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The imaging by the Event Horizon Telescope (EHT) of the supermassive central objects at the heart
of the M87 and Milky Way (Sgr A⋆) galaxies, has marked the first step into peering at the photon
rings and central brightness depression that characterize the optical appearance of black holes
surrounded by an accretion disk. Recently, Vagnozzi et al. [arXiv:2205.07787] used the claim by the
EHT that the size of the shadow of Sgr A⋆ can be inferred by calibrated measurements of the bright ring
enclosing it, to constrain a large number of spherically symmetric space-time geometries. In this work we
use this result to study some features of the first and second photon rings of a restricted pool of such
geometries in thin accretion disk settings. The emission profile of the latter is described by calling upon
three analytic samples belonging to the family introduced by Gralla, Lupsasca, and Marrone, in order to
characterize such photon rings using the Lyapunov exponent of nearly bound orbits and discuss its
correlation with the luminosity extinction rate between the first and second photon rings. We finally
elaborate on the chances of using such photon rings as observational discriminators of alternative black
hole geometries using very long baseline interferometry.
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I. INTRODUCTION

One of the core results of the theory of black holes
within general relativity (GR) is the universality of the
Kerr hypothesis, namely, that every black hole of the
universe is described by two parameters: mass and
angular momentum (since the electric charge is typically
neglected in astrophysical environments) [1]. This
hypothesis is deeply anchored in the uniqueness theorems,
though the addition of matter fields allows to find hairy
black holes under certain circumstances [2]. Since testing
the validity of the Kerr hypothesis is nearly impossible
(see however [3]), one typically performs instead null-
tests, i.e., tests with electromagnetic or gravitational
waves on the compatibility of the Kerr black hole with
current observations, and the feasibility of every

alternative to it (be a modified black hole or a horizonless
compact object) to also match such observations [4].
Recently, the progress in the development of very long

baseline interferometry (VLBI) has paid off via the imaging
by the Event Horizon Telescope (EHT) Collaboration of the
central supermassive objects at the heart of the M87 [5] and
Milky Way (Sgr A⋆) [6] galaxies. Such observations report
the presence of a bright ring of radiation enclosing a central
brightness depression, which are the two most salient
features of images found using general relativistic magneto-
hydrodynamic (GRMHD) simulations of the accretion flow
surrounding a Kerr black hole. The first such feature comes
from the presence of a region of bound unstable orbits
in the effective potentials seen by photons (the photon
shell [7]), allowing for strongly lensed trajectories that orbit
the black hole n (half-)times. If the disk is optically thin
(i.e. transparent to its own radiation), such trajectories
create a thin photon ring whose features interpolate
between two extreme scenarios. On one end, the photon
ring converges to a critical curve in the image plane of the
observer, while the central brightness depression entirely
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fills it: this is the shadow of Falcke’s view [8,9]. This arises,
in particular in accretion disks which have a spherically
symmetric inflow. On the opposite end, the photon ring is
decomposed into an infinite sequence of rings [10], each of
them being a gravitationally lensed image of the direct
emission region outside the event horizon but exponentially
dimmed in luminosity, the latter captured by the Lyapunov
exponent of nearly bound geodesics in a given geometry,
while the size of the central brightness depression can be
strongly reduced [11]. The latter scenario happens not only
in infinitesimally thin-disk equatorial flows but also as long
as there are gaps in the emission region.
This field of imaging compact objects illuminated by

their accretion disk is thus entering a golden era in which it
represents a promising opportunity to both test the reli-
ability of the Kerr solution and to explore the plausibility
of any of its alternatives to describe observed images.
However, such an opportunity can be spoiled by the large
uncertainties in the modeling of the disk together with its
entanglement with the background geometry in the gen-
eration of such images, rendering the quest for reliable
observational discriminators between the Kerr solution
and its many alternatives a main object of interest in the
scientific community. This can be pursued via the two main
features of such images—photon ring and central bright-
ness depression—since they carry a wealth of information
about the underlying space-time geometry and, conse-
quently, on the case to test GR itself [12,13].
For the former feature, as larger values of n are

considered, the theoretical properties of the corresponding
photon rings grow less dependent on the features of the disk
and more on the background geometry, thus offering us a
way out of the “contamination” enacted by the disk [14].
Indeed, despite the exponentially-suppressed luminosity of
photon rings, their sharp features make them die off slowly
in the Fourier domain and, as a consequence, tend to
dominate the interferometric signal in very high-frequen-
cies, leading to the VLBI field. The most promising target
in this sense is the n ¼ 2 ring. While its detection hinges
on observational capabilities that surpass those currently
available, either because they require observations at higher
frequencies or longer baselines, these are expected to be
achievable with the next generation EHT (ngEHT) obser-
vations [15] and through space-based interferometry. In this
regard, prospects have been recently reviewed in the
literature, see, e.g., [16–20]. Given the fact that one expects
significant deviations in the shape, diameter, width, and
relative luminosity of the n ¼ 2 ring [21] (and of the n ¼ 1
one to a lesser extent [22]) for alternative (non-Kerr)
geometries, precise observations of this ring could be
potentially used to constrain them [23].
For the latter feature, while the precise size of the outer

edge of the central brightness depression cannot be directly
determined by the EHT Collaboration given the fact that it
cannot measure luminosity contrasts below ∼10% of its

peak, it has been recently reported that it can be indirectly
inferred (after proper calibration accounting for theoretical
and observational uncertainties and subject to several
caveats) by a correlation between the observed size of
the bright n ¼ 0 ring (which is caused by the disk’s direct
emission) and the shadow’s size itself [24]. Assuming the
validity of this correlation and the assumptions upon which
it holds, a collective effort was made by Vagnozzi et al.
(hereafter Vea) in [25] to constrain the parameter space of a
plethora of alternative spherically symmetric geometries
motivated by fundamental or phenomenological consider-
ations. One should note, however, that this observation
alone does not single out specific metrics to represent
current images but rather their compatibility with them,
since the shadow is known to be degenerate between
different background geometries [26].
The main aim of this paper is to combine the two

ingredients discussed above, taking a restricted pool of the
alternative spherically symmetric geometries considered
by Vea, and generate their images when illuminated by an
equatorial orbital infinitesimally-thin accretion disk (i.e. the
object is seen face-on). Such an assumption on the
geometry of the disk is motivated in order to enhance
the opportunity to clearly visualize the photon rings.
Indeed, the accretion disk features are the weakest thread
in the generation of black hole images due to the not so well
understood physics of the magnetized plasma, so different
pools of assumptions upon its optical, geometrical, and
emission properties (among others [27]) are needed in order
to optimize our chances to seek any putative deviation from
the Kerr metric under different physical conditions. In our
case, the emission properties are set via the consideration of
a bunch of analytic models introduced by Gralla, Lupsasca,
and Marrone (hereafter GLM models) in [12], and whose
usefulness (of some of them) in matching the results of
some scenarios of GMRHD simulations for the accretion
flow have been explored in several works [19,22]. We shall
use three picks of such models: one truncated at a certain
distance from the event horizon in order to clearly isolate
the n ¼ 1 and n ¼ 2 photon rings, and two extending to the
event horizon with different peaks and decays. In the
former model we provide captions of the photon rings,
while in the latter models we supply the full images for all
these geometries. In all cases we compute the Lyapunov
exponent of nearly-bound orbits (a sensitive quantity to
deviations from Kerrness) and seek for the presence of
any correlation with the actual suppression of luminosity
between the n ¼ 2 and n ¼ 1 rings, a potential observable
of VLBI projects.
This paper is organized as follows: in Sec. II we set the

theoretical framework, build the (null) geodesic motion in
spherically symmetric backgrounds, upgrade the formalism
to account for those cases in which the matter source is a
magnetic monopole from nonlinear models of electrody-
namics, discuss the notion of critical curves, briefly
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describe the EHT calibrated measurement of Sgr A⋆

shadow, and set the emission (GLM) models used in this
work. In Sec. III we provide an explanation of the choice of
spherically symmetric geometries from Vea and the refine-
ments made upon the space of parameters in each case. The
generation of images and discussion of the physical results
obtained is provided in Sec. IV, and we conclude in Sec. V
with further thoughts and prospects.

II. THEORETICAL FRAMEWORK

A. Null geodesics in spherically symmetric space-times

We consider the motion of null particles in a spherically
symmetric space-time suitably written as

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ CðrÞdΩ2: ð1Þ

Note that these three functions can always be reduced to
just two via a change of coordinates; however, the radial
function CðrÞ cannot always be trivialized to CðrÞ ¼ r2,
so this shape grants us a larger freedom to work with.
We assume such particles to follow geodesics of the
background metric as gμνkμkν ¼ 0, where kμ ¼ ẋμ is the
photon’s wave number, and a dot represents a derivative
with respect to the affine parameter. Using the freedom
granted by the spherical symmetry of the system, we can
assume the motion to take place along θ ¼ π=2without any
loss of generality, so that the above equation reads

−Aṫ2 þ Bṙ2 þ Cϕ̇2 ¼ 0: ð2Þ

Using the conserved quantities of the system, namely, the
energy per unit mass, E ¼ Aṫ, and the angular momentum
per unit mass, L ¼ Cϕ̇, the above equation can be suitably
rewritten (after reabsorbing a factor L2 in the definition of
the affine parameter) as

ABṙ2 ¼ 1

b2
− VeffðrÞ; ð3Þ

where b≡ L
E is the impact parameter, and the effective

potential reads as

Veff ¼
AðrÞ
CðrÞ : ð4Þ

Unstable bound orbits correspond to critical (maxima)
points of the effective potential and are an essential
theoretical concept for the characterization of black hole
images. They are found as the solutions of the equations

b2c ¼ V−1
effðrpsÞ; V 0

effðrpsÞ ¼ 0; V 00
effðrpsÞ < 0; ð5Þ

where primes denote derivatives with respect to the radial
coordinate r. Here rps is dubbed as photon sphere and bc as

the critical impact parameter. In the image plane of the
observer the photon sphere is mapped into a critical curve,
which splits the light rays issued from the observer’s screen
backward toward the black hole into twowell-distinguished
regions: those with b > bc find a turning point at some
radius r > rps, while those with b < bc eventually intersect
the event horizon of the black hole. Those that have b≳ bc
approach asymptotically (in the observer’s image plane) the
critical curve and may linger there indefinitely, turning
the black hole an arbitrarily large number of times before
being released to asymptotic infinity. The angle turned by
every photon upon deflection by the black hole is found by
rewriting Eq. (3) into the more convenient form

dϕ
dr

¼ −
b

CðrÞ

ffiffiffiffiffiffiffi
AB

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2 AðrÞ

CðrÞ
q : ð6Þ

This equation is the main tool we shall be using for the
ray-tracing behind the generation of black hole images.
This is done by integrating a set of light trajectories (for a
range of b) backward from the observer’s screen and
classify them according to the number n of times it has
(half-)circled the black hole. This is of interest since,
provided that there are gaps in the emission region of
the disk (i.e., as long as the disk is not completely spherical,
see however [9]), and assuming that the disk is transparent
to its own radiation (i.e., optically thin) at the emission
frequencies, every trajectory turning n-half times will boost
its luminosity by picking additional photons from the disk
on its winding around the black hole. This is the reason
behind the existence, in this scenario, of a nested sequence
of photon rings on top of the direct emission of the disk, the
latter corresponding to those photons that travel from the
disk to the observer without undergoing additional turns
around the black hole. The characterization of such photon
rings is the main object of interest in this work.

B. Effective null geodesics from nonlinear
electrodynamics

The above formalism needs to be upgraded when the
matter fields threading the geometry belong to nonlinear
electrodynamics (NED): generalizations of Maxwell
electrodynamics via new contributions in the field invar-
iants. NEDs have been longed employed in the literature
due their connections to singularity resolution [28] and
effective approaches to quantum electrodynamics [29],
enhancing the geometrical and thermodynamical features
of charged black holes [30]. Furthermore, they are very
flexible in supporting (perhaps with scalar fields added
as well) many ad hoc solutions of interest [31]. Due to
the latter feature, many of the alternative geometries ever
proposed in the literature are supported by NEDs, and in
such a case it has been long recognized in the literature that
photons propagate along null geodesics of an effective
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metric induced by the nonlinearity of the matter fields
[32,33]. Since three of the sixteen geometries considered
in this work have been shown to be supported by specific
NED models, we are driven to generalize the equations of
geodesic motion in NED-supported geometries for the
purpose of casting images of the corresponding objects.
NEDs are generically defined by two field invariants

constructed from the field strength tensor Fμν and its
dual F�

μν as

F ¼ 1

4
FμνFμν; G ¼ 1

4
FμνF�μν ð7Þ

and which can be written in terms of the electric and
magnetic fields. However, for purely electric or magnetic
fields (the latter being the case of interest for our purposes
in this work) the field invariant G can be made to vanish,
and only F remains, so that NEDs correspond to choices of
a function LðFÞ. It was proven in [32] (see also [33]) that in
geometries threaded by such NEDs, the effective geometry
such photons propagate on, geμνkμkν ¼ 0, is related to the
background geometry via the relation

gμνe ¼ LFgμν − LFFFμ
αFαν; ð8Þ

where LF ≡ dL=dF. For purely magnetic configurations
Aμ ¼ qm cos θδϕμ , where qm is the magnetic charge, the
NED field equations provide a single solution for the
invariant F for every NED as given by

F ¼ q2m
2r4

: ð9Þ

With these definitions we can repeat the derivation per-
formed in Sec. II A. According to the relation (8) between
the effective and background metrics, and the properties
of the NED field in this magnetically charged, spherically
symmetric scenario, a suitable line element for the effective
geometry can be written as

ds2e ¼ HðrÞð−AðrÞdt2 þ BðrÞdr2Þ þ hðrÞCðrÞdΩ2; ð10Þ

so that the two functions HðrÞ and hðrÞ encode the
deviations between the effective and background metrics.
By working out the relation (8) with the parametrization
above, such functions are explicitly given in the present
framework by

HðrÞ ¼ LF þ 2FLFF; hðrÞ ¼ LF: ð11Þ

This way Eq. (2) gets replaced by

−HðAṫ2 þ Bṙ2Þ þ hCdϕ̇2 ¼ 0; ð12Þ

where now the energy reads as E ¼ HAṫ and the angular
momentum as L ¼ hCϕ̇, allowing to rewrite the previous
equation as

AB

�
dr
dϕ

�
2

¼ C2h2

H2

�
1

b2
− Ve

effðrÞ
�
; ð13Þ

and once again we can identify a potential Ve
effðrÞ under

these effective geodesics as

Ve
effðrÞ≡ AðrÞ

CðrÞ
HðrÞ
hðrÞ : ð14Þ

Unstable bound photon orbits must thus satisfy conditions
(5), but now with respect to the new effective potential (14).
Obviously, this means that there will be differences in the
quantitative values of the critical curve and its associated
impact parameter and, consequently, in the features of the
corresponding optical appearances. To work out the latter,
we just need to (once again) find an equation for the
deflection angle as a function of the radial coordinate,
which is just Eq. (13) rewritten as

dϕ
dr

¼ � b
CðrÞ

HðrÞ
hðrÞ

ffiffiffiffiffiffiffi
AB

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2 AðrÞ

CðrÞ
HðrÞ
hðrÞ

q ; ð15Þ

and thus we are done regarding this aspect.

C. EHT shadow boundary constraints

On the observer’s screen, the critical curve [the image of
the photon sphere (5)] separates the scattered orbits from
the captured ones and thus marks the boundary of the
shadow. We can explicitly write the critical curve as the
solution of the equation

C0ðrpsÞAðrpsÞ − CðrpsÞA0ðrpsÞ ¼ 0: ð16Þ

The shadow’s radius in this view corresponds to Falcke’s
idea of a region entirely filling the critical curve, that is

rsh ¼
ffiffiffiffiffiffiffiffiffiffi
CðrÞ
AðrÞ

s ������
r¼rps

; ð17Þ

and obviously it coincides with bc. In most spherically
symmetric space-times the radial function trivializes to
CðrÞ ¼ r2 and one recovers a more well-known expression,
rsh¼ r=

ffiffiffiffiffiffiffiffiffi
AðrÞp jr¼rps . However, the shadow’s radius defined

this way is actually directly unobservable given the lack
of photon sensitivity below a certain threshold of the peak
intensity. The EHT collaboration copes with this by
appealing to the radius of the bright ring of radiation
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created by the direct emission, which is measurable
provided that two main conditions are met [24]:
(1) A sufficiently bright source and strongly lensed

supply of photons near the horizon is present and;
(2) The accretion flow is geometrically thick and fur-

thermore optically thin (i.e., transparent to its own
radiation) at the observing wavelengths,

and then use the observations of the properties of such
photon rings as a proxy for the size of the shadow. In
addition to these two conditions, a calibration factor must
be introduced, which accounts for both theoretical and
observational sources of uncertainty in how reliable such a
proxy between the bright ring’s radius and the shadow’s
size is. This inference is possible for Sgr A⋆ thanks to the
fact that its mass-to-distance ratio M=D is known via the
tracking of the orbits of the so-called S-stars. In particular,
the S0 − 2 star [34] has been tracked by two instruments
(Keck and VLTI), whose combined (and uncorrelated,
since they are obtained from two independent instruments)
data allow to quantify the fractional deviation δ between
the inferred radius of a Schwarzschild black hole of
angular size (dimensionless form) θsh;Sch ¼ 6

ffiffiffi
3

p
θg, where

θg ¼ M=D is its angular gravitational radius, as [24]

δ≡ rsh
rsh;Sch

− 1 ≈ −0.060� 0.065: ð18Þ

In turn, this constraint can be transformed into the shadow’s
size as

4.54≲ rsh=M ≲ 5.22; ð19Þ

at 1σ and

4.21≲ rsh=M ≲ 5.66; ð20Þ

at 2σ. As one can see from these inferred constraints,
bounds on the shadow’s size are much more generous in
alternative spherically symmetric geometries that reduce
it, which is actually the majority of the models considered
in this work, as we shall see later. For the sake of this
work, and to enhance any potential differences in their
cast images, we shall take as our reference value the 2σ
bound of Eq. (20) in order to constrain the parameter
space of each geometry. Note also that the addition of
rotation would modify the shadow’s size (and the photon
sphere toward the photon shell), though this is assumed to
be small as happens in the Kerr solution [35]: a more
complete analysis of this problem should however take
this ingredient into account.
Before continuing, there are some caveats in the infer-

ence above worth discussing. The EHT analysis of Sgr A�,
as explained on its paper VI [24], introduces a “calibration
factor” αc ≡ d̂m=dsh, which quantifies the degree to which
the “observed” bright ring diameter d̂m tracks the diameter

of the shadow dsh. However, such an observed diameter will
differ from the true ring diameter dm due to both theoretical
α1 and measurement α2 uncertainties as αc ¼ α1 × α2.
The former are the ones we are interested here: these are
related to the physics of image formation near the event
horizon of the black hole, and come from the theoretical
uncertainties on the value of α1 ≡ dm=dsh that results from
analyzing a given background space-time geometry in
combination with a modeling for the accretion flow. In
practical terms, the EHT assumes Kerr (Schwarzschild) as
the default geometry for the computation of the α1 part of
the calibration factor; hence by assuming here it at face
value we introduce a bias in the extrapolation of these
results to alternative geometries since the latter might
modify such a factor. This way, our analysis (and the
one of Vea) implicitly assumes the EHT analysis based on
the Schwarzschild geometry for the connection provided
by the fractional deviation δ between the measured ring
diameter and the critical curve. Should (any of) the
alternative geometries modify such a correspondence
between observed ring and critical curve, then the domain
of validity of (the space of parameters of) such geometries
could be extended beyond the bounds imposed by (18) that
will appear in our Sec. III below. This weakness could be
overcome by carrying out a similar analysis as the one
of the EHT on the distributions of deviations for the
alternative geometries as compared to the Schwarzschild
on a case-by-case basis, something far beyond the scope of
the present work.

D. Photon rings and central brightness depression
in a thin-disk emission model

Under the hypothesis that the universality of the Kerr
(Schwarzschild) solution is replaced by the universality of
an alternative metric, the image cast from any such object
should be compatible with any scenario for the accretion
flow. We shall thus use this idea to employ the bounds on
the shadow’s size above to constrain the space of param-
eters of alternative spherically symmetric geometries to
subsequently enact their predictions in the opposite end of
the geometry of the accretion flow, namely, that in which
the disk is infinitesimally thin. In such a case, the outer
edge of the central brightness depression does not coincide
with the critical curve [10] since the dark region is strongly
reduced.1 Therefore, for the sake of our analysis we shall
reserve the word shadow for the region completely filling
the critical curve and associated to Falcke’s view and the
EHT bounds above, and use central brightness depression
for the reduced-size dark region when the disk is infini-
tesimally thin. In any case, our main concern here is to

1Note, however, that there is a lower limit for the size of the
central brightness depression assuming an arbitrary equatorial
emission model, in such a case depending only on the back-
ground geometry. This is dubbed in [11] as the inner shadow.
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characterize the properties of the photon rings (which are
directly observable) in order to compare the pool of
alternative compact objects.
The proper treatment of the imaging of a black hole

surrounded by its accretion disk requires the use of
GRMHD simulations of the plasma making up the disk
under a pool of assumptions for the particles’ velocities and
temperature, the opacity and geometrical shape of the disk,
its magnetic properties, and so on, see, e.g., [36]. However,
it is possible to develop semi-analytic approximations to
this problem capable to capture the most influential features
of the disk contributing to the image. For the sake of this
work we focus on the Gralla-Lupsasca-Marrone (GLM)
models, which are based on the Standard Unbound (SU)
Johnson distribution, and read as [12]

Iðr; γ; μ; σÞ ¼ exp ð− 1
2
ðγ þ arcsinhðr−μσ ÞÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − μÞ2 þ σ2

p : ð21Þ

These GLM models assume a monochromatic emission
(in the frame of disk), and contain three freely-adjustable
parameters which control the features of the disk’s
intensity: γ is related to its rate of growth from asymptotic
infinity to the peak, μ shifts the profile to a desired
location, while σ sets its dilation. By exploring a range of
parameters of such profiles one can be able to mimic
the results of certain scenarios for the accretion flow
within GRMHD simulations [19,22]. This yields a sim-
plified analytical and numerical treatment of the photon
ring features of the image, this way allowing for a more
efficient comparison of different geometries of the
shadow caster.
For an optically thin flow with a purely equatorial

emission, every emitted photon suffers gravitational red-
shift on its run-away from the black hole. In the absence of
absorption, this can be computed according to Liouville’s
theorem, which demands the conservation of the flux
Iν0=ν

3
0 ¼ Iνe=ν

3
e, where ν0 and νe refer to the frequency

in the observer’s and emitter’s frames, respectively. Using
the monochromatic character of Iνe ≡ IðrÞ, and the fact
that in the spherically symmetric geometry (1) one has the
relation νo ¼ A3=2ðrÞνe, so we can integrate the above
relation between fluxes to all frequencies as Iob ¼R
dν0IðrÞ to find the result2

Iob ¼
X2
n¼0

A2ðrÞIðrÞ; ð22Þ

where in this expression we have introduced the contribu-
tions up to the second photon ring, n ¼ 2, our target in
this work.
For the sake of this work we shall suitably adapt to the

nonrotating case the three original models included in [12],
which correspond to the following choices

GLM3∶ γ ¼ −2; μ ¼ 17M
3

; σ ¼ M
4
; ð23Þ

GLM1∶ γ ¼ −
3

2
; μ ¼ 0; σ ¼ M

2
; ð24Þ

GLM2∶ γ ¼ 0; μ ¼ 0; σ ¼ M
2
: ð25Þ

These profiles are depicted in Fig. 1. GLM3 has a peak
brightness located slightly above the corresponding inner-
most stable circular orbit of a Schwarzschild black hole
(i.e., r≳ 6M), while GLM1/GLM2 go all the way down to
r ¼ 0 (note that the black hole horizon will appear well
before getting there) with different shapes. While the latter
two models are thus more suitable to describe the over-
flow of the plasma in orbit around the heart of M87 and
Sgr A⋆, the inner edge of the direct emission of the disk in
such cases will be smaller than the one of the n ¼ 2 ring:
consequently, photon rings will be stacked on top of the
direct emission, troubling their direct visualization. We
thus employ GLM3 to complement the analysis, since in
such a case the inner edge of the direct emission is
truncated at a larger distance to allow for such a visuali-
zation. In order to perform our simulations we use our
own geodesic rays and visualization of intensity profiles
(GRAVITYp) ray-tracing code.

III. CHOICE OF SPHERICALLY SYMMETRIC
SPACE-TIMES

In this work we consider 16 alternative spherically
symmetric space-times extracted out of the work [25]. In
what follows we explain the motivation behind such a pick

FIG. 1. The GLM intensity profiles (21) for the choices (23),
(24) and (25), respectively.

2Note that in the case in which we are using effective
geodesics, we need to add a factor H2ðrÞ to this expression in
order to account for the transformation of line element (10).
Absorption and other potential transport effects emerging from
nonlinearities in the electromagnetic Lagrangian will be studied
elsewhere.
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of space-times and the choice of parameters for the sake of
the generation of images. Regarding such parameters, they
are pushed as far as possible to be compatible with the
shadow’s radius (defined according to Falcke’s view, as
discussed in the previous section) at 2σ, as given by
Eq. (19). In doing that, not every metric proposal saturates
the EHT bound(s). This is due to the fact that either (a) the
model’s parameter must be bounded below the EHT
constraints in order for an event horizon to be present,
(b) there is no limit the parameter can be pushed to before
incurring in incompatibilities with the EHT bound.
Furthermore, in some cases the EHT bound is weaker
than other bounds found via analysis of several astrophysi-
cal phenomena. For the sake of our analysis, Vea con-
straints on the viable parameter space will be refined to
more finely match the shadow’s size limits: this is so
because at such large deviations from the Schwarzschild’s
prediction the features of the photon rings become more
sensitive to small modifications in the model’s parameters.
On the other hand, the spherical symmetry of the system
strongly simplifies the problem as compared to the realistic
rotating case, requiring less sophisticated treatment of the
geodesic curves and, by extension, less computing power.
Since we are dealing with spherically symmetric space-

times we start our considerations from the Schwarzschild
black hole

AðrÞ ¼ 1 −
2M
r

: ð26Þ

Having a single parameter, the Schwarzschild black
hole (BH) predicts a unique event horizon, rh ¼ 2M,
a unique critical impact parameter, bc ¼ 3

ffiffiffi
3

p
M (hence a

single shadow’s radius), and a unique photon sphere radius,
rps ¼ 3M. This way, it is the benchmark every other metric
is tested against. Furthermore, in order to interpret the
parameter M as the mass as seen from an asymptotic
observer, our analysis of spherically symmetric space-times
will only consider those metrics whose behavior at large
distances (assuming asymptotic flatness) is dominated by
the (Schwarzschild) mass term. This will allow us to
compare the predictions of all alternative models on as
an equal footing as possible.
It is important to stress that we consider this pool of

geometries in a (mostly) theory-agnostic approach, namely,
disregarding the theory combining gravitational (i.e., either
GR or modified gravity) plus matter fields they come
from, and some potential drawbacks such theories and their
corresponding geometries may have.3 The latter comes
mostly from the violation of the energy conditions and
potential instabilities which may render the configurations

nonviable, but for the sake of this work we are only
interested in the comparison between their cast images.
Note, however, that since some of these geometries can be
framed within a modified gravity perspective, some of
these drawbacks of their GR-formulation (most notably the
violation of the energy conditions for “regular” geometries)
may be potentially lifted.

A. Geometries and shadow constraints

1. Reissner-Nordström (RN) BH

The canonical modification of the Schwarzschild geom-
etry is to add a charge term to form the Reissner-Nordström
solution

AðrÞ ¼ 1 −
2M
r

þ q2e
r2

: ð27Þ

A critical curve is present in this model if the electric charge
fulfills the bound q2e ≤ ð9=8ÞM2. Compatibility with 2σ
shadow’s radius (20) allows us to push the electric charge
to the value qe ¼ 0.939M. Since this is below the bound
q2e ≤ M2 marking the transition from charged black holes to
over-charged (naked singularity) solutions, an event hori-
zon will be present in this case. Note, however, that such a
value is well above reasonable estimates on how much
charged a black hole may be from astrophysical consid-
erations [37,38], though we shall disregard such a fact in
order to have an overall view on how images from charged
space-times look like before engaging in other samples.

2. Euler-Heisenberg (EH) NED BH

Our first example of a NED-supported geometry is a
natural generalization of the RN geometry via the function

LðFÞ ¼ −F þ 4μF2; ð28Þ

and its spherically symmetric geometry (interpreted as
supported by a magnetic monopole with charge qm) is
characterized by the function [39]

A ¼ 1 −
2M
r

þ q2m
r2

−
2μq4m
5r6

: ð29Þ

Images of these configurations were discussed in [40,41].
Note that here μ is a constant which can be related to the
effective series expansions of quantum electrodynamics
the EH model is derived from [42], but Vea take it as a
free parameter and fix it to μ ¼ 0.3 on grounds of this
value to approximately correspond to the maximum
coupling in which the perturbative QED expansion to
be meaningful; furthermore the shadow’s size is much
more dependent on the value of qm than the one of μ. For
such a value they report the constraint qm ≲ 0.8M though

3Nonetheless, we shall not be oblivious to the fact that three of
the geometries considered here have been identified to be derived
from reasonable enough NED theories; hence the development of
the framework of effective geodesics in the previous section.
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we find we can push it a bit harder up to qm ¼ 0.88M for
our generation of images.

3. Bardeen’s regular BH

Bardeen’s proposal [43] is to remove curvature singu-
larities at the center of black holes by replacing the point-
like region of the Schwarzschild/RN black hole by a
de Sitter core [44]; this is achieved via a magnetically
charged solution defined in terms of the metric function

AðrÞ ¼ 1 −
2Mr2

ðr2 þ q2mÞ3=2
; ð30Þ

with qm ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
M ≈ 0.77M in order to describe a black

hole. Vagnozzi et al. report that all values within this range
are compatible with 2σ shadow’s radius. It is known that
Bardeen’s space-time can be obtained as a solution of the
Einstein field equations coupled to an NED [45]. However,
such a function has a bizarre shape that does not lead to
functions H and h which smoothly recover the background
geodesics in the qm → 0 limit, and hence we follow the
same route as Vea and consider images generated within
background geodesics.

4. Hayward’s regular BH

Hayward’s model is based on similar premises as that
of Bardeen’s one, and furthermore it has been widely
studied as a toy model to simulate gravitational collapse
and development of de Sitter cores. Its metric function
reads [46]

AðrÞ ¼ 1 −
2Mr2

r3 þ 2l2M
; ð31Þ

with the same bound as Bardeen, l≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi
16=27

p
M, to

describe a black hole. This is another instance of a
space-time geometry that can also be obtained as a solution
of the Einstein field equations coupled with NED, but
whose H and h functions do not smoothly recover the
background geodesics in the l → 0 limit. Likewise in the
Bardeen model, Hayward’s solution is compatible with
the 2σ bounds at every l, so we again push the parameter l
of the model until nearly saturating the critical bound to
describe a black hole.

5. Frolov BH

Frolov’s choice [47] is similar in spirit to both the
Bardeen and Hayward models, but it contains two param-
eters. The metric function is given by

AðrÞ ¼ 1 −
ð2Mr − q2eÞr2

r4 þ ð2Mrþ q2eÞl2
; ð32Þ

where 0 < qe ≤ 1 is seen as an electric charge, and again
l≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi

16=27
p

M. In Vea [25] they propose to fix l ¼ 0.3,
which results in a constraint qe ≲ 0.9M. However, at the
value saturating this bound Frolov’s solution does not
describe a black hole, but instead a naked object by a small
margin; for instance, a value of qe ¼ 0.875M describes a
black hole instead, but only a slightly larger shadow radius.
Configurations without event horizons may produce addi-
tional photon ring contributions due to light rays that travel
above (but near) the critical curve, and are reflected back
due to the presence of local maxima or an infinite potential
slope; several such examples have been worked out
recently in the literature, see, e.g., [48–50]. For the sake
of our work here, their analysis would muddy the com-
parison of alternative spherically symmetric geometries on
equal footing since we are only interested on the n ¼ 2 ring
and not in higher-order rings, so we opt for considering
Frolov black holes with qe ¼ 0.875.

6. Kazakov-Solodukhin (KS) regular BH

It arises in a string-inspired model and is given by [51]

AðrÞ ¼ −
2M
r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − l2

p

r
; ð33Þ

Despite its shape it actually reduces to the Schwarzschild
metric at large distances, r ≫ l, so it belongs to our
acceptable class of models. The single parameter of the
model is required to be positive l > 0 in order to avoid the
central singularity. Vea report that 2σ observations require
that l≲M, but we need to decrease it down to l ¼ 0.942M
to saturate the shadow’s bound.

7. Sen BH

This proposal [52] belongs to dilaton gravity and also
includes a magnetic charge contribution, now within the
mass term as (in the nonrotating limit)

AðrÞ ¼ 1 −
2M

rþ q2m=M
; ð34Þ

where qm ≲ 0.75M at 2σ but X-ray reflection spectroscopy
yield a slightly stronger constraint qm ≲ 0.6M [53], so we
take here the latter bound.

8. Einstein-Maxwell-dilation (EMD) BH

Amodel in which an additional scalar field is included—
the dilaton—within GR coupled to a Maxwell field (EMD
gravity) yields a line element given by [54]

AðrÞ ¼ 1 −
2M
r

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q4e

4M2r2

r
−

q2e
2Mr

!
; ð35Þ
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with qe ≲M in Vea which we slightly refine as
qe ¼ 0.995M.

9. Dark matter (DM)-surrounded BH

A model incorporating a surrounding dark matter fluid
via a correcting term to the Schwarzschild solution was
proposed in [55] as given by the line element

AðrÞ ¼ 1 −
2M
r

þ k
r
log

�
r
jkj
�
; ð36Þ

Vea report k≲ 0.15M but we find we just need that
constant to take the value k ¼ 0.128M to saturate the
bound on the shadow’s size.

10. Simpson-Visser (SV) black bounce BH

Our first example of a nontrivial CðrÞ function is
provided by the so-called black bounce, which denotes a
metric originally introduced by Simpson and Visser [56],
and whose philosophy is to replace the radial coordinate of
the Schwarzschild solution by a radial function implement-
ing a bounce, the latter interpreted as the throat of a
wormhole. In order to do it so, Simpson and Visser follow
the prescription of Ellis [57] from the shift of the radial
coordinate, so that the metric functions read as

AðrÞ ¼ 1 −
2M

ðr2 þ a2Þ1=2 ; CðrÞ ¼ r2 þ a2: ð37Þ

Because of the way it is built, this model has the same
critical impact parameter and photon sphere radius as its
seed metric—the Schwarzschild black hole—for every a,
so it is not constrained by the EHT results at all. For the
sake of our images (a detailed analysis was made by some
of us in [58]) we choose to remain within the subclass of
these configurations that have an horizon (corresponding to
0 < a ≤ 1, so we take the value a ¼ 0.5).

11. Loop quantum gravity (LQG) BH

A solution found within the context of loop quantum
gravity takes the form [59]

AðrÞ ¼ ðr − r−Þðr − rþÞðrþ r⋆Þ2
r4

; ð38Þ

with the definitions rþ¼ rSð1þPÞ2, r− ¼ rSP2=ð1þ PÞ2,
r⋆ ¼ ffiffiffiffiffiffiffiffiffiffi

rþr−
p

and P is a parameter of the theory. Vagnozzi
et al. report the constraint P≲ 0.08M for compatibility
with 2σ shadow; we refine such a constraint as
P ¼ 0.082M.

12. Conformal scalar model (ConfSca) BH

This is an example of a family of configurations which
look like the RN one but with a minus sign in front of the
charge term, i.e. [60]

AðrÞ ¼ 1 −
rS
r
−

s
r2

; ð39Þ

so we can take it as a benchmark for this kind of metrics.
While Vea (note that we have reversed the sign for s as
compared to them) report that s≲ 0.4M, we find we can
push it up to s ¼ 0.45M for compatibility with 2σ
shadow’s size.

13. Janis-Newman-Winicour (JNW) naked singularity

For completeness, and for the sake of comparison with
black hole images given its historic relevance, we consider
the naked singularity of the Janis-Newman-Winicour sol-
ution, supported by a massless scalar field, and given by the
function [61]

AðrÞ ¼
�
1 −

2M
rð1 − νÞ

�
1−ν

; CðrÞ ¼ r2
�
1 −

2M
rð1 − νÞ

�
ν

ð40Þ

where ν is a parameter related to the scalar charge of the
field supporting it. Vea report the constraint ν≲ 0.45M,
though we find we can push it up to ν ¼ 0.4835M. The
absence of a horizon means that light rays above the
maximum of the potential will find no obstacle to reach
the center of the solution, thus posing a different scenario
than black hole space-times.

14. Bronnikov’s regular NED BH

Bronnikov’s model is another example of a regular
magnetic black hole solution given by the metric
function [62]

AðrÞ ¼ 1 −
2M
r

�
1 − tanh

�
q2m
2Mr

��
; ð41Þ

and supported by a well-behaved NED of the form

LðFÞ ¼ 4Fcosh−2½að2FÞ1=4�; ð42Þ

where the constant a is related to the magnetic charge via
the relation a ¼ q3=2m =ð2MÞ in order to remove the central
singularity. Vea report the constraint qm ≲M at 2σ; how-
ever we find a much more restricted range, saturated at
qm ¼ 0.905M, which is the value we take here.

15. The Ghosh-Kumar (GK) BH

This is a simple modification of the Schwarzschild
geometry via the function [63–66]

AðrÞ ¼ 1 −
rSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ q2m
p ; ð43Þ
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and thus, close in spirit to the black bounce geometries
such as the SVone above. As in the Bardeen and Hayward
solutions, despite the fact that it can be generated within a
NED, the corresponding function is of bizarre shape and
so they are the corresponding effective geodesics func-
tions. This way, we opt for considering the usual back-
ground geodesics as in Vea, and push a little bit their
bound of qm ≲ 1.6M up to qm ¼ 1.63M for the generation
of our images.

16. The Ghosh-Culetu-Simpson-Visser (GCSV)
NED regular BH

It corresponds to the function [64–66]

AðrÞ ¼ 1 −
rS
r
e−q

2
m=rS : ð44Þ

In Vea they report that qm can be pushed up to jqmj≲M
using the background geodesics. We instead opt for
considering the effective ones given the fact that the model
is supported by a NED with Lagrangian density [67]

LðFÞ ¼ F exp

�
−
qm
rS

ð2q2mFÞ1=4
�
; ð45Þ

whose associated effective functionsH and h turn out to be
well behaved. Furthermore, this analysis complements the
one carried out in Ref. [50] about the multi-ring structure of
the subfamily of configurations without event horizons.
The effective potential for this set of sixteen spherically

symmetric geometries (plus Schwarzschild) is depicted in
Fig. 2 for models with background geodesics and effective
ones, respectively. Some comments are in order. The fact
that the JNW geometry lacks horizons makes its potential
qualitatively deviate from the others, not being defined
everywhere. As for the potentials of the effective geodesics,
they show weird behaviors in the innermost region; how-
ever, being covered by a horizon, such a part of the
potential plays no role in the generation of images. This
would not be so in those cases in which the EHT bound is
not saturated and further pushing the space of parameters of
the geometries would make the horizon go away. In such a
case the internal shape of the potential does matter in the
generation of a multiring structure provided that it has
additional minima/maxima or an infinite slope at the center;
however such a feature will not be present in our images.

B. Some comments on the discarded models

There are many other models whose constraints from the
shadow’s radius are reported within Vea [25] and which
are not considered in this work. Here we briefly provide the
reasons why (besides practical reasons of keeping the
length of the paper within reasonable limits). First, as
mentioned before, we do not consider models which are not
asymptotically flat, which would prevent the identification

of the constantM as the asymptotic mass of the space-time
and thus the generation of images of the corresponding
objects on an equal-footing. This leaves outside of our
analysis models such as fðRÞ [R], the DS wormhole [K],
Rindler [AH], or the topological defect [AJ]. Second, we do
not consider space-times that can be rewritten (via, e.g., a
simple redefinition of constants) in an usual RN-like form,
since the same constraints placed upon the RN solution can
be converted into constraints on each theory’s parameters
and this way the photon rings features are the same. This
includes as examples BHCSH [Q1] if s > 0, Horneski [S1]
if p < 0, MOG [T], braneworlds [U], GUPa [AL A] and
GUPb [AL B], or the second noncommutative gravity
model [AM B]. Third, we exclude those models which
have too tight constraints on their space of parameters to
significantly alter photon ring features, or are directly ruled
out: this includes the SV WH [I2], the Morris-Thorne
WH [J], the null NS [O], Aether models [Z], 4D Gauss-
Bonnet gravity [AA], or asymptotically-safe gravity [AB].
We have also avoided consideration of glued solutions
containing potential discontinuities, or others demanding
excessive computational times.

FIG. 2. The effective potential for spherically symmetric
geometries with background geodesics (top) and for effective
ones (bottom). Only the outermost part of the potential with
V > 0 is relevant for generation of images, since zeros in VðrÞ
mean presence of horizons.
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IV. RESULTS AND PHYSICAL DISCUSSION

A. Lyapunov exponents and extinction rates

In Table I we report our findings on the main geometrical
and image features of the alternative spherically symmetric
space-times considered in the previous section, organized
according to decreasing values of the Lyapunov exponent.
The latter is a measure of the instability scale of nearly
bound orbits, namely, those which hover very close to the
critical curve, r ≈ rm þ δr0 where δr0 ≪ rm. This way,
after a number of half-orbits n, the particle will be located at

δrn ≈ eγnδr0; ð46Þ

(for a detailed account of such orbits, see [68]). The
Lyapunov exponent γ is the number we are interested in
here, since it controls the flux of intensity among succes-
sive images of the disk, that is [16]

Inþ1

In
∼ e−γ for n ≫ 1: ð47Þ

It turns out that such a number is an universal quantifier of a
given geometry in the limit n → ∞, in which it loses its

entire dependence on the accretion disk modeling. Since in
this work we are interested in the n ¼ 2 ring, which offers a
good compromise between a weak enough dependence on
the disk’s emission modeling and realistic/optimistic inter-
ferometric detection in the future, we shall approximate it
by the I2=I1 flux. In this regard, we are taking advantage
of the fact that the sequence of photon rings quickly
approximate the (gravitationally lensed) critical curve,
the latter corresponding to the limit n → ∞. Indeed, in
the Schwarzschild geometry, for n ¼ 2 the corresponding
Lyapunov exponent approximates the exact value γ ¼ −π
by an error of ∼0.3%, far below other observational
uncertainties in this problem. We find its value for every
geometry by tracking the relative locations of the n ¼ 1 and
n ¼ 2 trajectories of the light rays in their winding around
the black hole.
Following this approach we report the values of such a

Lyapunov exponent in Table I, where we observe that
eleven geometries decrease its value, four increase it, and
one leaves it unchanged. By inspection of this Table we
see that any correlation between such an index and the
compactness (i.e., the mass-horizon radius ratio) is weak.
Indeed, while most alternative geometries are more com-
pact than its Schwarzschild counterpart (and in such a case

TABLE I. The alternative spherically symmetric geometries considered in this work (see the main text for
abbreviations and model’s parameters chosen) ordered in decreasing values of their Lyapunov exponent, the latter
computed for the n ¼ 2 trajectory (see the corresponding discussion in the text). Here we list those quantities
relevant for the generation of images (in units of M; (e) denotes quantities computed in the effective propagation
geometry) as well as those relevant to characterize them; rh: horizon radius; bps: critical impact parameter; rps:
photon sphere radius; Lyapunov exponent of nearly bound orbits and its associated (theoretical) luminosity
extinction rate I1=I2 [in brackets]; I

n¼1
n¼2: the (observable) extinction rate (sub-labels for GLM type of emission

profile). Digit precision limited to three decimals for theoretical quantities and to two for observational ones. We
single out using double rows/columns the Schwarzschild solution as the benchmark metric, and the critical impact
parameter (the shadow’s radius in the EHT interpretation) as the inferred quantity by the EHT, acting as the
constraint the parameter space of all these geometries is subjected to.

Space-time rh bps rps Lyapunov [I1=I2] I
n¼1
n¼2

GLM3 I
n¼1
n¼2

GLM1 I
n¼1
n¼2

GLM2

LQG 1.708 4.216 2.521 3.372 [29.150] 35.59 31.01 29.53
KS 2.214 5.559 3.279 3.288 [26.809] 30.95 28.24 26.93
ConfSca 2.204 5.556 3.274 3.278 [26.530] 30.66 27.96 26.65
DM 1.671 4.212 2.493 3.268 [26.259] 32.28 27.95 26.56

Schwarzschild 2 3
ffiffiffi
3

p
3 3.150 [23.352] 27.83 24.74 23.45

SV 2 3
ffiffiffi
3

p
3 3.107 [22.367] 26.79 23.69 22.41

JNW NS 0 4.213 1.453 3.096 [22.128] 21.02 20.52 19.95
Sen 1.64 4.558 2.514 2.887 [17.946] 22.96 19.27 18.02
GCSV (e) 1.560 4.217 2.370 2.693 [14.782] 19.88 15.73 14.16
EMD 1.421 4.211 2.234 2.665 [14.381] 19.47 15.62 14.43
Bronnikov (e) 1.449 4.213 2.253 2.587 [13.292] 18.34 14.51 13.15
Hayward 1.337 4.916 2.652 2.542 [12.708] 17.45 14.02 12.77
RN 1.343 4.209 2.197 2.527 [12.524] 17.26 13.78 12.61
EH (e) 1.490 4.212 2.197 2.418 [11.229] 18.41 12.20 10.88
Frolov 1.179 4.283 2.216 2.403 [11.066] 15.58 12.41 11.17
Bardeen 1.093 4.524 2.301 2.253 [9.516] 13.27 10.75 9.56
GK 1.158 4.216 2.038 2.100 [8.166] 11.74 9.21 8.21
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its shadow’s radius is also smaller), and lower horizon
radius tend to decrease the corresponding value of the
Lyapunov exponent, this trend is weak and furthermore
contaminated by the three geometries supported by effec-
tive geodesics (note that models that do not saturate the
EHT bound, and the JNW by its lack of a horizon, must
also be left aside from this comparison by obvious reasons).
As for the photon sphere radius, no correlation with the
Lyapunov exponent is found. In any case and, as already
pointed out by Vea, most geometries (indeed in our case
all except three) decrease the critical impact parameter
(the shadow’s radius in the EHT interpretation), where the
corresponding constraints leave a wider margin for

modifications with respect to the predictions of the
Schwarzschild geometry.
Keeping with the discussion of the Lyapunov exponent

and its relation to the exponential decay of the luminosity of
the photon rings, one should note that this is a theoretical
expectancy based on the assumption that every photon
trajectory will cross emission regions with similar proper-
ties. This is certainly not the case since the profile is
sensitive to the radius, and hence to the impact parameter
(furthermore we are not taking into account any source
variabilities on the typical timescale of an orbit). In other
words, the Lyapunov exponent is not a direct observable
but one would expect deviations in the actual intensity

FIG. 3. Zoom in of the n ¼ 1 (brighter) and n ¼ 2 (dimmer) photon rings in the impact parameter space for (from left to right
and top to bottom) LQG, KS, ConfSca, DM, SV, JNW, Sen, GCSV (e), EMD, Bronnikov (e), Hayward, RN, EH (e), Frolov,
Bardeen, and GK, ordered in decreasing values of their Lyapunov exponent (units of M ¼ 1) using the emission model GLM3
in Eqs. (21) and (23).
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fluxes fed by the pick of the emission profile; to what extent
such observable deviates from the theoretical Lyapunov
number is a question of great interest in connecting
theoretical properties with actual observables. Indeed, this
is what we find when computing the (inverse) flux ratio
between the n ¼ 1 and n ¼ 2 (which shall be referred
to as the extinction rate) rings for the GLM models, as
reported in Table I, and whose images (disregarding the
Schwarzschild black hole itself) we discuss next. We point
out that in generating such images the observed luminosity
is normalized to its total value for every geometry and GLM
model via Eq. (22), in order to consider as similar settings
for each case as possible.

B. GLM3 model

We first consider the GLM3 model, which allows us to
clearly isolate the n ¼ 1 and n ¼ 2 rings, as depicted in
Fig. 3. There we provide a zoom in of the image around the
photon rings for each spherically symmetric geometry
ordered according to the decreasing values of their
Lyapunov exponent, and restricting the relevant impact
parameter space to (mostly) remove the direct emission
from the figures. It is transparent that there are significant
differences regarding several aspects of these rings: their
locations in the impact parameter space, their widths,
luminosities, and finally in the distance to each other.
Furthermore, despite the fact that both the effective NED

FIG. 4. Images (from left to right and top to bottom) for LQG, KS, ConfSca, DM, SV, JNW, Sen, GCSV (e), EMD, Bronnikov (e),
Hayward, RN, EH (e), Frolov, Bardeen, and GK, ordered in decreasing values of their Lyapunov exponent (units of M ¼ 1) using the
emission model GLM1 in Eqs. (21) and (24).
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geometries and the naked JNW solution trouble the
comparison, we can appreciate a trend in the evolution
of these photon rings, most notably in the width separating
them, which tends to increase as the Lyapunov exponent
decreases. In particular, the n ¼ 1 photon ring has a non-
negligible thickness preventing the identification of a well-
defined diameter, while the n ¼ 2 one does appear as a
sharp feature in all images. All these aspects allow to
distinguish spherically symmetric geometries from each
other at equal emission model, something in agreement with
our initial expectations regarding the features of photon
rings to depend less on the emission properties as we get
to larger values of n. In this case, the extinction rate
clearly correlates with the Lyapunov index: save by a

few exceptions lower values of the latter leads to lower
extinction rates; indeed the Lyapunov exponent systemati-
cally underestimates the extinction rate as compared to the
GLM3 one. Another comment is related to the special
features of the naked JNW geometry, as given by a much
wider n ¼ 1 ring and a closer distance to the direct
emission, clearly appearing in the top right end of its
figure. This goes along our previous warning on the fact that
horizonless compact objects have special features regarding
the contributions to the luminosity of its rings depending on
the shape of its effective potential, which in some cases may
(even if partially) neglect the assumption on the exponential
suppression of the luminosity of successive rings, troubling
its comparison with usual black hole space-times.

FIG. 5. Images (from left to right and top to bottom) for LQG, KS, ConfSca, DM, SV, JNW, Sen, GCSV (e), EMD, Bronnikov (e),
Hayward, RN, EH (e), Frolov, Bardeen, and GK, ordered in decreasing values of their Lyapunov exponent (units of M ¼ 1) using the
emission model GLM2 in Eqs. (21) and (25).
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C. GLM1/GLM2 models

The GLM3 model is rather unnatural given the fact that
we place the emission region at a truncated and arbitrary
region (but the same) for every spherically symmetric
geometry, and it is designed only to probe the structure
of the photon rings without the “contamination” of the
direct emission. As opposed to this, in the GLM1/GLM2
models the accretion flow goes all the way down to the
event horizon (whenever present), and thus are better
aligned with astrophysical expectations. The imaging of
the 16 alternative configurations according to these two
models is presented in Figs. 4 and 5, respectively. Such
images are consistent with what we know about observed
(by the EHT) images: they are largely dominated by the
bright ring of radiation caused by the direct emission of the
disk, and have the typical central brightness depression on
their center; superimposed on the direct emission we find
the slight boost of luminosity caused by the n ¼ 1 and
n ¼ 2 photon rings, though only the former is neatly
visible. This is a trivial consequence of the extinction rate
between the photon rings, as reported in the corresponding
columns of Table I. Indeed, such a rate closely tracks the
Lyapunov index, with deviations between the latter (theo-
retical) and the former (observational) being ≲15% between
each other for every geometry in the GLM1 model, and
≲5% in the GLM2 one, and typically underestimated in
the theoretical prediction (note in this sense that effective
geodesics slightly decrease such rates as compared to what
one would find should it use the background geodesics
instead). This implies that the (theoretical) Lyapunov index
is not a bad guidance in the actual (observable) luminosity of
the photon rings after all.
We also observe neat differences in the location and

width of the photon rings as well as in the depth of the
brightness depression among background geometries,
which is just a reflection of the data displayed in
Table I. Similarly as in the GLM3 model, the naked
JNW solution distorts the trend of images, since in such
a case the distribution of luminosities of the photon rings
inserted in the direct emission is significantly changed as
compared to black hole space-times, and so the depth is of
the central brightness depression. A comment related to this
is that in these thin-disk models the depth of the central
brightness depression can be much smaller than the inferred
EHT shadow’s size: in the GLM3 model this is translated
into a n ¼ 2 ring that can penetrate well inside the
corresponding critical curve in the observer’s plane image,
while in the GLM1/GLM2 it is the direct emission itself
which clearly lies inside it. This is expected on the grounds
of previous studies in the field with thick but not fully
spherical disk [19], where the size of the central blackness
depression is tied to the apparent (lensed) location of the
(equatorial) horizon, leading to the inner shadow.
The bottom line of our results is that even when the

shadow’s boundary is assumed to be degenerate between

different spherically symmetric geometries [26] (assuming
EHT data, hypothesis, modeling, and interpretation), it turns
out that their corresponding first and second photon rings
contain sufficiently sharp differences to allow to distinguish
between such geometries in a thin-disk context, something in
agreement with other findings in the field [14]. In practical
terms, however, the properties of the disk are comparatively
poorly known, and this may significantly alter the results to
the point of mistaking alternative geometries from each
another (and from Schwarzschild’s). Here we resorted to the
simplified GLM-type models of the disk, yet there is still
plenty of room for improvement in the comparison with
observed images.

V. CONCLUSION AND PROSPECTS

In this work we have generated images of a selected pool
of alternative spherically symmetric geometries, extracted
from the work of Vea in [25]. To do so, we applied
(and refined) the constraints derived there in the space of
parameters of each model from the inferred correlation
between the size of the bright ring and the shadow’s size
itself by the EHT Collaboration on Sgr A⋆ [24] (subject to
the caveats pointed out there), and generated such images
when each geometry is surrounded by an infinitesimally
thin accretion disk with three samples of analytical profiles
for the emission provided by the GLM ones. We thus
computed the Lyapunov exponent of nearly-bound orbits
and seek for any correlation with actual extinction rates of
the luminosity between the n ¼ 1 and n ¼ 2 photon rings.
Our results show that, when pushed to the extreme of

its parameter’s space by the calibrated shadow’s size in a
thick disk geometry, in the opposite end of an infinitely-thin
geometry different alternative spherically symmetric geom-
etries significantly deviate in the physical features relevant
for such images (horizon and photon sphere radius), and
dramatically in their extinction rates, up to a factor three
from one end of the (upward) modifications to the shadow’s
size to the other (downward). Furthermore, such rates
strongly correlate with the theoretical (Lyapunov) predic-
tion, particularly in the GLM2 model (and to a lesser
extent in the GLM1), thus rendering a usefulness to such
theoretical quantities in connecting them to observations.
Indeed, significant visual differences exist between the
photon rings of each GLM model, as seen when isolated
from each other and from the direct emission in the GLM3
model, as well as in the features of the full images of the
(more realistic) GLM1/GLM2 models. This suggests that,
in this scenario, it would be possible to distinguish between
this pool of alternative spherically symmetric geometries in
their optical appearance (at fixed emission profile).
There are, however, many known caveats that render

the above conclusion premature. First of all, there are the
assumptions on the optical, geometrical, and emission
properties of the disk. In addition to the previously
discussed assumption of an infinitesimally thin accretion

PHOTON RINGS AS TESTS FOR ALTERNATIVE SPHERICALLY … PHYS. REV. D 108, 084055 (2023)

084055-15



disk, our analysis also assumes that emission is completely
monochromatic and optically thin, in the accretion disk’s
frame. In reality, accretion disks possess complex emission
profiles that are not expected to be optically thin at all
frequencies. Thus there is room for modeling improvement
in this area. In this sense, we note that the EHT collaboration
operates at a constant 230 GHz frequency (i.e., in the
observer’s frame) [24]; furthermore at such a frequency
opacity tends to suppress the n ¼ 2 ring, though the signal is
expected to reappear at higher frequencies, such as the
planned 345 GHz of future upgrades of VLBI [19]. On the
emission profiles, the fact that GLM models are analytical
approximations to GRMHD simulations for Kerr black
holes, means that we have no solid reason to expect that
other black holes will have the same exact intensity profile,
since the relevant geometrical features for the generation of
images (e.g. horizon and photon sphere radius) may vary
significantly from one geometry to another. This way, should
we be able to look at a compact object and retrieve data on
photon ring intensities, this would not immediately translate
into reliable constraints for the background geometry with-
out priors on the properties of the disk. This difficulty could
be circumvented by appealing to universal polarimetric
signatures [69], or to the more recent concept of photon
ring autocorrelations, a two-point correlation of fluctuations
in the intensity along a given photon ring [70–72].
Finally, the inclusion of rotation and inclination is

expected to moderately modify the extinction rate numbers.
Rotation actually turns the photon sphere into a photon

shell of unstable geodesics, and adds two more critical
exponents in the characterization of photon rings [73]
(besides altering the depth of the central brightness depres-
sion), which have a non-negligible impact in the theoretical
luminosity. As for inclination, the critical curve also
depends on it, so one should also expect significant
deviations in the features of the associated rings [12]:
for instance, for a Kerr black hole at full speed and at the
θ0 ¼ 17° inclination of M87 the factor e−γ gets a ∼13%
modification (on the observer’s spin-oriented part of the
ring [74]). In Fig. 6 we provide a quick glance to the
inclined images at the M87 angle θ0 ¼ 17° (top), and at a
much more extreme angle of θ0 ¼ 80° (bottom), of a
Schwarzschild black hole and the two alternative black
hole geometries with the largest modifications (upward and
downward) to its Lyapunov index considered in this work,
namely, LQG and GK, for the seemingly favored GLM2
model. Even in this spherical symmetry setting, there are
apparent visual differences among each model. The incor-
poration of both rotation and inclination would render the
problem of characterizing photon rings in detail signifi-
cantly more complicated than the simplified analysis made
here (see, e.g., the analysis of [21] on this problem), and
goes well beyond the scope of this work.
This problem would be further exacerbated in mis-

aligned (tilted) accretion disk scenarios, which is consistent
with low-luminosity active galaxy nuclei [75]. This sce-
nario introduces another dimension to the problem in the
form of an additional angle between the disk orientation

FIG. 6. Inclined images at 17° (top) and 80° bottom) degrees of inclination for LQG (left), Schwarzschild (middle), and GK (right) for
the GLM2 model.
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and the black hole spin vector. Such a disk tilt would affect
the emission geometry and brightness because it breaks the
axisymmetric nature of the accretion flow and results in
increased flux variability, thus also significantly altering the
emission profile, and supposedly the extinction rates too
(see [76], and also [36] for a discussion on this problem).
To conclude, while photon rings may contain valuable

information of putative non-Kerr geometries, much work
and far better modeling is still necessary in order to hope to
disentangle the contribution of background geometries and
accretion disk features in black hole images for photon
rings to become useful as tests for the presence of new
gravitational Physics [77].
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