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Gravitational lensing properties of supermassive astrophysical objects, such as black holes and
wormholes, provide a realistic way for their discovering and investigating. Various lensing effects in a
wormhole spacetime have been widely studied in the literature. One of the most popular objects for
investigation is the Ellis wormhole which represents the simplest wormhole geometry. The Ellis solution
represents only a special case of a general wormhole solution found independently by Ellis and Bronnikov.
Surprisingly but gravitational lensing properties of general Ellis-Bronnikov wormholes are practically not
investigated. In this paper we explore in detail the propagation of light, forming a shadow and silhouette,
and forming an image of an accretion disk in the spacetime of the Ellis-Bronnikov wormhole. As well
we compare characteristics of images obtained for the Ellis-Bronnikov wormhole with those for the
Schwarzschild black hole. This comparison could be useful for future observations of supermassive
astrophysical objects.
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I. INTRODUCTION

Usually wormholes are considered as tunnels in space-
time with relatively narrow throats that connect two differ-
ent regions of the same universe, or two different universes.
The possible existence of such configurations as solutions
of the gravitational field equations was first mentioned
in [1–4]. In the 1970s–1980s only several works dedicated
to wormholes were published [5–9]. Among them the first
exact traversable wormhole solutions were discussed
in [5,6] (1973) in the Einstein-scalar theory in which the
scalar is of phantom nature, i.e., has a wrong sign of the
kinetic term in the Lagrangian. However, interest in these
objects has increased tremendously after the work of
M. Morris and K. Thorne [10] (1988) where the theoretical
prospects of use of traversable wormholes for interstellar
travels were discussed, and it was shown that, in the
framework of Einstein gravity, maintaining a static worm-
hole throat needs “exotic” matter that violates the null
energy condition (NEC). Today, the literature devoted to
various aspects of wormhole physics is very extensive.
For example, overviews of wormhole research can be
found in [11,12].
Though nowadays wormholes are rather well studied

theoretically, they remain as hypothetical objects not
discovered still by astrophysical methods. One of the most
realistic ways to discover wormholes as astrophysical
objects is to use their gravitational lensing properties [13].
From an astrophysical point of view, wormholes are

massive objects that bend the trajectories of photons
passing by them. As a result, wormholes might play a
role of gravitational lenses forming Einstein circles and arcs
as images of distant galaxies. As well, one might consider
wormholes instead of black holes as candidates for super-
massive objects in centers of galaxies with active nuclei.
Similarly to a black hole spacetime, in a wormhole
spacetime there exists a photon sphere forming a so-called
shadow which can be observed in modern [14] and future
observations.
In the recent years gravitational lensing properties of

wormholes have been of great interest and are actively
studied. In particular, the propagation of photons, particles
and fields in different wormhole geometries has been
considered in Refs. [15–22]. To our knowledge, the first
work where a lensing effect in a wormhole spacetime were
discussed was that by L. Chetouani and G. Clément [23].
Later, problems of weak and strong gravitational lensing
in wormhole geometries were studied in numerous
works [24–35]. Shadows of wormholes were studied in
Refs. [36–44] for static spherically symmetric configura-
tions, and in Refs. [45–50] for rotating wormholes.
Additionally, a recent review of past and current efforts
to search for astrophysical wormholes in the Universe can
be found in [51].
It is necessary to emphasize that a wormhole configu-

ration is not vacuum, and hence there are no preferred
wormhole geometries, such as Schwarzschild or Kerr ones
for black holes. For this reason, numerous examples of
different wormhole models have been considered in the
literature. One of the most popular objects for investigation
is the Ellis wormhole, which has been studied in
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Refs. [13,16,24–26,28–30,32,33,36,40,41,46]. The Ellis
wormhole spacetime is a static spherically symmetric
solution to the Einstein equations with a massless, mini-
mally coupled phantom scalar field [5,6] with the metric

ds2 ¼ −dt2 þ dr2 þ ðr2 þ a2Þðdθ2 þ sin θ2dφ2Þ; ð1:1Þ

where a is an arbitrary parameter corresponding to the
radius of the wormhole throat located at r ¼ 0. Note that
the Ellis geometry is symmetric with respect to the throat,
r ↔ −r. Moreover, since g00 ¼ const ¼ −1, the Ellis
wormhole is asymptotically massless. Here we would like
to remind a reader that the metric (1.1) represents only
the particular case of a general wormhole solution found
independently by Ellis [6] and Bronnikov [5]. Generally, the
Ellis-Bronnikov wormhole1 is not symmetric with respect to
the throat and has nonzero asymptotic (or Schwarzschild)
masses, positive on one end and negative on the other.
Surprisingly but gravitational lensing properties of general
Ellis-Bronnikov wormholes are practically not investigated.
We can point out the only paper [33] where some lensing
features of asymmetric wormholes and, in particular, the
Ellis-Bronnikov wormhole were discussed.
As we will demonstrate later, the geometry of the general

Ellis-Bronnikov wormhole has essential differences in
comparison with the particular case—the Ellis wormhole.
In this paper we explore in detail the propagation of light,
forming a shadow and silhouette, and forming an image
of accretion disk in the spacetime of the Ellis-Bronnikov
wormhole. As well we compare characteristics of images
obtained for the Ellis-Bronnikov wormhole with those for
the Schwarzschild black hole.
The article is organized as follows. In Sec. II, we

introduce the metric of the Ellis-Bronnikov wormhole
spacetime and discuss the features of its geometry. In
Sec. III, we obtain the equations of motion of particles in
the Ellis-Bronnikov wormhole spacetime and derive the
position of the circular orbit of photons and the position of
the innermost stable circular orbit of particles. In Sec. IV,
we describe the difference between a wormhole shadow
and its throat silhouette, derive their sizes for the Ellis-
Bronnikov wormhole, and compare the results with those
obtained for the sizes of the Schwarzschild black hole
shadow and its event horizon silhouette. And in Sec. IV,
we obtain an expression for the energy shift of photons
reaching the observer, build images of the accreting Ellis-
Bronnikov wormhole and the accreting Schwarzschild
black hole, and compare them with each other.

II. ELLIS-BRONNIKOV WORMHOLE

A. Metric

The metric of the Ellis-Bronnikov wormhole spacetime
can be presented in the following form:

ds2 ¼ −e2uðrÞdt2 þ e−2uðrÞ½dr2 þ ðr2 þ a2ÞdΩ2�; ð2:1Þ
where dΩ2 ¼ dθ2 þ sin2 θdφ2, r is the radial coordinate
running from −∞ toþ∞,m and a are two free parameters,
and

uðrÞ ¼ m
a

�
arctan

r
a
−
π

2

�
: ð2:2Þ

Taking into account the following asymptotic behavior:

e2uðrÞ
���
r→þ∞

¼
�
1 −

2m
r

�
þOðr−2Þ;

e2uðrÞ
���
r→−∞

¼ e−
2πm
a

�
1þ 2m

jrj
�
þOðjrj−2Þ;

one may see that the spacetime with the metric (2.1)
possesses two asymptotically flat regions R�∶ r→�∞.
The asymptotical mass in the region Rþ is equal to
mþ¼m, while in the region R− is m−¼
−mexpð−πm=aÞ. Note that the masses have both different
values and different signs. Therefore, the Bronnikov-Ellis
wormhole appears as an object with a negative mass for a
distant observer in the regionR−. The asymptotical regions
Rþ and R− are connected by the throat whose radius
corresponds to the minimum of the radius of two-
dimensional sphere, R2ðrÞ ¼ e−2uðrÞðr2 þ a2Þ. The mini-
mum of RðrÞ is achieved at rth ¼ m and is equal to

R0 ¼ exp

�
−
m
a

�
arctan

m
a
−
π

2

��
ðm2 þ a2Þ1=2: ð2:3Þ

Note that in case m ¼ 0 one has m� ¼ 0, and the
metric (2.1) reduces to the Ellis metric (1.1).

B. Embedding diagram

An embedding diagram is the standard way to visualize a
wormhole geometry and geodesic motion of both massive
and massless test particles in this geometry. To construct
the embedding diagram for the Ellis-Bronnikov wormhole
(2.1) we consider its two-dimensional section t ¼ const
(surface of constant time) and θ ¼ π=2 (equatorial plane):

ds2ð2Þ ¼ e−2uðrÞdr2 þ e−2uðrÞðr2 þ a2Þdφ2: ð2:4Þ

Then, as usual, we suppose that this surface is embedded
into three-dimensional Euclidean space with the metric
given in cylindrical coordinates:

ds2 ¼ dz2 þ dR2 þ R2dφ2: ð2:5Þ

1Bronnikov himself has suggested to use the term “anti-Fisher”
in order to recall that the corresponding solution for a canonical
scalar field was first obtained by I.Z. Fisher in 1948 [52].
However, we prefer to coin this solution as the Ellis-Bronnikov
wormhole.
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An embedded axially symmetric surface is determined as
z ¼ zðRÞ, where zðRÞ is the embedding function. A metric
induced on the embedded surface reads

ds2 ¼ ðz02 þ 1ÞdR2 þ R2dφ2; ð2:6Þ

where z0 ¼ dz=dR. Comparing the metrics (2.4) and (2.6),
one can find

R2ðrÞ ¼ e−2uðrÞðr2 þ a2Þ; ð2:7Þ

z02 ¼ a2 −m2 þ 2mr
ðr −mÞ2 : ð2:8Þ

Since z02 is not negative, from Eq. (2.8) we have the
constraint a2 −m2 þ 2mr ≥ 0, i.e.

r ≥ r0; ð2:9Þ

where r0 ¼ ðm2 − a2Þ=2m. Thus, the embedding diagram
is determined within the interval r∈ ½r0;∞Þ. Note also
that r0 → −∞ in case m → 0. Examples of embedding
diagrams are shown in Fig. 1.

III. PARTICLE TRAJECTORIES

A. Equations of motion for test particles

Geodesic equations can be derived from the Hamilton-
Jacobi equation

μ2 ¼ −gij
∂S
∂xi

∂S
∂xj

; ð3:1Þ

where S ¼ SðxiÞ is the Jacobi action, gij are components of
the metric and μ is the rest mass of a particle (μ ¼ 0 for
photons). Taking into account the cyclicity of t and φ,
one can write the action S as follows [53]:

S ¼ −Etþ Lφþ SrðrÞ þ SθðθÞ; ð3:2Þ

where E≡ −pt is the total energy and L≡ pφ is the
azimuthal angular momentum. Thus, from Eqs. (3.1)
and (3.2)

− ðr2 þ a2Þ
�
dSr
dr

�
2

þ e−4uðrÞðr2 þ a2ÞE2

− e−2uðrÞðr2 þ a2Þμ2 ¼
�
dSθ
dθ

�
2

þ L2

sin2 θ
≡ K; ð3:3Þ

where K is a constant of integration. Using the equality

dxi

dλ
¼ gij

∂S
∂xj

; ð3:4Þ

we can write the equations of motion in the following form

dt
dλ

¼ E · e−2uðrÞ; ð3:5Þ

dr
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −

e4uðrÞ

r2 þ a2
ðQþ L2Þ − μ2

E2
e2uðrÞ

s

¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð3:6Þ

dθ
dλ

¼ � e2uðrÞ

r2 þ a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q − L2 cot2 θ

p

¼ � e2uðrÞ

r2 þ a2
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð3:7Þ

dφ
dλ

¼ L · e2uðrÞ

ðr2 þ a2Þ sin2 θ ; ð3:8Þ

where λ is related to the particle’s proper time by τ=μ and is
an affine parameter in the case μ → 0, Q ¼ K − L2 is the
Carter constant related to the nonazimuthal part of the
particle angular momentum. Note that the trajectories of
massive particles (μ ≠ 0) are determined by three impact
parameters: γ ¼ E=μ, l ¼ L=E and q ¼ ffiffiffiffi

Q
p

=E. In the case
of μ ¼ 0, the third term in (3.6) disappears, i.e., photon
trajectories are determined by two parameters: l ¼ L=E
and q ¼ ffiffiffiffi

Q
p

=E.

B. Photon trajectories and circular orbits

In this section we consider trajectories and circular orbits
of photons supposing μ ¼ 0. Analyzing the equations of
motion of photons, one can come to the conclusion that
there are three types of photon trajectories: (i) trajectories
that have a turning point (RðrÞ ¼ 0 at some point of the
trajectory), go around the wormhole and go to infinity;
(ii) trajectories that do not have a turning point (RðrÞ > 0
for any point of the trajectory) cross the wormhole throat
and go to another region of space; and (iii) trajectories
infinitely twisting around the wormhole (RðrÞ ¼ 0;
R0ðrÞ ¼ 0 [54]), which move along so-called circular
orbits. Thus, circular orbits of photons are those separating
the other two types of photon trajectories.
As we will see later, photons that move in circular orbits

form a boundary of the wormhole shadow, so it is important

FIG. 1. Embedding diagrams for the Ellis-Bronnikov worm-
hole at m ¼ 0, a ¼ 1 (left) and at m ¼ 1, a ¼ 1 (right). The red
curves are trajectories of photons moving along cyclic orbits; the
black dotted circle is the throat.
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to find positions of the circular orbit rph and an impact
parameter of the photons b2ph ¼ l2 þ q2 that move along it.
Since the spacetime of the Ellis-Bronnikov wormhole is
spherically symmetric, without loss of generality we will
assume that photons move in the equatorial plane θ ¼ π=2,
hence the parameter q ¼ 0 and bph ¼ l. Circular orbits of
photons are given by the following conditions [54]

dr
dλ

����
r¼rph

¼ 0;
d2r
dλ2

����
r¼rph

¼ 0: ð3:9Þ

Then, using the equation (3.6), the position of the circular
orbit rph and the impact parameter of photons moving
along these orbits bph can be expressed in terms of the
wormhole parameters:

rph ¼ 2m; jbphj ¼ e
−2m
a ðarctan2ma −π

2
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 þ a2

p
: ð3:10Þ

Figures 2 and 3 show examples of photon trajectories
in the Rþ and R− regions, respectively. The images were
built in such a way that photons start moving at infinity, so
that their geodesics are parallel to the line connecting an
observer and the wormhole.
In Figure 2, photons fall into the wormhole from infinity

in the Rþ region, where the asymptotic mass of the
wormhole is positive. Photons with an impact parameter
jbj > jbphj go around the wormhole (blue curves). Photons
with jbj < jbphj cross the throat of the wormhole and go to

the R− region (black curves). If the motion of photons is
reversed, then it turns out that photons fall on the wormhole
from all sides, go around it and rush to the observer, and
only photons with an impact parameter jbj > jbphj reach
his. Thus, photons with jbj < jbphj form the shadow of the
wormhole, and photons with jbj ¼ jbphj moving in a
circular orbit form the boundary of the shadow.
In Figure 3, photons fall into the wormhole from infinity

in the R− region, where the asymptotic mass of the
wormhole is negative. The picture for photons moving
in theR− region is completely different from the picture for
photons moving in the Rþ region. In R−, the wormhole
throat plays the role of a repulsive center, scattering
photons with an impact parameter jbj > jbphj and only
photons with jbj < jbphj pass through the throat into the
Rþ region. This behavior of light has not been observed in
our Universe, so in what follows we will consider only the
Rþ region and assume that the observer is in Rþ.

C. Particle trajectories and the innermost stable
circular orbit (ISCO)

In this section, we consider some features of the motion
of massive particles (μ ≠ 0). Since we are interesting in a
thin accretion disk, we will consider the motion of particles
in the equatorial plane of the wormhole (θ ¼ π=2; Q ¼ 0).

FIG. 2. Photon trajectories rðφÞ in the space-time of the Ellis-
Bronnikov wormhole (r > 0; θ ¼ π=2). The black curves are
the trajectories of photons passing through the wormhole
(jbj < jbphj), the blue curves are the trajectories of photons
bending around it (jbj > jbphj). The larger gray circle is the
circular orbit of photons rph ¼ 2m. The smaller gray circle is the
throat rth ¼ m.

FIG. 3. Photon trajectories rðϕÞ in the Ellis-Bronnikov worm-
hole space-time (r < 0; θ ¼ π=2). Photons with jbj > jbphj go
into the space r > 0 (black), with jbj < jbphj go around the
wormhole (light blue) or pass into space r > 0 but return to r < 0
(blue). The gray curves are photon trajectories in the space r > 0.
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The formation of an accretion disk requires the presence
of stable circular orbits of particles, which are determined
by the following conditions [54]

RðrÞ ¼ 0; R0ðrÞ ¼ 0; R00ðrÞ ≤ 0: ð3:11Þ

The first two equations determine the parameters E, L of
particles moving in circular orbits:

E
μ
¼ euðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2 þ e2uðrÞðL=μÞ2

r2 þ a2

s
; ð3:12Þ

L
μ
¼ e−uðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðr2 þ a2Þ
r − 2m

r
: ð3:13Þ

It can be seen from the Eq. (3.13) that circular orbits of
particles exist only for r > 2m. Thus, an accretion disk
around a wormhole can be formed only in the Rþ region.
The inner boundary of the stable motion of massive

particles in the accretion disk is determined by the inner-
most stable circular orbit rISCO corresponding to R00ðrÞ¼0:

rISCO ¼ 3mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 5m2

p
: ð3:14Þ

Following the article [55], in what follows we will
consider the inner part of the thin accretion disk rth <
r < rISCO, which does not contain stable orbits. The motion
of matter in this area is completely nonstationary and
depends only on the gravitational field of the wormhole.

IV. WORMHOLE OBSERVATION

Wormholes are specifically curved regions of cosmic
spacetime that do not have their own luminosity. The
observed features of wormholes are due to their ability to
bend the trajectories of photons and form characteristic
images of wormhole’s throats. Schematically, some pho-
tons are captured by the wormhole gravity and leave our
universe going through the throat to the other. As a result,
an observer is seeing a dark spot in place of the wormhole’s
throat. A size and a form of the dark spot would depend on
the geometrical characteristics of the wormhole spacetime
and on the distribution of radiating matter. In particular, if a
luminous background is located far from the wormhole
(rs ≫ rth), then one can observe the so-called shadow, the
boundary of which is formed by photons moving in circular
orbits. In practice, the distant background is not so bright to
form an observable shadow. A more visible image of the
wormhole, called in this case as a silhouette, can be formed
by luminous matter forming the accretion disk around the
throat. The silhouette is formed by photons that are emitted
at the throat and reach the observer. Since the size of the
throat is smaller than the size of the circular orbit of
photons, then the silhouette of the throat will also be
smaller than the wormhole shadow.

Here it is worth to discuss the role of photons coming to
an observer through the throat from the other universe.
Generally, such the photons might participate in forming
the wormhole image. In particular, assuming that a worm-
hole is symmetric with respect to its throat and its mouths
are locating in a similar cosmological setting, one can
expect that a number of photons out-going and in-going
through the throat is approximately equal. However, the
generalized Ellis-Bronnikov wormhole considered in this
work is not symmetric. As was shown above, in the R−
region, the wormhole throat plays the role of a repulsive
center. As a consequence, it scatters photons with an impact
parameter jbj > jbphj and makes the formation of an
accretion disk in R− impossible. For this reason, we can
neglect photons traveling from the region R− to Rþ.
In this section, we obtain sizes of the wormhole shadow

and the throat silhouette, compare them with each other and
with the corresponding shadow and silhouette of the event
horizon of the Schwarzschild black hole.

A. Shadow of the Ellis-Bronnikov wormhole

In this section, we obtain the size of the classical shadow
that is observed if the luminous background is far from the
wormhole (rs ≫ rth).
To obtain the shadow size that an observer sees, it is

necessary to find coordinates of the incoming light ray in
the observer’s sky. They can be found as follows [56]:

α ¼ −r2O sin θO
dφ
dr

����
rO

; β ¼ r2O
dθ
dr

����
rO

; ð4:1Þ

where rO is a distance between the wormhole and observer,
θO is an angle between the wormhole axis of rotation and a
line connecting the observer and wormhole.

FIG. 4. The size of the Ellis-Bronnikov wormhole shadow for
various parameters m and a in the Rþ region.
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As we have shown above, the boundary of the wormhole
shadow is formed by photons that move in circular orbits.
Then, assuming rO ≫ m and θO ¼ π=2 and taking into
account spherical symmetry, it is easy to show that the
shadow boundary is appeared as a circle with the radius α
(see Fig. 4):

αjr→þ∞ ¼ jbphj: ð4:2Þ

B. Silhouette of the Ellis-Bronnikov wormhole

At present, observations of classical wormhole shadows
are improbable, since the intensity of the radiation from the
distant background is too low to be detected by modern
telescopes. Therefore, it is much more likely to observe the
silhouette of the throat of an accreting wormhole. In this
section, we obtain an equation for a size of the silhouette
of the Ellis-Bronnikov wormhole throat, following the
article [55].
The parameters of photons that move along a given

trajectory can be found from the integral equations of
motion:

Z
e2uðrÞdr

ðr2 þ a2Þ ffiffiffiffiffiffiffiffiffi
RðrÞp ¼

Z
dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ; ð4:3Þ

in which the integrals are taken along the trajectory.
According to the Cunningham-Bardeen classification
scheme of multiple lensed images [57,58], photons forming
the direct image of the source do not cross the wormhole
equatorial plane along the whole path from the emitter to
the observer. For such photons, the integral equations of
motion are as follows

Z
rO

rs

e2uðrÞdr
ðr2 þ a2Þ ffiffiffiffiffiffiffiffiffi

RðrÞp ¼
Z

θs

θO

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ð4:4Þ

¼
Z

θs

θmin

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp þ

Z
θO

θmin

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp ;

ð4:5Þ

where θmin ¼ arctan ðq=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ l2

p
Þ is the turning point

in the polar θ-direction, determined from the equation
ΘðθÞ ¼ 0.
In the simplest case, when the observer and the worm-

hole are in the θ ¼ π=2 plane, the boundary of the throat
image visible to a distant observer is given by the solution
of the integral equation

Z
∞

m

e2uðrÞdr
ðr2 þ a2Þ ffiffiffiffiffiffiffiffiffi

RðrÞp ¼ 2

Z
π=2

θmin

dθffiffiffiffiffiffiffiffiffiffi
ΘðθÞp : ð4:6Þ

From Eq. (4.1) assuming jrOj ≫ m and θO ¼ π=2, we
obtain the silhouette radius of the wormhole throat

αth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ l2

q
: ð4:7Þ

Thus, taking the integral on the right side of (4.6),
we obtain the final equation for the radius of the throat
silhouette:

Z
∞

m

e
2m
a ðarctanra−π

2
Þdr

ðr2 þ a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e

4m
a ðarctanra−π

2
Þ α2th
r2þa2

q ¼ π

αth
: ð4:8Þ

This equation is transcendental, and its solution can be
obtained numerically.

C. Comparison of shadow sizes of the Ellis-Bronnikov
wormhole and the Schwarzschild black hole

To understand whether it is possible to distinguish a
wormhole from a black hole by the size of the observed
shadow, we compare the results obtained for the Ellis-
Bronnikov wormhole with radii of the shadow and silhou-
ette of the event horizon of the Schwarzschild black hole.
In Ref. [59] it was shown that

αSchwsh ¼ 3
ffiffiffi
3

p
m ≈ 5.196m; αSchwh ≈ 4.457m: ð4:9Þ

Numerically solving the Eqs. (4.2) and (4.8), we con-
structed the dependence of radii of the shadow αEBsh and the
throat silhouette αEBth of the Ellis-Bronnikov wormhole
on the a parameter (Fig. 5). Figure 5 shows that for any
throat parameter a, the shadow and silhouette of the Ellis-
Bronnikov wormhole throat are larger than the shadow and
silhouette of the event horizon of the Schwarzschild black
hole, respectively:

αEBsh > αSchwsh ; αEBth > αSchwh : ð4:10Þ

FIG. 5. Dependence of the radii of the shadow αEBsh (solid red
line) and the throat silhouette αEBth (red dotted line) of the Ellis-
Bronnikov wormhole on the a parameter. The plot also shows the
radii of the shadow αSchwsh (black solid line) and the silhouette of
the event horizon αSchwh (dashed black line) of the Schwarzschild
black hole.

VALERIA A. ISHKAEVA and SERGEY V. SUSHKOV PHYS. REV. D 108, 084054 (2023)

084054-6



V. IMAGE OF THE ACCRETING
ELLIS-BRONNIKOV WORMHOLE

In this section, we obtain an image of the accreting
Ellis-Bronnikov wormhole following Ref. [55]. We use the
model of a geometrically thin optically transparent accre-
tion disk. In this model, we consider the inner part of the
accretion disk rth < r < rISCO, in which disk fragments
move along geodesics with parameters E and L given
from Eqs. (3.12) and (3.13) corresponding to r ¼ rISCO. In
addition, when calculating the observed radiation, we
assume that the energy flux in the comoving system of
fragments is isotropic and persists until they reach the
throat of Rth.

A. Locally nonrotating frames

In any stationary spherically symmetric asymptotically
flat spacetime, one can introduce locally nonrotating
reference frames (LNRFs) [54], in which observers
are moving along the world lines r ¼ const; θ ¼ const;
φ ¼ const. The orthonormal tetrad carried by such an
observer (the set of LNRF basis vectors) at the point
t; r; θ;φ for the Ellis-Bronnikov metric (2.1) is given by

eðtÞ ¼ e−uðrÞ
∂

∂t
; ð5:1Þ

eðrÞ ¼ euðrÞ
∂

∂r
; ð5:2Þ

eðθÞ ¼
euðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ∂

∂θ
; ð5:3Þ

eðφÞ ¼
euðrÞ

sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ∂

∂φ
: ð5:4Þ

The corresponding basis of one-forms (or covariant basis
vectors) is

eðtÞ ¼ euðrÞdt; ð5:5Þ

eðrÞ ¼ e−uðrÞdr; ð5:6Þ

eðθÞ ¼ e−uðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
dθ; ð5:7Þ

eðφÞ ¼ e−uðrÞ sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
dφ: ð5:8Þ

Equations (5.1)–(5.8) define the components of basis
vectors in the LNRF:

eðνÞ ¼ eiðνÞ
∂

∂xi
; eðνÞ ¼ eðνÞi dxi: ð5:9Þ

B. Gravitational redshift and Doppler effect

Photons emitted by the matter of the accretion disk and
reaching the observer experience a gravitational redshift
and a Doppler shift. To calculate the energy of a photon
registered by an observer, it is convenient to use the locally
nonrotating frame described above.
In general, the 4-velocity u has the LNRF

components [54]

uðνÞ ¼ ujeðνÞj ð5:10Þ

where the uj come from Eqs. (3.5)–(3.8), and the eðνÞj from
Eqs. (5.5)–(5.8). The 3-velocity relative to the LNRF has
components

vðμÞ ¼ ujeðμÞj

uieðtÞi
; μ ¼ r; θ;ϕ: ð5:11Þ

In particular, the azimuthal and radial components of the
velocity of a small accretion disk fragment at a radius rwith
orbital parameters E, L and Q ¼ 0 is

vðφÞ ¼ Le2uðrÞ

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p ; ð5:12Þ

vðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− L2e4uðrÞ

a2þr2 þ E2 − μ2e2uðrÞ
q

E
: ð5:13Þ

We also need expressions for the components of the photon
4-momentum in the LNRF:

pðφÞ ¼ leuðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2

p ; ð5:14Þ

pðrÞ ¼ e−uðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

e4uðrÞðl2 þ q2Þ
a2 þ r2

s
; ð5:15Þ

pðtÞ ¼ e−uðrÞ: ð5:16Þ

Consider a fragment of an accretion disk moving with an
azimuthal velocity vðφÞ and a radial velocity vðrÞ relative to
the LNRF. Then the photon energy in the comoving frame
of this fragment is [55]

εðl; qÞ ¼ pðtÞ − vðφÞpðϕÞ − vðrÞpðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvðφÞÞ2 − ðvðrÞÞ2

q : ð5:17Þ

The corresponding photon energy shift (ratio of the photon
frequency detected by a remote observer to the frequency of
the same photon in the comoving frame of the fragment)
is gðl; qÞ ¼ 1=εðl; qÞ.
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C. Comparison

We build the image, taking into account photons that
are emitted in the interior of the accretion disk and have
no more than one turning point. The photon parameters l
and q are found from the Eqs. (4.4) and (4.5) at
rth ≤ rs ≤ rISCO. The energy shift of an incoming photon
is calculated by the formula gðl; qÞ ¼ 1=εðl; qÞ, where
εðl; qÞ is found from (5.17).
The Figure 6 shows images of the accreting

Schwarzschild black hole and the accreting Ellis-
Bronnikov wormhole. The masses of objects are taken
to be equal, mSchw ¼ mEB ¼ 1, and the throat parameter of
the wormhole is a ¼ 2. Under these parameters, the area
of the dark spot in the Ellis-Bronnikov wormhole image
is 38% larger than the area of the dark spot in the
Schwarzschild black hole image. With different throat
parameters, a, the dark spot in the image of a wormhole
will also be larger because it is the silhouette of the throat
(Fig. 5). As for the energy shift, photons emitted near the
Ellis-Bronnikov wormhole experience less redshift com-
pared to photons emitted near the Schwarzschild black
hole. Moreover, for photons emitted in the innermost stable
circular orbit of particles in the spacetime of the Ellis-
Bronnikov wormhole, the Doppler effect plays a major role
in the energy shift.

VI. SUMMARY

In this paper we have explored gravitational lensing
properties of the Ellis-Bronnikov wormhole spacetime
with the metric (2.1), which is a generalization of the
more simple Ellis solution (1.1). The Ellis-Bronnikov
wormhole is characterized by two parameters a and m,
related to a wormhole throat radius and an asymtotic
wormhole mass, respectively, while the Ellis wormhole
is massless, i.e., m ¼ 0. In our work, we have investigated
in detail the propagation of light in the Ellis-Bronnikov
wormhole spacetime, the formation of its shadow and
silhouette, and the formation of an image of matter disk

accreting around the wormhole. As the result, we have
obtained an analytical dependence of geometrical and
physical characteristics of various images of the Ellis-
Bronnikov wormhole on the parameters a and m and
constructed their graphical representations. Then, all
images obtained for the Ellis-Bronnikov wormhole have
been compared with those for the Schwarzschild black
hole. Summarizing the results of investigation, we can
conclude that there exists the rather strong difference
between images of a wormhole and a black hole. In
particular, for any throat parameter a, the shadow and
silhouette of the Ellis-Bronnikov wormhole throat are
larger than the shadow and silhouette of the event horizon
of the Schwarzschild black hole of the same mass. This
difference can be used in future astrophysical observations
to distinguish black holes and wormholes.

Note added.—Just after publishing our manuscript in
arXiv [60], we received a message from colleagues who
drew our attention to the papers [61,62], which we missed.
In Ref. [61], the authors investigate the gravitational
lensing effect at higher order under weak-field approxima-
tion in the Ellis-Bronnikov wormhole spacetime. The
second work [62] is more closely related to our inves-
tigation. As well as in our work, the authors of Ref. [62]
calculated the geodesics and classified the photon trajecto-
ries in the Ellis-Bronnikov wormhole spacetime, obtained
the location of the photon sphere and the corresponding
value of impact parameter, found the innermost stable
circular orbit (ISCO). Though some results of our work
particularly coincided with those in [62], our work contains
a number of novel results compared with Ref. [62].
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FIG. 6. Images of the accreting Schwarzschild black hole (left) and the accreting Ellis-Bronnikov wormhole (right). The observer is at
rO ¼ 10000m; θO ¼ 84.24.
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