field, with the BH entropy
and mass,

SGR ¼ S0; MGR ¼ M0; ð88Þ

respectively. We will discuss the thermodynamic properties
of the stealth Schwarzschild solutions in Sec. VA.

B. Shift- and reflection-symmetric theories
with cosmological constant (Λ ≠ 0)

We focus on the specific shift- and reflection-symmetric
subclass of the Horndeski theories (79), such that

G2ðXÞ ¼ ηX −
Λ

8πG
; G4ðXÞ ¼

1

16πG
þ βX; ð89Þ
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where Λ is the cosmological constant and β is the coupling
constant. We assume the static and spherically symmetric
spacetime (24) and the linearly time-dependent scalar field
(35). Then, Eq. (39) reduces to

− δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s
1

r2h

�
−4rβf2hψ 0δψ 0

− r
	
q2β þ h

�
1

8πG
þ 3βfψ 02

�

δf
�
: ð90Þ

There exist the Schwarzschild-(A)dS solutions

fðrÞ ¼ hðrÞ ¼ 1 −
Λ̄
3
r2 −

rg
r

�
1 −

Λ̄
3
r2g

�
;

ψ 0ðrÞ ¼ q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hðrÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞhðrÞp ; ð91Þ

with the conditions

Λ̄ ≔ −
η

2β
; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ 2βΛ
16πGβη

s
: ð92Þ

Thus, for β > 0 (β < 0), we obtain the Schwarzschild-AdS
(dS) solutions.
Assuming that η > 0 and G > 0, for non-negativity

inside the square root of q, we require

Λ ≥ Λ̄: ð93Þ

Evaluating Eq. (28) with use of Eq. (27), we obtain the first
law of BH thermodynamics,

THðHÞδSH ¼ δMH ¼ −
ð2β þ r2gηÞð−ηþ 2βΛÞ

8Gβη
δrg; ð94Þ

and the Hawking temperature (29) is given by

THðHÞ ¼
2β þ r2gη

8πrgβ
¼ T0

�
1þ η

2β
r2g

�
: ð95Þ

Thus, the BH entropy for the Schwarzschild-(A)dS sol-
utions in the Horndeski theory is given by

SH ¼ πr2g
2ηG

ðη − 2βΛÞ ¼ S0
2

�
1 −

2β

η
Λ
�
; ð96Þ

where we set the integration constant so that we have
SH → 0 in the limit of the vanishing horizon radius rg → 0.

In this theory (89), there is also the GR Schwarzschild-
(A)dS solution,

fGRðrÞ ¼ hGRðrÞ

¼ 1 −
Λ
3
r2 −

rg
r

�
1 −

Λ
3
r2g

�
; ψ 0ðrÞ ¼ 0; ð97Þ

irrespective of β and η, the BH entropy is given by
SGR ¼ S0. In the limit of Λ ¼ Λ̄, where q ¼ 0 and the
scalar field is trivial, we recover the Schwarzschild-(A)dS
solutions in GR and obtain the area law (47).
On the other hand, the mass of the system is given by

MH ¼ rgðη − 2βΛÞðr2gηþ 6βÞ
24Gβη

¼ M0

2

�
1 −

2β

η
Λ
��

1þ η

6β
r2g

�
; ð98Þ

where we set the integration constant so that we have
MH → 0 in the limit of the vanishing horizon radius
rg → 0, which disagrees with the total mass of the stealth
BH given by

MBH ¼ rg
12βG

ðr2gηþ 6βÞ ¼ M0

�
1 −

Λ̄
3
r2g

�
; ð99Þ

except for Λ ¼ Λ̄. For the GR Schwarzschild-(A)dS BHs
(97), we obtain MGR ¼ M0ð1 − Λ

3
r2gÞ. We will discuss the

thermodynamic properties of the Schwarzschild-(A)dS
solutions in Sec. V B.

C. Shift-symmetric theories with the coincident
speeds of GWs with the speed of light

Finally, we focus on the subclass of the shift-symmetric
Horndeski theories satisfying the requirement that the
propagation speed of GWs is equal to the speed of light,
i.e., cgw ¼ c, whose Lagrangian density is given by

L ¼ 1

16πG
Rþ G2ðXÞ −G3ðXÞ□ϕ: ð100Þ

We assume the static and spherically symmetric spacetime
(24) and the linearly time-dependent scalar field (35). In
this case, Eq. (39) reduces to

− δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s ��
−

1

8πGr
−
f
2
G3Xψ

03
�
δf −

q2fψ 0

2h2
G3Xδh

− f2G3Xψ
02δψ 0

�
: ð101Þ
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We focus on the stealth Schwarzschild solution (81), which
exists under the conditions

G2

�
q2

2

�
¼ G2X

�
q2

2

�
¼ G3X

�
q2

2

�
¼ 0; ð102Þ

where Eq. (101) further reduces to

−δ
�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr� ¼ r2

ffiffiffi
h
f

s
1

8πGr
δf: ð103Þ

Evaluating Eq. (28) with use of Eq. (27), we obtain the first

law of thermodynamics THðHÞδSH ¼ δMH ¼ drg
2G, where

THðHÞ ¼ T0 from Eq. (29). By integrating them, the mass
and entropy are, respectively, given by

MH ¼ M0; SH ¼ S0; ð104Þ

where we set the integration constant so that we have
SH → 0 and MH → 0 in the limit of rg → 0. Hence, we
conclude that both BH solutions are equally stable from the
viewpoint of BH thermodynamics.

V. THERMODYNAMICAL INSTABILITY
OF BLACK HOLES WITH LINEARLY
TIME-DEPENDENT SCALAR FIELD

As for application of the results presented in Sec. IV, we
discuss thermodynamical instability by use of the BH
entropy. When some gravitational theory contains two
(or more) BH solutions, the comparison of the BH entropy
will tell us which BH solution is thermodynamically
favored. In GR, the uniqueness of the Kerr(-Newman)
BH solution is not held when we include non-Abelian field
and/or other fields. In this case, there exist hairy BH
solutions such as colored BHs [84–87]. We can then study
their stability by a perturbation analysis whose result is
consistent with the simple argument by thermodynamical
analysis; that is, if the entropy of the first BH solution is
smaller than that of the second BH solution, at least the first
black hole is thermodynamically unstable [88–92].
In the present Horndeski theories, we may discuss

thermodynamical instability when there exist two or more
BH solutions. As we discussed in Sec. IV, there are BH
solutions with a linearly time-dependent scalar field.
In this section, we discuss thermodynamical stability of
those BHs. Especially, for the BH solutions discussed in
Secs. IVA and IV B, it is argued that perturbations around
them are infinitely strongly coupled, and the linear pertur-
bation theory could not be trusted at the arbitrary low
energy scales [74,75]. Thus, the stability of the stealth
solution is unclear at the level of the linearized analysis.
However, through the analysis presented in this subsection,
we will mention the thermodynamical instabilities of these
solutions.

A. Shift- and reflection-symmetric theories
without cosmological constant (Λ= 0)

In this subsection, we consider the Horndeski theory
given by Eq. (86). When we assume a linearly time-
dependent scalar field, there exist two Schwarzschild
solutions: one is the GR Schwarzschild BH with the mass
and entropy given by Eq. (88) and the other is the stealth
Schwarzschild BH (the Horndeski Schwarzschild BH)
with mass and entropy given by (87). When we compare
these two entropies (SGR; SH) at the same mass value
MGR ¼ MH, we can easily find

SH ¼ SGR
1 − 8πGq2β

: ð105Þ

Hence, we obtain the following results:

�
SH > SGR when β > 0;

SH < SGR when β < 0:
ð106Þ

As a result, we conclude that the Horndeski Schwarzschild
BH is more thermodynamically stable than the GR
Schwarzschild BH when β > 0, while the result is the
opposite if β < 0.

B. Shift- and reflection-symmetric theories
with cosmological constant (Λ ≠ 0)

Here we discuss the Horndeski theory given by Eq. (89).
When we assume a linearly time-dependent scalar field,
there exist the two Schwarzschild-(A)dS solutions: one is
the Schwarzschild-(A)dS solution with the cosmological
constant Λ, and the other is that with the effective
cosmological constant Λ̄ ¼ −η=2β given by Eq. (92).
We have two different Schwarzschild-(A)dS solutions as
discussed before and summarize the thermodynamical
variables for two BH solutions as follows:

(i) Schwarzschild-(A)dS solution with Λ [GR
Schwarzschild-(A)dS BH],

mass∶MGR ¼ M0

�
1 −

Λr2g
3

�
;

entropy∶ SGR ¼ S0;

temperature∶ THðGRÞ ¼ ð1 − Λr2gÞT0; ð107Þ

where M0 and S0 are defined in Eqs. (45) and (46),
and T0 ≔ 1

4πrg
represents the Hawking temperature

in the Schwarzschild background with the horizon
radius rg.
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(ii) Schwarzschild-(A)dS solution with Λ̄ [Horndeski
Schwarzschild-(A)dS BH],

mass∶MH ¼ M0

�
1 −

Λ̄r2g
3

�
Λþ Λ̄
2Λ̄

;

entropy∶ SH ¼ S0
Λþ Λ̄
2Λ̄

;

temperature∶ THðHÞ ¼ ð1 − Λ̄r2gÞT0: ð108Þ

Since Λ ≥ Λ̄, we can classify the solutions into three cases:
(1) Λ ≥ Λ̄ > 0 (β < 0), (2) Λ > 0; Λ̄ < 0 (β > 0), and
(3) 0 > Λ ≥ Λ̄ (β > 0). In case 1, two BH solutions are
Schwarzschild-dS solutions, while in case 3, we find
two Schwarzschild-AdS solutions. We shall discuss their
thermodynamical instabilities below. For case 2, since one
is the Schwarzschild-dS solution and the other is the
Schwarzschild-AdS solution, the boundary conditions are
completely different. We may not expect any phase
transition between them. We introduce the curvature radii
l and l, which are defined by l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3=ϵΛΛ
p

and

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ϵΛ̄Λ̄

p
, where ϵΛ and ϵΛ̄ are the signs of Λ and

Λ̄, respectively.

1. Λ ≥ Λ̄ > 0

In this case, l ≤ l, and the thermodynamical variables
are given by

MGR ¼ M0

�
1 −

r2g
l2

�
; SGR ¼ S0;

THðGRÞ ¼
�
1 −

3r2g
l2

�
T0; ð109Þ

MH ¼ M0

�
1 −

r2g
l2

�
l2 þ l2

2l2
; SH ¼ S0

l2 þ l2

2l2
;

THðHÞ ¼
�
1 −

3r2g
l2

�
T0: ð110Þ

In order to discuss thermodynamical stability, we plot the
mass-entropy diagram, which is given in Fig. 1 for the case
of l=l ¼ 1.1.
For a given mass M, the entropy of the GR

Schwarzschild-dS BH with Λ is always larger than that
of the Horndeski Schwarzschild-dS BH with Λ̄. This
means that the Horndeski Schwarzschild-dS BH is more
thermodynamically unstable than the GR Schwarzschild-
dS BH. We expect thermodynamical phase transition
from the Horndeski Schwarzschild-dS BH to the GR
Schwarzschild-dS BH. Since there exists a scalar field ϕ
outside the Horndeski Schwarzschild-dS BH, the scalar
field propagates away to infinity when the transition occurs.
If the entropy is conserved, the mass energy decreases by
the emission of a scalar field. In general, we expect that the

entropy increases as well as the mass energy decreases, and
the Horndeski Schwarzschild-dS BH transits to the GR
Schwarzschild-dS BH in the upper-left direction in the
diagram.

2. Λ̄ ≤ Λ < 0

In this case, both BHs are described by the
Schwarzschild-AdS solutions with l ≥ l, and the thermo-
dynamical variables are given by

MGR ¼ M0

�
1þ r2g

l2

�
; SGR ¼ S0;

THðGRÞ ¼
�
1þ 3r2g

l2

�
T0; ð111Þ

MH ¼ M0

�
1þ r2g

l2

�
l2 þ l2

2l2
; SH ¼ S0

l2 þ l2

2l2
;

THðHÞ ¼
�
1þ 3r2g

l2

�
T0: ð112Þ

We plot the mass-entropy diagram, which is given for
the case of l=l ¼ 0.9 [in Fig. 2(a)] and 0.1 [in Figs. 2(b)
and 2(c)].
In this case, two curves SGRðMÞ and SHðMÞ intersect at

some critical mass MGR-H, beyond which SGR > SH. In an
asymptotically AdS spacetime, there exists another critical
mass MHP, below which the Schwarzschild-AdS BH
evaporates to thermal radiation in AdS space via the
Hawking-Page transition [93]. In the present case, since
there are two Schwarzschild-AdS BH solutions, we find
two critical masses,MHPðGRÞ andMHPðHÞ, corresponding to
the GR Schwarzschild-AdS BH and the Horndeski
Schwarzschild-AdS BH, respectively. We find that
MHPðGRÞ > MHPðHÞ. In the limit of l → l, the critical

FIG. 1. The entropy of the GR Schwarzschild-dS BH (the red
curve) and that of the Horndeski Schwarzschild-dS BH (the blue
curve) in terms of the mass.
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horizon radius rgGR-H becomes l=
ffiffiffi
5

p
, which is smaller than

the HP transition radius rgHPðGRÞ ¼ l=
ffiffiffi
3

p
. We then find

MGR-H < MHPðGRÞ. As a result, we can classify into two
cases: (1)MHPðGRÞ >MHPðHÞ >MGR-H, and (2)MHPðGRÞ >
MGR-H > MHPðHÞ. If rcr < l=l < 1, we find case 1, while
when 0 < l=l < rcr, we obtain case 2. The critical
value rcr is given by the root of the equation
r6cr þ 3r4cr þ 16r2cr − 4 ¼ 0, i.e., rcr ≈ 0.48835. We then
find the following various evolution scenarios depending
the coupling constants:

(i) Case (1), rcr < l=l < 1: Below MGR-H, we find
only thermal radiation in AdS space, in which the
effective cosmological constant is fixed by Λ̄, while
in the range of MGR-H < M < MHPðHÞ, it is also
thermal radiation in AdS space but with the cos-
mological constant Λ. In the range of MHPðGRÞ >
M > MHPðHÞ, the Horndeski Schwarzschild-AdS
BH will evaporate via the Hawking-Page transition,
finding thermal radiation in AdS space but with the
cosmological constant Λ. When M > MHPðGRÞ, the
Horndeski Schwarzschild-AdS BH will evolve into
the GR Schwarzschild-AdS BH via thermal phase
transition.

(ii) Case (2), 0 < l=l < rcr: Below MHPðHÞ, we find
only thermal radiation in AdS space, in which the
effective cosmological constant is fixed by Λ̄ just as
in case 1. In the range ofMHPðHÞ < M < MGR-H, we
find the transition from thermal radiation in AdS
space with Λ into the stable Horndeski Schwarzs-
child-AdS BH. In the range of MHPðGRÞ > M >
MHPðHÞ, the Horndeski Schwarzschild-AdS BH will
evaporate into thermal radiation in AdS spacewithΛ.
WhenM > MHPðGRÞ, the Horndeski Schwarzschild-
AdS BHwill evolve into the GR Schwarzschild-AdS
BH via thermal phase transition just as in case 1.

C. Relation between the cases of Λ= 0 (Sec. V A)
and of Λ ≠ 0 (Sec. V B)

In order to discuss the relation between the
Schwarzschild BH and Schwarzschild (A)dS BH discussed
in the two previous subsections, we rewrite the mass and
entropy by use of β and q. From Eq. (92), we find

l2 þ l2

2l2
¼ Λ̄þ Λ

2Λ̄
¼ 1 − 8πGq2β: ð113Þ

Using this relation and Eqs. (109)–(112), we obtain the
relation between the masses MGR and MH and that of the
entropies SGR and SH as

MGR ¼ M0

�
1 ∓ r2g

l2

�
; SGR ¼ S0; ð114Þ

MH ¼ M0

�
1 ∓ r2g

l2

�
ð1 − 8πGq2βÞ;

SH ¼ S0ð1 − 8πGq2βÞ; ð115Þ

where ∓ correspond to the Schwarzschild-dS BH and
Schwarzschild-AdS BH, respectively. When we take the
limit of Λ; Λ̄ → 0ðl;l → ∞Þ, we find the same relation
(87) of the masses and entropies of the stealth
Schwarzschild BH and GR Schwarzschild BH.
As discussed in Sec. V B, for the Schwarzschild-AdS

BH (β > 0), SH > SGR in the small mass limit, while for the
Schwarzschild-dS BH (β < 0), the relation becomes the
opposite, which is consistent with thermodynamical insta-
bility of the Schwarzschild BH discussed in Sec. VA.
We note that the Schwarzschild BH does not show the
Hawking-Page transition, and the BH with larger entropy
becomes more stable than the other.

FIG. 2. The entropy of the GR Schwarzschild-AdS BH (the red curve) and that of the Horndeski Schwarzschild-AdS BH (the blue
curve) in terms of the mass: (a) the case of l=l ¼ 0.9; (b) for l=l ¼ 0.1; (c) the enlarged version of (b). The dotted curves are thermal
AdS phases via Hawking-Page transition, while the solid curves denote “large” Schwarzschild-AdS BH phases.
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VI. BLACK HOLE THERMODYNAMICS
OF CHARGED BLACK HOLES

BH solutions discussed so far contained only one
independent charge, i.e., the mass of the BH, or equiv-
alently, the radius of the BH event horizon. In order to
discuss BH thermodynamics with two or more independent
charges, in this section we will focus on the Horndeski
theories minimally coupled to the Uð1Þ-invariant vector
field. In such theories, BH solutions could contain at least
two independent charges, the mass and electric (and/or
magnetic) charges. Here, we will focus on the electrically
charged BH solution as an extension of the earlier
work [81].
We will extend the general formulation presented in

Sec. II and derive the Noether change potential associated
with the diffeomorphism invariance, including the contri-
bution of the general Uð1Þ-invariant vector field. We will
then apply our formulation to static and spherically
symmetric charged BH solutions and obtain the variations
of the Hamiltonian evaluated at the horizon and in the
spatial infinity. As a concrete example of charged BH
solutions, we will consider the extension of the irrational
coupling model discussed in Sec. III D minimally coupled
to the ordinary Maxwell field. We show that in this model
the differential of the BH entropy is integrable and the first
law of the BH thermodynamics is recovered.
We will then consider the general reflection- and shift-

symmetric class of the Horndeski theories minimally
coupled to the Maxwell field and clarify the general
conditions under which the differential of the BH entropy
is integrable in the presence of the two independent
charges.

A. The Noether charge potential with the
Uð1Þ-invariant vector field

We consider the Horndeski theory minimally coupled to
a Uð1Þ-invariant vector field,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
 X5

i¼2

Li þGAðF Þ
!
; ð116Þ

where Li (i ¼ 2, 3, 4, 5) are given given by (3)–(6), and
GAðF Þ is the generalUð1Þ-invariant Lagrangian density for
the vector field Aμ given as the general function of

F ≔ −
1

4
gαβgμνFαμFβν; ð117Þ

with Fμν ≔ ∂μAν − ∂νAμ being the electromagnetic field
strength. The variation of the action (116) is given by

δS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðEμνδgμν þ Eϕδϕ

þ∇νðGA;FFν
μÞδAμ þ∇μJμÞ; ð118Þ

where the equation of motion of the vector field is given by
∇νðGA;FFν

μÞ ¼ 0 with GA;F ≔ ∂GA
∂F , and the boundary

current is given by

Jμ ¼
X5
i¼2

JμðiÞ þ JμA; ð119Þ

where JμðiÞ (i ¼ 2; 3; 4; 5) is given by Eqs. (9)–(12), and

JμA ≔ −GA;FFμνδAν: ð120Þ

We also define the dual 3-form to Jμ as in Eq. (14).
Under the diffeomorphism transformation, xμ →

xμ þ ξμðxμÞ, the variations of the metric and scalar field
are given by Eq. (15) and that of the vector field is given by
δξAμ ¼ ξσ∇σAμ þ Aσ∇μAσ , respectively. Using the back-
ground equations of motion, under the diffeomorphism
transformation, we obtain

JμðξÞ−ξμL¼2∇νK
½νμ�
ðξÞ ¼2∇ν

 X5
i¼2

K½νμ�
ðiÞðξÞ þK½νμ�

AðξÞ

!
; ð121Þ

where each individual contribution from the Horndeski
theories is given by Eqs. (17)–(20), and the Noether charge
potential for the vector field is given by

Kμν
ðξÞA ¼ 1

2
GA;FFμνAσξ

σ; ð122Þ

respectively. We then define the dual 2-form of the Noether
charge potential Kμν

ðξÞ as in Eq. (21), and the 2-form tensor

where the first index ofΘναβ defined in Eq. (14) is contracted
by the infinitesimal diffeomorphism transformation ξν, by
Eq. (22). We then consider the variation of the dual Noether
charge potential with respect to the physical parameters
subtracted by Eq. (22) as in Eq. (23). The integration of
Eq. (23) on the boundaries of theCauchy surface gives rise to
the variation of the Hamiltonian [76,79].
As the background, we consider the static and spheri-

cally symmetric solutions whose metric is written by
Eq. (24), where the functions hðrÞ and fðrÞ contain the
common largest root at r ¼ rg > 0 corresponding to the
position of the BH event horizon, and fðrÞ > 0 and
hðrÞ > 0 for r > rg. For the scalar field, we focus on the
static Ansatz (31) for simplicity. For the Uð1Þ-invariant
vector field, we assume the following Ansatz:

Aμ ¼ ðA0ðrÞ; 0; 0; 0Þ; ð123Þ
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which only gives rise to the electric field Frt ¼ A0
0ðrÞ.

We choose the gauge such that the value of A0ðrÞ vanishes
on the horizon r ¼ rg, i.e., A0ðrgÞ ¼ 0. We assume
that ξμ corresponds to the timelike Killing vector field,
ξμ ¼ ð1; 0; 0; 0Þ.
The variations in terms of the integration constants can

be written as Eq. (26) and δA0ðrÞ ¼
P

j
∂A0ðrÞ
∂cj

δcj, where
cj’s are integration constants of the BH solutions, which
include the position of the event horizon rg and the electric
charge Q. With use of Eq. (23), the variation of the
Hamiltonian with respect to the integration constants is
given by the contributions from the horizon r → rg and
infinity r → ∞, δH ¼ δH∞ − δHH, where δH∞ and δHH
are given by Eq. (27). The conservation of the Hamiltonian
H ¼ 0 yields

δH∞ ¼ δHH: ð124Þ

B. The Einstein-Maxwell theory

As the simplest example without the dynamical scalar
field ϕ ¼ 0, we consider the Einstein-Maxwell theory with
the cosmological constant Λ,

G2¼−
Λ

8πG
G4¼

1

16πG
; G3¼G5¼0;GA¼F ; ð125Þ

under which Eq. (32) reduces to

− δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s �
−
	

1

8πGr
þA0ðrÞA0

0ðrÞ
2hðrÞ



δfðrÞ

þ fðrÞA0ðrÞA0
0ðrÞ

2hðrÞ2 δhðrÞ−A0ðrÞfðrÞ
hðrÞ δA0

0ðrÞ
�
: ð126Þ

In the theory (125), there exists the Reissner-Nordström–de
Sitter solution,

fðrÞ ¼ hðrÞ

¼ 1 −
Λ
3
r2 þ 1

r

�
rg
3
ð−3þ r2gΛÞ −

4πGQ2

rg

�

þ 4πGQ2

r2
; A0ðrÞ ¼ Q

�
1

r
−

1

rg

�
; ð127Þ

which satisfies the gauge condition A0ðrgÞ ¼ 0.
The variation of the Hamiltonian on the horizon r ¼ rg

yields

δHH ¼ THðHÞδSH ¼ δrg
2G

	
1 − r2gΛ −

4πGQ2

r2g



; ð128Þ

where the Hawking temperature (29) is given by

THðHÞ ¼ T0ð1 − r2gΛ − 4πGQ2

r2g
Þ. Thus, we obtain the inte-

grable relation δSH ¼ ð2πrg=GÞδrg, as the proportionality
coefficient ð2πrg=GÞ does not depend on the electric charge
Q. As a consequence, we obtain the area law Eq. (47),
where we set the integration constant so that we have
SH → 0 in the limit of the vanishing horizon radius rg → 0.
The variation of the Hamiltonian at the infinity r → ∞

yields

δH∞ ¼ ∂MH

∂rg
δrg ¼ δMH −

∂MH

∂Q
δQ

¼ δMH −ΦHδQ; ð129Þ

whereΦH ≔ −4πðA0ðr→∞Þ−A0ðrgÞÞ ¼ −4πA0ðr→∞Þ
describes the difference in the electric potential between the
infinity r → ∞ and the horizon r ¼ rg,

2 and the mass of the
total system is given by

MH ¼ M0

�
1þ 4πGQ2

r2g
−
Λr2g
3

�
; ð130Þ

which coincides with the total ADM mass of the BH
spacetime. The conservation of the Hamiltonian H ¼ 0,
Eq. (124), yields the first law of thermodynamics for the
electrically charged BH,

THðHÞδSH ¼ δMH −ΦHδQ: ð131Þ

C. The irrational coupling model with the
Uð1Þ-invariant vector field

We then consider the irrational coupling model with the
minimally coupled Uð1Þ-invariant vector field,

G2 ¼ ηX −
Λ

8πG
; G4 ¼

1

16πG
þ αð−XÞ12;

G3 ¼ G5 ¼ 0; GA ¼ F ; ð132Þ

under which Eq. (32) reduces to

2If we choose another gauge condition for A0ðrÞ such that
A0ðrgÞ ≠ 0, the variation of the Hamiltonian at r ¼ rg, δHH ,
includes a term proportional to δQ as well as the right-hand side
of Eq. (128). However, the same term proportional to δQwill also
appear in the variation of the Hamiltonian in the limit of r → ∞,
δH∞, as well as the terms in Eq. (129). Thus, in the conservation
of the Hamiltonian (124) this gauge-dependent term proportional
to δQ cancels, leading to the first law of BH thermodynamics as
Eq. (131), as expected.
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− δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s �
−
	

1

8πGr
þ A0ðrÞA0

0ðrÞ
2hðrÞ



δfðrÞ

þ fðrÞA0ðrÞA0
0ðrÞ

2hðrÞ2 δhðrÞ − fðrÞA0ðrÞ
hðrÞ δA0

0ðrÞ

þ J rδψðrÞ
�
; ð133Þ

where the radial component of the Noether current asso-
ciated with the shift symmetry J r is given by Eq. (74). We
note that the model (132) corresponds to an extension of
Eq. (72) with the Maxwell field, discussed in Sec. III D.
There exists the exact BH solution with the electric
charge Q,

fðrÞ ¼ hðrÞ

¼ 1−
Λ
3
r2 þ 1

r

�
rg
3
ð−3þ r2gΛÞ−

4πG
rg

�
Q2 −

2α2

η

��

þ 4πG
r2

�
Q2 −

2α2

η

�
;

ψ 0ðrÞ ¼
ffiffiffi
2

p
α

r2η
ffiffiffiffiffiffiffiffiffi
fðrÞp ; A0ðrÞ ¼ Q

�
1

r
−

1

rg

�
; ð134Þ

which satisfies A0ðrgÞ ¼ 0.
The variation of the Hamiltonian on the horizon r ¼ rg

yields

δHH ¼ THðHÞδSH ¼ δrg
2G

	
1 − r2gΛ −

4πG
r2g

�
Q2 −

2α2

η

�

;

ð135Þ

where the Hawking temperature (29) is given by
THðHÞ ¼ T0ð1 − r2gΛ − 4πG

r2g
ðQ2 − 2α2

η ÞÞ. As in the case of

the Einstein-Maxwell theory, in Eq. (135), the terms
proportional to the variation δQ vanish. We obtain the
integrable relation δSH ¼ ð2πrg=GÞδrg and the proportion-
ality coefficient ð2πrg=GÞ does not depend on the electric
charge Q, and as a consequence, we obtain the area law
(47) in spite of the existence of the two independent
charges.
The variation of the Hamiltonian at the infinity r → ∞

yields Eq. (129), where ΦH ¼ −4πA0ðr → ∞Þ in our
gauge condition describes the difference in the electric
potential between the infinity r → ∞ and the horizon
r ¼ rg, and the mass of the system is given by

MH ¼ M0

�
1þ 4πG

r2g

�
Q2 −

2α2

η

�
−
Λr2g
3

�
; ð136Þ

which coincides with the total ADM mass of the BH
spacetime. The conservation of the Hamiltonian (124)
yields the first law of thermodynamics for the charged
BH (131) as in the Einstein-Maxwell theory.

D. The reflection- and shift-symmetric model
with the Uð1Þ-invariant vector field

Finally, we consider the general reflection- and shift-
symmetric class of the Horndeski theories with the min-
imally coupled Uð1Þ-invariant vector field

G2 ¼ g2ðXÞ; G4 ¼
1

16πG
þ g4ðXÞ

G3 ¼ G5 ¼ 0; GA ¼ F ; ð137Þ

where g2ðXÞ and g4ðXÞ are general functions of the kinetic
term X, under which Eq. (32) reduces to

− δ

�
r2

ffiffiffi
h
f

s
K½tr�

ðξÞ

�
− r2

ffiffiffi
h
f

s
J½tξr�

¼ r2

ffiffiffi
h
f

s �
−
	

1

8πGr
þ A0ðrÞA0

0ðrÞ
2hðrÞ þ 2

g4ðX0ðrÞÞ þ 2fðrÞψ 0ðrÞ2g4;XðX0ðrÞÞ − fðrÞ2ψ 0ðrÞ4g4;XXðX0ðrÞÞ
r



δfðrÞ

þ fðrÞA0ðrÞA0
0ðrÞ

2hðrÞ2 δhðrÞ − fðrÞA0ðrÞ
hðrÞ δA0

0ðrÞ þ J rδψðrÞ

þ 4fðrÞ2ψ 0ðrÞ
r

½−g4;XðX0ðrÞÞ þ fðrÞψ 0ðrÞ2g4;XXðX0ðrÞÞ�δψ 0ðrÞ
�
; ð138Þ

where X0ðrÞ ≔ −ðfðrÞ=2Þψ 0ðrÞ2 is the background value of the kinetic term X and the nontrivial radial component of the
Noether current associated with the shift symmetry is given by
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J r ¼ −fðrÞψ 0ðrÞg2;XðX0ðrÞÞ

þ 2fðrÞ
r2hðrÞ ½ð−1þ fðrÞÞhðrÞ þ rfðrÞh0ðrÞ�g4;XðX0ðrÞÞ

−
2fðrÞ3ðhðrÞ þ rhðrÞ0Þ

r2hðrÞ g4;XXðX0ðrÞÞ: ð139Þ

We note that the model (132) corresponds to a particular
case of the general model (137). Requiring that the back-
ground solution satisfies fðrÞ ¼ hðrÞ, the equation of
motion for A0ðrÞ can be analytically integrated as

A0ðrÞ ¼ Q

�
1

r
−

1

rg

�
; ð140Þ

where the integration constant Q represents the electric
charge and we choose the integration constant to satisfy the
gauge condition A0ðrgÞ ¼ 0. We assume the existence of
the charged BHs that can be expanded near the event
horizon r ¼ rg as

fðrÞ¼hðrÞ
¼h1ðrg;QÞðr−rgÞþh2ðrg;QÞðr−rgÞ2þO½ðr−rgÞ3�;

ψðrÞ¼ψ1=2ðrg;QÞ ffiffiffiffiffiffiffiffiffiffiffi
r−rg

p þψ3=2ðrg;QÞðr−rgÞ32
þO

h
ðr−rgÞ52

i
; ð141Þ

where the coefficients hiðrg; QÞ (i ¼ 1; 2;…) and ψ jðrg; QÞ
(j ¼ 1=2; 3=2;…) are, in general, the functions of rg andQ,
so that X takes a nonzero constant value at the horizon,

X0ðrÞ¼X0;0þO½r−rg�≔−
1

8
h1ψ2

1=2þO½r−rg�: ð142Þ

We require that the background solution satisfiesJ r ¼ 0, so
that the norm of the Noether current J μJ μ ¼ ðJ rÞ2=hðrÞ
remains finite in the horizon limit r → rg, and then obtain at
the leading order

2r2gg2;XðX0;0Þ þ 4ð1 − rgh1Þg4;XðX0;0Þ
þ rgh21ψ

2
1=2g4;XXðX0;0Þ ¼ 0: ð143Þ

Thevariation of theHamiltonian on the horizon r ¼ rg yields

δHH ¼ THðHÞδSH

¼ rgh1
2G

h
1þ 16πGg4ðX0;0Þþ 4πGh1ψ2

1
2

g4;XðX0;0Þ
i
δrg;

ð144Þ

where the Hawking temperature (29) is given by
THðHÞ ¼ h1=ð4πÞ, and hence

δSH ¼ 2πrg
G

	
1þ 16πGg4ðX0;0Þ þ 4πGh1ψ2

1
2

g4;XðX0;0Þ


δrg:

ð145Þ

Since the proportionality coefficient in Eq. (145) can depend
on Q, in general, the differential (145) may not be
integrable [81]. However, since

∂

∂Q

	
δSH
δrg



¼ −32π2rg½g4;XðX0;0Þ þ 2X0;0g4;XXðX0;0Þ�

∂X0;0

∂Q
;

ð146Þ

there are two cases where the differential of the entropy is
integrable. The first case to satisfy the integrability condition
∂

∂Q ½δSH=δrg� ¼ 0 is

g4;XðX0;0Þ þ 2X0;0g4;XXðX0;0Þ ¼ 0: ð147Þ

The second case to satisfy ∂

∂Q ½δSH=δrg� ¼ 0 is given by

∂X0;0

∂Q
¼ 0; ð148Þ

namely, the kinetic termevaluated on the horizon r ¼ rg does
not depend onQ. Condition (148) is essentially an extension
of the result found for a particular choice of the g4ðXÞ
function, namely, g4ðXÞ ¼ c0X with c0 being constant,
discussed in Ref. [81]. We note that the model discussed
in Sec. VI C with g4ðXÞ ¼ α

ffiffiffiffiffiffiffi
−X

p
satisfies both conditions

(147) and (148), since from Eq. (134) we find that X ¼ − α2

r4η

does not depend on Q.

VII. SUMMARY AND CONCLUSIONS

We have investigated thermodynamics of static and
spherically symmetric BHs in the Horndeski theories.
Although the Wald entropy formula has been useful for
computing the BH entropy in the covariant gravitational
theories that contain the dependence only on the Riemann
tensors as the higher-derivative terms, this may not be
directly applicable to the Horndeski theories because of the
presence of the derivative interactions and the nonminimal
derivative couplings of the scalar field to the spacetime
curvature tensors. The terms that contain the spacetime
curvature tensors may be eliminated with use of the
properties of the Riemann tensor, and the apparent depend-
ence of the action on the spacetime curvatures may be
modified before and after a partial integration. Thus,
following the original formulation by Iyer and Wald, we
have employed the Noether charge potential associated
with the diffeomorphism invariance. The variation of the
Noether charge potential on the boundaries is related to
the variation of the Hamiltonian. The variations of the
Hamiltonian on the BH event horizon and at the spatial
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infinity, respectively, give rise to the differentials of the
entropy of the BH and the total mass of the system, and the
conservation of the total Hamiltonian leads to the first law
of the BH thermodynamics. Our formulation could be
applied to the whole of the Horndeski theories including the
EsGB theories and the shift-symmetric theories, which
provide the stealth Schwarzschild BH solutions with the
linearly time-dependent scalar field. In the case of the
EsGB theories, our formulation has recovered the standard
Wald entropy formula, although the description of the
EsGB theory in the context of the Horndeski theories
appears to be different from the original action by the
difference in the total derivative terms.
We have divided our analysis into two parts. The first

part is about the static and spherically symmetric BH
solutions with the static scalar field in the Horndeski
theories, which may not be shift symmetric. The second
part is about those with the linearly time-dependent scalar
field in the shift-symmetric Horndeski theories. In the latter
case, in order to satisfy the radial-temporal component of
the gravitational equations, the radial component of the
Noether current associated with the shift symmetry has to
vanish. Taking this into consideration, we showed that the
variation of the Noether charge potential associated with
the diffeomorphism invariance does not depend on time,
even if the scalar field has a linear time dependence. This
reflects the fact that in such static and spherically sym-
metric BH solutions there was no radial heat flux onto the
BH horizon.
The results in the former part are summarized in Table I.

Besides GR and the conventional ST theory with the trivial
scalar field, we evaluated the BH entropy and the total mass
of the system for the static and spherically symmetric BHs

with nontrivial profile of the scalar field in the shift-
symmetric EsGB theory and in the shift-symmetric theory
where the function G4ðXÞ contains the term proportional toffiffiffiffiffiffiffi
−X

p
. In both cases, we showed that the BH entropy was

given by the area law despite the existence of the nontrivial
profile of the scalar field.
The results in the latter part are summarized in Table II.

We have studied the BH entropy and the mass in the stealth
Schwarzschild solution and the Schwarzschild-(A)dS sol-
ution with the linearly time-dependent scalar field. In both
cases, we have found that the BH entropy does not obey the
area law and the total mass of the system does not coincide
with the BH mass from the metric.
In theory Vand theory VI in Table II, there exists a trivial

Schwarzschild solution without scalar field. Then we have
discussed the thermodynamic stability of the stealth
Schwarzschild BHs. We have shown that its stability
depends on the sign of the nonminimal derivative cou-
pling to the spacetime curvature. In the case of the
Schwarzschild-dS BH, we have shown the Horndeski
Schwarzschild-dS BHs are always thermodynamically
unstable and transit to the GR Schwarzschild-dS BH. In
the case of the Schwarzschild-AdS BHs, we have found
that the thermodynamical phase diagram becomes more
complicated than the previous case, because of the exist-
ence of the Hawking-Page phase transition, and crucially
depends on the ratio of the (effective) cosmological con-
stants, i.e., the ratio of the Horndeski AdS radius l and the
GR AdS radius l, where we always have l < l. We have
shown that, in the case where l is not much less than l, the
Horndeski Schwarzschild-AdS BH is always thermody-
namically unstable and decays into either the GR
Schwarzschild-AdS BH or the AdS spacetime filled with

TABLE I. Thermodynamical properties of BHs with/without static scalar field are summarized. In the case of non-shift-symmetric
EsGB BH (theory III), if kð1Þðϕ0Þ ¼ 0 where ϕ0 is some constant, there exists a trivial Schwarzschild BH, while when kð1ÞðϕÞ ≠ 0 for
any real ϕ, the nontrivial solution is unique. Note that we can make ϕ0 ¼ 0 after a suitable shift of ϕ. The former class of non-shift-
symmetric theory III includes scalarized BH solutions for the Z2-symmetric coupling models [53–68], while the latter of the non-shift-
symmetric theory III includes hairy BH solutions in the exponential coupling models [50–52]. The shift-symmetric class of theory III
corresponds to the linear coupling model [47,48]. Hawking temperature TH, massM, and entropy S of nontrivial EsGB BH are given by
numerical solutions. Theory I (GR with/without Λ) is also listed as a reference.

Theory BH Scalar field Temperature TH Mass M Entropy S

I
GR without Λ Schwarzschild Trivial T0 ≔ 1

4πrg
M0 ≔

rg
2G S0 ≔

πr2g
G

GR with Λ Schwarzschild-(A)dS Trivial ð1 − Λr2gÞT0 ð1 − Λ
3
r2gÞM0 S0

II
Conventional scalar-tensor

theories
Schwarzschild-(A)dS ϕ ¼ 0 ð1 − Vð0Þr2gÞT0 ð1 − Vð0Þ

3
r2gÞM0 S0

III

Non-shift-
symmetric
EsGB

kð1Þðϕ0Þ ¼ 0
Asymptotically flat Hairy 1

4π

ffiffiffiffiffiffiffiffiffiffi
f1h1

p
(Eqs. (58)–(60)) ADM mass ð1þ 64πGk½ψHðrgÞ�

r2g
ÞS0

Schwarzschild ϕ ¼ ϕ0 T0 M0 S0

kð1ÞðϕÞ ≠ 0 Asymptotically flat Hairy 1
4π

ffiffiffiffiffiffiffiffiffiffi
f1h1

p
(Eqs. (58)–(60)) ADM mass ð1þ 64πGk½ψHðrgÞ�

r2g
ÞS0

Shift-symmetric EsGB Asymptotically flat Hairy 1
4π

ffiffiffiffiffiffiffiffiffiffi
f1h1

p
(Eqs. (58)–(60)) ADM mass S0

IV Horndeski with G4 ¼ α
ffiffiffiffiffiffiffi
−X

p
Asymptotically (A)dS Hairy ð1 − Λr2g þ 8πGα2

ηr2g
ÞT0 ð1 − Λ

3
r2g − 8πGα2

ηr2g
ÞM0 S0
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thermal radiation. On the other hand, in the case where the
ratio of l to l is smaller than a critical value, there is a
certain range of the BH mass where the Horndeski
Schwarzschild-AdS BH is thermodynamically more stable
than the GR Schwarzschild-AdS BH, while for the BH
mass larger than that in this range the Horndeski
Schwarzschild-AdS BH decays into either the GR
Schwarzschild-AdS BH or the AdS spacetime with thermal
radiation.
While BH solutions discussed so far contain only one

independent charge, i.e., the mass or, equivalently, the
horizon radius, in Sec. VI we have briefly discussed
thermodynamics in the BHs with two independent charges
in the Horndeski theories. More concretely, we have
focused on the Horndeski theories minimally coupled to
theUð1Þ-invariant vector field, where BH solutions contain
the two independent charges, the mass and the electric
charge. By extending the general formulation presented in
Sec. II, we have derived the Noether change potential
associated with the diffeomorphism invariance, including
the contribution of the Uð1Þ-invariant vector field with the
nonlinear kinetic term. As a concrete example of charged
BH solutions in the Horndeski theories, we have considered
the extension of the irrational coupling model discussed in
Sec. III D minimally coupled to the Maxwell field and
showed that, in spite of the presence of the two independent
charges, the differential of the entropy is integrable and the
ordinary area law is recovered. Finally, in the general
reflection- and shift-symmetric class of the Horndeski

theories with the minimally coupled Uð1Þ-invariant vector
field, we have clarified the general conditions under which
the differential of the BH entropy is integrable in the
presence of the two independent charges. We have shown
that, in the case where the kinetic term of the scalar field
evaluated on the horizon does not depend on the electric
charge, the differential of the BH entropy is integrable.
There would be various extensions of our present

work, which include the cases of the stationary and
axisymmetric BHs in the Horndeski theories and the
nontrivial BHs in the healthy ST theories beyond the
Horndeski theories [19–21]. We hope to come back to
these cases in our future work.
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