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In this work, a null geometric approach to the Brown-York quasilocal formalism is used to derive an
integral law that describes the rate of change of mass and/or radiative energy escaping through a dynamical
horizon of a nonstationary spacetime. The result thus obtained shows—in accordance with previous results
from the theory of dynamical horizons of Ashtekar et al.—that the rate at which energy is transferred from
the bulk to the boundary of spacetime through the dynamical horizon becomes zero at equilibrium, where
said horizon becomes nonexpanding and null. Moreover, it reveals previously unrecognized quasilocal
corrections to the Bondi mass-loss formula arising from the combined variation of bulk and boundary
components of the Brown-York Hamiltonian, given in terms of a bulk-to-boundary inflow term akin to an
expression derived in an earlier paper by A. Huber [Remark on the quasilocal calculation of tidal heating:
Energy transfer through the quasilocal surface, Phys. Rev. D 105, 024011 (2022).]. For clarity, this is
discussed with reference to the generalized Vaidya family of spacetimes, for which derived integral
expressions take a particularly simple form.
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I. INTRODUCTION

To determine within the Brown-York quasilocal formal-
ism [1,2] the change in mass and/or radiant energy
escaping through the spatial boundary of a finitely
extended gravitating physical system, it generally incurs,
as only recently shown in [3], the necessity to calculate the
time derivative of the total quasilocal gravitational
Hamiltonian (bulk plus boundary term) rather than just
that of the boundary part. The main reason for this is that
the temporal variation of the Arnowitt-Deser-Misner
(ADM) Hamiltonian, which corresponds to the bulk part
of the total expression mentioned above, yields a non-
vanishing bulk-to-boundary inflow term that leads to
corrections to Einstein’s quadrupole formula in the lin-
earized weak field approximation of general relativity.
This integral term, if different from zero (which is

possible only in the nonvacuum case), has been shown
to play a role in the quasilocal description of various
physical phenomena, such as tidal deformation and heating
processes, as well as gravitoelectromagnetic effects [3].
Moreover, as has also been shown, its existence entails
some remarkable consequences, perhaps the most striking
of which is that the corrections it causes lead to a shift in
the overall intensity of gravitational radiation emanating
from compact gravitational sources, such as stars and
black holes. This is remarkable not least because the
intensity shift in question should, in principle, prove to

be experimentally detectable/observable in gravitational
wave simulations, thus leading to a physical prediction
that can readily be tested with modern methods of gravi-
tational wave astronomy.
The main problem in this respect, however, is that it has

not yet been clearly established whether the corrections
caused by the mentioned inflow term are smaller or of
the same order of magnitude as other integral terms
resulting from the variation of the quasilocal Brown-
York Hamiltonian. Moreover, with the exception of
selected models of linearized Einstein-Hilbert gravity,
the precise physical meaning of the corrections in question
has remained elusive to this day.
In response to these shortcomings, the present work takes

a specific approach to the subject by calculating within a
bounded nonstationary spacetime the flux of mass and/or
radiant energy through the dynamical horizon of the
geometry, as well as its temporal variation. As a basis for
these calculations, a null geometric approach to the quasi-
local Brown-York formalism is pursued, which is shown to
be compatible with the powerful dynamical horizon frame-
work of Ashtekar et al. [4,5] and Hayward’s related trapping
horizon approach [6]. To this end, following a previous work
on the subject [7], a geometric setting is introduced that
involves a spatially and temporally bounded spacetime with
inner and outer boundaries, where the inner boundary is given
by a dynamical horizon. Regarding this particular geometric
setting, the time-flow vector field of spacetime is then
chosen to coincide once with the lightlike horizon vector
field of the geometry (which is generally nontangential to said*hubera@technikum-wien.at
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horizon) and once with the same horizon vector field plus a
boundary shift vector, and the resulting total Hamiltonian is
varied with respect to these same vector fields. Thereby, it is
shown that themethodsused naturally lead to a null geometric
equivalent of the bulk-to-boundary inflow term derived in [3]
and thus to a corresponding intensity shift of emitted
gravitational radiation.
The latter is concluded from the fact that the resulting

quasilocal corrections do not vanish even if the outer
boundary of spacetime is shifted to infinity in the large
sphere limit. In lieu thereof, as shown in the third section of
the paper, a modification of Bondi’s celebrated mass-loss
formula [8,9] results in such a case, which shows that
radiative contributions at infinity can occur even if the
Bondi news function is zero, and thus supposedly the time
derivative of the associated mass aspect. It thus appears
that, according to the quasilocal Hamiltonian formalism,
there are exceptions to the generally accepted rule: The
mass of a system is constant if and only if there is no news.
As it seems, no similar result has been obtained in the
literature so far. The quasilocal corrections responsible for
this fact are determined explicitly in Sec. III of the work.
For the standard choice for the lapse function proposed

in the dynamical horizon framework, the result thus
obtained shows that the temporal variation of the total
quasilocal Brown-York Hamiltonian vanishes once the
horizon reaches a steady state of equilibrium and becomes
an isolated or weakly isolated horizon in the sense
of [10–14]. Thus, in agreement with the common expect-
ation, the discussed model confirms that any matter and/or
radiation flux (of the specified type) from the bulk to the
boundary of spacetime that crosses a dynamical horizon
necessarily subsides completely in the limiting case where
the local horizon geometry becomes stationary and settles
into a state of equilibrium, as in the case of a black hole.
To eventually assess the magnitude of the integral terms

involved and to provide an explicit example of nonvanishing
radiative contributions at infinity, the corresponding expres-
sions are calculated in Sec. IV of the paper with respect to
models of the generalized Vaidya spacetime family, for
which the resulting integral expressions take a particularly
simple form in the case where the boundary of spacetime is
shifted to infinity in the large sphere limit. In doing so, it is
shown (i) that radiation fields may be detected at null infinity
even in cases where the Bondi news function is zero and
(ii) that the resulting quasilocal corrections depend to a large
extent on the choice of the time-flow vector field of the
geometry. Potential implications of these findings are dis-
cussed toward the end of the paper.

II. QUASILOCAL HAMILTONIAN AND
MASS-ENERGY TRANSFER IN BOUNDED

GRAVITATIONAL FIELDS

In this first preliminary section, the geometric setting to
be considered is introduced, and some of the main results

of [3] are recapitulated and generalized to fit this same
setting. In particular, the time derivative of the quasilocal
Brown-York gravitational Hamiltonian is calculated in a
spacetime with interior and exterior boundaries, leading to
an integral law describing how the matter and/or radiation
content of a spatially and temporally bounded gravitating
physical system changes with time. The bulk-to-boundary
inflow term mentioned in the Introduction is derived in the
process, and it is shown what form some of the relevant
integral expressions take with respect to the special choice
of a lightlike (horizon) time-flow vector field of spacetime.
As a basis for the ensuing calculations, the present

section essentially takes up the geometric setting consi-
dered in [3]. However, the latter is to be extended to comply
with the dynamical horizon framework of Ashtekar et al.
[4] in a manner similar to an earlier, slightly related work
by Booth and Fairhurst [7]. For this purpose, let a fully
dynamical, spatially compact, time orientable spacetime
ðM; gÞ with manifold structure M≡M ∪ ∂M be consid-
ered, which is foliated by a family of t ¼ const. hyper-
surfaces fΣtg. This spacetime may be envisioned as
a nonstationary spacetime in a “box,” i.e., a dynamical
spacetimewith a cylindrical outer boundary, the latter being
later shifted to infinity. In more concrete terms, the
boundary ∂M of said spacetime shall consist of two parts:
an exterior part ∂Mext and an interior part ∂Mint such
that ∂M≡ ∂Mint ∪ ∂Mext. The exterior part ∂Mext of the
boundary shall be chosen in such a way that ∂Mext ≡ Σ1 ∪
B ∪ Σ2 applies, where Σ1 and Σ2 represent spatial boundary
parts, while B represents a timelike boundary portion. This
timelike portion shall be assumed to be foliated by a
collection of two surfaces fΩtg such that B ¼ f∪t Ωt∶
t1 ≤ t ≤ t2g. Additionally, it shall be assumed that there
exists an interior boundary ∂Mint ≡ S1 ∪ T ∪ S2, where
T is a spacelike hypersurface representing a (canonical)
dynamical horizon in the sense of Ashtekar et al. This is
shown schematically in Fig. 1. That is to say, T is assumed
to be a smooth three-dimensional spacelike submanifold of
spacetime that exhibits a foliation fStg by marginally
trapped surfaces such that relative to each leaf of the
foliation there exist two null normals la and ka and two
associated null expansion scalars Θ ¼ qab∇alb and
Ξ ¼ qab∇akb, where qab is the inverse of the induced
metric qab ¼ gab þ lakb þ kalb, one of which vanishes
locally and the other of which is strictly negative, i.e.,
Θ ¼ 0 and Ξ < 0 on T .
Taking these assumptions as a starting point, the results

of [3] shall be recapitulated in the following. To this end,
the conventions of the mentioned work shall be adopted
and adapted to the given geometric setting. To start with, a
future-directed time evolution vector field ta ¼ Nna þ Na

shall be considered, which, at the timelike boundary B,
takes the form ta ¼ N va þN a, where N and Na are the
corresponding lapse function and shift vector field as
usual, na is the normalized timelike generator leading to
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the spacelike slicing of ðM; gÞ, va is some timelike vector
field tangent to B and orthogonal to Ωt, andN andN a are
the corresponding boundary lapse function and boundary
shift vector field, respectively. Given this vector field and
the related conventions, the corresponding three-metric at
Σt reads hab ¼ gab þ nanb. To define the induced three-
metric γab at B, on the other hand, one may additionally
consider a spatial unit vector field ua that is perpendicular
to B and thus orthogonal to the temporal unit vector
field va tangent to B. With respect to the latter, the three-
metric then is γab ¼ gab − uaub. Moreover, considering a
further spacelike vector field sa that is orthogonal to the
timelike generator na of the spacelike foliation fΣtg,
but generally nonorthogonal to va (in contrast to ua,
which is generally nonorthogonal to na), one finds
that the induced two-metric qab at Ωt takes the form
qab ¼ gab − uaub þ vavb ¼ gab þ nanb − sasb. Using the
latter relation in combination with the decompositions
na ¼ 1ffiffi

2
p ðla þ kaÞ and sa ¼ 1ffiffi

2
p ðla − kaÞ of na and sa,

where la and ka are null normals reducing locally to
those associated with a given leaf St of the foliation fStg
of the dynamical horizon T , it then becomes clear that the
induced metric at said horizon takes the previously
claimed form qab ¼ gab þ lakb þ kalb. With respect to
this induced metric, the boundary shift vector can be
written in the form N a ¼ qacNc.
The consideration of all the foregoing definitions proves

to be beneficial for setting up the quasilocal Brown-York
Hamiltonian

H ¼ H0 þHh; ð1Þ

which in the given context consists of two partsH0 andHh,
both of which themselves consist of bulk and boundary
parts such that

H0¼HBulk
0 þHBoundary

0 ; Hh¼HBulk
h þHBoundary

h ; ð2Þ

where

HBulk
0 ¼

Z
Σt

H d3x; HBoundary
0 ¼

Z
Ωt

Hd2x;

HBulk
h ¼

Z
T
H d3x; HBoundary

h ¼
Z
St

Hd2x ð3Þ

shall apply by definition. Here, H represents the ADM

Hamiltonian density H ¼
ffiffi
h

p
8π Gabtanb¼

ffiffi
h

p
8π ðNHþHaNaÞ.

The individual parts of this Hamiltonian density read H ¼
1
2
½KabKab − K2 þ ð3ÞR� andHa ¼ DbðKb

a − hbaKÞ, where
Kab ¼ 1

2
hcahdbLnhcd ¼ 1

2N ðḣab þ 2DðaNbÞÞ is the extrin-
sic curvature of the three-hypersurface Σt, and Da is the
covariant derivative at Σt. The Hamiltonian density H
at Ωt, on the other hand, can be written in the form

H ¼
ffiffi
q

p
8π ρabt

avb ¼
ffiffi
q

p
8π ðN hþ haN aÞ, by virtue of the fact

that h ¼
ffiffi
q

p
8π K and ha ¼

ffiffi
q

p
8π u

bDavb with K ¼ qabKab ¼
qabDaub applies in this context, where Kab is the extrinsic
curvature calculated with respect to ua, and Da is the
covariant derivative at Ωt. Using the well-known decom-
position relations va ¼ 1

λ n
a − ηsa and ua ¼ 1

λ s
a − ηna,

given in terms of the parameter η ¼ uana ¼ −sava meas-
uring the nonorthogonality of na and ua, as well as va and
sa and a related boost parameter λ ¼ 1ffiffiffiffiffiffiffiffi

1þη2
p , one finds here

that H can alternatively be specified in terms of na and sa.
In particular, the identity

NK ¼ Nk − ðKab − KhabÞNasb − λðNDÞη − ðNDÞvaua
ð4Þ

is found to be valid in this context, which will play a role
later in determining changes in the matter and/or radiation
content of the system at infinity, as well as through the
dynamical horizon T . The quantity k ¼ qabkab ¼ qabDasb
entering this very identity is admittedly the extrinsic
curvature of Ωt, calculated with respect to sa.
As a supplementary remark, it may be noted that H and

Ha, as well as h and ha, could be specified completely
analogously at T and St in terms of the corresponding
conjugate momenta (even if only with respect to the first
and second fundamental forms of said hypersurface and
surface, respectively). However, taking such a step will not
prove necessary in the following and will therefore not
be undertaken at this point. Instead, direct recourse will be
made to the null geometric framework used in [4] in the

FIG. 1. A schematic three-dimensional representation of the
spacetime manifold M along with its boundaries.
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third section of the paper, rendering a specification of said
quantities obsolete.
That said, the next step will be to calculate the time

derivative dH
dt of the quasilocal Hamiltonian by per-

forming a variation Lt of each of the integral expressions
in (3), where Lt denotes the Lie derivative along the
spacelike section Σt with respect to the time evo-
lution vector ta. This yields a result of the
form dH

dt ¼ dH0

dt þ dHh
dt ¼ LtH0 þ LtHh.

The emphasis is here first put on the calculation of the
former term dH0

dt of the time derivative ofH and only then on

that of the second term dHh
dt , which proceeds completely

analogously. For the purpose of calculating said term, one
may take into account that expressions split once more

in bulk and boundary parts, i.e., dH0

dt ¼ dHBulk
0

dt þ dHBoundary
0

dt , and
use the identity

LtHþLtHa ·Na

¼ N
2
QabLthab − ðNKþDaNaÞðNHþHbNbÞ

þDa½ðNHþHbNbÞNa þN2Ha þ 2NQa
bNb�; ð5Þ

in combination with Lt

ffiffiffi
h

p ¼ ffiffiffi
h

p ðNK þDaNaÞ to obtain
the integral expressions

dHBulk
0

dt
¼

Z
Σt

�
ṄHþHaṄa þ N

2
Qabḣ

ab

�
ωh þ

Z
Ωt

Πωq

ð6Þ

and

dHBoundary
0

dt
¼
Z
Ωt

�
Ṅ hþhaṄ

aþN
2
Qabq̇ab

�
ωq; ð7Þ

where

Qab ¼
ffiffiffi
h

p

8π

�
ð3ÞRab − 2KacKc

b þ KKab −
1

N

�
K̇ab þ ðNDÞKab þDaDbN

�

−
1

2
hab

�
ð3ÞRþ K2 − KcdKcd −

2

N

�
K̇ þ ðNDÞK þDaDaN

���
;

Qab ¼
ffiffiffi
q

p
8π

ðKab − ðK − bauaÞqabÞ ð8Þ

applies by definition. To obtain the above integral expres-
sions, as should be noted that the definitions Qab ¼
hachbdGcd, Qab ¼ qacqbdρcd, ba ≡ ðv∇Þva, Ṅ ¼ LtN,
Ṅa ¼ LtNa, and ḣab ¼ Lthab, as well as Ṅ ¼ LtN ,
Ṅ a¼LtN a, and q̇ab ¼ Ltqab have been used, where Lt

denotes the induced Lie derivative at Ωt pointing along ta.
As can be seen, the result thus obtained now decomposes

into three terms: a bulk term, a boundary term, and the
bulk-to-boundary inflow term already mentioned in the
Introduction. The latter term occurring in (6) results from
a total divergence and is given with respect to an integrand
of the form

Π ¼ 1

8π
½ðNHþHbNbÞNasa þ N2Hasa þ NQabNasb�:

ð9Þ

From this, it is found that relations (2), (3), (6), and (7) give
rise to a power functional of the form

P0 ¼
dHBoundary

0

dt
þ
Z
Ωt

Πωq ¼
Z
Ωt

Iωq; ð10Þ

where the occurring intensity expression I reads

I ¼ I0 þ Π; ð11Þ

with I0 ≔ Ṅ hþ haṄ
a þ N

2
Qabq̇ab and

dHBoundary
0

dt ¼
LtH

Boundary
0 . The default candidate I0 for such an intensity,

previously derived in [1,15], is therefore shifted by a Π-
term of the form (9), which is zero only in the vacuum case.
In all other cases, this term is generally different from zero,
which implies that the corresponding surface integral in (6)
and (10) does not vanish, even if the outer boundary of
spacetime is shifted to infinity in the large sphere limit;
a point from which it was concluded in [3] that quasilocal
corrections of Einstein’s quadrupole formula arise in the
same limit.
This, of course, applies to any choice of the time-flow

vector field ta. In particular, it applies to a class of such
vector fields arising from an orthogonal 2þ 1 decompo-
sition Na ¼ Osa þN a of the shift vector with respect to
the surface Ωt, which yields a bulk-to-boundary inflow
term with an integrand of the form

Π ¼ Π0 þ ΠN; ð12Þ
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by virtue of the fact that the definitions Π0 ≔ N2

8π Hasa and
ΠN ≔ 1

8π ½OðNH þ OHasa þ HaN aÞ þ O · NQabsasb þ
NQabsaN b� are used in this context.
As may be noted, the foregoing results can be general-

ized in the sense that one may choose a linear combination
of the form ξa ¼ ta þΩφa as the time evolution vector
field of spacetime, where φa is an angular vector field
tangential to all the cross sections of Σt, i.e., a vector field
that coincides with a corresponding Killing field in the
regime in which the dynamical horizon framework tends
to the isolated horizon framework; a regime in which
spacetime typically exhibits global generators of time
translations and rotations. In this case, the form of the
corresponding quasilocal corrections can be straightfor-
wardly determined from the above, using the fact that
the vector field ξa can be decomposed in the form ξa ¼
Ñna þ Ña with Ñ ¼ N − Ωnbφb and Ña ¼ Na þ habφb ¼
Õsa þ Ñ a and making the replacements N → Ñ, O → Õ;

and N a → Ñ a in (12), which yields the analogous
expression

Π̃ ¼ Π̃0 þ Π̃Ñ ; ð13Þ

with Π̃0 ≔ Ñ2Hasa. Accordingly, the problem of deter-
mining quasilocal corrections in the rotating case can be
handled exactly along the same lines as in the nonrotating
case, with the only difference being that Ñ and Ña are now
the associated shifted versions of the lapse function and the
shift vector field of the spacetime metric. Otherwise, there
is no difference in the treatment of these cases.
That said, let it be noted that there is an important special

case resulting from (12), which arises when the time-flow
vector of the geometry is chosen to be ta ¼ ffiffiffi

2
p

Nla, with
la ¼ 1ffiffi

2
p ðna þ saÞ being a null vector field that reduces

locally to the horizon vector field of spacetime at T . The
latter follows directly from (9) for the case where O≡ N,
N a ≡ 0, and thus Na ¼ Nsa is chosen to be satisfied.
Given precisely this choice, the identity Hþ2Hasaþ
Qabsasb¼Gabnanbþ2GabnasbþGabsasb¼2Gablalb can
be used to convert the integrand of the bulk-to-boundary
integral term in (6), leading to the result

Π ¼ N2

4π
Gablalb: ð14Þ

Moreover, the further identity K − Kabsasb þ k ¼ ffiffiffi
2

p
Θ

can be used to convert the boundary Hamiltonian density
H into

H ¼
ffiffiffiffiffiffi
2q

p
NΘ

8π
: ð15Þ

This makes it clear that the boundary Hamiltonian vanishes
for the given choice of time-flow vector field whenever
Θ ¼ 0 applies at the exterior spatial boundary B of
spacetime (that is, in particular, when said boundary
constitutes a timelike dynamical horizon). This is quite
in contrast to the temporal variation of said term with
respect to the null time evolution vector field ta ¼ ffiffiffi

2
p

Nla,
which is generally different from zero.
As will be shown in a subsequent section of this work,

the latter proves to be particularly important in that said
variation of the boundary Hamiltonian—after being com-
bined with a bulk-to-boundary inflow term with an inte-
grand of the form (14)—leads to Bondi’s result for mass
loss in gravitating systems due to gravitational radiation;
whereas other choices typically lead to quasilocal correc-
tions to Bondi’s formula. This is the reason why, in order to
capture deviations from Bondi’s mass-loss formula
and simultaneously quantify the strength of the aforemen-
tioned quasilocal corrections, it will prove useful in the
following to make an ansatz of the form ta ¼ ffiffiffi

2
p

Nla þ Va

for the time evolution vector of spacetime, where Va ¼
−Nsa þ Na ¼ ðO − NÞsa þN a must be satisfied for the
sake of consistency.
Provided that this is indeed the case, the ansatz men-

tioned proves to be fully compatible with all foregoing
results, yielding a Π-term of the form (12) and a boundary
Hamiltonian density given by the expression

H ¼
ffiffiffi
q

p
8π

½
ffiffiffi
2

p
NΘ − ΓV �; ð16Þ

where the quantity ΓV ≔ ðKab − KhabÞsaVb þ λðNDÞη
has been introduced; a quantity that proves consistent
with that of the null Brown-York tensor given in [16]
forO¼η¼0 andΩa¼qcaKbcsb, whereΩa ¼ −qabkc∇blc
is the Hájiček 1-form.
As may be noted, in order to return to the case of a

rotating black hole, just the replacements N → Ñ, O → Õ,
and N a → Ñ a need to be made in this context. Such a
transition has the interesting consequence that part of
the boundary component HBoundary

0 of the quasilocal
Hamiltonian gives rise to an integral expression of the form

JΩφ0 ¼ 1

8π

Z
Ωt

½ΩðKab − KhabÞsaφb�ωq; ð17Þ

which can be converted to agree with a generalized version
of Komar’s angular momentum integral by applying
Gauss’s theorem and using the momentum constraint
equation. Hence, as a direct consequence, it is found that
the exterior boundary part of the Hamiltonian splits up
in two parts, i.e., HBoundary

0 ¼ HBoundary
0;red − JΩφ0 , where JΩφ0

coincides with the ADM angular momentum associated
with Ωφb. Accordingly, the variation of JΩφ0 with respect to
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ta necessarily yields a torque termMΩφ
0 ≡ dJΩφ

0

dt , which fully
characterizes the power of the rotational motion of the
system at the boundary of spacetime, especially for space-
times with asymptotic rotational symmetry when the latter
is shifted to infinity.
With this now being clarified, it may next be noted that,

for all the foregoing applies in a similar way to fields at
the interior boundary of spacetime, the variation of the
horizon part Hh of the Hamiltonian H can be calculated in
exactly the same way as above. Yet, since T is a dynamical
horizon in the sense of Ashtekar et al., it is clear that, when
ta ¼ ffiffiffi

2
p

Nla is chosen to be the time-flow vector of
spacetime, the boundary part of this part of the quasilocal
Hamiltonian will generally be zero, while its variation will
in turn generally be different from zero. Therefore, also in
the given case, a quasilocal power functional of the form

Ph ¼
dHBoundary

h

dt
þ
Z
St

Πωq ¼
Z
St

Iωq ð18Þ

can be defined, where
dHBoundary

h
dt ¼ LtH

Boundary
h holds by

definition and the Π-term is given by (14).
In this case, too, it proves useful to consider the shifted

horizon vector field ta ¼ ffiffiffi
2

p
Nla þ Va, if only to be able to

include again the rotating case by choosing Va ¼ Ωφa,
where in the case of a black hole spacetime Ω and φa

represent the angular velocity of the black hole and an
associated angular vector field coincident with the Killing
field of the geometry when the black hole spacetime under
consideration is axisymmetric. This choice is intriguing
not least because it allows one to derive (with respect to a
portion ΔT of the dynamical horizon T ) the Ashtekar-
Krishnan version of the first law of black hole mechanics
from [4]; a law which—similar to Hayward’s first law of
black hole dynamics [6], but different from the original law
of Bardeen et al. [17]—remains valid even in light of
dynamical black hole spacetimes. Still, a more generic
scenario arises in the given context if again simply the
replacements N → Ñ, O → Õ, and N a → Ñ a are made,
yielding in full analogy to the above a splitting HBoundary

h ¼
HBoundary

h;red − JΩφh of the boundary Hamiltonian, where the

corresponding horizon angular momentum JΩφh is of the
exact same form as JΩφ0 depicted in (17), except that
the latter is defined with respect to the cut Ωt, while the
former is defined with respect to St. The mentioned horizon
angular momentum then leads again to a torque term

MΩφ
h ≡ dJΩφh

dt , which characterizes the power of the rotational
motion of the system along the horizon.
It may next be noted that a large part of the upcoming

section will be devoted to a more detailed characterization
of Eqs. (10) and (18), for which purpose a null geometric
derivation of the surface integrals with integrands of the

form (12) and (13) will be given. The derivatives
dHBoundary

h
dt

and dHBoundary
0

dt of the boundary parts of the Hamiltonian will
be calculated with regard to the shifted horizon vector field
ta ¼ ffiffiffi

2
p

Nla þ Va, first for Va ¼ 0 and then for Va ≠ 0.
The results obtained in this way pass an important test
along the way, in that they are found to be fully consistent
with the theory of dynamical and isolated horizons of
Ashtekar et al. Moreover, it is found that the interpretation
of the surface integrals over Π and Π̃ as bulk-to-boundary
inflow terms also proves to be absolutely tenable, not least
because—given a suitable choice of the lapse function
at the horizon—it can be observed that the rate of energy
transfer from the bulk through the inner to the outer
boundary of spacetime (and vice versa) becomes zero in
the limiting case where the dynamical horizon of spacetime
transitions to an isolated or weakly isolated horizon and
settles into a stable equilibrium state; a state in which it
would be impossible for matter to cross the outermost,
nonexpanding null horizon and then escape to infinity, as in
the case of a black hole. The approach taken in this paper
thus reflects this particular aspect of black hole physics,
as it should if an interpretation of the derived integral
expressions as bulk-to-boundary inflow terms were to
prove plausible. The latter is further clarified in the fourth
section of this work by the concrete example of the
generalized Vaidya family of spacetimes.

III. MATTER AND RADIATION TRANSFER
THROUGH DYNAMICAL HORIZONS

Having obtained a number of results applicable to
quantities at both the inner and outer boundaries of space-
time, the present section is now devoted to the calculation of
exactly the same quantities from a different angle, thus
continuing the quasilocal description of mass and radiative
energy transfer in bounded nonstationary spacetimes with
dynamical horizons begun in the previous section.
For the calculation of these quantities, a null geometric

approach is adopted this time, by which it is shown that
the results deduced in the previous section prove to be
consistent with, and are derivable within, the theory of
dynamical horizons. Furthermore, it is shown that the
corresponding boundary terms—depending on the choice
of the time-flow vector field of the geometry—either
reduce directly to the Bondi mass-loss formula or lead
to quasilocal corrections from the latter when the outer
boundary of spacetime is shifted to infinity.
As a first step in dealing with the above and thus

linking the results of the previous section to the theory
of dynamical horizons of Ashtekar et al., let a radial
parameter R be considered and used as a coordinate for
describing local effects at the horizon T . Given this null
coordinate, the choice N ≡ NR can be made for the lapse
function, where NR ≡ j∂Rj shall by definition apply in this
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context. This choice for the lapse, as described in detail
in the relevant literature on the subject, turns out to be
favorable for several reasons, one of which is that it causes
the ADM Hamiltonian Hbulk

h on the black hole horizon T
(and, in fact, the entire horizon part Hh of the Brown-York
Hamiltonian H) to vanish as soon as the latter transitions
from a dynamical to an isolated or weakly isolated
horizon. This ensures that the rate of transferred energy
becomes zero once the geometry of the black hole
becomes stationary and its horizon is nonexpanding
and null. On top of that, some of the ensuing calculations
can be greatly simplified by choosing the lapse function in
this particular way, which, however, also applies after
relabeling r ¼ rðRÞ of the level sets of the foliation of
spacetime, yielding no more than the trivial rescaling
NR → dr

dRNR≕Nr of the lapse. Accordingly, to include
this very rescaling freedom, the lapse function shall be
chosen from now on as N ≡ Nr for determining the form
of quasilocal quantities at the horizon.
As a further step, let it be assumed that the horizon null

vector la can be completed to a null tetrad of the form
ðla; ka; ma; m̄aÞ such that the conditions −laka¼mam̄a¼1
are met. Moreover, let it be assumed that there is a portion
ΔT of T that is bounded by two cross sections S1 and S2,
given with respect to the selected radial coordinate rðRÞ,
with radii r1 ¼ rðR1Þ and r2 ¼ rðR2Þ such that r2 > r1.
While the covector ka associated with the transverse vector
field ka is usually additionally chosen as a null gradient
field in the theory of dynamical and isolated horizons,
which has the consequence that ka is by definition geodesic
in these theories, this assumption is not needed and there-
fore not made in the following. It could, however, still be
made complementarily.
Anyway, with that set, it may be taken into account that

the form of the Brown-York Hamiltonian depends on
which of the choices for the time-flow vector field ta

proposed in the previous section is made in this context.
Focusing here first on the case in which ta ¼ ffiffiffi

2
p

Nrla, it is
found that Hh ≡HBulk

h applies by necessity at T due to the
fact that Θ ¼ 0 holds along the same hypersurface.
Consequently, the horizon part of the Hamiltonian can
be rewritten in the form

Hh ¼HBulk
h ¼

Z
T
H d3x¼

Z
T
NrðHþHasaÞωh

¼
ffiffiffi
2

p Z
T
NrGablanbωh ¼

Z
T
Nr½Gablalb þGablakb�ωh:

ð19Þ

Hence, after using the decomposition HþHasa ¼ ð2ÞR −
σabσ

ab − 2ζaζ
a þ ffiffiffi

2
p

Θð2K − 3
2
Θ2Þ − ffiffiffi

2
p

LsΘ with ζa ≔
qabðsDÞlb of the ADM Hamiltonian density, this same
Hamiltonian, as shown by Ashtekar and Krishnan in [4],
gives rise to an energy flux term of the form

FM ≔ HhjΔT ¼ 1

16π

Zr2
r1

Z
St

ðð2ÞR − σabσ
ab − 2ζaζ

aÞωqdr;

ð20Þ
where ð2ÞR is the two-dimensional Ricci scalar. By taking
the Gauss-Bonnet theorem into account, it can then
be shown that this term leads for the standard choice
rðRÞ ¼ R2 to an exact balance law for the area increase of
a given black hole, i.e.,

A2 −A1 ¼ FM þ FG; ð21Þ

which is given with respect to the different black hole
areas Aj ¼ 4πR2

j with j ¼ 1, 2, and an integral expression
FG ¼ R

r2
r1

R
St
ðσabσab þ 2ζaζ

aÞωqdr describing the energy
flux due to gravitational radiation. Based on the fact that
the right-hand side of (21) is manifestly non-negative, this
result thus shows that, even in the fully dynamical case,
the area of a black hole can never decrease.
Taking the above into account, it is found that the

underlying ADM Hamiltonian Hh considered in (19) can
alternatively be cast in the form

Hh ¼
1

16π

Z
T

Nr

�
1

2
ð2ÞR − σabσ

ab −ΩaΩa

�
ωh; ð22Þ

thereby suggesting that
R
T NrðΩaΩa þ 1

2
ð2ÞRÞωh ¼

2
R
T Nrζaζ

aωh is satisfied. This can be readily concluded
from the fact that the null Raychaudhuri equation LlΘ ¼
κΘ − 1

2
Θ2 − σabσ

ab þ ωabω
ab −Gablalb can be combined

with the identity LkΘ ¼ − 1
2
ð2ÞR − ΞΘþΩaΩa −DaΩa þ

Gablakb to obtain the result

HþHasa ¼
1

2
ð2ÞRþ

�
κþΞ−

1

2
Θ
�
Θ− σabσ

ab

þωabω
ab −ΩaΩa þDaΩa −

ffiffiffi
2

p
LsΘ; ð23Þ

which can then be used to set up Eq. (22). Note that it
has been used in this context that the expressionR ½RSt

DaΩaωq�dr vanishes identically and
R
St
DaΩaωq

does so as well. As may be noted, the quantity κ coincides
with the surface gravity of the black hole at the horizon,
where one generally has κ ¼ ϵþ ϵ in spin-coefficient
notation.
With this clarified, it may next be noted that, although

the boundary term HBoundary
h is equal to zero, its temporal

variation with respect to the time evolution vector field ta

is generally not. Also, the corresponding variation of the
bulk part HBulk

h is generally unequal to zero, which has
the consequence that the temporal variation of the full
Hamiltonian H leads to an integral law with a form
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identical to that of (18), which includes a bulk-to-boundary
inflow term with integrand (14) resulting from the variation
of the corresponding bulk part HBulk

h .
To see this, the Lie derivative of Hh with respect to

ta ¼ ffiffiffi
2

p
Nrla along T will be calculated next. For this

purpose, it may be taken into account that a variation of the
integrand occurring in (19) yields the result

Lt½ωhNrðHþHasaÞ� ¼
ffiffiffi
2

p
Nrωh½Ll lnNrðHþHasaÞ

þ LlðHþHasaÞ
þ ðΘþ κÞðHþHasaÞ�; ð24Þ

where, just as a reminder, parts of the corresponding
Hamiltonian density can be written in the formHþHasa¼
GablalbþGablakb. Then, using here the fact that

LlðGablakbÞ ¼ −LkðGablalbÞ þGabðl∇Þkalb
þ 2Gabðk∇Þlalb þ Gabðl∇Þlakb
þ qac∇cGa

blb ð25Þ

applies as a consequence of the contracted Bianchi identity
∇aGa

b · la ¼ 0, it is thus found that

Ll½Gablalb þGablakb� ¼
ffiffiffi
2

p
LsðGablalbÞ þDaðGa

blbÞ þ Gabϰ
akb

þ 2κ̃Gablalb − 2Gabτ
alb þ 2GabΩalb þ Gabσ

ab þ 1

2
ΘGabqab ð26Þ

is satisfied, where, in spin-coefficient notation, one
has κ̃ ¼ γ þ γ̄, τa ¼ τ̄ma þ τm̄a, ϰa ¼ ϰ̄ma þ ϰm̄a, and
Ωa ¼ ðᾱþ βÞma þ ðαþ β̄Þm̄a. Given that the covector
ka is usually chosen as a gradient field in the theory of
dynamical and isolated horizons, one could use at this point
the fact that κ̃ ¼ 0. Yet, since (26) applies generically and
remains valid regardless of whether κ̃ ¼ 0 is satisfied or
not, the latter is not strictly assumed either at this or a later
point of this work.
This being said, it can further be observed that

N2
rLsðGablalbÞ ¼ LsðN2

rGablalbÞ − 2NrLsNrGablalb

¼ Dc½ðN2
rGablalbÞsc�

− ½N2
r · kþ 2NrLsNr�Gablalb ð27Þ

applies globally in M, where k ¼ 1ffiffi
2

p ðΘ − ΞÞ is the

extrinsic curvature scalar calculated with respect to sa.
Whence, using Gauss’s law once again, one is thus led to
conclude that

Z
T

Dc½ðN2
rGablalbÞsc�ωh ¼

Z
St

N2
rGablalbωq: ð28Þ

This makes it clear that the bulk-to-boundary inflow
term (14) can be derived as required in the context of
the theory of dynamical black hole horizons.
Clearly, since the Lie derivative of one and the same

object is calculated only in different ways, it can
be confidently assumed that the remaining terms in
relations (24)–(26) and (28) can be combined to agree
with the integrand of the bulk integral term in Eq. (6).
However, this confirms that the results of the quasilocal
Brown-York-Hamiltonian formalism and the dynamical

horizon framework are entirely consistent with each
other, and that even to a much greater extent than pointed
out in [7].
For the sake of completeness, the result of the variation

of the bulk part of the Hamiltonian shall be given at this
point as well, reading

LtHBulk
h ¼

ffiffiffi
2

p

16π

Z
T

ωhNrfðLlNr þ κNrÞ

×
	ð2ÞR − σabσ

ab − 2ζaζ
a



þ NrðLl
ð2ÞRþ Ωabσ

ab − 2Lljζj2Þg; ð29Þ

where Ωab ¼ qacqbdCecfdlelf and jζj2 ¼ ζaζ
a applies by

definition. Note that the identity Llσab ¼ qacqbdLlσcd ¼
κσab þ σcdσ

cdqab − qacqbdCecfdlelf has been used to
obtain this form of relation (29). An alternative way to
express this relation is

LtHBulk
h ¼

ffiffiffi
2

p

16π

Z
T

ωhNr½ðLlNr þ κNrÞðGablalb þ GablakbÞ

− NrðΞ − 2κ̃ÞGablalb

þ NrðGabϰ
akb − 2Gabðτa −ΩaÞlb

þGabσ
ab þ 2Ll−kNrGablalbÞ�

þ 1

4π

Z
St

ωqN2
rGablalb; ð30Þ

thereby giving exactly the bulk-to-boundary inflow term
derived in the previous section. In this context, it has been
used that
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Z
T

N2
rDaðGa

blbÞωh ¼
Z

drNr

�Z
St

DaðGa
blbÞωq

�
¼ 0

ð31Þ

applies due to the fact that, by Gauss’s law, the surface
integral

R
S DaðGa

blbÞωq can be converted into an line
integral over the boundary ∂St of St, which is zero.

However, as the variation of the Brown-York Hamiltonian
Hh with respect to ta ¼ ffiffiffi

2
p

Nrla at T is not yet fully
calculated, this is not the end of the story. To calculate the
latter, the variation LtH

Boundary
h of the inner boundary part

of the Brown-York Hamiltonian has to be calculated
as well. Using once more the null Raychaudhuri equation,
one here finds

LtH
Boundary
h ¼ 1

4π

Z
St

½NrLlNrΘþ N2
rðκΘ − σabσ

ab þ ωabω
ab − 8πTablalbÞ�ωq; ð32Þ

and thus

Ph ¼
1

8π

Z
St

Iωq ¼
1

4π

Z
St

½NrLlNrΘþ N2
rðκΘ − σabσ

ab þ ωabω
abÞ�ωq ð33Þ

for the power functional Ph, as follows directly from
relations (18) and (30), respectively. Thus, as can be seen,
the bulk-to-boundary inflow term is counterbalanced by the
net flow of matter and/or radiation through the horizon. The
amount of matter and radiation that flows out through
the horizon therefore flows back in from the bulk, so that
the net flux becomes zero at the cuts of the horizon.
This result holds in the exact same form at Ωt, which is

interesting to the extent that, after taking the exterior
boundary of spacetime to future null infinity in the large
sphere limit, it is found that

P0 ¼ −
1

4π

Z
S∞

N2σabσ
abωq ¼ −

1

4π

Z
S∞

jnj2dΩ ð34Þ

applies in a suitable Bondi-like chart ðu; r; θ;ϕÞ with radial
null coordinate r near null infinity [8,9]. To see this,
the asymptotic expansions N½LlN þ κ�Θωq ⟶

r→∞
0 and

N2ωabω
abωq ⟶

r→∞
0, as well as N2σabσ

abωq ⟶
r→∞

jnj2dΩ
with σabσ

abωq ¼ jnj2
r2 r2dΩ may be taken into account,

where nðu; θ;ϕÞ is the Bondi news function. This news
function is the retarded time derivative of the radiation
strain, i.e., n ¼ ∂uσ0, where σ0 corresponds to the leading
order term of the spin coefficient σ of the Newman-Penrose
formalism. This coefficient has been unobtrusively incor-
porated into the definition of (34) inasmuch as it has been

used that σabσab ¼ jσj2 ¼ jnj2
r2 , where the latter holds in the

vicinity of future null infinity.
In light of the above, one is led to the conclusion that the

quasilocal quantity P0 given above coincides in Bondi
coordinates near future null infinity exactly with the time
derivative of the Bondi mass aspect, thereby giving rise to

the infamous Bondi mass-loss formula [8,9]. This can
readily be concluded by taking into account that dmB

du ¼
− 1

4π

R
S∞

jnj2dΩ applies in said coordinates at future null
infinity, wheremB is the Bondi mass. However, this implies
that the quantityP0 can be interpreted as one characterizing
the rate of mass loss of a spatially and temporally bounded
gravitating physical system, which reduces to the standard
expression given an extension of the spacetime boundary to
future null infinity. Yet, as may be noted, this only holds
true relative to the given choice ta ≡ ffiffiffi

2
p

Nla for the time
evolution vector field, but not with respect to other choices
that do not lead to the same result.
To see this, let the general case ta ¼ ffiffiffi

2
p

Nrla þ Va with
Va ¼ ðO − NrÞsa þN a be considered, where the situation
changes completely in the sense that quasilocal corrections
to P0 and Ph occur naturally. Here, the following is to be
added: The choice ta ¼ ffiffiffi

2
p

Nrla made above for the time-
flow vector field actually proves to be a suitable choice
for the study of the intrinsic and extrinsic geometry of
dynamical horizons and for characterizing the latter by
means of different null geometric quantities. The choice of
an alternative time-flow vector field is essentially arbitrary
for spacetimes lacking time translation symmetry; however,
this choice should always be made taking into account
important local geometric properties of the considered
geometric field. On the other hand, given spacetimes that
do not lack time translation (and/or rotational) symmetry, it
is straightforward to make a choice for the time-flow vector
field of the geometry. This choice, as already emphasized in
the previous section, is simply given by the Killing vector
field of spacetime, i.e., by the linear combination of
temporal and angular Killing vector fields, which can be
written the form ta ¼ ffiffiffi

2
p

Nla þ Va with Va ¼ Ωφa. Such a
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choice already leads to quasilocal corrections, as shall be
shown below.
To derive said corrections and obtain a bulk-to-boundary

inflow term of the form (12), one may perform a variation
of the bulk part of the horizon Hamiltonian. From the
perspective of an unboosted observer (for which η ¼ 0),
this Hamiltonian takes the form

Hh ¼ HBulk
h þHBoundary

h

¼
Z
T
ðH þRÞd3xþ

Z
St

Hd2x; ð35Þ

where the definitions H ≔
ffiffi
h

p
8π NrðHþHasaÞ and R ≔ffiffi

h
p
8π HaVa ¼

ffiffi
h

p
8π ½ðO − NrÞHasa þHaN a� have been used.

Perhaps the simplest way to calculate the variation LtHBulk
h

of the bulk part is to consider the 3þ 1 identities

LVHBulk
h ¼ 1

8π

Z
T
Dbf½NrðHþHasaÞ þHaVa�Vbgωh

¼ 1

8π

Z
St

½NrðO − NrÞðHþHasaÞ þHaVa�ωq

ð36Þ

and

∇cGc
bVb ¼ −LnHbVb þHabVb − KHbVb

þQc
bacVb þDcQc

bVb ¼ 0; ð37Þ

where Vasa ¼ O − Nr has been used. As may be noted, the
latter identity can straightforwardly be deduced using
the 3þ 1 splitting Ga

b ¼ Hnanb −Hanb − naHb þQa
b

of the Einstein tensor.
Taking into account the decomposition relations

na ¼ 1ffiffi
2

p ðla þ kaÞ, relation (37) can be recast such that

LlHbVb ¼ −LkHbVb þDcðQc
bVbÞ þΦV; ð38Þ

with

ΦV ¼HVbDb lnNr−KHbVbþQc
bVbDc lnNr−Qc

bDcVb

ð39Þ

being satisfied. Ultimately, applying Gauss’s theorem once
again to convert

Z
T

DcðNrQc
bVbÞωh ¼

Z
St

Qc
bscVbωq; ð40Þ

and taking (30) as well as (36) and (39) into account,
one finds that for a time-flow vector field of the form
ta ¼ ffiffiffi

2
p

Nrla þ Va the variation LtHBulk
h of the bulk part of

the Hamiltonian is given by (30) plus an extra term of
the form

1

8π

Z
T

ffiffiffi
2

p
Nr½LlHbVb þHbLlVbþ�ωh þLVHBulk

h

¼ 1

8π

Z
T

½−LkHbVb þHbLlVb −Qc
bVbDcNr þΦV �ωh

þ
Z
St

ΠVωq; ð41Þ

with

ΠV ¼ 1

8π
fðO − NrÞ½NrðHþHasaÞ þHaVa�

þ NrQc
bscVbg: ð42Þ

As can readily be checked, by combining (30) and (41) one
obtains again a bulk-to-boundary inflow term with an
integrand that satisfies the identity Π þ ΠV ¼ Π ¼
Π0 þ ΠN . Thus, as to be expected, one finds the result
of the second section exactly reproduced.
For the variation of the boundary part of the

Hamiltonian HBoundary
h , one may take into account that

LN

R
Sð

ffiffiffi
2

p
NrΘ−ΓVÞωq¼

R
SDc½ð

ffiffiffi
2

p
NrΘ−ΓVÞN c�ωq¼0

applies in the given context. This reveals the fact that the
variation LtH

Boundary
h of the boundary term is given by (32)

plus an extra term of the form
Z
St

ΔVωq ¼
1

8π

Z
St

ffiffiffi
2

p
Nr½LlΓV þ ΘΓV − ΨV �; ð43Þ

where the definition

ΨV ¼ ðO − NrÞ½
ffiffiffi
2

p
LsNrΘþ

ffiffiffi
2

p
NrLsΘþ ð

ffiffiffi
2

p
NrΘ − ΓVÞk − LsΓV �

¼ NrðO − NrÞ
�
Ll−k lnNr · Θþ 1

2
ð2ÞRþ

�
κ þ Ξ −

1

2
Θ
�
Θþ 1ffiffiffi

2
p ð

ffiffiffi
2

p
NrΘ − ΓVÞðΘþ ΞÞ

− σabσ
ab þ ωabω

ab −ΩaΩa þDaΩa −H −Hasa −
1ffiffiffi
2

p Ll−kΓV

�
ð44Þ
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has been used, which takes a simpler form at T and
therefore also at St due to the fact that Θ ¼ 0 applies there.
Hence, by combining the bulk-to-boundary terms resulting
from (30) and (41) with (43), one obtains the power
functional

Ph ¼ Ph þPh; ð45Þ

for the inner boundary of spacetime, with Ph being
depicted in (33). This power functional contains the
quasilocal correction term

Ph ¼
Z
St

ðΠV − ΔVÞωq; ð46Þ

which again takes a simpler form at St due to the fact that
Θ ¼ 0 is satisfied along the leaves of T . The reason why Θ
was not set equal to zero in this context is, of course, that by
an analogous approach an equivalent power functional

P0 ¼ P0 þP0 ð47Þ

can be derived for the outer boundary of spacetime, whose
from can easily be read off from (45). In fact, the exact
same expression is obtained here, only St has to be
replaced by Ωt and it cannot necessarily be assumed that
Θ is equal to zero, since the outer horizon is a timelike
hypersurface that will not generally represent a dynamical
horizon. Provided that, as before, the outer boundary of
spacetime is shifted to null infinity in the large sphere
limit, P0 is then again given by Eq. (34), thereby implying
that P0 describes quasilocal corrections to said formula.
Note that here, again, the transition to the rotating case can
be readily achieved by the substitutions N → Ñ, O → Õ,
and N a → Ñ a.
As can be inferred from Eqs. (45) and (47), the quantities

Ph and P0 encode corrections to the quasilocal analog
of Bondi’s mass-loss formula given by Eqs. (33) and (34),
respectively. These corrections each contain one term
resulting from the variation of the boundary part of the
Hamiltonian and a previously unrecognized bulk-to-
boundary inflow term. The existence of precisely these
terms suggests that the Bondi mass-loss formula—for the
given choice of the time evolution vector field—results as a
special case of the Brown-York formalism only when
P0 ⟶

r→∞
0 is satisfied; however, this requires specific

asymptotic fall-off conditions to be satisfied. Yet, the
latter may not be the case for all choices Na¼OsaþN a

for the shift vector of the geometry, possibly not even for
the case in whichNa ¼ 0, as will be explained more clearly
in Sec. IV.
In conclusion, given the fact that, in general, no preferred

time-flow vector field can be distinguished in spacetimes
that do not exhibit time translation symmetry and, more-
over, withO andN a essentially freely selectable quantities

that enter the definition of the derived quasilocal correc-
tions, it is clear that these quantities can always be chosen
in such a way that the mentioned corrections are nonzero
in spacetimes without the mentioned symmetry. Thus,
one is led to conclude that, according to the quasilocal
Hamiltonian formalism used in this work, there are integral
terms that can be expected to survive the large sphere limit
and so give rise to nonvanishing quasilocal corrections to
Bondi’s mass-loss formula. Accordingly, there should be
exceptions to the generally accepted rule: The mass of a
system is constant if and only if there is no news. Rather, in
light of the above, the statement should read correctly:
The mass of a system is constant if and only if there is no
news (and the bulk stress-energy tensor at the boundary of
spacetime is zero).
This small addition to Bondi’s statement proves quite

significant in some cases of interest, in particular, those in
which both electromagnetic and gravitational radiation
escape continuously from the system to null infinity, which
is possible in nonstationary spacetimes because both matter
and radiation can simultaneously pass through a dynamical
horizon (as opposed to the case of a stationary isolated or
even Killing horizon, where the latter would be impos-
sible). The reason for this is that, in just such a case, there
should be a nonvanishing bulk-to-boundary energy inflow
term and hence corrections to the Bondi mass-loss formula,
which should manifest themselves in the form of a shift in
the intensity of the measured radiation.
That the explicit form of such a shift can actually

be calculated, at least in simpler cases, will be shown in
Sec. Vof this work, using the generalized Vaidya family of
spacetimes as an example. In doing so, it will be shown that
the quasilocal corrections derived in the present section
must be taken into account in order to obtain the correct
formula for the loss of mass and radiant energy through a
dynamical horizon in a spatially and temporally bounded
gravitational system whose boundary is shifted to infinity
in the large sphere limit. The form of the resulting
quasilocal corrections is shown to depend particularly on
the choice of the shift vector field of the geometry, with
certain choices clearly showing that, contrary to general
expectation, null radiation at null infinity can be detected
even when both the Bondi news function and the time
derivative of the associated mass aspect are zero.

IV. A SPECIFIC EXAMPLE: THE FAMILY
OF GENERALIZED VAIDYA SPACETIMES

To illustrate applications for the integral laws derived in
the previous sections, a specific class of geometric models
will now be treated in the following, namely, the gener-
alized Vaidya family of solutions of Einstein’s equations.
The metric of this spacetime describes the geometric field
of a matter distribution with a null dust and a nonrotating
null fluid part. In the ingoing case, the line element
encoding the components corresponding metric reads
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ds2 ¼ −
�
1 −

2M
r

�
dv2 þ 2dvdrþ r2ðdθ2 þ sin2 θdϕ2Þ;

ð48Þ

where Mðv; rÞ is assumed to be a function of v and r with
the property that its first derivative with respect to v
possesses a well-defined limit, in the sense that the
object Ṁ∞ ¼ lim

v;r→∞
Ṁ with Ṁ ¼ ∂vM exists and is non-

singular. Given that this is the case, one may consider the
normalized geodesic null frame

la ¼ ∂
a
v þ

N2

2
∂
a
r ;

ka ¼ −∂ar ;

ma ¼ 1ffiffiffi
2

p
r
ð∂aθ þ i csc θ∂aϕÞ;

m̄a ¼ 1ffiffiffi
2

p
r
ð∂aθ − i csc θ∂aϕÞ; ð49Þ

in relation to which the stress-energy tensor of this
geometry splits in two parts

Tab ¼ TðDÞ
ab þ TðFÞ

ab ; ð50Þ

i.e., a null dust part TðDÞ
ab ¼ μkakb of type I and a null

fluid part TðFÞ
ab ¼ 2ðρþ pÞlðakbÞ þ pgab of type II [18],

where the shorthand notation μ ¼ Ṁ
4πr2, ρ ¼ M0

4πr2, p ¼ − M00
8πr,

M0 ≔ ∂rM, ka ¼ dva, and la ¼ dra − 1
2
ð1 − 2M

r Þdva has
been introduced. Thus, given thatM is only a function of v,

TðFÞ
ab is zero and the Vaidya metric is obtained as a special

case. On the other hand, if M is chosen to be of the form
Mðv; rÞ ¼ mðvÞ þ Λr3

6
, the Vaidya–de Sitter metric is

obtained as a special case, which reduces to the Kottler
alias Schwarzschild–de Sitter metric in the case where
mðvÞ ¼ m0 ¼ const.
As a basis for the introduction of a geometric setting, as

considered in Sec. II, one may now identifyN2 ¼ 1 − 2M
r as

the lapse function of the geometry and perform a rescaling

of the form la →
ffiffi
2

p
N la and ka → Nffiffi

2
p ka, which yields the

timelike and spacelike vector fields na ¼ 1ffiffi
2

p
N
∂
a
v and

sa ¼ 1ffiffi
2

p ½1N ∂av þ N∂
a
r �. Then, by another boost transforma-

tion, the related vector fields va ¼ 1
λ n

a − ηsa and ua ¼
1
λ s

a − ηna can be constructed in the next step, so that the
main ingredients for the introduction of the geometric
setting considered in previous sections of this work are
given. Taking then further into account that the general-
ized Vaidya geometry is nonstationary and thus lacks time
translation symmetry, it becomes clear that there are
various ways to select the time-flow vector field of
spacetime, all of which are consistent with the results

of the previous section. As a result, there are multiple
ways to set up the partH0 of the quasilocal HamiltonianH
and also multiple ways to calculate the variation of this
same Hamiltonian and to investigate whether quasilocal
corrections arise and persist even when the boundary of
spacetime is shifted to infinity. Some of these will now be
discussed in the following.
Obviously, one of the choices mentioned is ta ¼ ffiffiffi

2
p

Nla.
Since for this choice κ ¼ −LlN and ωab ¼ 0 applies,
it is clear that the asymptotic fall-off conditions
N½LlN þ κ�Θωq ⟶

r→∞
0, N2ωabω

abωq ⟶
r→∞

0 are met in

the case where the boundary of spacetime is moved to
null infinity in the large sphere limit.
Thus, taking the results of the previous section into

account, it follows that the associated power functional P0,
which describes the rate at which energy is radiated to
infinity, is given by relation (34) and that only the energy
flux due to gravitational radiation reaches null infinity,
thereby proving to be consistent with relation (47) in the
sense thatP0 ¼ 0. Hence, no quasilocal corrections arise in
the given case. Yet, since the generalized Vaidya metric is
spherically symmetric, it is clear that σab ¼ 0 and thus
P0 ¼ dm

dv ¼ 0 applies, thereby implying that the Bondi mass
m of the system is constant, as to be expected.
Another possible choice for the time-flow vector field of

spacetime is ta ¼ 1ffiffi
2

p ∂
a
v ¼ Nna ¼ Nffiffi

2
p ðla þ kaÞ; a choice

according to which Na ¼ 0 applies. Given this compara-
tively simple form of ta, it turns out to be most straightfor-
ward to use (10) directly to determine the form of
potentially occurring quasilocal corrections. To this end,
it may first be concluded from (9) that the bulk-to-boundary
inflow term of the geometry takes the form

Z
Ωv

Πωq ¼
1

8π

Z
Ωv

N2Gabnasbωq

¼ 1

2

Z
Ωv

N2Tablalbωq

¼ 1

2

Z
Ωv

N2μωq

¼ 1

2

�
1 −

2M
r

�
Ṁ; ð51Þ

thereby yielding

Z
S∞

Πωq ¼
1

2
Ṁ∞ ð52Þ

in the large sphere limit. Then, given that the validity of
Na¼0 implies thatO¼N a¼0 and thus ΓV ¼

ffiffiffi
2

p
NΘ−Nk

is satisfied, one finds that
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H ¼
ffiffiffi
q

p
8π

Nk: ð53Þ

Also, by taking further into account that k ¼ 1ffiffi
2

p ðΘ − ΞÞ,
Θ ¼ N2

r , and Ξ ¼ − 2
r and thus Θ − Ξ ¼ N2þ2

r applies in the
given context, it is found that

dHBoundary
0

dt
¼ 1ffiffiffi

2
p

8π

Z
Ωv

�
NLnNðΘ − ΞÞ þ N2LnðΘ − ΞÞ

þ N2ffiffiffi
2

p ðΘ2 − Ξ2Þ
�
ωq

¼ 1

16π

Z
Ωv

�ð3N2 þ 2Þ∂vN2

2Nr
þ N2ðN4 − 4Þ

r2

�
ωq;

ð54Þ

where, just as a reminder, N2 ¼ 1 − 2M
r applies by defi-

nition. Ultimately, by using the fact that 1
2
∂vN2 ¼ − Ṁ

r and
ωq ¼ r2 sin θdθdϕ holds true by definition and taking the
large sphere limit of (54), one obtains the final result

P0 ¼ P0

¼ lim
v;r→∞

dHBoundary
0

dt
þ
Z
S∞

Πωq ¼
3

4
ð1 − Ṁ∞Þ ≠ 0:

ð55Þ

From this, however, it can be concluded that, even in the
given simple case, Bondi’s result is no longer exactly
reproduced, since the variation of the quasilocal mass m of
the system does not coincide with that of the Bondi mass
mB, the fact that both quasilocal masses coincide exactly at
future null infinity notwithstanding.
Moreover, since neither Tabnanb nor Tabnasb nor

Tabsasb are equal to zero, it is clear that one can always
find a function Oðv; rÞ and an associated time evolution
vector field of the form ta ¼ ffiffiffi

2
p

Nla þ ðO − NÞsa þN a

such that the resulting bulk-to-boundary inflow term with
integrand (12) is different from zero at null infinity. This
thereby implies thatP0 ≠ 0 and thus P0 ≠ 0 applies for the
quasilocal quantities occurring in (47) in such a case.
Accordingly, given this particular choice of time-flow
vector field, it becomes clear that, as claimed, quasilocal
corrections to the Bondi mass-loss formula occur at future
null infinity. These are manifestly different from zero, so
that in such a case one is led to conclude that there are again
deviations from Bondi’s mass-loss formula caused by the
resulting quasilocal corrections.
Thus, to conclude, it is found in the given nonstationary

case that radiation fields can be detected at null infinity
even in cases where the Bondi news function is zero. The
bulk-to-boundary inflow term responsible for this fact
depends, to a large extent and similar to the other quasilocal

corrections, on the choice of the time-flow vector field of
the geometry. For special choices of the latter, as it turns
out, Bondi’s results can, however, be exactly reproduced.
That being said, in order to determine the analogous

power functional at the horizon, one may proceed some-
what differently, if only because the rescaled null vector

field la ¼
ffiffi
2

p
N ∂

a
v þ Nffiffi

2
p ∂

a
r diverges at the horizon.

A facilitating circumstance in this context is the fact that
it proves sufficient to consider vector fields that are only
locally lightlike at the dynamical horizon T . Taking this
into account, the steps taken in [4] can be applied as is to
the given case and used as a basis for constructing the
horizon HamiltonianHh as well as calculating its variation.
To this end, one may define the function fðv; rÞ ≔
N2ðv; rÞ ¼ 1 − 2Mðv;rÞ

r , choose Nr ¼
ffiffiffiffiffiffiffiffiffi
j ḟ
2f0 j

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

Ṁr
M−rM0

q
for the lapse function of the geometry, and set up the

system of vector fields l̃a ¼ jf0jffiffiffiffiffiffiffi
jḟf0j

p ∂
a
v, k̃a ¼ − jḟjffiffiffiffiffiffiffi

jḟf0j
p ∂

a
r

ña ¼ 1ffiffiffiffiffiffiffiffiffi
j2ḟf0j

p ½f0∂av þ ḟ∂ar �, and s̃a ¼ 1ffiffiffiffiffiffiffiffiffi
j2ḟf0j

p ½f0∂av − ḟ∂ar �,
with l̃a being only locally lightlike. Choosing then the
horizon vector field t̃a ¼ ffiffiffi

2
p

Nrl̃
a for setting up Hh,

1 it can
be concluded from (33) that Ph ¼ Ph ¼ Ph ¼ 0. This
implies that the gravitational Hamiltonian of generalized
Vaidya spacetime, when defined with respect to t̃a, is
constant with respect to the Lie flow generated by the same
vector field and thus is a locally conserved quantity at the
boundary of spacetime (but not in the bulk). In the case
where M → const. and thus the geometry of spacetime
approaches that of Schwarzschild spacetime, the fact
that Nr → 0 applies in the same limit further implies that
Hh → 0, as to be expected.
Consequently, given the choice Nr for the lapse function

at the horizon, the fact thatHh → 0 shows that the temporal
variation of the total quasilocal Brown-York Hamiltonian
vanishes once the black hole horizon reaches a steady state
of equilibrium and becomes an isolated or weakly isolated
horizon in the sense of Ashtekar et al. Thus, the treated
model confirms that any matter and/or radiation flux (of
the specified type) from the bulk to the boundary of
spacetime crossing a dynamical horizon necessarily sub-
sides completely in the limiting case, where the geometry
of the generalized Vaidya becomes static and settles into
an equilibrium state, where it coincides with that of
Schwarzschild spacetime. The model therefore confirms
that, in the case of a black hole spacetime, neither matter
nor radiation can escape to infinity through the event
horizon of a black hole. However, through a dynamical
horizon, which lies not within a black hole event horizon,

1In this context, it has to be ensured that the horizon vector
field transitions smoothly into the residual time-flow vector field.
However, this can readily be done by considering a smooth
joining of the two vector fields using distributions or functions
with compact support.
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matter and radiation can very well escape to infinity.
An example of the occurrence of such a situation is in
the case of Vaidya–de Sitter spacetime for M >

ffiffiffiffiffiffi
9Λ

p
; a

case in which no black hole horizon can form, but
spacetime nevertheless exhibits a dynamical horizon
through which matter and radiation can escape to infinity
(but not to future null infinity, as the latter does not exist in
said case). But there are, of course, other examples that
could also be mentioned at this point.
Anyway, the above should apply not only to dynamical

horizons whose cross sections are spherically symmetric,
but also to more general horizons that occur, for example, in
nonstationary axisymmetric spacetime. However, surpris-
ingly, it has been found in the literature that, in general, it is
not easy to analyze nonspherical dynamical horizons, since
not too much is known about nonspherical marginally
trapped surfaces.
Yet, as far as the results of the present work are

concerned, this does not pose a major problem, since the
derived integral laws should retain their validity for any
type of dynamical black hole spacetime (and certainly
beyond); even if the notion of a dynamical horizon is
replaced by Hayward’s more general notion of a trapping
horizon. The calculated quasilocal corrections should there-
fore be taken into account where necessary.

V. CONCLUSION AND OUTLOOK

In this work, the rate of change of mass and/or radiant
energy escaping through the spatial boundary of a confined
nonstationary spacetime was calculated using the quasilo-
cal Brown-York formalism. In doing so, it was shown
that a null geometric equivalent of the bulk-to-boundary
inflow term derived in [3] results from varying the total
Hamiltonian of the theory, which describes how matter
and/or radiation can escape from the bulk of spacetime into

its boundary region. Also, it was shown that other quasi-
local corrections occur, some of which do not vanish even
when the boundary of spacetime is shifted to infinity. As a
result, using the example of generalized Vaidya spacetime,
it was shown that, in general, corrections to the Bondi
mass-loss formula occur at null infinity, even though said
formula can also be reproduced exactly—given a suitable
choice of the time-flow vector field. The null geometric
approach used for this purpose was found to be consistent
with the theory of dynamical and isolated horizons, and it
was found that the horizon part of the Hamiltonian becomes
zero (for a suitable choice for the lapse function of the
geometry) as soon as the dynamical horizon transitions into
an isolated or weakly isolated horizon.
Remarkably, in this context, it turns out that the form of

the derived bulk-to-boundary inflow term is independent
of the choice of boundary conditions chosen to set up the
quasilocal Hamiltonian of the theory. The reason is that this
term results from the variation of the bulk part of the
quasilocal Hamiltonian, i.e., the ADM Hamiltonian, and
not from the variation of its boundary part. For this reason,
the quasilocal corrections associated with this term always
occur when the ADM Hamiltonian is considered and are
thus relatively universally applicable in general relativity.
It is therefore to be expected that said quasilocal correc-
tions play an important role in describing a large class of
phenomena in Einstein-Hilbert gravity. As it stands, any
further applications will be discussed in more detail else-
where, in a future work on this subject.
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