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In this work, we derive the linearized equations of quadratic gravity from entanglement equilibrium of
local causal diamonds. Rather than starting from the Wald entropy prescription (which depends on the
gravitational Lagrangian), we employ a model independent approach based on the logarithmic corrections
to horizon entanglement entropy. In this way, we are able to show the emergence of linearized quadratic
gravity from entanglement equilibrium without using any a priori knowledge about gravitational
dynamics. If the logarithmic correction to entropy has a negative sign, as predicted by replica trick
calculations of entanglement entropy, we find that the quadratic gravity correction terms have the sign
necessary to avoid tachyonic instabilities of the theory.
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I. INTRODUCTION

The thermodynamic equilibrium conditions applied to
local, observer-dependent causal horizons encode gravita-
tional dynamics [1–4]. This implied a further step in
interconnecting thermodynamics and gravitational dynam-
ics and opened the door for deeper studies of gravitational
dynamics with well-defined thermodynamic tools. The
key assumption for these analyses is that the local causal
horizons posses Bekenstein entropy, SB ¼ A=4l2P,

1 with A
being the area of a spacelike horizon’s cross section. In
other words, black hole entropy is assumed to be associated
with the presence of a horizon, so that any other causal
horizon has entropy given by the same expression. Then,
imposing the equilibrium condition δSB þ δSm ¼ 0, where
δSm denotes Clausius entropy of the matter crossing the
horizon [6], implies the Einstein equations (for a discussion
of details and the additional assumptions involved, see,
e.g., [2,7,8]). While this approach establishes a deep
connection between gravitational dynamics and horizon
thermodynamics, it has several drawbacks. These recently

led to an improved approach based on the entanglement
equilibrium of causal diamonds [9].
One of the main concerns is the need to introduce

Bekenstein entropy of a local causal horizon, whose
microscopic origin is unclear. This is of course the case
for black holes as well. However, the situation for local
causal horizons is more complicated, since they are
observer-dependent and the same must be true for their
entropy (for arguments in favor of assigning entropy to
local horizons, see, e.g., [6,10–12]). This difficulty dis-
appears, e.g. if one interprets black hole entropy in terms of
quantum entanglement [11,13–15], as this description
naturally assigns the same entropy to any causal horizon.
Then, however, we employ quantum entanglement descrip-
tion for Bekenstein entropy, whereas entropy of the matter
crossing the horizon is given by the (semi)classical
Clausius formula. It is not obvious that the thermodynamic
equilibrium condition can be correctly stated combining
these two very different notions of entropy (although it has
been shown that both entanglement and Clausius entropy of
the matter flux coincide for causal diamonds [7,16]).
A more refined approach describes entropy of both

geometry and matter in terms of quantum entangle-
ment [9]. Its starting point is the assumption that a vacuum,
maximally symmetric spacetime is in entanglement equi-
librium. The corresponding entanglement entropy is then
extremal and its change due to a simultaneous variation
of spacetime geometry and matter fields must vanish to the
first order. In the presence of a local causal horizon, the
entanglement entropy variation has two components [9].
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1Throughout the paper, we set c ¼ kB ¼ 1 but we leave G and

ℏ explicit to keep track of the gravitational and quantum effects
(so that the Planck length reads lP ¼ ffiffiffiffiffiffiffi

Gℏ
p

). We work in four
spacetime dimensions with the metric signature ð−þþþÞ,
where Greek letters are used for spacetime indices and Latin
ones for spatial indices. Other conventions follow [5].
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On the one side, the UV component, δSUV, does not depend
of the state of matter fields (by virtue of the strong
equivalence principle) and, to the leading order, it is
proportional to the variation of the horizon area, i.e., δSUV ¼
ηδA [2,9,13–15]. The proportionality constant η depends on
the UV cutoff introduced to regularise the entropy and
cannot be directly determined. On the other side, the IR
contribution, δSIR, depends on the state of the matter fields.
If only conformally invariant matter fields are present, it
turns out to be proportional to the energy-momentum tensor
expectation value [9,12]. The entanglement equilibrium
condition δSUV þ δSIR ¼ 0 then leads to the Einstein
equations, with the Newton gravitational constant defined
in terms of the proportionality constant η, G ¼ 1=ð4πℏηÞ.
Then, we have η ¼ 1=ð4l2PÞ and the UV entanglement
entropy must again correspond to Bekenstein entropy.
Thermodynamic [3,4,17,18] and entanglement equilib-

rium [19,20] derivations of equations for gravitational
dynamics have been developed in the literature even for
modified theories of gravity whose Lagrangian is an
arbitrary function of the metric and the Riemann tensor.
These approaches rely on the expressions for Wald entropy
and generalized volume closely related with gravitational
dynamics. Here, we explore a different direction to derive
the modified equations for gravitational dynamics from
entanglement equilibrium. Our aim is to avoid any reliance
on the form of the gravitational Lagrangian. Thus, rather
than starting from Wald entropy, we consider that the UV
contribution to entanglement entropy contains a correction
term logarithmic in the horizon area

S ¼ A
4l2P

þ C ln
A
4l2P

; ð1Þ

where C is a real number whose value and sign are model
dependent.2 Equation (1) agrees with the UV divergent
contribution to entanglement entropy in four spacetime
dimensions.3 Notably, this form of the entanglement entropy
(albeit not the proportionality constants 1=4l2P and C) can be
derived kinematically, without any assumptions about the
gravitational dynamics [15,21,22]. Moreover, logarithmic
corrections to horizon entropy are not limited to the en-
tanglement entropy interpretation. They are predicted by
many approaches to quantum gravity, e.g. string theory [23],
loop quantum gravity [24], AdS=CFT correspondence [25],
and generalized uncertainty principle phenomenology [26].

Hence, the presence of logarithmic corrections to horizon
entropy appears to be a nearly universal feature. For the sake
of clarity of presentation, we frame the entire derivation in
this paper in terms of the entanglement equilibrium and,
therefore, attribute the entropy origin to quantum entangle-
ment. However, our key argument works for anymodel with
logarithmic corrections to entropy, regardless of the entropy
interpretation.
To obtain the modified equations for gravitational

dynamics, we introduce local causal horizons realized as
geodesic local causal diamonds. For simplicity, we consider
weak gravitational fields (discarding terms quadratic in the
curvature tensors) and assume that all the matter fields are
conformally invariant. Then, using the model independent
prescription for UV entanglement entropy (1) and the
entanglement equilibrium condition, we derive linearized
equations for gravitational dynamics.
Let us remark that we already studied the effect of the

extra logarithmic term in entropy on the equations for
gravitational dynamics in a previous paper [27]. In that
work, we simplified the derivation by neglecting higher
order contributions in the Riemann normal coordinate
expansion. Thus, we did not obtain terms with derivatives
of the curvature tensors and the correction we found was
quadratic in the traceless part of the Ricci tensor. In the
presentwork,we instead include the higherRiemann normal
coordinate expansion contributions, but neglect any terms
quadratic in the curvature tensor. This can be done con-
sistently, provided that the gravitational field is sufficiently
weak. Therefore, we find linearized equations for gravita-
tional dynamicswhich include correction terms proportional
to second derivatives of the curvature tensors. In particular,
our result corresponds to linearized equations of motion for
quadratic gravity coupled to conformally invariant matter
fields, with the higher derivative terms proportional to l2P.
Notably, if the logarithmic correction term in entanglement
entropy is negative (as predicted by the majority of
approaches), we find that the signs of the higher derivative
terms agree with the ones required to avoid tachyonic
instabilities [28,29]. The emergence of quadratic gravity
in this regime can be considered a genuine prediction of the
local equilibrium approach, independent of any assumptions
concerning the gravitational Lagrangian.
A complete treatment in the strong gravity regime of

course requires including both the higher derivative correc-
tions discussed here and the terms quadratic in Ricci tensor,
partially derived in our previous paper [27]. Moreover,
the vacuum case was analyzed, suggesting corrections to
equations of motion quadratic in the Weyl tensor [30].
Presumably, all these terms appear as Oðl2PÞ corrections to
the equations for gravitational dynamics. However, such a
full treatment is technically very challenging and requires
physically well-motivated resolution of certain ambiguities
(e.g., shape deformations of the horizon). Thus, our current
linearized analysis is primarily intended as a proof of

2For the case of round spheres and with only conformal matter
fields present, C can be considered to be constant [15]. In the
following, we only work with conformal matter and shape
variations of the spherical horizon do not affect our analysis.
Hence, we do not consider variations of C.

3In spacetime dimension other than four, the structure of UV
divergent contribution to entanglement entropy differs [15].
Hence, extending our approach to arbitrary spacetime dimensions
would be nontrivial.
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concept, showing that local equilibrium conditions provide
useful information about gravitational dynamics even
beyond the leading order (the Einstein equations). A more
complete derivation that includes the terms quadratic in the
curvature tensors is forthcoming.

II. DERIVATION OF THE EQUATIONS FOR
GRAVITATIONAL DYNAMICS

The seminal works concerning the relation of thermo-
dynamics and gravitational dynamics considered local,
approximate acceleration horizons (the so called Rindler
wedges) [1–3]. However, these objects are not suitable
to perform the computations for the entanglement equilib-
rium approach, mainly because they do not have a
well-defined interior to which one can ascribe matter
entanglement entropy (and attempts to study entanglement
equilibrium of Rindler wedges fail to reproduce the
Einstein equations [16]). Moreover, UV entanglement
entropy of Rindler wedges does not have a correction term
logarithmic in area (this term is proportional to the Euler
characteristic of the surface which is zero for a plane [15]).
These problems can be solved by instead considering

local causal horizons with a closed spatial cross sections
[4,7,16,20,27]. The simplest construction obeying this
requirement is a geodesic local causal diamond.4 A causal
diamond centred in an arbitrary regular spacetime pointP is
fully determined by the choice of a unit, timelike, future-
directed vector nμðPÞ and a length scale l. All the geodesics
starting from P, orthogonal to nμ and of parameter length l
form a 3-dimensional geodesic ball, Σ0, provided that l is
much smaller than the local curvature length scale (inverse
of the square root of the largest eigenvalue of the Riemann
tensor). The boundary of Σ0, B, is an approximate 2-sphere.
The region of spacetime causally determined by Σ0 then
forms the geodesic local causal diamond (see Fig. 1). To
describe it, we use a local Cartesian coordinate system
chosen so that nμ ¼ ð∂=∂tÞμ.
A causal diamond possesses an approximate (up to

curvature-dependent terms) conformal Killing symmetry,
generated by the conformal Killing vector field

ζ ¼ C
�
l2 − r2 − t2

�
∂t − 2Crt∂r; ð2Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

3
i¼1 x

2
i

q
, and C is an arbitrary real number.

On the null boundary of the causal diamond ζμ vanishes
and the boundary thus corresponds to a conformal Killing
horizon. Moreover, 2-sphere B (at t ¼ 0) represents a
bifurcation surface as ζμ vanishes there. It has been argued
that this horizon has a finite Hawking temperature [12]

TH ¼ ℏκ=2π; ð3Þ

where κ ¼ 2Cl denotes the surface gravity of ζμ.
Our starting point is thus a small geodesic local causal

diamond defined by a unit, timelike, future-directed vector
nμ, and a length parameter l. On the one hand, as previously
explained, we require l to be significantly smaller than the
local curvature scale.5 On the other hand, l must be much
larger than the Planck length. Otherwise, the quantum
gravity effects dominate, making the description of space-
time in terms of a smooth Lorentzian manifold problematic.
Within this range, the value of l is arbitrary.
We require that the diamond is initially in entanglement

equilibrium. It has been conjectured that it corresponds to a
vacuum, maximally symmetric spacetime, with a local
value of the cosmological constant λ in principle dependent
on the diamond’s position and size, i.e., λ ¼ λðP; lÞ [9]. In
this work, we assume that all the matter fields present in the

FIG. 1. An illustration of a geodesic local causal diamond centred
inP. We suppress the angular coordinate θ. The direction of time is
givenby the unit, future-directed timelikevectornμ. Orthogonal to it
is the base of the diamond formed by a 3-dimensional spatial
geodesic ball Σ0 of radius l, whose boundary B is an approximate
2-sphere. We draw several sample geodesics forming Σ0 in gray.
The null geodesic generators of the diamond’s boundary are
represented by the tilted lines starting in the diamond’s past apex
Ap (t ¼ −l=c) and ending in the future apex Af (t ¼ l=c). We can
see thatΣ0 is the intersection of the future domain of dependence of
Ap and the past domain of dependence of Af.

4Alternatively, one could use stretched light cones [4]. We
expect the results to be the same in either case.

5Moreover, to evaluate matter entanglement entropy, l must be
smaller than any length scale relevant for the matter fields (e.g.,
Compton lengths). However, this requirement is not necessary in
our case, as we assume thematter fields to be conformally invariant.
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spacetime are conformally invariant. In that case, it has
been shown that, to the leading order, λ has a constant
value, i.e., λðP; lÞ ¼ Λ [9]. Since we introduce Oðl2PÞ
corrections to the UVentanglement entropy, the corrections
to λ will be of the same order,

λðP; lÞ ¼ Λþ l2PλcðP; lÞ: ð4Þ

Upon specifying the equilibrium state of the diamond,
we now introduce a small, arbitrary variation of the metric
and of the matter fields. Then, the corresponding entangle-
ment entropy variation must vanish to the first order. Let us
first discuss the IR, matter fields state-dependent variation
of entanglement entropy. For conformal matter fields, the
vacuum density matrix can be written in terms of the
Hawking temperature (3) and a local modular Hamiltonian,
K. Then, the IR contribution to the entanglement entropy
variation reads [9,12,19]

δSIR ¼ 1

TH
δK ¼ 2πkBc

ℏ
4π

15
l4δhTμνinμnν þO

�
l5
�
; ð5Þ

where δhTμνi denotes the expectation value of the energy-
momentum tensor variation inside the causal diamond.
Next, we evaluate the UV component of the entangle-

ment entropy variation, which is state independent and
fully determined by the variation of the metric. To avoid the
technical issues associated with the terms nonlinear in
curvature, we consider only weak gravitational fields with
the aim to derive the linearized equations for gravitational
dynamics. The weak gravity requirement translates into the
Riemann tensor variation δRμ

νρσ being small, so that we
can neglect any terms quadratic in the Riemann tensor.
More precisely, we demand that any scalar built from two
Riemann tensors and the metric is much smaller than the
largest scalars obtained from the Riemann tensor, metric
tensors and at most two covariant derivatives. We can
conveniently describe the metric variation in terms of the
Riemann normal coordinate expansion [31]

gμνðxÞ ¼ ημν −
1

3
xαxβδR̄μανβ −

1

6
xαxβxλ∇ρδR̄μανβ

−
1

20
xαxβxλxρ∇α∇βδR̄μλνρ þO

�
x5; δR̄2

�
; ð6Þ

where

δR̄μανβ ¼ δRμανβ þ
1

3
λðgανgβμ − gαβgμνÞ; ð7Þ

denotes the difference between the Riemann tensor of the
maximally symmetric background and the Riemann tensor
after the variation of the metric. For the UV contribution to
the change of entanglement entropy we straightforwardly
obtain from Eq. (1)

δSUV ¼ δA
4l2P

þ C
�
ln
A0 þ δA

4l2P
− ln

A0

4l2P

�
; ð8Þ

whereA0 ¼ 4πl2 denotes the flat space area of the 2-sphere
B. As we will show in the following, δA is linear in the
variation of the Riemann tensor. Hence, we can neglect all
the OðδA2Þ terms. The Taylor expansion of the logarithm
then yields

δSUV ¼ δA
4l2P

þ C
δA
A0

þO

�
δA2

A2
0

�
: ð9Þ

The Riemann normal coordinate expansion of the metric
allows us to directly obtain the variation of the area element.
As we cannot a priori expect that the size parameter l
remains constant, the area variation also depends on its
variation, δl. The complete expression for δA reads

δA ¼
Z
B

1

2
l2
�
−
1

3
xαxβδR̄μανβ −

1

6
xαxβxρ∇ρδR̄μανβ

−
1

20
xαxβxλxρ∇α∇βδR̄μλνρ

�
dΩ2 þ 8πlδl; ð10Þ

where onBwe have xα ¼ lmiδαi , withm
i being the outward-

pointing radial unit normal to ∂Σ0. Using the following
identities for spherical integrals

Z
B
dΩ2mimj ¼ 4π

3
δij; ð11Þ

Z
B
dΩ2mimjmk ¼ 0; ð12Þ

Z
B
dΩ2mimjmkml ¼ 4π

15

�
δijδkl þ δikδjl þ δilδjk

�
; ð13Þ

we then obtain

δA ¼ −
4πl4

18
δR̄ij

ij −
4πl6

600

�
δijδkl þ δikδjl þ δilδjk

�
×∇i∇jδR̄m

kml þ 8πlδl: ð14Þ

To proceed, we must fix δl which has been so far kept
arbitrary. It has been shown that the entanglement equi-
librium condition encodes the Einstein equations only if
one chooses δl so that the volume of Σ0 is held fixed
[9,12,32–34] (since the volume variations enter the first law
of causal diamonds). For more general gravitational the-
ories it has been suggested that one should instead fix a
local geometric quantity constructed in a precise way from
the gravitational Lagrangian and known as the generalized
volume, W [19]. This choice is motivated by the obser-
vation that W plays the role of thermodynamic volume in
the first law of causal diamonds. As expected, in general
relativity, W reduces to the geometric volume of Σ0.
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In our case, since we make no a priori assumptions about
the gravitational Lagrangian, we cannot directly derive W.
Therefore, for the purposes of the present work, we consider

W ¼ V þ l2PWqðP; l; nμÞ; ð15Þ

where V is the standard volume of the ball Σ0 and
WqðP; l; nμÞ an undetermined quantum gravitational cor-
rection to it, dependent on the size parameter l, the direction
of coordinate time nμ and the spacetime curvature at pointP.
This agrees with the generic form of the generalized volume
in modified theories of gravity. We will fix Wq later on, by
requiring independence of gravitational dynamics of our
arbitrary choice of time direction nμ. A more refined future
treatment should replace the notion of generalized volume
by some kinematic, microscopically defined quantity, in
the same way entanglement entropy with a logarithmic
correction replaces Wald entropy in the present work. One
possibility lies in the proposed relation between the gener-
alized volume and holographic complexity [19,35].
We compute the volume variation from the metric

expansion (6) in the same way as the area variation,
obtaining for the variation of the generalized volume

δW ¼ δV þ δWq ¼ −
4πl5

90
δR̄ij

ij −
4πl7

4200

�
δijδkl þ δikδjl

þ δilδjk
�
4∇i∇jδR̄m

kml þ l2PδWq

þ
�
4πl2 þ l2P

∂Wq

∂l

�
δl: ð16Þ

To satisfy the fixed generalized volume condition, δW ¼ 0,
we impose

δl ¼ 1

1þ l2P
4πl2

∂Wq

∂l

�
l3

90
δR̄ij

ij þ
l5

4200

�
δijδkl þ δikδjl

þ δilδjk
�∇i∇jδR̄m

kml − l2PδWq

�
: ð17Þ

Since Wq must vanish in flat spacetime, all the terms
containing ∂Wq=∂l are already quadratic in curvature. As
we only consider linearized equations of motion, we
discard them, obtaining

δl ¼ l3

90
δR̄ij

ij þ
l5

4200

�
δijδkl þ δikδjl þ δilδjk

�

×∇i∇jδR̄m
kml −

l2P
4πl2

δWq: ð18Þ

Plugging this δl into the area variation (14), we have

δA ¼ −
4πl4

30
δR̄ij

ij −
4πl6

840

�
δijδkl þ δikδjl þ δilδjk

�

×∇i∇jδR̄m
kml −

2l2P
l
δWq: ð19Þ

Given that λ is constant up to Oðl2PÞ terms [see Eq. (4) and
the accompanying discussion], we have

l2P∇i∇jδR̄m
kml ¼ l2P∇i∇jδRm

kml þO
�
l4P
�
: ð20Þ

Since our analysis is insensitive to Oðl4PÞ, we discard the
derivatives of λ in Eq. (19), obtaining

δA ¼ −
4πl4

30

	
δRij

ij − 2λ


−
2l2P
l
δWq

−
4πl6

840

�
δijδkl þ δikδjl þ δilδjk

�∇i∇jδRm
kml: ð21Þ

The first term on the right-hand side can be rewritten in
terms of the Einstein tensor, i.e., δRij

ij ¼ 2δGμνnμnν [9].
For the second term, we get, after some straightforward
manipulations

�
δijδkl þ δikδjl þ δilδjk

�∇i∇jδRm
kml ¼ 4∇μ∇νδRρσnμnνnρnσ þ

	
2∇ρ∇σδRμ

ρ
ν
σ þ 4∇μ∇ρδRν

ρ

þ 2∇ρ∇ρδRμν þ∇μ∇νδR


nμnν þ 2∇ρ∇σδRρσ þ∇ρ∇ρδR: ð22Þ

Putting together the IR expression (5) and the UVone (21) for the contributions to the entanglement entropy variation
now yields the following entanglement equilibrium condition

4πl4

15
ðδGμνnμnν − λÞ þ Cl2l2P

15

�
δGμνnμnν þ

l2

56

	
4∇μ∇νδRρσnμnνnρnσ þ

	
2∇ρ∇σδRμ

ρ
ν
σ

þ 4∇μ∇ρδRν
ρ þ 2∇ρ∇ρδRμν þ∇μ∇νδR



nμnν þ 2∇ρ∇σδRρσ þ∇ρ∇ρδR


�
þ 2l2P

l
δWq þO

�
l5
�

¼ 4πl4

15
δhTμνinμnν: ð23Þ
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The condition contains an arbitrary length scale l (within
the previously discussed range) and an arbitrary unit,
timelike, future-directed vector nμ. Keeping either of these
in the final equations of motion would violate the equiv-
alence principle and the locality of the equations. In the
approaches based on Wald entropy, the l and nμ-dependent
terms cancel out between the variations of the entropy and
the generalized volume [19]. Ideally, the same procedure
should work in our case. However, as discussed above,
we do not have a rigorous way to obtain an expression
for the generalized volume. Hence, a different approach
must be adopted. To deal with the l-dependent terms, we
construct a sequence of M0 þ 1 causal diamond with sizes
lm ¼ lþmϵl, where ϵ is a small dimensionless parameter,
n∈ ½1;M0� a natural number M0 is chosen small enough
that lð1þM0ϵÞ is much smaller than the local curvature
length scale. All the diamonds are centred at the same
point P and correspond to the same timelike vector nμ. In
this way, the Riemann normal coordinate expansion we
introduced for the diamond of the size l remains valid.
Since the expansion works with values of tensors at P, all
the tensorial expressions will be the same in each diamond.
Only the diamonds size parameter will differ. To simplify
the discussion, we schematically write our equilibrium
condition (23) divided into terms of various powers
of l, i.e.,

X∞
m¼1

l2mEm ¼ 0: ð24Þ

For the mth of the M0 þ 1 causal diamond we constructed,
we have the following equilibrium condition

X∞
m¼1

ð1þ nϵÞ2ml2mEm ¼ 0 ð25Þ

We again stress that all Em are the same for each diamond.
Then, if the equations are to be satisfied for any n, we
require Em ¼ 0 for each m.6 In particular, for m ¼ 2, we
have

4πl4

15
ðδGμνnμnν − λ0Þ þ Cl4l2P

840

h
4∇μ∇νδRρσnμnνnρnσ

þ �
2∇ρ∇σδRμ

ρ
ν
σ þ 4∇μ∇ρδRν

ρ þ 2∇ρ∇ρδRμν

þ∇μ∇νδR
�
nμnν þ 2∇ρ∇σδRρσ þ∇ρ∇ρδR

i

þ 2l2P
l
δWq

0 ¼ 4πl4

15
δhTμνinμnν; ð26Þ

where λ0 ¼ λkðPÞ is the piece of the local cosmological
constant λðP; lÞ independent of l and δWq

0 the part of δWq

proportional to l5.
Next, we focus on the dependence on nμ. If the (Einstein)

equivalence principle holds, we require the equilibrium
condition (26) to be independent of nμ. This condition (26)
contains terms without any contraction with nμ, with
two contractions and with four contractions. The terms
without any contraction can be rewritten as including two
contractions, using the normalization gμνnμnν ¼ −1.
Regarding the four contraction terms, they must cancel
out with the generalized volume variation δWq

k. Looking
at the generic form of δWq

0 in modified theories of gravity,
it contains terms of the form Dμνρσnμnσhνρ, where Dμνρσ is
some curvature-dependent tensor and hνρ ¼ gνρ þ nνnρ the
spatial 3-metric on Σ0. In our case, choosing

δWq
0 ¼ −

Cl5

420
∇ðμ∇νδRρσÞnμnσhνρ; ð27Þ

eliminates the four contraction term, exactly as we require.
Sticking to the ansatzDμνρσnμnσhνρ for δWq

0 this is also the
only term we can include, while still maintaining the overall
independence of the equilibrium condition (26) on nμ.
Plugging expression (27) for δWq

k into Eq. (23) and
multiplying by 15=ð4πl4Þ yields an l-independent equation
which contains two contractions with nμ (we use that
gμνnμnν ¼ −1)

δGμνnμnν þ λrestgμνnμnν þ
Cl2P
56π

�
2∇ρ∇σδRμ

ρ
ν
σ

þ 4

3
∇ρ∇ρδRμν þ

2

3
∇μ∇ρδRν

ρ þ 2

3
∇ν∇ρδRμ

ρ

þ 1

3
∇μ∇νδR − 2gμν∇ρ∇σδRρσ − gμν∇ρ∇ρδR

�
nμnν

¼ 8πGδhTμνinμnν: ð28Þ
We now have an equation of the form fμνnμnν, which holds
for any unit, timelike, future-directed vector nμ. It is easy to
show that this implies fμν ¼ 0 (we include a simple proof
in the Appendix). Therefore, we can remove the contrac-
tions with nμ

δGμν þ λkgμν þ
Cl2P
56π

�
2∇ρ∇σδRμ

ρ
ν
σ þ 4

3
∇ρ∇ρδRμν

þ 2

3
∇μ∇ρδRν

ρ þ 2

3
∇ν∇ρδRμ

ρ þ 1

3
∇μ∇νδR

− 2gμν∇ρ∇σδRρσ − gμν∇ρ∇ρδR

�
¼ 8πGδhTμνi; ð29Þ

obtaining 10 linearized equations for 10 components of the
metric. However, the terms with derivatives of the curvature
tensors look fairly complicated, and the equations still

6The correction terms we eventually obtain are proportional to
l2P=l

2
C, with lC being the local curvature length scale. Then, any

terms l2mEm much smaller than this can be neglected, and we
only need to set to 0 finitely many Em using the above described
procedure.
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contain an undetermined scalar λk. We solve the first
problem by using the definition of the Weyl tensor

δCμ
ρ
ν
σ ¼ δRμ

ρ
ν
σ þ 1

2

�
δσμδRν

ρ þ δρνδRμ
σ − gμνδRρσ

− gρσδRμν

�þ 1

6

�
gμνgρσ − δσμδ

ρ
ν

�
δR; ð30Þ

and the contracted Bianchi identities

∇μ∇ρδRν
ρ ¼ ∇ν∇ρδRμ

ρ ¼ 1

2
∇μ∇νδR; ð31Þ

∇ρ∇σδRρσ ¼ 1

2
∇ρ∇ρδR; ð32Þ

∇ρ∇σCμ
ρ
ν
σ ¼ 1

2
∇ρ∇ρRμν −

1

6
∇μ∇νδR −

1

12
gμν∇ρ∇ρδR:

ð33Þ

A somewhat lengthy, but straightforward calculation then
yields

δGμν þ λkgμν þ
Cl2P
56π

�
20

3
∇ρ∇σδCμ

ρ
ν
σ þ 10

9
∇μ∇νδR

−
13

9
gμν∇ρ∇ρδR

�
¼ 8πGδhTμνi: ð34Þ

To fix λk, we assume that energy is locally conserved, i.e.,
that the energy-momentum tensor is divergenceless,
∇νTμ

ν ¼ 0. Moreover, we have ∇ν∇ρ∇σδCμ
ρ
ν
σ ¼ 0 up

to terms quadratic in the Riemann tensor which we neglect.
Then, taking a divergence of Eq. (34) yields

∇μλ
k ¼ Cl2P

168π

1

3
∇μ∇ν∇νδR: ð35Þ

Integrating this expression, we find λk ¼ Λþ
Cl2P∇ρ∇ρδR=ð168πÞ, where Λ is an arbitrary integration
constant corresponding to the cosmological constant. The
final result of this derivation are equations for gravitational
dynamics corresponding exactly to the linearized equations
of quadratic gravity with a cosmological constant, coupled
to conformal matter [28,29]

δGμν þ Λgμν þ
5Cl2P
42π

�
∇ρ∇σδCμ

ρ
ν
σ

þ 1

6
ð∇μ∇ν − gμν∇ρ∇ρÞδR

�
¼ 8πGδhTμνi: ð36Þ

The quadratic gravity corrections are proportional to l2P.
This is natural, since lP is the only constant length scale
present in the UV entanglement entropy expression (1). If
C < 0, we find that the coupling constants in front of the
quadratic gravity terms the signs necessary to avoid the

tachyonic instabilities [28,29]. Negative C corresponds to
negative logarithmic correction to entanglement entropy of
causal diamonds, which is consistent with the results from
the replica trick calculations [15,22]. The effective action
corresponding to Eq. (36) reads

Sq ¼
1

16πG

Z �
Rþ 5Cl2P

168π

�
−
R2

3
þ CλρστCλρστ

�� ffiffiffiffiffiffi
−g

p
d4x:

ð37Þ

We want stress here that the action is recovered only after
writing the equations for gravitational dynamics, so it plays
no role in their derivation.
We obtained the quadratic gravity equations ofmotion from

higher order quantum corrections to entanglement entropy.
Hence, our result certainly does not support quadratic gravity
as the appropriate classical theory of gravity. Instead, the
higher derivative terms should be understood as effective field
theory corrections to the Einstein equations, which alsomakes
the suppression of the correction terms by l2P rather natural.
From the effective field theory point of view, the emergence of
the linearized equations for quadratic gravity is not surprising.
Our derivation assumes the Einstein equivalence principle
(this assumption is somewhat implicit here, but discussed at
length, e.g., in [2,7,27]), local energy-momentum conserva-
tion and purely metric description of gravity (in particular
by treating vector nμ as an arbitrary parameter, rather than a
dynamical field). Then, quadratic gravity is the most general
theory satisfying these requirements whose equations of
motion involve at most fourth derivatives of the metric. The
nontrivial insight gained by our derivation is that both the
derivatives of the Weyl tensor and the scalar curvature appear
in the equations of motion and with the same sign. We stress
that here we only analyzed the linearized regime, and there is
no reason to expect that the full nonlinearizeddynamicswill be
compatible with quadratic gravity.
To conclude our derivation, several technical remarks are

in order
(i) The equations contain the quantum expectation value

of the energy-momentum tensor. Therefore, we did
obtain linearized equations of motion of semiclass-
ical quadratic gravity. We note that the well-known
ambiguity in the definition of the energy-momentum
tensor’s expectation value has the same form as the
quadratic gravity corrections we obtained [36]. Thus,
the coefficients in front of these terms in principle
depend also on our choice of hTμνi.

(ii) Our approach cannot be straightforwardly general-
ized to include nonconformal matter fields. While
this is possible in the derivation of Einstein equations,
λ acquires a potentially large nonconstant contribu-
tion due to the effect of nonconformal fields on
the IR entanglement entropy [9,37,38]. Then,
the derivatives of λ appearing in our construction
become non-negligible. Consequently, determining
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the necessary form of λ would become a very
complex task. A more refined treatment of both
the geometry variations and the IR entanglement
entropy is probably necessary to generalise our
derivation in this way.

(iii) It has been argued in different contexts that loga-
rithmic corrections to horizon entropy also imply
modifications to Hawking temperature [15,26,39].
However, we have previously shown that such
modifications do not affect the derivation of
gravitational dynamics from thermodynamics of
local causal horizons [27]. This is expected, since
both the Unruh and the Hawking effects are purely
kinematic [40], even in the presence of quantum
gravitational corrections [39]. Therefore, we are
justified to use the standard expression for Hawking
temperature, regardless of its possible modifications.

(iv) Apart from a variation of the size parameter, δl, one
should also in principle allow for variations of the
shape of the geodesic ball Σ0 [30]. These deforma-
tions contribute to area and volume variations at the
order Oðl4Þ, which indeed affects our analysis.
However, their contributions appear to be quadratic
in the curvature tensors and, therefore, they do not
enter our results [30]. This is certainly the case if we
allow the shape deformations to depend only on l, nμ

themetric, the curvature tensors and their derivatives.
(v) We assumed that the diamond’s size l is an arbitrary

parameter and the equations of motion are indepen-
dent of it. Then, the higher derivative terms in the
equations of motion appear from the logarithmic
term in UV entanglement entropy and are propor-
tional to the Planck length squared (lP being the only
scale available). Alternatively, one might fix l to
some lq ≫ lP. Then, the logarithmic correction
becomes negligible (it scales with l2P) and we obtain
the higher derivative terms directly from the dom-
inant contribution to entropy, proportional to area.
The quadratic gravity corrections then scale with l2q.
This approach is tempting as it foregoes the need for
the logarithmic term in entropy and leads to quad-
ratic gravity corrections that become important far
below the Planck scale. However, we presently
cannot think of any justification for introducing a
preferred value of l. Therefore, we do not pursue this
line of derivation any further.

III. DISCUSSION

In this work, we have derived the linearized equations of
motion of quadratic gravity from local equilibrium con-
ditions. In contrast to previous such derivations, we make
no a priori assumptions about Wald entropy (and, thus, the
gravitational Lagrangian). Instead, our starting point is the
Bekenstein entropy with a correction term logarithmic in

horizon area, that is nearly universally predicted by both
entanglement entropy calculations and by various candi-
date theories of quantum gravity.
The linearized equations of quadratic gravity are the only

equations compatible with the assumptions made in our
derivation, i.e., the Einstein equivalence principle and
presence of no other fields besides the metric. Hence,
the result we arrived at may seem to be trivial. However, it
serves as a proof of concept. We have no a priori guarantee
that the local equilibrium conditions encode gravitational
dynamics beyond the Einstein equations. Our result shows
that the leading order linearized corrections can indeed be
derived in this way and have the expected form (including
the expected signs of the correction term). Therefore, we
show that local equilibrium conditions encode nontrivial
information about gravitational dynamics beyond the
leading order (the Einstein equations), which agree with
the expectations one has from the effective field theory
approach.
Given this nontrivial emergence of quadratic gravity, it

appears to be worthwhile to ask whether local equilibrium
conditions can offer any novel insights regarding quantum
corrections to gravitational dynamics. In particular, wewant
to address the questions of diffeomorphism invariance,
origin of the cosmological constant, or low energy quantum
gravitational effects. Notably, one can ask such questions
without committing to an emergent gravity picture, simply
treating the local equilibrium as a consistency condition for
gravitational dynamics (that is reasonably motivated by the
entanglement entropy calculations and standard thermo-
dynamic considerations). For instance, an approach relating
thermodynamics of Rindler wedges with loop quantum
gravity has been proposed [41] and one certainly cannot talk
about any emergence of gravitational dynamics in this case.
Nevertheless, the thermodynamic methods in principle still
provide a useful tool to study gravitational dynamics,
without the need to use the full machinery of loop quantum
gravity. The same is true even if we do not commit to any
specific final theory of quantum gravity and simply take the
local equilibrium conditions as something any of them
should incorporate. Obtaining the linearized equations of
motion for quadratic gravity shows that this line of reasoning
indeed provides nontrivial insights.
The trade-off for the generality of our derivation lies in

the need to fix the generalized volume by an ad hoc
procedure, requiring that our result is purely metric and
respects the equivalence principle. The need to fine-tune
the generalized volume in this way presents a drawback that
ought to be removed in the future. An improved treatment
of the generalized volume and/or shape deformations in our
approach might suffice to eliminate the need for fine-tuning
the local cosmological constant (as long as the matter fields
are conformally invariant).
Let us finally remark that the full, nonlinearized treat-

ment of the entanglement equilibrium is significantly more
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technically involved. In this case, the shape deformations of
the ball Σ0 definitely become relevant and a physical
principle fixing their contribution is necessary (for a
thorough discussion of this issue, see [30]). Moreover,
the geodesic local causal diamond may not be the appro-
priate generalization of the flat spacetime causal diamond
for this task [42]. Lastly, it is unclear whether the result will
simply be the full quadratic gravity, or a different theory,
possibly violating the diffeomorphism invariance. The
latter possibility is implied by the previous studies which
included the terms quadratic in curvature [27,30]. We will
discuss this full treatment in a future work.
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APPENDIX

In this appendix, we explicitly prove that the condition
fμνnμnν ¼ 0 for every timelike, unit, future-pointing vector
defined in a given point implies fμν ¼ 0 (without any loss
of generality, we assume fμν to be symmetric). We
introduce a local orthonormal coordinate system such that
the metric locally corresponds to the Minkowski one
gμν ¼ ημν. We denote the corresponding orthogonal n-ad
by nμ ¼ ð∂=∂tÞμ and ei ¼ ∂=∂xi. Let us stress that, since the
Einstein equivalence principle requires that fμν is a tensor,
choosing a specific coordinate system involves no loss of

generality. For spacetime dimension n ≥ 2 consider the
following set of unit timelike vectors

tμij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ p2 þ q2Þ

q
nμ þ peμi þ qeμj ; ðA1Þ

for any natural numbers i, j, such that 0 < i < j ≤ n − 1,
and any real numbers p, q. The requirement fμνt

μ
ijt

ν
ij ¼ 0

for every tμij translates into an equation

ð1þp2þq2Þf00þp2fiiþq2fjjþ2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þp2þq2Þ

q
f0i

þ2q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þp2þq2Þ

q
f0jþ2pqfij¼0; ðA2Þ

which must be satisfied for any real p, q. Hence, every
coefficient in the expansion of the left-hand side in powers
of p, q needs to be zero. First few conditions implied by
this are

f00 ¼ 0; ðA3Þ
2pf0i ¼ 0; ðA4Þ

2qf0j ¼ 0; ðA5Þ

p2ðf00 þ fiiÞ ¼ 0; ðA6Þ

q2ðf00 þ fjjÞ ¼ 0; ðA7Þ

2pqfij ¼ 0: ðA8Þ

These equations are satisfied for every i, j if and only
if fμν ¼ 0.
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