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We study the effects of a spatially homogenous magnetic field in Bianchi-I cosmological models. The
cases of a pure magnetic field and two models with additional dust and a massless scalar field (stiff matter)
are also considered. At the beginning of the cosmological evolution, i.e., in the neighborhood of the
singularity, the Universe is described by one of Kasner’s solutions, and asymptotically by another Kasner
solution when the volume of the Universe tends to infinity. The transition law between these two Kasner
regimes is established, and shown to coincide with the analogous law for the empty Bianchi-II universe.
The universe filled with dust and a magnetic field undergoes the process of isotropization, while the
presence of a massless scalar field induces a modification of the relations between Kasner indices in the two
asymptotic regimes. In all of these cases, we analyze the approach to the singularity in some detail and
comment on the issue of the possible singularity crossing.
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I. INTRODUCTION

Almost all of modern cosmology is based on the spatially
homogeneous and isotropic Friedmann-Lemaître cosmologi-
cal models. Indeed, the Friedmann-Lemaître cosmology for
an expanding or contracting spatially homogeneous and
isotropic universe is very successful in describing the global
evolution of the Universe from inflation to the present epoch
of cosmic acceleration. Moreover, inhomogeneities in our
Universe are described by means of the theory of cosmo-
logical perturbations on the Friedmann background, which
explains the origin of large-scale structures in the contem-
porary Universe starting from quantum fluctuations in the
very early Universe.
However, there are very interesting features in

gravity and cosmology beyond the Friedmann models
and perturbations on such backgrounds. The study of
spatially homogeneous but anisotropic models (see, e.g.,
Refs. [1–3]) originating in the work of Bianchi, published
as early as in the year 1898 [4], presents great interest
from both the mathematical and physical points of view.
Bianchi elaborated on the complete classification of the
three-dimensional homogeneous Riemannian spaces and

three-dimensional Lie groups long before Einstein put
forward General Relativity in 1915. Bianchi classifica-
tion was then modernized, simplified, and applied to
cosmology in the 1950s and 1960s [5–7].
The simplest spatially homogeneous and anisotropic

cosmology is given by the Bianchi-I model. Its isometry
group contains three generators (Killing vector fields),
which commute and correspond to the metric

ds2 ¼ dt2 − a2ðtÞdx2 − b2ðtÞdy2 − c2ðtÞdz2: ð1Þ

One can see that Eq. (1) reduces to a flat Friedmann metric
in the limiting case when the three scale factors aðtÞ, bðtÞ,
and cðtÞ coincide.
The first exact solution for the metric (1) in empty space

was found by Kasner [8], in fact before Friedmann’s works.
The Kasner solution has been rediscovered many times,
and its importance was only appreciated later. A particular
form of Kasner’s solution for the Bianchi-I universe
had been discovered earlier in Refs. [9,10]. In 1963,
Khalatnikov and Lifshitz began employing the Bianchi
universes (Bianchi-I, in particular) for studying the problem
of the cosmological singularity [11]. At the end of the
1960s, Belinski, Khalatnikov, and Lifshitz discovered the
phenomenon of the oscillatory approach to the cosmologi-
cal singularity [12,13]. Using the Hamiltonian formalism,
Misner referred to this phenomenon as the Mixmaster
universe [14]. Later, it was understood that the dynamics of
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the universe becomes chaotic when the singularity is
approached [15,16]. Finally, the connection between the
chaotic behavior in cosmological models and infinite-
dimensional Lie algebras [17] was discovered at the
beginning of the new millennium [18–20]. Thus, the study
of Bianchi cosmologies, starting from the empty Bianchi-I
model, has already led to some unexpected discoveries. In
the meantime, exact solutions for the Bianchi-I universe
filled with matter were also studied. First of all, we mention
the Heckmann-Schucking solution, which describes the
Bianchi-I universe filled with dust [21]. The Heckmann-
Schucking universe behaves as the Kasner universe at
the beginning of the evolution, after which isotropization
takes place so that the universe approaches an isotropic
Friedmann regime while expanding. The generalization of
the Heckmann-Schucking solution to other kinds of iso-
tropic perfect fluids was obtained by Jacobs [22–24], and
more generalizations were found recently [25,26].
While exact solutions with a highly anisotropic geometry

do exist even in empty space or in a universe filled with
isotropic matter, the situation becomes even more riveting
in the presence of spatially homogenous but anisotropic
matter. A magnetic field is an interesting example of such a
source. Indeed, papers devoted to the Bianchi-I universes
with a spatially homogeneous magnetic field oriented along
one of the coordinate axes in Eq. (1) were published already
in the early 1960s, sometimes with additional types of
matter [23,27–31].
The interest in solutions involving magnetic fields is not

purely academic. The existence of large-scale magnetic
fields in our Universe is an important and enigmatic
phenomenon (see e.g., Ref. [32]). Their origin is not known
and is being widely discussed. Thus, even if it is unrealistic
to describe the present-day Universe with the Bianchi-I
metric, models where this metric is sustained by a magnetic
field could shed some light on processes that occurred in
the very early Universe. In spite of the long history of
studies of cosmic magnetic fields in general and in the
Bianchi-I universe in particular, to our knowledge, there is
no detailed description of the qualitative behavior of the
corresponding solutions. Besides, it would be interesting to
try and bridge the established (and sometimes implicit)
knowledge about solutions with magnetic fields with
innovative approaches to the problem of the singularities
in gravity and theoretical cosmology. In this paper, we shall
try to fill some gaps and look for new ways in this direction.
The structure of the paper is the following: in Sec. II, we

consider the Bianchi-I model with a spatially homogeneous
magnetic field directed along the z axis of Eq. (1). At the
beginning and end of the cosmological evolution, the
universe is in Kasner regimes. We establish the relationship
between the parameters of these two regimes and show that
it coincides with the one in the empty Bianchi-II universe.
We then consider two other models in Sec. III, one in which
dust is added and one with an additional massless scalar

field (or, in other words, stiff matter). Section IV is devoted
to the possibility of crossing the singularity in these
models, and Sec. V contains some concluding remarks.

II. BIANCHI-I MODEL WITH SPATIALLY
HOMOGENEOUS MAGNETIC FIELD

Let us consider the Bianchi-I universe with the metric
in Eq. (1). The Lagrangian of the electromagnetic field is
(in the Gaussian system) [1]

Lem ¼ −
1

16π
FikFik; ð2Þ

where Latin indices are four-dimensional, i ¼ 0;…; 3, and
xi ¼ ðt; x; y; zÞ in Eq. (1). The energy-momentum tensor
of the electromagnetic field with the Lagrangian (2) has
the form

Ti
k ¼

1

4π

�
−FilFkl þ

1

4
δikFlmFlm

�
: ð3Þ

In particular, we consider the case with no electric field
and a homogeneous magnetic field along z. Hence, the only
nonzero component of the electromagnetic field tensor
is F12. The sourceless Maxwell equation for the electro-
magnetic field reads

F½ij;k� ¼ 0; ð4Þ

where semicolons denote covariant derivatives in the
metric (1) and square brackets imply antisymmetrization.
Since there is no torsion, the symmetric connection terms
cancel out and Eq. (4) simplifies to F½ij;k� ¼ 0. Choosing
the triplet of indices 0, 1, and 2, we see that F12;0 ¼ 0,
which means that F12 is constant. For the diagonal
spacetime (1), the only nonvanishing component of the
fully contravariant electromagnetic field tensor is thus
given by

F12 ¼ g11g22F12 ∝ a−2b−2: ð5Þ

That means that all the contributions to the mixed compo-
nents of the energy-momentum tensor in Eq. (3) are
proportional to a−2b−2. On choosing a convenient para-
metrization, we can then write

T0
0 ¼ −T1

1 ¼ −T2
2 ¼ T3

3 ¼
B2
0

a2b2
; ð6Þ

where B2
0 is a positive constant characterizing the intensity

of the magnetic field. It is easy to see that the trace T of the
energy-momentum tensor (6) vanishes, as it should.

ROBERTO CASADIO et al. PHYS. REV. D 108, 084059 (2023)

084059-2



It is convenient to rewrite the Einstein equations,

Gi
j ≡ Ri

j −
1

2
Rδij ¼ Ti

j; ð7Þ

by parametrizing the scale factors as

aðtÞ ¼ RðtÞeαðtÞþβðtÞ;

bðtÞ ¼ RðtÞeαðtÞ−βðtÞ;
cðtÞ ¼ RðtÞe−2αðtÞ: ð8Þ

The components of the Ricci tensor then read

R0
0 ¼ −3

R̈
R
− 6α̇2 − 2β̇2; ð9Þ

R1
1 ¼ −

R̈
R
− 2

Ṙ2

R2
− α̈ − 3α̇

Ṙ
R
− β̈ − 3β̇

Ṙ
R
; ð10Þ

R2
2 ¼ −

R̈
R
− 2

Ṙ2

R2
− α̈ − 3α̇

Ṙ
R
þ β̈ þ 3β̇

Ṙ
R
; ð11Þ

R3
3 ¼ −

R̈
R
− 2

Ṙ2

R2
þ 2α̈þ 6α̇

Ṙ
R
; ð12Þ

and Einstein’s equations are given by

G0
0 ¼ −G1

1 ¼ −G2
2 ¼ G3

3 ¼
B2
0

R4
e−4αðtÞ: ð13Þ

Note also that the scalar curvature is

R≡ Ri
i ¼ −6

R̈
R
− 6

Ṙ2

R2
− 6α̇2 − 2β̇2; ð14Þ

which must vanish since T ¼ 0.
Taking the difference of the mixed 1

1 and 2
2 compo-

nents of Einstein’s equations (13) with the expressions (10)
and (11) for the Ricci tensor, we obtain

β̇ ¼ β0
R3

; ð15Þ

which is just like in Kasner’s and Heckmann-Schucking’s
solutions Ref. [25]. Likewise, combining Eqs. (10)–(12),
viz. R1

1 þ R2
2 − 2R3

3, yields

α̈þ 3α̇
Ṙ
R
¼ 2B2

0

3R4
e−4αðtÞ: ð16Þ

Moreover, the combination R1
1 þ R2

2 þ 2R3
3 provides

α̈þ 3α̇
Ṙ
R
¼ 2

R̈
R
þ 4

Ṙ2

R2
: ð17Þ

By multiplying for the spatial volume, VðtÞ≡ R3ðtÞ, the
equation above can be rewritten in a more convenient form
and then integrated, resulting in

α̇ ¼ 2
Ṙ
R
þ α0
R3

; ð18Þ

where α0 is a constant. Combining Eqs. (16) and (17)
leads to

1

R3

d2R3

dt2
¼ B2

0

R4
e−4αðtÞ: ð19Þ

Thus, we can determine αðtÞ for a given RðtÞ, and we
further notice that the second time derivative of the spatial
volume must always be positive. Substituting Eqs. (9), (14),
(15), (18), and (19) into the 0

0 component of the Einstein
Eq. (13), after some manipulation, we obtain an equation
for the spatial volume which reads

VV̈ þ V̇2 þ 4α0V̇ þ 3α20 þ β20 ¼ 0: ð20Þ

Remarkably, this equation is integrable, but it is instructive
to perform a qualitative analysis first.
Let us point out that not all solutions of Eq. (20) solve the

complete system of Einstein’s and Maxwell’s equations.
Since VðtÞ should always be non-negative and V̈ > 0 from
Eq. (19), we must have α0V̇ < 0 with α0 ≠ 0, and

−2α0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

q
≤ V̇ ≤ −2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

q
; ð21Þ

which is only possible for α20 ≥ β20.

A. Contracting universe

Let us first consider α0 > 0, corresponding to a con-
tracting universe with V̇ < 0. One can start at a certain
moment in time with a positive value of V and a negative
value of V̇ satisfying the inequality α20 ≥ β20. Since V̈ > 0,
the time derivative of VðtÞ grows, remaining negative, and
the absolute value of V̇ decreases, always satisfying the
constraint

jV̇j ≥ 2α0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

q
≡W1: ð22Þ

The universe will therefore reach the singularity charac-
terized by V ¼ 0 in a finite period of time.
Now, we can consider two times t1 and t2 such that

Vðt1Þ ¼ 0 and V̇ðt2Þ ¼ −W1, and we would like to under-
stand which occurs first. Suppose that t1 < t2, so that V
vanishes while V̇ still satisfies the inequality (21) with jV̇j
larger than the critical valueW1 from Eq. (22). The time t1
cannot be infinite because the absolute value of the time
derivative is larger than W1, and the spatial volume VðtÞ
reaches zero in a finite period of time. In particular,
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one can approximate the volume function for t≲ t1 with
the expression

V ≃ γðt1 − tÞλ; ð23Þ

where γ and λ are positive constants. For λ > 1, the
velocity becomes

V̇ ≃ −λγðt1 − tÞλ−1 → 0 for t → t1; ð24Þ

which contradicts the condition (22). On the other hand, if
λ < 1, the velocity in Eq. (24) diverges for t → t1, which
violates the bound (21). The only choice left is λ ¼ 1
and we need to include another term in the expansion
around t1, namely

V ≃ γðt1 − tÞ þ η1ðt1 − tÞμ; ð25Þ

where η1 is a positive constant and μ > 1. Substituting the
corresponding expressions for V, V̇, and V̈ into Eq. (20),
we find

μη1ðμ − 1Þ½γðt1 − tÞ þ η1ðt1 − tÞμ�ðt1 − tÞμ−2
≃ −½γ þ μη1ðt1 − tÞμ−1 − 2α0�2 þ α20 − β20: ð26Þ

The leading term in the left-hand side above behaves as
ðt1 − tÞμ−1, which vanishes for t → t1. The leading term in
the right-hand side is instead a constant, which should
therefore vanish, giving

γ2 − 4α0γ þ 3α20 þ β20 ¼ 0: ð27Þ

One of the solutions of this equation is γ ¼ W1, which
means that V̇ reaches the critical valueW1 at the same time
when the volume VðtÞ vanishes, so that t1 ¼ t2. Next, we
equate terms of order ðt1 − tÞμ−1 in Eq. (26), which gives

μ ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p : ð28Þ

One can see that 1 < μ ≤ 3, whereas the constant η1 takes
different values depending on the initial conditions.
We could also consider the case of V̇ reaching the

critical value −W1 at the moment t2 < t1 while the volume
Vðt2Þ > 0. A simple analysis similar to the above shows
that this case is excluded. Thus, we can say that the
universe hits the singularity VðtÞ ¼ 0 at some finite time
t ¼ t1 when the velocity V̇ reaches the critical value −W1

for any contracting evolution.
From the (approximate) evolution law of the volume, we

can determine the anisotropy factors αðtÞ and βðtÞ. Using
Eq. (18), we get

αðtÞ ≃
�
2

3
−

α0
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p �
lnðt1 − tÞ: ð29Þ

Analogously, from Eq. (15), we immediately find

βðtÞ ¼ β0

Z
dt
V

≃ −
β0 lnðt1 − tÞ

2α0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p : ð30Þ

For definiteness, let us set β0 ≥ 0. Using the definitions (8),
we can write the three scale factors in the Kasner form

aðtÞ ∼ ðt1 − tÞp1 ;

bðtÞ ∼ ðt1 − tÞp2 ;

cðtÞ ∼ ðt1 − tÞp3 ; ð31Þ

where

p1 ¼
α0 − β0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p < 0;

p2 ¼
α0 þ β0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p > 0;

p3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p > 0: ð32Þ

It is straightforward to check that the exponents p1, p2, and
p3 indeed satisfy the Kasner relations, i.e.,

p1 þ p2 þ p3 ¼ p2
1 þ p2

2 þ p2
3 ¼ 1; ð33Þ

which means that the presence of the magnetic field does
not change the character of the singularity. The reason for
such a behavior is not hard to guess. Substituting the
expressions for V and V̈ into Eq. (19), one obtains that the
magnetic field contributes to Einstein’s equations as

B2
0

a2b2
∼
μη1
γ

ðμ − 1Þðt1 − tÞμ−3; ð34Þ

where μ − 3 > −2. Therefore, the term (34) is weaker than
the anisotropy, which contributes a term of order ðt1 − tÞ−2
and dominates near the singularity. The presence of matter
less stiff than stiff matter is well known to leave the Kasner
type of singularity unaffected [33].

B. Expanding universe

Let us consider now the expanding universe. In this case,
the constant α0 < 0 and the time derivative V̇ will corre-
spondingly be positive. The expansion will last for t → ∞
with the time derivative V̇ approaching the critical value

W2 ≡ −2α0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

q
> 0: ð35Þ
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Thus, the behavior of VðtÞ can be approximated in the
limit t → ∞ as

V ≃W2t − η2tν; ð36Þ

where η2 is a positive constant and 0 < ν < 1. On sub-
stituting the corresponding expressions for V, V̇, and V̈ in
Eq. (20), we find again

ν ¼ 1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p ; ð37Þ

with 1
3
≤ ν < 1. The anisotropy factors then read

αðtÞ ¼
�
2

3
þ α0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α20 − β20
p

− 2α0

�
ln t; ð38Þ

βðtÞ ¼ β0 ln tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
− 2α0

: ð39Þ

Correspondingly, the scale factors take again the Kasner
form

aðtÞ ∼ tp1 ; bðtÞ ∼ tp2 ; cðtÞ ∼ tp3 ; ð40Þ

where

p1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
− α0 þ β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α20 − β20
p

− 2α0
;

p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
− α0 − β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α20 − β20
p

− 2α0
;

p3 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
− 2α0

; ð41Þ

which also satisfy the Kasner relations (33). The presence
of the magnetic field does not influence the asymptotic
structure of the metric at t → ∞, which therefore does not
isotropize, unlike the Heckmann-Schucking solution with
dust [21,25]. The reason for this phenomenon is clear. The
energy density of the magnetic field at t → ∞ is given by

B2
0

a2b2
≃ νðν − 1Þ η2

W2

tν−3; ð42Þ

where ν − 3 < −2. Hence it remains weaker than the
anisotropy term.
Now we can try to understand what happens with the

expanding universe in its distant past. One can suppose that
it was born from the initial singularity at t ¼ 0, when its
volume Vð0Þ ¼ 0, and its time derivative had the smallest
critical value

V̇ð0Þ ¼ W3 ≡ −2α0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

q
> 0: ð43Þ

In this case, the scale factors will be of the form in Eq. (40)
with the Kasner exponents

p0
1 ¼

α0 − β0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p ;

p0
2 ¼

α0 þ β0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p ;

p0
3 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p : ð44Þ

They again satisfy the Kasner relations (33). To establish a
relation between the set of Kasner indices at the beginning
and at the end of the evolution, it is convenient to use the
Lifshitz–Khalatnikov parametrization [11]. If the Kasner
indices are ordered as

p1 ≤ p2 ≤ p3; ð45Þ

they can be represented by means of a real parameter u ≥ 1
according to

p1 ¼ −
u

1þ uþ u2
;

p2 ¼
1þ u

1þ uþ u2
;

p3 ¼
uð1þ uÞ
1þ uþ u2

: ð46Þ

The ordering (45) can be obtained, for example, by setting
the anisotropy parameters

α0 < 0; β0 < 0; jβ0j <
3

5
jα0j: ð47Þ

In particular, this choice implies that the universe expands
in the y and z directions, but does so more rapidly along the
direction z of the magnetic field, while it contracts along the
x axis. Combining Eqs. (44) and (47), we obtain

u0 ¼ p0
3

p0
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
jα0j þ jβ0j −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p : ð48Þ

It is convenient to introduce the parameter ξ ¼ jβ0j
jα0j, which,

when plugged into Eq. (48), results in the relation

ξ ¼ ðu0 þ 1Þ2 − u02

ðu0 þ 1Þ2 þ u02
: ð49Þ

Note that, if ξ satisfies the conditions (47), then 1 <
u0 < ∞. Let us now look at the Kasner exponents (41)
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describing the final stage of cosmological evolution. In this
case the order of the exponents is

p3 ≤ p1 ≤ p2: ð50Þ

Correspondingly, we can represent them as

p1 ¼
1þ u

1þ uþ u2
;

p2 ¼
uð1þ uÞ
1þ uþ u2

;

p3 ¼ −
u

1þ uþ u2
: ð51Þ

Thus,

u ¼ p2

p1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
− α0 − β0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α20 − β20
p

− α0 þ β0
: ð52Þ

Substituting the formulas (48) and (49) into the equation
above, we find

u ¼ 1þ u0

u0
< 2: ð53Þ

Inversely,

u0 ¼ 1

u − 1
: ð54Þ

For the inverse evolution towards the singularity, as
one usually analyzes the oscillating approach towards the
cosmological singularity [3,12], one can see that the
universe passes through two transformations in the tran-
sition from the phase described by the parameter u to the
phase described by u0, according to Eq. (54). The first
transformation is characterized by the shift u → u − 1, in
which the roles of the x and z axes, corresponding to the
exponents p1 and p3, are exchanged. This transformation
is called “change of the Kasner epoch” [12]. As a result
of this transformation, we arrive at a value of the
parameter u − 1 < 1, see Eq. (53). The next transformation
is defined by

u − 1 →
1

u − 1
; ð55Þ

which exchanges the roles of the axes y and z, and is called
“change of Kasner era”.
We see that our solution displays a transition between

two Kasner regimes chacterized by the same law found in
an empty Bianchi-II universe. For a detailed description of
the dynamics in the Bianchi-II universe in general relativity
and other gravity models see Ref. [34]. In Bianchi-VIII or
Bianchi-IX models, the universe passes through an infinite
series of changes of the Kasner epochs and eras. In our

case, for the choice of parameters in Eq. (47), the law of the
transformation for the Kasner exponents (54) includes one
change of Kasner epoch and one change of Kasner era.
One can also consider the opposite relation between the

anisotropy parameters, giving

α0 < 0; β0 < 0;
3

5
jα0j < jβ0j < 1; ð56Þ

or, in other words, 3=5 < ξ < 1, and we have u0 ¼ p0
2=p

0
3,

which corresponds to

ξ ¼ ðu0 þ 1Þ2 − 1

ðu0 þ 1Þ2 þ 1
; ð57Þ

and u ¼ u0 þ 1 or, inversely, u0 ¼ u − 1. The last two
relations show that we now have only a change of
Kasner epoch.

C. Exact evolution

As we already pointed out, in addition to the qualitative
analysis given in the previous subsections, Eq. (20) in
principle is integrable. We can cast it in the form

d
dt

ðVV̇ þ 4α0VÞ ¼ −3α20 − β20; ð58Þ

which can be integrated by defining V ¼ Xt, leading to

1

2
ln

�
1þ X2 þ 4α0X

3α20 þ β20

�

þ α0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
"
ln

 
1þ X

2α0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
!

− ln

 
1þ X

2α0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
!#

¼ ln

�
t0
t

�
; ð59Þ

where integration constants are chosen so that t0 > 0 is the
time at which the volume VðtÞ, hence XðtÞ, vanishes.
Unfortunately, Eq. (59) cannot be inverted to find XðtÞ

as a function of t. Thus, we cannot use this equation to
find exact expressions for the anisotropy factors.
Notwithstanding, one can use it to study the approach to
the singularity for t → t0 when XðtÞ → 0. Expanding the
left-hand side of Eq. (59), we see that the leading term is
proportional to X2, and the equation reduces to

X2 ≃ 2ð3α20 þ β20Þ
t0 − t
t0

: ð60Þ

This implies

V ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3α20 þ β20Þt0ðt0 − tÞ

q
ð61Þ
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and V̇ → −∞, which obviously breaks the inequality (21).
The approximate solution (60) therefore corresponds to
initial conditions which are incompatible with the existence
of a homogenous magnetic field.
However, the exact solution (59) admits a different

regime corresponding to a volume singularity given by
t → 0 with Xð0Þ finite. To describe this regime, one can
confront the terms proportional to ln t in the left-hand side
and the right-hand side of Eq. (59). In this case, the function
XðtÞ tends to a positive constant which can be found from a
quadratic equation and corresponds to the extremal points
of the inequality (21). Thus, the regime of the approach
to the singularity described above is compatible with the
general solution of Eq. (58) and arises in the vicinity of the
point t ¼ 0.

D. Anisotropy and relations with the
Bianchi-II universe dynamics

The Kasner solution for the Bianchi-I universe is the
regime of maximal anisotropy. The degree of this anisotropy
does not depend on the particular values of the Kasner
indices or, equivalently, on the value of the Lifshitz-
Khalatnikov parameter. Indeed, to explain this fact, let us
introduce the dispersion of the set of Kasner’s indices

σ2 ¼
�
p1 −

1

3

�
2

þ
�
p2 −

1

3

�
2

þ
�
p3 −

1

3

�
2

: ð62Þ

Using the Kasner relations (33), we see that σ2 ¼ 2=3 and
does not depend on the particular choice of the pi’s. Thus, at
the beginning and end of the evolution described in the
preceding subsections, the universe is maximally anisotropic
(i.e., anisotropy evolves like R−6), and the presence of the
magnetic field is not significant in the very early and in
the very late Universe, as we have seen. However, during the
intermediate stage of evolution, it is the presence of the
magnetic field that drives the transition from one Kasner
regime to another.
We have already highlighted that the character of this

transition exactly coincides with one that takes place in an
empty Bianchi-II universe. It is interesting to find the roots
of this phenomenon. The laws of change of Kasner epochs
and, sometimes, eras are well known and can be worked out
in two ways. The first one is to solve exactly the differential
equations for the Bianchi-II model (see e.g., [34,35] and
references therein). These equations acquire a Liouville-
like form if logarithmic time is used. Alternatively, one can
study these equations qualitatively, arriving at the same
conclusions concerning the asymptotic regimes [1].
Here, we would like to treat the dynamics of the empty
Bianchi-II universe using the same method that was used
to study the Bianchi-I universe with magnetic field. In this
way, we shall manage to understand why the laws of
transformation between Kasner regimes coincide in these
quite different physical models. Besides, we shall obtain

another simple way to derive the law of transformation for
the Bianchi-II universe.
All of the Bianchi geometries can be represented in a

synchronous reference system by a metric of the form

ds2¼dt2−a2ðtÞω1⊗ω1−b2ðtÞω2⊗ω2−c2ðtÞω3⊗ω3;

ð63Þ

where ω1, ω2, and ω3 are the basis one-forms dual to the
basis of the reciprocal vector fields which commute with
all the Killing vector fields [2]. The differences between
various Bianchi models are encoded by the structure
coefficients of the Lie algebra of the three Killing vector
fields. Moreover, the components of the Ricci tensor for
the metric (63) have the following form:

Ri
j ¼ Ri

jðKÞ − Pi
j; ð64Þ

where Ri
jðKÞ is the part of the Ricci tensor depending on

the extrinsic curvature given in Eqs. (9)–(12). The tensor
Pi

j is constructed instead from the components of the three-
dimensional spatial metric and can be expressed in terms
of the scale factors aðtÞ, bðtÞ, and cðtÞ and of the structure
constants of the Lie algebra of the Killing vector fields. For
the Bianchi-I Lie algebra, the structure constants are zero,
hence Pi

j ¼ 0. For the Bianchi-II Lie algebra, only one
structure constant is not zero and can be chosen so that
the Lie bracket of the first two Killing vectors be equal to
the third Killing vector. The nonvanishing components
of the tensor Pi

j then read

P1
1 ¼ P2

2 ¼ −P3
3 ¼ −

c2

2a2b2
¼ −

e−8αðtÞ

2R2
; ð65Þ

It follows that we can treat an empty Bianchi-II universe as
a Bianchi-I universe filled with a particular kind of matter
characterised by the energy-momentum tensor

Ti
j ¼ Pi

j −
1

2
Pδij; ð66Þ

with components

T0
0 ¼ −T1

1 ¼ −T2
2 ¼

1

3
T3

3 ¼
e−8αðtÞ

4R2
: ð67Þ

Substituting these expressions into Einstein’s equations for
the Bianchi-I universe, we can study the dynamics of the
Bianchi-II universe. First of all, considering the difference
R1

1 − R2
2, we again obtain the relation (15). Then, the

combination R1
1 þ R2

2 − 2R3
3 yields a relation similar to

Eq. (16), giving

α̈þ 3α̇
Ṙ
R
¼ e−8αðtÞ

3R2
: ð68Þ
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Combining R1
1 þ R2

2 þ 2R3
3, we get the relations (17)

and (18) again, and a combination of (17) with (68) yields

1

R3

d2R3

dt2
¼ e−8αðtÞ

2R2
; ð69Þ

which is similar to Eq. (19). To obtain the counterpart of
Eq. (20), we use the 0

0 component of Einstein equations,
and get

VV̈ þ 2ðV̇2 þ 4α0V̇ þ 3α20 þ β20Þ ¼ 0: ð70Þ

The only difference between Eqs. (20) and (70) is the
additional factor of 2 in front of the round bracket of
Eq. (70). As follows from Eq. (69), the second time
derivative of the volume should be positive, which implies
that the inequality α20 ≥ β20 has to hold.
By repeating all the considerations of the preceding

subsections, we can see that the parameters of the initial
and final Kasner regimes coincide with those obtained for
the Bianchi-I universe with the magnetic field. The only
difference consists in the fact that the Bianchi-II universe
goes out of the initial Kasner regime rapidly and enters the
final Kasner regime early, which is consistent with the
Bianchi-I universe filled with a magnetic field. Numerical
solutions for the associated equations, namely Eqs. (20)
and (70), are compared in Fig. 1 for particular values of the
parameters and initial conditions.

III. BIANCHI-I MODELSWITHMAGNETIC FIELD
AND ADDITIONAL PERFECT FLUIDS

In the previous section, we analyzed cosmological
models just sourced by a magnetic field. Now, we will
briefly consider two models in which we add dust and a
massless scalar field (stiff matter), respectively.

A. Dust

The energy density of dust is ρ ¼ ρ0R−3, where ρ0 is a
positive constant. It follows immediately from Einstein’s
equations that the scalar curvature is then given byR ¼ −ρ.

It is easy to see that Eq. (15) does not changed in the
presence of dust and the anisotropy function β is still the
same. Eq. (17) instead changes because the scalar curvature
does not vanish and reads

R1
1 þ R2

2 þ 2R3
3 ¼ −4

R̈
R
− 8

Ṙ2

R2
þ 6α̇

Ṙ
R
þ 2α̈

¼ 2R ¼ −
2ρ0
R3

: ð71Þ

This equation can be rewritten in the manner of the
beginning of this section, which yields, analogously to
Eq. (18),

α̇ ¼ 2
Ṙ
R
−
ρ0t
R3

þ α0
R3

: ð72Þ

Equation (16) is still valid, and we obtain

B2
0

R4
e−4αðtÞ ¼ 1

R3

d2R3

dt2
−
ρ0
R3

; ð73Þ

which implies d2R3

dt2 > ρ0. By performing the analysis as in
the case without dust, we obtain the equation for the
volume

VV̈ ¼ −V̇2 þ 4ðρ0t − α0ÞV̇ − 3α20 − β20 þ 3ρ0ð2α0 − ρ0tÞt;
ð74Þ

which we cannot solve exactly.
An axisymmetric solution is known in the literature

[29–31], corresponding to β0 ¼ 0. Since this solution is
rather cumbersome and implicit, we shall just undertake a
simple qualitative analysis of Eq. (74). One can see that,
when the universe approaches the singularity VðtÞ ¼
R3ðtÞ ¼ 0, the terms proportional to ρ0 in Eq. (74) become
negligible, and we come back to the situation without dust.
Thus, we have a Kasner type of singularity with a positive
Kasner exponent in the direction of the magnetic field.
When the volume of the universe grows towards infinity,
we encounter the opposite situation. The term 3ρ0t2

dominates, since VðtÞ ∼ t2, and we have isotropization just
like in the standard Heckmann-Schucking solution.

B. Massless scalar field

Let us consider a Bianchi-I universe with magnetic field
as in the preceding sections and a homogeneous massless
scalar field, ϕ ¼ ϕðtÞ. For a massless scalar field, the
pressure equals the energy density, and the perfect fluid
with such an equation of state is called stiff matter. The
Klein-Gordon equation for ϕðtÞ in the Bianchi-I universe
has the form

ϕ̈þ 3
Ṙ
R
ϕ̇ ¼ 0; ð75Þ

FIG. 1. Numerical solutions of Eqs. (20) (solid line) and (70)
(dashed) for α0 ¼ −10, β0 ¼ 1 and with initial conditions
Vð0Þ ¼ 10−6, V̇ð0Þ ¼ 10.051 ≃W3 from Eq. (43).
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whose general solution is given by ϕ̇ ¼ ϕ̃0

R3 ¼ ϕ̃0

V , where ϕ̃0 is
a constant. One can see that ϕ̇ behaves in the same way as
the time derivative of the anisotropy factor βðtÞ. It is
convenient to rescale ϕ̃0 ¼

ffiffiffi
2

p
ϕ0, so that the scalar field

energy-momentum tensor reads

T0
0 ¼ −T1

1 ¼ −T2
2 ¼ −T3

3 ¼
ϕ2
0

V2
; ð76Þ

and the scalar curvature R ¼ 2ϕ2
0

V2 . Obviously, the presence
of ϕ does not change Eq. (16). Moreover, due to the special
form of the spatial components in Eq. (76) andR, Eq. (17)
also does not change in form. Therefore, the results in
Eqs. (18) and (19) still hold. However, the scalar field
contributes to the 0

0 component of Einstein’s equations (7).
From Eq. (76), we see that ϕ0 enters the equation for
the volume (20) on an equal footing with the parameter β0.
Thus, the new equation for VðtÞ coincides with the
formulas in Sec. II with β20 replaced by β20 þ ϕ2

0.
There is no need to rewrite all of the formulas from

Sec. II explicitly, but we just focus on the expressions for
the scale factors for the expanding universe in the vicinity
of the singularity. By expanding around t ¼ 0, we obtain
the Kasner form (40) with

p1 ¼
α0 − β0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p ;

p2 ¼
α0 þ β0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p ;

p3 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p ; ð77Þ

where we have chosen α0 < 0 and β0 ≤ 0. It is well
known [33] that the presence of the massless scalar field
changes the relations for the Kasner exponents. While they
still satisfy p1 þ p2 þ p3 ¼ 1, the sum of their squares is
smaller then one. Namely, using the formulas (77), we
obtain p2

1 þ p2
2 þ p2

3 ¼ 1 − q2, with the parameter

q2 ¼ 2ϕ2
0

5α20 þ 4α0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
− β20 − ϕ2

0

; ð78Þ

satisfying the inequalities

0 ≤ q2 <
1

2
: ð79Þ

It is worth noting that, in the case of a universe filled only
with the massless scalar field, the parameter q2 must satisfy
the less stringent bounds [33]

0 ≤ q2 ≤
2

3
: ð80Þ

One can grasp where the root of the difference lies between
Eqs. (79) and (80). The parameter q2 indicates some kind of
isotropization for the universe. The limiting value q2 ¼ 2=3
in Eq. (80) implies that p1 ¼ p2 ¼ p3 ¼ 1=3, i.e., that the
expansion of the universe is totally isotropic. The presence
of a magnetic field in the z direction makes such a high
degree of isotropization impossible, which is then reflected
in Eq. (79). Finally, the Kasner exponents when the volume
of the universe tends to infinity are given by

p0
1 ¼

α0 − β0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p ;

p0
2 ¼

α0 þ β0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p ;

p0
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
2α0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p ; ð81Þ

so that ðp0
1Þ2 þ ðp0

2Þ2 þ ðp0
3Þ2 ¼ 1 − ðq0Þ2, where

ðq0Þ2 ¼ 2ϕ2
0

5α20 − 4α0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20 − ϕ2

0

p
− β20 − ϕ2

0

; ð82Þ

and ðq0Þ2 < q2. Therefore, in contrast to the isotropization
induced by the presence of dust in the Heckmann-
Schucking solution, the value of q2 decreases, going from
the singularity towards an infinite expansion, and the
degree of anisotropy increases. This effect was noticed
in the study of the anisotropic universe with the scalar field
only [25,33].

C. Some numbers

While our Bianchi-I universe filled with a spatially
homogeneous magnetic field oriented along one of the
axes is substantially a mathematical model and cannot
represent a realistic description of our Universe, one can
hope that it helps to capture some interesting features of
cosmology. For example, it could describe the evolution of
some local patches of the universe. Thus, it is interesting to
try and consider some values for the magnetic field coming
from the comparison between models and observations
(see e.g., Refs. [36–39]), and check what we can expect in
the framework of our solutions.
According to Ref. [36], most constraints on cosmologi-

cal magnetic fields give an upper bound around 10−9 G,
assuming coherence on Mpc scales or larger. Let us
suppose that, at the end of the evolution, the magnetic
field has such a magnitude and estimate the value that the
magnetic field could have had close to the initial singu-
larity, or in the very early universe. One can ask; What does
it mean “close to the singularity”? For example, we can
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identify the early time as the beginning of the inflationary
expansion. The time interval to consider will correspond-
ingly be the standard number of e-folds, i.e., Ne ≈ 60 or, in
redshift terms, something like z ∼ 1050. In our solution, the
magnetic field B ∝ a−1b−1, so that the ratio between the
“early” and “late” values of the magnetic field is

Bin

Bfin
¼ afin

ain

bfin
bin

: ð83Þ

If the expansion were isotropic, this ratio would be equal to
z2 ∼ 10100, and the initial value of the magnetic field would
be huge. However, anisotropy can change the situation
drastically. Indeed, our evolution represents the transition
from one Kasner regime to another. Consider the situation
at the beginning of the evolution, when the scale factor aðtÞ
decreases while bðtÞ grows. In this case,

ab ∼ tp1þp2 ¼ t1−p3 ð84Þ

and the growth in time of the magnetic field can be very
slow if the Kasner index p3 is close to 1. Subsequently, the
scale factors aðtÞ and bðtÞ exchange their roles, though that
could happen (at high values of the parameter u) such that
the index p3 is still close to 1. One can therefore imagine
that, during a very large anisotropic expansion, the value of
the magnetic field changes slowly, and the small value of
the magnetic field at the end of inflation is quite compatible
with reasonable values in the very early universe.

IV. SINGULARITIES AND THEIR CROSSING

The existence of singularities in cosmological models
has attracted the attention of researchers working in general
relativity and its modifications for a long time. In fact, the
question of the initial singularity was already discussed
in the seminal paper by Robertson [40], where the early
development of Friedmann-type cosmologies was reviewed
and generalized. The connection between the presence and
sign of the spatial curvature, the value of the cosmological
constant, and the dependence of the pressure on the scale
factor of the universe were studied there in detail with
regard to the appearance of a singularity. It is interesting
that Robertson also considered the scenario of a cyclic
evolution, described by some trigonometric law, in which
the universe emerges from a singularity, expands to the
maximum value of its radius, then contracts back, and the
process repeats itself indefinitely. It appears that a universe
which goes through this singularity did not disturb
Robertson too much. Another type of cosmological singu-
larity, which can arise in the future for some finite values of
the scale factor of the universe and can be rather soft, was
described in Ref. [41]. The interest in such singularities
essentially increased during the last few years (see e.g., the
review [42] and references therein).

In contrast with the crossing of soft singularities, the idea
of crossing the big bang–big crunch singularity appears
rather counterintuitive. For many years, the desire to look
for models free of such singularities dominated, although
the idea of the possible transition from the big crunch to the
big bang was studied in some cosmological models. First of
all, we would like to mention the string or prebig bang
scenario [43–45]. It is worth noting that not only isotropic
Friedmann models but also anisotropic Bianchi-I models
[46,47] were studied in this framework. In these works, the
universe contained a dilaton supplemented by an antisym-
metric tensor field, which influenced its dynamics. Another
approach to the problem of the singularity, also inspired by
superstring theories, was developed in Refs. [48–50]. In
Ref. [49], the authors treated the singularity as the transition
between a contracting big crunch phase and an expanding
big bang phase. A crucial role in their analysis was played
by a massless scalar field, a modulus. The theory was
reformulated so as to employ variables that remain finite as
the scale factor shrinks to zero, which suggests a natural
way to match the solutions before and after the singularity.
The general features of the approach in Refs. [48–50] are
the role played by the scalar field and the construction
of variables which are finite at the singularity crossing.
These features are also essential for the approach developed
in Refs. [51–54].
Recently, other approaches to the problem of the descrip-

tion of such a crossing were elaborated in Refs. [55–62].
Behind these approaches are basically two general ideas.
Firstly, to cross the singularity, one must give a prescription
matching nonsingular, finite quantities before and after the
crossing. Secondly, such a description can be achieved by
using a convenient choice of field parametrizations. In
Ref. [51], a version of the description of the crossing of
singularities in universes filled with scalar fields was
elaborated based on the transition between the Jordan and
the Einstein frames. The main idea of Ref. [51] is the
following. When in the Einstein frame the universe arrives
at the big bang–big crunch singularity, from the point of
view of the evolution of its counterpart in the Jordan
frame, its geometry is regular, but the effective Planck
mass is zero. The solution to the equations of motion in
the Jordan frame is smooth at this point, and using the
relations between the solutions of the cosmological
equations in the two frames, one can describe the crossing
of the cosmological singularity in a uniquely determined
way. In Ref. [63], it was pointed out that in a homo-
geneous and isotropic universe, one can indeed cross the
point where the effective gravitational constant changes
sign. However, the presence of anisotropies or inhomo-
geneities changes the situation drastically because these
anisotropies and inhomogeneities grow indefinitely when
the value of the effective Planck mass tends to zero, hence
the effective gravitational constant diverges. In Ref. [52],
the authors investigated this phenomenon, suggesting a
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simple field reparametrization that allows one to describe
the big bang–big crunch singularity crossing in the
Bianchi-I model filled with a minimally coupled scalar
field. Further studies of the description of the big bang–
big crunch singularity crossing in anisotropic models were
undertaken in Refs. [53,54]. An attempt to develop a
general approach to the problem of the treatment of the
singularities in classical and quantum cosmology based on
the reparmetrizations in field space was also undertaken in
Refs. [64–66].
Taking into account all of the above, we shall try

to describe what happens with our solution when the
Bianchi-I universe with a magnetic field encounters the
singularity. Let us tackle the problem by studying
the behavior of the differential equations “behind the
singularity”, where these equations and their solutions
remain mathematically well-defined but variables can take
on a different meaning from their original one. For
example, the variable VðtÞ, defined as a volume, can
become negative. Let us come back to Eq. (20), describing
the contraction of the universe when the parameter α0
is positive. We have seen that such a universe reaches
Vðt1Þ ¼ 0 when the velocity of the contraction is V̇ðt1Þ ¼
−W1 ¼ −2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
. If we continue the solution for

t > t1, the variable V becomes negative, its time derivative
remains negative, and it does not satisfy the inequality (21).
It follows from Eq. (20) that the second derivative V̈
remains positive. Thus, VðtÞ undergoes some kind of
“negative expansion” for a period of time during which
it remains negative while its absolute value grows. Since
V̈ > 0, at some moment, say t ¼ t3, the time derivative
passes through the value V̇ðt3Þ ¼ 0 and becomes positive.
Correspondingly, the function VðtÞ also starts to increase
(its absolute value is decreasing, so we can speak about
“negative contraction”). At a later moment, t ¼ t4, the
spatial volume VðtÞ should vanish. However, the velocity
V̇ > 0 and we cannot enter the interval (21) if the parameter
α0 is positive, hence the critical −W1 ¼ −2α0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
is negative. This implies that we encounter a singularity
of another type when VðtÞ ∼ ffiffiffiffiffiffiffiffiffiffiffi

t4 − t
p

, which we have
described before. And it is impossible to cross this
singularity, coming back to the “normal” part of the phase
space ðV; V̇Þ of our problem, where we were before the first
encounter with the singularity and where the magnetic field
was well defined.
Nevertheless, a nice way to come back to the “normal

universe” after this journey behind the “looking glass” still
exists. It consists of a simple prescription; we can change
the sign of the constant α0. The reasonable moment for this
change is exactly at t ¼ t3, because the parameter α0 enters
Eq. (20) either squared or multiplied by V̇ and the velocity
V̇ðt3Þ ¼ 0. To keep the parameters α0 and β0 on equal
footing, we can change the sign of the parameter β0 as well.
After that, the universe goes towards the singularity, where

Vðt4Þ ¼ 0, V̇ðt4Þ¼W3¼−2α0−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20−β20

p
>0, and crosses

into the “normal” part of the phase space expanding.
Now, it is interesting to compare the anisotropy para-

meters of the universe before it hits the singularity and after
it jumps out of it. Using the above solution γ ¼ W1 to
Eq. (27), we found the expressions (31)–(32) for the scale
factors aðtÞ, bðtÞ, and cðtÞ when the universe is contracting
towards the singularity at t ¼ t2. Let us choose β0 ¼ ξα0
and 0 ≤ ξ ≤ 3=5. In this case, p3 > p2 and

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
α0 þ β0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p ; ð85Þ

so ξ is just like in Eq. (49). Simple calculations then show
that the Kasner indices of the universe that go out from the
region behind the singularity coincide with those it had
before the encounter with the singularity. It is not clear how
we can interpret the period of time that the universe has
spent behind the singularity.
One can suggest another way to describe the transition

through the singularity. The Einstein equations for our
system are invariant under a change in the sign of the scale
factors. Indeed, these equations only contain terms like
ä=a, ȧ=a, or a2. Thus, we can change the signs of all three
scale factors so that the volume becomes positive again.
To make the equation (20) for the volume invariant
with respect to the change of sign of VðtÞ, we should also
change the sign of the parameter α0. In this way, the
positive time derivative of the volume V̇ immediately
acquires a lower critical value 2jα0j −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − β20

p
and an

unlimited expansion begins.
Both prescriptions described above imply the same

evolution after the singular bounce, but these two bounces
have a slightly different origin.
Finally, we would like to make a comment concerning

the behavior of the magnetic field as the universe tends
toward the singularity. Naturally, the energy density of the
magnetic field diverges when the universe enters a Kasner
regime approaching the singularity. Namely, this density
behaves as a−2b−2 ∼ t−2ð1−p3Þ. Nevertheless, if the Kasner
index p3 is close to 1, this divergence is much milder than
the one in a isotropic universe. In any case, as we have
explained before, the presence of the diverging quantities
does not prevent us from describing the singularity
crossing.

V. CONCLUDING REMARKS

We have studied in detail some features of the Bianchi-I
universe filled with a spatially homogeneous magnetic
field. Our finding is that the universe is in the Kasner
regime at the beginning and end of cosmological evolution.
We have established the relationship between the param-
eters of these two regimes and shown that it coincides with
the one in the empty Bianchi-II universe, which goes out of
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the initial Kasner regime rapidly and enters the final Kasner
regime earlier than the Bianchi-I universe filled with a
magnetic field. In addition to a spatially homogeneous
magnetic field, the universe also containing dust undergoes
the process of isotropization, while the presence of a
massless scalar field implies a modification of the relations
between Kasner indices in two asymptotic regimes.
Here we would also like to briefly mention other recent

works in which different aspects of the Bianchi-I geom-
etry were studied. First of all, let us note that the role of
the time coordinate and of one of the spatial coordinates
in the expression for the metric (1) can be exchanged [1].
This possibility was already considered in the earliest
works [8–10] and the study of the spatial Kasner-like
geometries (in particular, in the presence of thin or thick
walls or slabs) still attracts researchers [67–71]. The
geodesics in Kasner’s universe were considered in
Ref. [72]. Applications of Kasner-type spacetimes to
cosmic jets were done in Refs. [73,74], and the behavior

of fields and particles with spin in Bianchi-I universes
was studied [75,76]. In recent papers [77,78], the com-
parison of the Bianchi-I geometry with the real very early
Universe and our late-time Universe was undertaken,
while Ref. [79] was devoted to the study of Horndeski
theory and Ref. [80] to loop quantum cosmology in the
Bianchi-I universe. Thus, consideration of the simplest
nonisotropic cosmological models still flourishes and can
bring surprises [81].
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