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We present a formulation of ghost-free massive gravity with flat reference metric that exhibits the full
nonlinear constraint algebraically, in a way that can be directly implemented for numerical simulations.
Motivated by the presence of higher order operators in the low-energy effective description of massive
gravity, we show how the inclusion of higher-order gradient (dissipative) terms leads to a well-posed
formulation of its dynamics. The formulation is presented for a generic combination of the minimal and
quadratic mass terms (the phenomenologically interesting case) on any background. For concreteness, we
then focus on the numerical evolution of the minimal model for spherically symmetric gravitational
collapse of scalar field matter. This minimal model does not carry the relevant interactions to switch on an
active Vainshtein mechanism, at least in spherical symmetry, thus we do not expect to recover usual general
relativity behavior even for small graviton mass. Nonetheless we may ask what the outcome of matter
collapse is for this gravitational theory. Starting with small initial data far away from the center, we follow
the matter through a nonlinear regime as it falls towards the origin. For sufficiently weak data the matter
disperses. However for larger data we generally find that the classical evolution breaks down resulting in
the theory becoming infinitely strongly coupled without the presence of an apparent horizon shielding this
behavior from an asymptotic observer.
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I. INTRODUCTION

Current and upcoming cosmological observations, event
horizon mapping, and gravitational wave detections offer a
unique opportunity to test the laws of gravity in unprec-
edented situations. While Einstein’s theory of general
relativity (GR) has proven to be in outstanding agreement
with all observations to date, existing cosmological chal-
lenges and the need for an ultimate high-energy completion
of GR have motivated the search for alternative frame-
works. Even if GR provides the ultimate description of
gravity on low-energy scales, the measure of success
requires comparison with alternatives against which GR
can be meaningfully tested. This is particularly important
when observations and detections require the use of
templates or priors through which assumptions about
the underlying framework have to be made. With this
aim in mind, and driven by the potential of tackling the

cosmological constant problem and the physics underlying
the nature of the dark sector, a plethora of alternatives to
GR have been formulated in the past two decades. While
most of these models propose a modification of gravity
through the introduction of additional modes (typically
scalar fields), nonminimally coupled either to gravity
or matter, a genuine modification of the graviton at low-
energy (the IR) has proven more challenging. Large
extradimensional models of gravity provided a first class
of explicit realizations, where the structure of the graviton
was genuinely modified in the IR or at large (cosmological)
distances. In particular the Dvali-Gabadadze-Porrati model
of gravity introduced in 2000 proposes a model where the
graviton appears as a broad resonance of light massive
modes from a four-dimensional perspective [1–6] dubbed
“soft massive gravity.” The center and sharpness of this
resonance was then further controlled by adjusting the size,
scale, topology and the number of extra dimensions [7–12].
Attempts to define a theory with zero width—“a hard
massive gravity”—have a long history and proposals
motivated by extra dimensions were given in [13–16].
The first explicit attempts to construct a four-

dimensional formulation of (hard) massive gravity were
proposed in the 1970s, but the presence of a ghost at a low-
energy scale, highlighted in [17–19], appeared to plague
every explicit realization. Formulating massive gravity
with the use of Stückelberg fields, as first introduced by
Delbourgo and Salam in 1975, [20] proved particularly
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insightful in understanding the origin of this ghost [21] and
ultimately led to a framework where it could be eradicated
all together, leading to the development of “ghost-free
massive gravity” (sometimes refereed to as dRGT massive
gravity) [22,23]. The absence of ghosts has not only been
proven using the Stückelberg fields, but generalized to a
multitude of different formalisms [24–39], confirming the
existence of secondary constraints [40–42] (see also [43]
for a review). The form of the constraint was derived on
arbitrary backgrounds [44–49], including on spherically
symmetric ones as will be relevant for the explicit numeri-
cal study presented here [50–55].
In what follows, we shall use the “vielbein-inspired” or

symmetric vielbein formulation of massive gravity [28]
which utilizes a 10 component vierbein to describe the
geometry. This formalism exhibits the full nonlinear scalar
constraint as presented in [35,45,46] in a way which can
be directly applied to numerical evolution. In [35] the
scalar constraint was explicitly identified for the minimal
and quadratic models of massive gravity as a first order
derivative scalar equation, derived from the Einstein
equations with mass terms. It was shown to be more subtle
for the cubic mass term, which cannot be expressed in a
covariant way in the vielbein language. However this cubic
mass term yields a specific coupling between the helicity-0
and -2 graviton modes which typically leads to other types
of instabilities, and thus does not give rise to realistic
phenomenology, and we will not consider it further
here [43,56,57]. For perturbations about a general back-
ground it was shown in [45,46] that this scalar constraint
explicitly removes the unwanted Boulware-Deser ghost,
leaving only the five expected dynamical degrees of free-
dom. In this work, one of our aims is to formulate this
constraint locally and use it to explicitly eliminate the
unwanted variables, rather than working with a first order
differential equation to be solved on every timeslice. We
provide this algebraic phrasing of the scalar constraint by
performing a (3þ 1) decomposition and then identifying
appropriate momenta. In these variables the constraint will
simply become algebraic in the time-time component of the
vierbein, and furthermore for the simple scalar field matter
we employ, will be either a quadratic or cubic equation in
that vierbein component, depending on which mass terms
one takes.
For concreteness, the numerical results derived in this

work will be for the minimal model, for which a Vainshtein
mechanism [58] is not expected to occur (unless one relies
on the helicity-one interactions [59], which are absent in the
spherically symmetric case we shall consider). Nonetheless
it is a model of gravity with a dynamical spacetime, and
thus a natural question is what its behavior is for collapse of
matter. Does it resemble GR in the sense that it forms black
holes for sufficiently nonlinear collapse? Or is its behavior
unlike GR, with naked singularity formation? In what
follows we shall provide answers to these basic questions.

Applications to the quadratic model, which for cosmologi-
cal asymptotic conditions, is expected to have a working
Vainshtein mechanism, and hence yield behavior similar to
GR for low graviton masses, will be explored in further
studies.
Current tests of GR, direct and indirect detections of

gravitational waves and astrophysical/cosmological obser-
vations already provide interesting bounds on the graviton
mass, [60], however the strongest constraints remain very
model dependent. Model-independent bounds typically
rely on the propagation of gravitational waves or modifi-
cation of the dispersion relation, leading to a bound of the
graviton mass which remains many orders of magnitude
away from the phenomenologically interesting region
(tackling the cosmological constant problem or the origin
of dark energy requires a graviton mass of order of the
Hubble parameter today, m∼H0 ∼ 10−32 eV, while model-
independent constraints on the graviton mass bound it to be
≲10−22 eV). To better improve these bounds, an outstand-
ing open question is what is the precise behavior of black
holes in massive gravity, and in particular, what is the effect
of the graviton mass on the production of gravitational
waves and the resulting waveform?
Since the curvature invariant related to any realistic

astrophysical black hole is dozens of orders of magnitude
above the graviton mass,1 we would expect the graviton
mass to be utterly irrelevant to the dynamics of black holes
and to the production of gravitational waves during inspiral
and black hole mergers. However this argument relies on
the existence of a smooth decoupling of scales. Such a
decoupling would only occur if an efficient Vainshtein
mechanism is in place to screen out the effect of the
additional graviton polarizations. In practice, the presence
of such a screening mechanism has been challenging
to prove formally other than in specific configurations
[56,61–91]. Another major challenge to making further
progress is the fact that the constraint that prevents the
presence of a ghost in massive gravity also prevents the
existence of highly symmetric exact solutions. This feature
has inhibited the existence of exact homogeneous and
isotropic (cosmological) solutions on all scales [92], where
solutions can appear arbitrarily close to Friedmann-
Robertson-Lemaître-Walker on scales of the order of the
observable Universe but departure from homogeneity or
isotropy must emerge on large distance scales beyond the
current cosmological horizon. A similar feature plagues the
search for black hole solutions, where Birkhoff’s theorem is
broken and the constraint prevents the existence of per-
fectly static and spherically symmetric solutions [93,94],
(aside from solutions that exhibit a physical singularity at
the horizon) see also [51–53,57,95–103] for other black hole
solutions in massive (bi)gravity. As pointed out in [104],

1For m ∼H0, only a black hole of the size of the Universe
would carry a curvature invariant of order of the graviton mass.
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a spherically symmetric nonsingular black hole solution
can nonetheless accommodate an asymptotic Yukawa-like
behavior if a small time dependence (scaling as the graviton
mass) is included. For a graviton mass of the order of the
Hubble parameter today, this would correspond to a time
dependence that only manifests itself on time scales of
the order of the age of the Universe and in practice the
solutions are locally indistinguishable from standard
Schwarzschild solutions. These solutions were obtained
perturbatively about the black hole horizon. Exploring more
precisely some of the features of these solutions was
pioneered in [105] but deriving an explicit exact solutions
has remained challenging.
It is worth emphasizing that the physical relevance of the

Kerr black hole in GR stems firstly from the fact that black
holes form in generic matter collapse, as encapsulated in
the singularity theorems, and second, that due to the
Uniqueness theorems, it is the only vacuum black hole
solution. In massive gravity no such theorems are currently
known, and thus even if candidate black hole end states for
collapse are found, their physical relevance hinges on
whether it is indeed these solutions that form dynamically
from gravitating matter. In this work, we therefore initiate
some of the first steps towards understanding what the
end state of dynamical collapse is in the dRGT theory of
gravity. We do so by solving numerically for spherically
symmetric solutions in nonlinear massive gravity by con-
sidering the spherical gravitational collapse of a “lump” of
matter (described by a massless scalar field) in minimal
massive gravity.
Before going to the core of the formulation and the

numerical framework, it is worth clarifying that just like GR
should be seen as the leading order term in an infinite
effective field theory (EFT) expansion [106], the same
applies to massive gravity. At best, massive gravity is only
ever expected to represent a low-energy description of
gravity, and should always be seen as the leading order
contribution in an infinite EFT expansion where the inclu-
sion of higher order operators is unavoidable [107–109]

SmGR ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGN

�
R½g� þm2

2

X
n

αnLn½K�
�

þ Λ4
cutoffL

EFT

� ∇μ

Λcutoff
;

Λ3
3

Λ3
cutoff

Kμ
ν ;
Rμ

ανβ

Λ2
cutoff

��
; ð1Þ

where Λcutoff is the cutoff of the EFT and Λ3 ¼
ðMPlm2Þ1=3 ∼ ðm4=8πGNÞ1=6. The Lagrangian terms Ln
are the “total derivative polynomials” (dRGT mass terms)
introduced in [23] and K ∼ δ −

ffiffiffiffiffiffiffiffiffiffi
g−1f

p
are the building

blocks of the ghost-free mass term (reminiscent of the
extrinsic curvature in models of massive gravity arising
from extra dimensions [110]). An example of a higher order
operator is a term K2 which is not of the dRGT mass term
form. From the EFT point of view it is natural to include

such a contribution, but it will come suppressed by the
cutoff,

ΔL ∼
Λ6
3

Λ2
cutoff

K2: ð2Þ

Such a term appears to induce a ghost, but one whose mass
is at the scale Λcutoff which renders it harmless.2

For the theory of massive gravity to make sense, it should
be ghost-free up to the cutoff Λcutoff which should be
parametrically larger than the graviton mass m. In principle
the cutoff can be separate from the strong coupling scale Λ3

at which naive perturbative unitarity of the truncation to
the leading Ln operators breaks down [111,112]. For the
theory to enjoy a standard (Wilsonian-like) and weakly
coupled high-energy completion one would need the
cutoff to be parametrically smaller than the scale Λ3 [107],
however it is typically expected that theories that have a
Vainshtein mechanism be embedded in alternative com-
pletions [112–117]. In particular, owing to the existence of
a nonrenormalization theorem [118,119] that protects the
ghost-free structure of the Lagrangian, situations where the
higher order operators enter at a scale Λcutoff parametrically
larger than the strong coupling scale Λ3 can be considered,
withΛcutoff potentially close to the Planck scale. Ultimately,
the scale at which new physics enters, and how it manifests
itself through the higher order operators encapsulated in
LEFT, depends on the precise details of the UV completion
(Wilsonian or not, weakly coupled or not), but for the low-
energy theory of massive gravity to make sense, low-energy
observables should be independent of these details.
At the level of the classical continuum partial differential

equations (PDEs) describing the truncation to the leading
low energy theory, short distance modes will explore this
region that is out of control of the EFT. Unlike in the case of
GR, as we discuss later, we believe it is unlikely that this
truncation to the leading dRGT terms makes sense as a
theory with a well-posed initial-value formulation in its
own right. In order to perform numerical calculations of
this continuum leading low energy theory, we wish to
accommodate such short distance excursions while remain-
ing as agnostic as possible to the precise operators entering
in LEFT. We cannot expect to simply ignore the issue, as if
the leading low energy theory is ill-posed without high
order terms, then one would not expect to have a good
continuum limit when refining a numerical discretization
for it. If one is unable to refine a numerical approximation
to a continuum limit it is then unclear what the status of that
numerical calculation is. Thus here we take the conser-
vative view that we should start with a well-posed theory
before considering a numerical discretization, so that a

2The parametric scaling is reflecting the fact that in the
decoupling limit MPl → ∞, m → 0, Kμν ∼ ∂μ∂νπ=Λ3

3 with π
the helicity zero mode of the graviton, hence ΔL ∼ ð□πÞ2=Λ2

c.

DYNAMICAL FORMULATION OF GHOST-FREE MASSIVE … PHYS. REV. D 108, 084052 (2023)

084052-3



good continuum limit does exist.3 In order to achieve this
for dRGTwe introduce specific higher derivative terms that
are convenient for numerical simulation, and natural in our
(3þ 1) decomposition. We are able to prove the resulting
continuum PDE system is well posed. Since we include
these terms within the (3þ 1) split, they are not of the form
expected from a Lorentz invariant UV completion, but
nonetheless mimic the dissipative effect of the operators
expected to enter in LEFT at the level of the dynamical
equations, while ensuring that the resulting low-energy
physics is insensitive to the scale at which they enter
(so long as the scale is sufficiently large). Provided
gradients remain below the scale of these new operators,
they will be irrelevant for the dynamics, and this may be
explicitly checked. This strategy complements that formu-
lated in [120–128] for other theories of modified gravity or
scalar/vector(-tensor) EFTs involving screening. An impor-
tant outcome of this work is the existence of a manifestly
well-posed initial-value formulation of the dynamics of
massive gravity.
The rest of this work is organized as follows: We start by

providing a brief review of ghost-free massive gravity in
Sec. II, formulating the constraint algebraically in a sym-
metric “vielbein-inspired” language. Then in Sec. III, as a
first step towards formulating the dynamics of massive
gravity in a way that is amenable to numerical simulations,
we perform a 3þ 1 space and time decomposition of the
dynamical variables and their associated dynamical equa-
tions and constraints. Second, we are able to identify
specific momenta such that the second class constraints
in the system (the vector and scalar constraints) can be
solved algebraically for components of the vierbein and its
momenta. Specifically the scalar constraint becomes an
algebraic relation for the time-time component of our
symmetric vierbein. The remaining second order degrees
of freedom precisely account for the five degrees of
freedom in the theory. This formulation does not require
any spacetime symmetry and is nonperturbative (i.e. not
dependent on an expansion about a background). From this
point on we focus on the simplest theory, that with minimal
mass term. In Sec. IV we briefly outline an alternative
harmonic formulation of the theory where the vector
constraint is automatically satisfied if it is imposed on
the initial Cauchy surface. We then introduce higher
derivative dissipative terms motivated by the higher-order
EFT operators present in (1) in Sec. V. These terms are
convenient in our (3þ 1) formulation, and we argue the
resulting PDEs then have a well-posed initial value for-
mulation. In Sec. VI we demonstrate that our formulation
may be implemented numerically in a straightforward

manner by studying spherical collapse. We diagnose under
which conditions the system evolves smoothly and when
one hits pathological regions, where the EFT will become
strongly coupled and lose predictability. We also diagnose
under which conditions our results remain insensitive to the
scale at which higher order EFT (or dissipative effects) kick
in. A summary of our results and outlooks for further work
are discussed in Sec. VII. Further details on the numerical
implementation, diffusion effects and convergence are
provided in Appendix B.
While massive gravity can be formulated in any number

of dimensions, throughout this work we focus for con-
creteness on four spacetime dimensions and use mainly þ
signature. The relation between the reduced Planck scale
and Newton’s constant is given by 8πGN ¼ M−2

Pl and we
work with one or the other depend on context. For most of
this work we will choose units where 8πGN ¼ M−2

Pl ¼ 1

but reintroduce dimensions whenever needed.

II. BRIEF REVIEW OF dRGT MASSIVE GRAVITY

As for any massive field, the notion of mass requires a
reference, which we shall denote as the reference metric
fμν. In principle massive gravity can be formulated for any
reference metric fμν [129], however the notion of mass is
only unambiguous when dealing with representations of the
Lorentz group or (anti–)de Sitter group, and so it makes
sense to restrict to maximally symmetric spacetimes. For
the remainder we make the standard choice that the
reference metric is Minkowski. In that case, massive gravity
in unitary gauge respects a global version of Lorentz
invariance and admits Minkowski spacetime as a vacuum
solution.
The usual dynamical metric is denoted as gμν, and it is

this metric that matter is chosen to couple to, preserving the
weak equivalence principle. The global structure of the
dynamical metric can be very different than the reference
metric, but for comparison with GR in this work we shall
require it to be asymptotically flat. As indicated in the
introduction, restricting to four spacetime dimensions the
ghost-free massive gravity action (1) can be formulated in
terms of “total derivative polynomials” Ln½K� given in
terms of the Levi-Civita symbols ε by [23]

Ln½K� ¼ εa1���a4εb1���b4K
b1

a1 � � �Kbn
anδ

bnþ1
anþ1

� � � δb4a4 : ð3Þ

In particular we have

L0½K� ¼ 4!; ð4Þ

L1½K� ¼ 3!½K�; ð5Þ

L2½K� ¼ 2!
�½K�2 − ½K2��; ð6Þ

L3½K� ¼ �½K�3 − 3½K�½K2� þ 2½K3��; ð7Þ

3An alternative perspective is to regard the numerical discre-
tization itself as a cutoff, which cannot be completely removed.
While perhaps a valid viewpoint, it is then difficult to assess the
accuracy of the numerical calculations, and hence this is not the
approach taken here.
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L4½K� ¼ �½K�4 − 6½K�2½K2� þ 3½K2�2 þ 8½K�½K3� − 6½K4��;
ð8Þ

where square brackets represent the trace of tensors (taken
with respect to the dynamical metric). The building block
Kμ

ν defined as

Kμ
ν ¼ δμν − Eμ

ν ¼ gμαðgαν − EανÞ; ð9Þ

is constructed out of the symmetric vielbein Eμν ¼ EðμνÞ
[28], which is defined from the metric and reference
metric as

gμν ¼ ðf−1ÞαβEαμEβν; ð10Þ

where ðf−1Þμν is the inverse to the Minkowski reference
metric. We may equivalently write the relation as

fμν ¼ ðg−1Þμαfαν ¼ Eμ
αEα

ν; ð11Þ

so that symbolically, we may write Eμ
ν ¼

ffiffiffiffiffiffiffi
fμν

p
. We also

define ðE−1Þμν as the inverse to Eμν in the sense that
ðE−1ÞμαEαν ¼ δμν , so that

ðE−1Þμν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμαðf−1Þαν

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf−1Þμν

q
: ð12Þ

Omitting for now the EFT contributions that enter at
the cutoff scale, and including coupling to matter, the
formulation of massive gravity we shall be interested in is
given by

SmGR ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
R½g� þm2

2

X
n

αnLn½K�
�

þ SðmatterÞ½g;ψ i�; ð13Þ

where R is the standard scalar curvature of the dynamical
metric gμν and matter fields ψ i only couple to the physical
metric g. When perturbing about flat spacetime, each
Lagrangian Ln½K� is order n in fluctuations, which allows
us to establish the order at which each interaction enters.
We see that L0 simply gives a cosmological constant.
The terms L1 and L2 both contribute to the mass of the
graviton. The remaining terms L3 and L4 do not contribute
to the mass, but generate interaction terms for the massive
gravitons. Since L1 contains a tadpole it must be combined
appropriately with L0 to remove it and ensure that gμν ¼
fμν is a vacuum solution, the condition being α0 ¼ −α1=4.
Expanding to quadratic order, the condition that the mass of
the graviton is the parameter m above is α1 ¼ 2ð1 − α2Þ=3.
Thus we may parametrize the theory with the mass m and
the dimensionless couplings ðα2; α3; α4Þ, fixing α0 and α1
using these two conditions. However the linear combina-
tion of terms

ffiffiffiffiffiffi−gp ðL0 − 4L1 þ 6L2 − 4L3 þ L4Þ ¼ 4! is

simply a constant, so it is not dynamical. This implies
the theory is unchanged shifting the dimensionless para-
meters as

ðα2;α3; α4Þ → ðα2 þ 6c; α3 − 4c; α4 þ cÞ ð14Þ

and thus the invariant dimensionless couplings are the
combinations α̃ ¼ ð2α2 þ 3α3Þ and β̃ ¼ ðα3 þ 4α4Þ.
The minimal model corresponds to the special case which

can be written using only the terms L0 and L1—this is
parametrized just by the mass m, with α0 and α1 determined
by the mass and tadpole conditions. Here we focus on the
theory with both minimal and quadratic mass terms, which
can be written using only the terms L0, L1 and L2, so this
massive gravity takes the form (still omitting the higher order
operators for now),

S ¼ 1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p �
R½g� −m2

1ð2½E� − 6Þ

−
m2

2

2
ð½E�2 − ½E2� − 6Þ

�
þ SðmatterÞ½g;ψ i�; ð15Þ

with the two following mass terms

m2
1 ¼ m2ð1þ 2α2Þ and m2

2 ¼ −2m2α2; ð16Þ

so that the theory is parametrized by the graviton mass m
and the coupling α2, and the minimal model corresponds
to α2 ¼ 0, while the quadratic model corresponds to
α2 ¼ −1=2. In terms of the invariant couplings, α̃ ¼ 2α2
and β̃ ¼ 0.
We note that the theory with minimal and quadratic mass

terms has vanishing invariant coupling β̃ ¼ ðα3 þ 4α4Þ ¼ 0.
The most general ghost free massive gravity may be written
using the cubic interaction term L3 too, and has β̃ ≠ 0.
However this cubic interaction term generically generates
instabilities that render it incompatible with phenomenol-
ogy and thus we do not consider it here [43,56,57].
The resulting Einstein equation is

Eμν ≡Gμν þm2
1M

ð1Þ
μν þm2

2M
ð2Þ
μν − 8πGNTμν ¼ 0; ð17Þ

where the mass terms contributions are given by

Mð1Þ
μν ¼ −Eμν þ ½E�gμν − 3gμν; ð18Þ

Mð2Þ
μν ¼ 1

2
EμαEα

ν −
1

2
½E�Eμν −

1

4

�½E2� − ½E�2�gμν − 3

2
gμν:

ð19Þ

Using the contracted Bianchi identity and matter-stress
energy conservation we may take the divergence of the
Einstein equation to derive
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Vμ ¼ ∇ν
�
m2

1M
ð1Þ
μν þm2

2M
ð2Þ
μν

� ¼ 0; ð20Þ

which we refer to as the “vector equation.”4

Diffeomorphism invariance can be made explicit through
the use of Stückelberg fields. However for now it will prove
more convenient to choose “unitary gauge” for the massive
theory, meaning that we commit to the particular coordinate
choices of Cartesian coordinates xμ ¼ ðt; x; y; zÞ, or later in
Sec. VI when we consider spherical symmetry, spherical
coordinates xμ ¼ ðt; r; θ;ϕÞ. Then formulated in these
unitary gauges the reference metric is given by fμν ¼
ðf−1Þμν ¼ ημν ¼ diagð−1;þ1;þ1;þ1Þ in the Cartesian
case or fμν ¼ diagð−1;þ1;þr2;þr2 sin2ðθÞÞ in the spheri-
cal case. Thus until Sec. VI we will take fμν ¼ ημν, and
from now we also adopt units such that 8πGN ¼ 1.

A. Linear perturbations

Considering linear fluctuations about flat space, by
expanding the dynamical metric as

gμν ¼ ημν þ hμν; ð21Þ

we recover the standard Fierz-Pauli mass term in
Minkowski,

m2
1M

ð1Þ
μν þm2

2M
ð2Þ
μν ¼ 1

2
m2ðhμν − hημνÞ; ð22Þ

where indices here, and in what follows in this perturbative
discussion, are raised and lowered with the Minkowski
metric η, and the graviton mass (squared) is given by m2 ¼
m2

1 þm2
2. Assuming the matter fields are all covariantly

coupled to the dynamical metric, the resulting matter stress-
energy tensor Tμν is then conserved, ∂μTμν ¼ 0. At the
linear level, the Bianchi identity (20) hence imposes the
condition

∂μhμν ¼ ∂νh: ð23Þ

Note that unlike in GR, we have already set unitary gauge
at this stage and there is therefore no additional gauge
choice available. In particular the condition (23) appears as
a constraint and not as a gauge choice. At the linearized
level, this constraint forces the Ricci scalar to vanish,
irrespectively of the trace of the stress-energy tensor. This
indicates that the linearized theory is unable to properly
capture coupling with external matter sources. This is at the
origin of the infamous van-Dam-Veltman-Zakharov dis-
continuity [130,131], whose resolution lies in the contri-
bution from the nonlinear interactions [58] we shall discuss

in Sec. II B. For now, carrying on with the linear analysis,
the vanishing of the linearized Ricci scalar implies the
following constraints

h ¼ −
2

3m2
T; ∂

ρhρμ ¼ −
2

3m2
∂μT: ð24Þ

As for the dynamical equations, they are given by the
linearized Einstein field equations (17), after substituting
the linearized condition (23), leading to the massive wave
equation

−
1

2
ð∇2 −m2Þhμν þ ∂ðμχνÞ ¼ Tμν −

1

3
ημνT; ð25Þ

with ∇2 ¼ ∂
ρ
∂ρ and χμ ¼ ∂

ρhρμ − 1
2
∂μh ¼ 1

2
∂μh.

The five linear constraints (24) on ∂ρhρμ and h reduce the
number of dynamical degrees of freedom from 10 down to
5. The special structure of the Fierz-Pauli term ensures the
existence of an algebraic constraint on h rather than it
obeying a wavelike equation, which would yield an addi-
tional ghostly degree of freedom. The existence of an
analogous algebraic constraint in the full nonlinear massive
gravity was indicated in [23–25] and proven more generi-
cally in various languages in [26–38], among others, to-
gether with the existence of a secondary constraint [40–42],
(see also [43] for a review). The form of the constraint was
derived on arbitrary backgrounds, including on spherically
symmetric ones as will be relevant to the study presented
here [51–55]. While the formulation of this primary
constraint and the secondary one that follows has been
well-established by now, how to implement it efficiently
and in a well-posed way for the study of numerical
evolution has proven more challenging. Part of the purpose
of this paper is to present the constraint in the full nonlinear
massive gravity in a formalism that can be directly
implemented in a numerical evolution. Before carrying
on with the full nonlinear analysis in Sec. II C, we first
briefly discuss the physics behind the Vainshtein mecha-
nism which signals a breakdown of linear perturbations and
show how nonlinear interactions play an essential role
when considering the small mass limit of massive gravity.

B. Decoupled modes and Vainshtein

To better capture the essence of the Vainshtein mecha-
nism, it is convenient to first identify the five propagating
degrees of freedom more explicitly by writing the metric
fluctuation as

hμν ¼ aμν þ
1

m2
∂ðμAνÞ þ

1

2
πημν þ

1

m2
∂μ∂νπ: ð26Þ

The helicity-2, helicity-1 and helicity-0 degrees of freedom
are then encapsulated in aμν, Aμ and π, respectively. This
formulation enjoys two local invariances,

4Had we not set unitary gauge from the outset and kept the
Stückelberg fields arbitrary, the following vector equation would
simply arise as the Stückelberg equation of motion.
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aμν → aμν þ ∂ðμvνÞ
Aμ → Aμ −m2vμ
π → π

;

aμν → aμν þ λ
2
ημν

Aμ → Aμ þ ∂μλ

π → π − λ

ð27Þ

for vμ and λ a Lorentz covector and scalar, respectively.
Now that these gauge invariances are made explicit, we

can see that the gauge invariant rank-2 tensor aμν carries
10 − 4 × 2 ¼ 2 degrees of freedom (same as a massless
graviton), Aμ carries 4 − 1 × 2 ¼ 2 degrees of freedom
(same as any other gauge invariant vector field), and the
last degree of freedom is carried by π, yielding a total of five
degrees of freedom.
Endowed with these two sets of gauge invariances, we

can freely pick the equivalent of the respective harmonic
gauges (i.e. a slightly modified de Donder gauge for aμν
and modified Lorenz gauge for Aμ). Through appropriate
gauge transformation, we can always set5

∂
ρaρμ −

1

2
∂μa ¼ −

1

2
Aμ; ∂ · A ¼ −m2ðaþ 3πÞ: ð28Þ

In this gauge, the degrees of freedom entirely decouple and
lead to the following set of three (dynamical) wave
equations,

−
1

2
ð∇2 −m2Þaμν ¼ Tμν −

1

2
ημνT;

−
1

2
ð∇2 −m2ÞAμ ¼ 0; −

1

2
ð∇2 −m2Þπ ¼ 1

3
T: ð29Þ

Expressed in this form, it is clear that the helicity-0 mode π
remains coupled to matter (at the linear level), even when
we take the massless limit, m → 0 holding Tμν fixed. This
explains why Eq. (25) does not lead to the same linearized
equations as in GR, − 1

2
∇2hμν þ ∂ðμχνÞ ¼ Tμν − 1

2
ημνT,

due to the couplings to the trace of the stress tensor being
different. The coupling of the helicity-0 mode to matter is
responsible for an additional contribution of T=6 even in
the small mass limit. However it is also clear from the
constraint (24) on h that the linearized theory breaks down
in the massless limit. This is the essence of the Vainshtein
mechanism pointed out in [58]. Accounting for nonlinear
contributions under special conditions, GR was recovered
nonperturbatively in the massless limit of the Dvali-
Gabadadze-Porrati model [1] in [61] and the same mecha-
nism was proven to occur in dRGTmassive gravity [22,65].
More precisely when taking the m2 → 0 limit, while

keeping the stress energy source fixed, we may approx-
imately solve the Einstein equations with a GR solution if

we can find a coordinate system so that the vector equation
Vμ ¼ 0 is satisfied. We may regard this vector equation as a
“gauge condition” for the GR solution, and at least locally
we have the correct number of coordinate degrees of
freedom to solve it. From the linear analysis we also know
that generally the linear response differs to that of GR.
This implies that while the solution of (17), Eμν ¼ 0,
resembles that of GR in the massless limit it is in a gauge
where jEμ

ν − δμν j ≫ 1 so it is a nonlinear deformation of
Minkowski at the level of the metric (even though curva-
tures may be small). In this regime, the theory becomes
classically “strongly coupled” in the sense that standard
perturbation theory breaks down, without indicating a
failure of predictability [112]. In particular, subleading
terms in the effective theory (1) involving higher deriva-
tives of Kμ

ν potentially become important (particularly if
no Vainshtein resummation occurs), even though higher
curvature terms may remain small. Far outside the non-
linear Vainshtein radius, the metric tends to Minkowski and
the linear theory then applies, and hence leads to features
that differ from GR. The matching region around the
Vainshtein radius is then both a nonlinear deformation of
Minkowski, as well as having non-GR behavior, and is
subtle to track down precisely. Beyond its behavior in the
decoupling limit of the theory, it has remained challenging
to follow this transition precisely other than for static and
spherical symmetric situations as well as in other theories
of massive gravity [62].
The Vainshtein region where nonlinearities are important

can be estimated by determining when the graviton massm
is negligible compared to curvature invariants, m2 ≲ R. For
a compact matter source of mass M, the corresponding
Vainshtein radius RV ∼ ðRG=m2Þ1=3 where RG ∼GM is the
Schwarzschild radius associated with that M. We note that
the same nonlinear terms that give rise to the Vainshtein
mechanism and a smooth massless limit towards GR also
lead to a breaking of perturbative unitarity at the scale
Λ3 ∼ ðMPlm2Þ1=3, with MPl the Planck mass. While this
scale is naively very low, it is redressed within the
Vainshtein radius, so that radiative corrections to the theory
are irrelevant on scales where gravity may be probed [112].
Since all the nonlinear pure helicity-0 interactions vanish

for the minimal model, it is not expected to exhibit a
standard Vainshtein mechanism (at the very least not
without existing the helicity-1 modes nontrivially [59]).
There is therefore little known about the nonlinear behavior
of this minimal theory in response to matter, even in the
small mass limit.

C. Vector equation and scalar constraint

We now return to the full nonlinear theory and review
the scalar and vector constraints. We emphasize that the
existence of these constraints has been discussed exten-
sively in the literature and here we simply review these
using the symmetric vierbein formulation. In the next

5Any gauge transformation with parameters vμ and λ satisfying
ð∇2 −m2Þvμ ¼ 0 and ð∇2 −m2Þλ ¼ 0 preserve that gauge
choice, so there are some residual gauge freedom one could
further set.
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section we will see that these constraints can be formulated
algebraically in a (3þ 1) decomposition nonperturbatively
by appropriately identifying momentum variables.
In order to reveal the spin-1 and spin-0 constraints it is

natural to consider (diffeomorphism) variations of the
metric taking the form

δgμν ¼ ∇ðμvνÞ: ð30Þ

Now the action varies to give

δvS ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
vαVα; ð31Þ

where Vμ is the vector defined in (20). The equation of
motion from varying vμ is then the same as the vector
constraint Vμ ¼ 0. In terms of the vector ξμ defined as

ξμ ¼ Eμαη
αβVβ; ð32Þ

the constraint then takes the remarkably simple form,

ξμ ¼ Vμαβσ
∂½αEβ�σ ¼ 0; ð33Þ

with

Vμαβσ ¼ −2m2
1g

μαðE−1Þβσ þm2
2

�
EμαðE−1Þβσ

þ gμαgβσ − Eρ
ρgμαðE−1Þβσ�; ð34Þ

so we may view this as a linear constraint on the
components of ∂½αEβ�σ .
Now we consider varying the action with respect to a

scalar mode π taking the form of a diffeomorphism
combined with a conformal transformation and shift
involving the reference metric,

δgμν ¼
π

2

�
m2

1gμν þm2
2Eμν

�þ∇ðμṽνÞ; ṽμ ¼ Eμαη
αβ
∂βπ:

ð35Þ

This leads to the following variation of the action:

δπS ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
πΠ ¼ 0; ð36Þ

where

Π ¼ 1

2

�
m2

1g
μν þm2

2E
μν
�
Eμν þ∇ · ξ: ð37Þ

Some comments on this variation are in order. Linearizing
about flat space, so gμν ¼ ημν þ hμν and Eμν ¼ ημν þ 1

2
hμν,

we simply recover the spin-0 part of (26), namely δgμν ¼
π
2
m2ημν þ ∂μ∂νπ, but have now identified the fully non-

linear equivalent excitation about an arbitrary background.

We note that in the “vielbein-like” language, this pertur-
bation takes the simple form

δEμν ¼
π

4

�
m2

1Eμν þm2
2ημν

�þ 1

2
∇̃μ∇̃νπ; ð38Þ

where the covariant derivative ∇̃ is taken with the con-
nection Γ̃α

μν expressed in terms of the standard dynamical
metric connection by the relation,

Γα
μν ¼ Eα

βðE−1ÞγμjΓ̃β jνÞγ þ ðE−1Þαβ∂ðμjEjνÞβ: ð39Þ

In terms of Eμν, the scalar equation can be explicitly
written as

Π ¼ 1

2

�
m2

1Πð1Þ þm2
2Πð2Þ� ¼ 0; ð40Þ

where we have defined,

Πð1Þ ¼ Aαβγμνρ
ð1Þ ∂½αEβ�γ∂½μEν�ρ þm2

1ð3½E� − 12Þ

þm2
2

�
1

2
½E�2 − 1

2
½E2� − 6

�
− T; ð41Þ

Πð2Þ ¼ Aαβγμνρ
ð2Þ ∂½αEβ�γ∂½μEν�ρ þm2

1

�
−½E2� þ ½E�2 − 3½E��

þm2
2

�
1

2
½E3�− 3

4
½E�½E2� þ 1

4
½E�3 − 3

2
½E�

�
−EμνTμν:

ð42Þ

Let us assume the matter is such that the stress tensor does
not involve derivatives of the metric, as for example is the
case for (minimally coupled) scalar or vector fields, Yang-
Mills theories or perfect fluids. Then the scalar equation
Π ¼ 0 never involves terms with more than one derivative
acting on the metric (or equivalently on Eμν), and thus is a
constraint equation. Furthermore, the one derivative terms
are determined by the tensors,

Aαβγμνρ
ð1Þ ¼ ηγρgα½μgν�β − 2ðE−1Þρ½αgβ�½μðE−1Þν�γ

þ 4ðE−1Þγ½αgβ�½μðE−1Þν�ρ; ð43Þ

Aαβγμνρ
ð2Þ ¼ ½E�

�
1

2
ηγρgα½μgν�β − ðE−1Þρ½αgβ�½μðE−1Þν�γ

þ 2ðE−1Þγ½αgβ�½μðE−1Þν�ρ
�
− 2ηγρgα½μEν�β

þ ðE−1Þγρgν½αgβ�μ − 4ðE−1Þρ½μgν�½αgβ�γ
þ 2ðE−1Þρ½αEβ�½μðE−1Þν�γ − 4ðE−1Þγ½αEβ�½μðE−1Þν�ρ:

ð44Þ

An important point that will be relevant shortly is that due
to the derivatives of Eμν entering only via the combination
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∂½αEβ�γ , the scalar constraint contains no time derivatives of
Ett at all. However it does contain spatial derivatives of Ett.

III. 3 + 1 DYNAMICAL FORMULATION

We now employ a 3þ 1 decomposition and since the
map Eμν → gμν is explicit, it will prove convenient to work
with Eμν as our dynamical variable. Given a novel choice
for momentum variables, this 3þ 1 decomposition will
allow us to solve the vector and scalar constraints explicitly.
Our starting point is the action, which written in terms of
Eμν takes the rather elegant form,

S ¼
Z

d4xjdetEj
�
−
1

2
Aαβγμνσ
ð1Þ ∂½αEβ�γ∂½μEν�σ

−m2Lmass þ Lmatter

�
: ð45Þ

Note the derivative term is identical to the one entering
in Πð1Þ. This is because, in the absence of matter, the terms
containing derivatives of the E matrix in Πð1Þ are simply
equal to −Rþ 2∇ · ξð1Þ with this last term being a total
divergence. Hence we see the Einstein-Hilbert term in the
action is just given by the derivative terms in ∼jdetEjΠð1Þ
without matter.
Consider now the canonical conjugate momenta to Eμν.

First note that the action contains no momentum conjugate
to Ett since Ėtt does not appear in the Lagrangian. Then the
canonical momenta conjugate to Eti and Eij are given by

πi ¼ jEjAittμνσ
ð1Þ ∂½μEν�σ; πij ¼ −jEjAtijμνσ

ð1Þ ∂½μEν�σ; ð46Þ

where we use the notation jEj ¼ jdetEj. In what follows we
will work with the simpler momentum variables,

Pi ¼ ∂½tEi�t; Pij ¼ ∂½tEi�j; ð47Þ

which are linearly related to πi and πij with coefficients
depending only on Eμν. An important point we return to
later is that when the action is written in these variables,
there are then no derivatives of Ett at all—the only
derivatives that enter above are spatial ones, and these
can only occur in the combination Pi ¼ ∂½tEi�t.
Now using the (spatial part of the) reference metric

we may decompose the spatial components Eij and our
momenta Pij into their traceless parts, Ẽij and P̃ij, and trace
parts Ẽ and P̃, as

Eij ¼ Ẽij þ Ẽδij; Pij ¼ P̃ij þ P̃δij;

δijẼij ¼ δijP̃ij ¼ 0: ð48Þ
We now regard the upper triangular components of the
symmetric spatial traceless Ẽij (so j ≥ i) as the dynamical
variables of our massive gravity theory, in the sense that
they have second order time evolution equations. As we
will shortly discuss, the remaining components Ẽ and
Eit have first order evolution equations from the vector
equation, and the last component Ett is algebraically
determined (at least for conventional matter) in terms of
the other variables by the scalar constraint. Thus we may
write coordinates on the phase space as

�
Eti; Ẽ; Ẽij; Pi; P̃; P̃ij

�
; ð49Þ

and then Ett is a function of these phase space variables and
their first derivatives which we can regard as an auxiliary
variable. We now explicitly show how this works.

A. Vector equation

Focusing on the vector equation, ξμ ¼ 0, given in
Eq. (33) then performing the 3þ 1 decomposition in phase
space variables (49) and expanding about flat space, so
Eμν ≃ ημν, we can write

Vtαβσ
∂½αEβ�σ ¼ 2Vt½ti�tPi þ 2Vt½ti�

iP̃þ 2Vt½ti�jP̃ij þ Vtijσ
∂½iEj�σ ≃ 6m2P̃

Viαβσ
∂½αEβ�σ ¼ 2Vi½tj�tPj þ 2Vi½tj�

jP̃þ 2Vi½tj�kP̃jk þ Vijkσ
∂½jEk�σ ≃ −2m2Pi; ð50Þ

where the approximation ≃ is understood to mean up to
terms that only involve spatial derivatives acting on Eμν.
Hence we may regard these four equations as linear
constraints for the four momentum variables P̃ and Pi,
and at least near flat space wemay invert this linear system to
solve for these momenta. These four momenta then depend
on all the metric components Eμν, including Ett, through the
components of Vμαβσ . They also depend linearly on spatial
derivatives of metric components through ∂½iEj�σ , but cru-
cially they do not depend on derivatives of Ett.

B. Scalar equation

Now we turn to the scalar constraintΠ ¼ 0 given in (40),
again assuming our matter is of a conventional type so that
while the stress tensor depends on the metric, it does not
explicitly involve metric connection terms. As already
observed above, this equation only depends on first
derivatives of Eμν. These enter through the combination
∂½μEν�σ, so as noted above, there are no Ėtt terms. Further-
more spatial gradients of Ett come in the structure ∂½tEi�t,
and hence are replaced with the momenta Pi. Therefore, we

DYNAMICAL FORMULATION OF GHOST-FREE MASSIVE … PHYS. REV. D 108, 084052 (2023)

084052-9



may write the scalar constraint in terms of our phase space
variables (49), and their derivatives, together with Ett so
that it contains no derivatives of Ett at all.
The dependence on the momenta is quadratic and will be

given more explicitly below. First note that ðE−1Þμν can be
written as

ðE−1Þμν ¼ 1

jEjQ
μν; ð51Þ

where each componentQμν is a polynomial in those of Eμν,

and linear in each one. Hence given the form of Aαβγμνσ
ð1Þ

above we might have naively expected a quartic expansion
of its derivative terms of the form,

jEj4Aαβγμνσ
ð1Þ ∂½αEβ�γ∂½μEν�σ ¼ C4E4

tt þ C3E3
tt þ C2E2

tt

þ C1Ett þ C0; ð52Þ

with the coefficients CA depending on the components of
Eμν other than Ett, together with the spatial gradients ∂½iEj�k
and also all the momenta, Pi, P̃ and P̃ij, but no derivatives of

these. Likewise taking jEj5Aαβγμνσ
ð2Þ we might have expected a

quintic expansion in the component Ett. However, as we
explain in detail in Appendix A, due to the index anti-
symmetries of these two tensors, Aαβγμνσ

ð1;2Þ , in fact we find

simpler quadratic and cubic expansions going as

jEj2Aαβγμνσ
ð1Þ ∂½αEβ�γ∂½μEν�σ ¼ C0

2E
2
tt þ C0

1Ett þ C0
0;

jEj3Aαβγμνσ
ð2Þ ∂½αEβ�γ∂½μEν�σ ¼ C00

3E
3
tt þ C00

2E
2
tt þ C00

1Ett þ C00
0:

ð53Þ

Since the mass terms have similar structures, then for
certain types of matter this constraint may determine Ett as
the root of a polynomial. As an example, consider matter
that is a canonical scalar field ϕ with potential VðϕÞ, so

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμν

�ð∂ϕÞ2 þ VðϕÞ�: ð54Þ

Now restricting ourselves to the case of a minimal mass
term (so m2 ¼ 0), we can always scale the scalar constraint
by the determinant of E, and consider the constraint
jEj2Π ¼ 0. The quadratic gradient term takes the form
above. For the remaining terms, the explicit Ett dependence
of the stress tensor term that enters takes an identical form,

jEj2�m2
1ð3½E� − 12Þ − gμνTμν

� ¼ D0
2E

2
tt þD0

1Ett þD0
0;

ð55Þ

so in this minimal case with a canonical scalar field the
scalar constraint is in fact a simple algebraic quadratic

polynomial in Ett. We will give its explicit form in the case
of spherical symmetry in our later numerical example, but
emphasize that this reduction to a quadratic condition does
not require any symmetry. Including also the nonminimal
mass term, so m1, m2 ≠ 0, then considering jEj3Π ¼ 0
yields an algebraic cubic equation in Ett for such scalar
field matter.
Since the scalar constraint is algebraic in Ett we may

wonder whether we can solve it for real Ett. Near flat
spacetime, Eμν ≃ ημν, the scalar constraint reduces to the
form in linear theory as written earlier in (24), so in our
variables,

m2ð−Ett þ 3ẼÞ ¼ −
2

3
T; ð56Þ

and thus (given a nonzero mass) near flat spacetime we may
always solve this for Ett. However when the geometry
deforms away from flat spacetime nonlinearly in Eμν it is
then an interesting question whether these algebraic rela-
tions can be solved for Ett (such that it is real). Since the
EFT breaks down when the algebraic relation can no longer
be solved for real Ett, this simply indicates a sensitivity on
UV physics at that point. We will return to this issue in our
explicit numerical example later.

C. Physical degrees of freedom

Starting with our phase space coordinates, ðẼ; Eti; Ẽij;
P̃; Pi; P̃ijÞ and auxiliary Ett, the evolution of Ẽ, Eti and Eij

is determined by

˙̃E ¼ 2P̃þ 1

3
∂
iEti; Ėti ¼ 2Pi þ ∂iEtt;

˙̃Eij ¼ 2P̃ij þ ∂iEtj −
1

3
δij∂

kEtk: ð57Þ

However, we have now seen that Ett is determined
algebraically by the phase space variables through the
scalar constraint. This statement is fully nonlinear and valid
about any background. Further we have seen that the vector
equation ξμ ¼ 0 gives linear constraints on P̃ and Pi, the
coefficients in these linear equations again depending
algebraically on the auxiliary variable Ett. Thus the
evolution of Ẽ, Eti is first order in time, and determined
by this vector equation. Hence we may reduce to the
physical phase space of the theory, the component which
enjoys a second order dynamics,

�
Ẽij; P̃ij

�
; ð58Þ

together with a first order dynamics for ðẼ; EtiÞ, given by the
first two equations above in (57), and the non-dynamical
auxiliary Ett by solving the scalar and vector constraints
simultaneously for Ett, Pi and P̃.
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Writing PA ¼ ðPi; P̃Þ, and taking X to be the set of variables, X ¼ fẼ; Eti; Ẽijg, then schematically this system takes
the form,

MABðEtt; XÞPAPB þMAðEtt; X; ∂iX; P̃ijÞPA þMðEtt; X; ∂iX; P̃ijÞ ¼ 0;

QABðEtt; XÞPB þQAðEtt; X; ∂iX; P̃ijÞ ¼ 0; ð59Þ

the former equation being the scalar constraint, the latter
the vector one, and ∂iX denotes the set of spatial derivatives
of X. We emphasize that this system is local to a spatial
location xi since PA and Ett only enter algebraically, not
through their derivatives. Thus given the data X on a time
slice, hence we also have ∂iX, then at any point xi on the
slice we can consider this relatively simple system and
solve for PA and Ett. Explicitly one may solve the momenta
as PB ¼ −ðQ−1ÞBAQA. From the earlier Eq. (50) we see we
may always solve this linear system near flat spacetime.
Then having solved for the PA we substitute them into the
scalar equation to obtain a somewhat more complicated
algebraic relation for Ett of the form,

ΠðEtt; X; ∂iX; P̃abÞ ¼ 0: ð60Þ

Thus given data on a time slice, Ẽ, Eti, Ẽij and P̃ab, we can
then compute P̃, Pi and Ett from this. Having solved for
these we have the evolution of the first order variables Eti

and Ẽ, and what remains to close the dynamics is to obtain

equations for the time derivatives ˙̃Pij which come from
components of the Einstein equations. Then the second
order dynamics ðẼij; P̃ijÞ gives the physical degrees of
freedom of the theory, and given that Ẽij is the traceless part
of the spatial components Eij, correctly accounts for the
five expected degrees of freedom.

D. Evolution equations

To obtain the second order evolution equations we
consider the components of the Einstein equation with
one index raised, which we decompose as

Hμ ¼ Et
μ; Ei

j ¼ Ẽi
j þ Ẽδij; ð61Þ

so that Ẽi
i ¼ 0. We note that since gμαEα

ν ¼ gναEα
μ then Ei

t

is determined by a linear combination of the above
components.
Now we consider the equation Ẽi

j when it is written using
our phase space variables ðEti; Ẽ; Ẽij; Pi; P̃; P̃ijÞ and Ett.
The terms with time derivatives in the equations Ẽi

j then
take the form,

Ẽi
j ¼ F i

j
˙̃Pþ F ai

jṖa þ F abi
j
˙̃Pab þ F 0i

jĖtt þ…; ð62Þ
where the coefficients depend on these phase space
variables and Ett, and the ellipses … are terms with no

time derivatives (when written in these variables). Near flat

spacetime one simply finds, Ẽi
j ≃ δia ˙̃Paj þ…. We note

that one might have naively expected terms going as ðĖttÞ2
as this would be a two derivative term, but we see from the
form of the action in (45) that it contains no time derivatives
of Ett, and thus in the equations of motion one can find at
most one time derivative of Ett.
Now since we impose vanishing constraints, ξμ and Π,

which contain no time derivatives in our variables, we may
also differentiate these with respect to time. Rewriting the
time derivatives of Ẽ, Eti and Ẽij that are generated in terms
of our momenta P̃, Pi and P̃ij, they then have a similar form
to the above, so

0 ¼ ξ̇μ ¼ Gμ
˙̃Pþ Ga

μṖa þ Gab
μ
˙̃Pab þ G0

μĖtt þ…;

0 ¼ Π̇ ¼ H ˙̃PþHaṖa þHab ˙̃Pab þH0Ėtt þ… : ð63Þ

At every point on the Cauchy surface, Eqs. (62) and (63)

form a linear system which we may solve for ˙̃P, Ṗa,
˙̃Pab and

Ėtt. Now having solved for ˙̃Pab we may use the definition

of this momentum, in Eq. (57), to find ˙̃Eab, closing our
dynamical system. We note that while the solution of the

above system gives Ėtt, Ṗa and ˙̃P, since we are solving
for these algebraically at every point, this information is
redundant.

E. Hamiltonian and momentum initial
constraints

While we have the expected five components of Ẽij

which enjoy second order dynamics, we also have a first
order dynamics in Ẽ and Eti and one may wonder how to
make sense of the data on the initial surface associated to
these variables. However, as we now argue, just as in GR
we have to satisfy the analog of the Hamiltonian and
momentum constraints on initial data, and we can take
these to determine these four components Ẽ and Eti in the
initial data. Thus whilst these variables obey first order
equations, since their initial data is constrained, there is no
physical dynamics associated to them.
Recall in usual GR the Hamiltonian and momentum

constraints are the Einstein equations ðEðGRÞÞtμ. Due to the
contracted Bianchi identity and matter stress-energy con-
servation, we have
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−∂tðEðGRÞÞtμ ¼ ∂iðEðGRÞÞiμ þ Γβ
βαðEðGRÞÞαμ

− Γα
μβðEðGRÞÞβα: ð64Þ

Provided the remaining Einstein equations ðEðGRÞÞij hold,
we see that ∂tðEðGRÞÞtμ ¼ cμiν∂iðEðGRÞÞtν þ cμνðEðGRÞÞtν for
some coefficients ciνμ , cμν. This, however, does not guar-
antee the constraints are satisfied, only that if they are
initially true they will remain true. Thus we impose them as
constraints on the initial data.
Returning to our massive gravity theory, having imposed

the Ẽi
j, ξμ and Π equations we may consider the analogous

relations for the remaining Einstein equations Hμ and Ẽ in
our decomposition (61). First, given Ẽi

j ¼ 0, we may write

gijgjkEk
t ¼ gkμgttHμ þ Ẽgijgjt; ð65Þ

and invert this as

Ei
t ¼ ωiμHμ þ ωiẼ; ð66Þ

which implicitly defines the coefficients ωi and ωiμ.
At least near flat space this inversion is possible, and
ωij ≃ −δij, with ωit ¼ ωi ≃ 0. Using this expression we
may write the vector and scalar constraint equations we are
imposing as

0 ¼ ∇νEν
t ¼ Ḣt þ ωiν

∂iHν þ ωi
∂iẼ þ atνHν þ atẼ; ð67Þ

0 ¼ ∇νEν
j ¼ Ḣj þ ∂jẼ þ ajνHν þ ajẼ; ð68Þ

0 ¼ Π ¼ bμHμ þ bẼ; ð69Þ

recalling that the vector equation comes from the diver-
gence of the Einstein equations, and if it is satisfied, so
ξμ ¼ 0, then from Eq. (37)Π takes the above form when the
equations Ẽi

j ¼ 0 are satisfied. Here the various coeffi-
cients aμν, aμ, bμ and b are functions of the metric variables
and the connection, explicitly given as

atν ¼ Γρ
tρδ

ν
t − Γν

tt þ ωiνΓk
ik þ ∂iω

iν

at ¼ Γk
ikω

i − Γk
tk þ ∂iω

i
;

ajν ¼ Γρ
tρδ

ν
j − Γν

jt − Γt
jiω

iν

aj ¼ Γt
jt − Γt

jiω
i

;
bμ ¼ 1

2
m2

1δ
μ
t þ 1

2
m2

2ðEμ
t þ Et

jω
jμÞ

b ¼ 3
2
m2

1 þ 1
6
m2

2ðẼþ 3Et
jω

jÞ :

Noting that we may eliminate Ẽ in terms of Hμ using the
scalar constraint equation, which at least near flat space
where b ≃ 3

2
m2

1 þ 1
6
m2

2 will be possible, leaves the vector
equation of the form

0 ¼ Ḣμ þ ciνμ ∂iHν þ cμνHν: ð70Þ

We see that this is precisely the same structure as in
conventional GR in Eq. (64) above—to ensure that the full
Einstein equation system Eμ

ν is solved when evolving just
the traceless spatial part Ẽi

j and imposing the constraints
ξμ and Π, it is sufficient and necessary to impose the
Hamiltonian Ht and momentum Hi equations on initial
data. Once imposed on the initial surface, they remain true
for all time without leading to any further constraints or
needing to be imposed at each time.
These Hamiltonian and momentum constraints depend

on the variables Eti and Ẽ, and thus we can think of using
the freedom in their initial values to solve these initial
constraints. Then, as claimed above, locally the free initial
data is just that for the five second order degrees of
freedom ðẼij; P̃ijÞ.

F. Summary

Let us now summarize our evolution scheme. Starting
with data on a Cauchy slice comprising the physical phase
space variables ðẼij; P̃ijÞ and first order variables ðẼ; EiÞ:

(i) At each point on the Cauchy slice the constraint
system (59) can be solved for Ett, Pi and P̃.

(ii) These then yield the time derivatives of the first
order variables ðẼ; EiÞ using Eq. (57).

(iii) Now at each point the combination Ẽi
j, ξ̇μ and Π̇

forms a linear system which may be solved for ˙̃Pab

(and also ˙̃P, Ṗa and Ėtt, but these are not required).
Then from (57) this yields the time derivatives of our
dynamical variables Ẽij.

If the data on the initial slice is chosen so that the
Hamiltonian and momentum constraintsH ¼ Et

t and Hi ¼
Et

i vanish, in addition to the vector and scalar constraints,
then Hμ will remain zero under the evolution.

IV. HARMONIC FORMULATION FOR THE
MINIMAL THEORY

Before turning to the issue of well posedness, and
demonstrating the above 3þ 1 decomposition scheme
can be used to perform numerical gravitational collapse
evolutions, we pause to briefly mention a different, elegant
formulation of the dRGT theory where the vector con-
straint, if satisfied on the initial Cauchy surface, is auto-
matically satisfied for all times, and leads to no secondary
constraint. We do this here only for the case of the minimal
mass term. It can be done also for the quadratic mass term,
but we do not detail this here as this alternate formulation is
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not our focus, and the resulting form is considerably more
complicated than for the minimal mass term case.
For the minimal mass term, so setting m2 ¼ 0, there is a

natural dynamical formulation that appears similar to the
harmonic formulation for GR. For GR we may reformulate
the (trace reversed) Einstein equation as (see for example
[132] for a discussion of this),

RH
μν ≡ Rμν −∇ðμvνÞ −

�
Tμν −

1

2
gμνT

�
¼ 0; ð71Þ

which we can term the “harmonic” Einstein equation,
where we have introduced terms involving a vector field
constructed as,

vμ ¼ gαβ
�
Γμ

αβ − Γμ
αβ

�
; ð72Þ

where Γ̄μ
αβ is the connection of a smooth reference metric

ḡμν. We note that since we have a difference of connections
vμ transforms correctly as a vector field globally. Now the
principal part of the equation is

�
RH
μν

�
PP ¼ −

1

2
gαβ∂α∂βgμν; ð73Þ

so that all components of the metric propagate according to
the wave operator of the geometry itself. Thus initial data
for the problem is gμν and ġμν. However clearly generic
initial data does not evolve to satisfy our original Einstein
equation. The key point is that the contracted Bianchi
identity and matter stress-energy conservation implies

∇2vμ − Rμ
νvν ¼ 0; ð74Þ

so that provided vμ ¼ 0 and v̇μ ¼ 0 on an initial Cauchy
surface, then vμ will remain zero. If we choose gμν and ḡμν
and their first time derivatives to agree on the initial surface
then vμ ¼ 0 there. We may further choose our initial
data gμν and ġμν so that the four conditions v̇μ ¼ 0 hold.
These are precisely the usual Hamiltonian and momentum
constraints. Then evolving for some choice of reference
metric will yield a solution in the generalized harmonic
gauge vμ ¼ 0.
In massive gravity we naturally have a reference metric,

and therefore one may wonder whether there is also such a
harmonic formulation. For the mass terms considered here
this is indeed the case. We modify our Einstein equa-
tion (17) (with only the minimal mass term) using the
quantity ξμ in Eq. (33), whose vanishing gives the vector
constraint, as follows:

EH
μν ≡Gμν −

2

m2
1

�
∇ðμξνÞ −

1

2
gμν∇ · ξ

�
þm2

1M
ð1Þ
μν − Tμν ¼ 0:

ð75Þ

The principal part of this is

�
EH
μν

�
PP ¼

�
−δβðμδ

γ
νÞðE−1Þασ þ δαμδ

β
νðE−1Þγσ þ Eρðμδ

β
νÞη

γρgασ

− Eρðμδ
γ
νÞη

σρgαβ
�
∂α∂βEγσ ð76Þ

and we see that this vanishes for the trace, gμνEH
μν. Indeed the

trace of this harmonic Einstein equation is precisely the scalar
constraint Π ¼ 0 (for m2 ¼ 0) and hence it contains no two
derivative terms. For perturbations of flat space we see

�
EH
μν

�
PP ≃ −∂2Eμν þ ∂μ∂νE; ð77Þ

so the components of the traceless part of Eμν obey wave
equations. Thus near flat space all but one linear combination
of the Eμν propagate by hyperbolic wave operators, with the
remaining part being determined by the scalar constraint
equation which is only first order in derivatives. Rather than
solving the vector equation ξμ ¼ 0 as a linear constraint on
momenta as in our previous 3þ 1 decomposition, instead in
this formulation the Bianchi identity implies

∇2ξμ − Rμ
νξ

ν ¼ 0; ð78Þ

so that if ξμ ¼ 0 and ξ̇μ ¼ 0 initially then the vector
constraint ξμ ¼ 0 remains true under time evolution.
The initial condition that ξμ ¼ 0 is just the condition that
the vector constraint is imposed on the initial data. Then the
condition that ξ̇μ ¼ 0, together with the scalar constraint
holding, is the condition that the Hamiltonian and momen-
tum constraints hold initially. Thus in this harmonic
formulation, we have a wavelike evolution for all but
one linear combination of Eμν, and that is determined on
every time slice by the scalar constraint. The vector
constraint is only imposed initially, being automatically
satisfied at all times, and no new constraint arises.

V. A WELL-POSED SHORT DISTANCE
COMPLETION

Famously GR admits a well-posed hyperbolic formu-
lation, as do some modified gravity theories, such as the
Horndeski [133,134] and Einstein-Aether [135] theories.
When dealing with massive gravity, it is understood that
even classically, it ought to be treated as a low-energy
effective field theory with operators entering at some cutoff
scale Λcutoff as indicated in (1) and hence only providing a
meaningful description of the long wavelength dynamics.6

Since the issue of well posedness is embedded in the short

6Low energy gravity in string theory is another example where
the leading low energy supergravity receives classical correc-
tions; the α0 higher derivative terms. However in this case the
truncation to the leading supergravity (or at least its bosonic part)
will be well posed but not at higher order.
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distance behavior of the theory, whether the classical
truncation of dRGT massive gravity without the higher
order EFT operators is well posed or not, is not a relevant
physical question. However, when numerically simulating
a theory, it is important to have PDEs that are well posed in
the continuum limit. Without a well-posed formulation,
it is unclear what a numerical discretization of the system
represents—while a finite discretization will give a unique
time evolution from initial data, one would not expect to be
able to refine the discretization and obtain numerical
solutions in a continuum limit. Hence the interpretation
of any numerical solution is not well defined (see earlier
footnote 3). Even though we are only interested in the long
wavelength dynamics of the system which should remain
insensitive to the higher order EFT operators included
in (1), these operators are of paramount importance to the
well posedness of the theory, and hence to its numerical
simulation, if the truncation to the leading low energy
theory is not well posed itself.
Thus we should ask whether our 3þ 1 formulation is

expected to give a well-posed initial value problem. We
believe this is generally unlikely. Certainly linearized
perturbations of flat spacetime obey a well-posed hyper-
bolic system. However the scalar constraint changes
away from flat space—for linear perturbations about flat
space Ett is simply determined by the stress tensor and Ẽ, as
in (56), but nonlinearly it involves terms quadratic in first
derivatives of the second order dynamical variables Ẽi

j

[as seen explicitly in (40)]. Thus solving for Ett and then
substituting its form into the evolution equations for Ẽi

j

will change the derivative structure, and likely will lead to
ill posedness for dynamics away from flat spacetime.
While the truncated theory (very likely) lacks a well-

posed initial value formulation, the higher order EFT
operators naturally provide a short distance completion to
achieve well posedness, see for instance [121–128]. The
precise effects of higher order EFT operators on the long-
wavelength modes is irrelevant. However on short-distance
modes these operators affect the behavior in a way that can
naturally lead to well posedness of the theory as a whole.
The aim of this work is not to prove that every completion
leads to well posedness (an unlikely outcome particularly
when focusing on a specific formulation and gauge choice),
but rather to show that the low-energy EFTwe consider can
in principle be embedded within a well-posed formulation
and that low-energy observables are immune to the details
of this high-energy-inspired formulation.
Instead of going back to the covariant formulation of

higher order operators at the level of the action, a more
pragmatic approach we will follow here is to include
dissipative contributions directly at the level of our 3þ 1
formulation. These are understood to mimic the effect of
higher order (covariant) EFT operators on short distance
modes entering at the cutoff scale Λcutoff . In doing so, we
will need to ascertain that adjusting the precise value of that

scale bears little effects on low-energy physics. This will
then ensure that the completed theory has a well posed and
diffusive short distance behavior, but the physical scales of
interest are insensitive to the details of the regulation for a
sufficiently small cutoff length scale. More details on how
diffusive or higher order gradient terms arise from the UV
completion of related types of theories are found in [126].
We now discuss the concrete inclusion of these terms and
their effects on the posedness of the system.
Our dynamical system comprises the fields Ẽij, Ej, Ẽ

and momenta P̃ij once we have algebraically eliminated
Ett, Pi and P̃, and we may write this system as

∂tP̃ij ¼ Sij; ∂tẼij ¼ U ij; ∂tEi ¼ Vi; ∂tẼ ¼W:

ð79Þ

The latter three relations simply follow directly from the
definition of our momenta in (47). The first derives from
solving (62) and (63) for ∂tP̃ij.
Focussing on the highest spatial derivative terms in these

evolution equations, the equation for the time evolution
of the momenta P̃ij contains second spatial derivatives of
these fields,

Sij ¼ J ij
klmn

∂k∂lẼmn þ J ij
klm

∂k∂lẼm þ J ij
kl
∂k∂lẼþ…;

ð80Þ

where the ellipses include terms with only first spatial
derivatives acting on Ẽij, Ej, Ẽ and P̃ij. The coefficient
functions, the J s above, depend on the fields and also their
first spatial derivatives (as they generally depend on the
Ett, Pi and P̃, which when eliminated introduce first
derivatives of the other fields). The remaining evolution
equations for the fields Ẽij, Ej, Ẽ only contain first order
spatial derivatives.
While the Einstein equations are second order in spatial

derivatives, the structure above is quite nontrivial in the sense
that one might imagine Sij should contain spatial derivatives
of higher order for two reasons. First, as discussed in
Sec. III D it derives not just from the Einstein equations
Ẽi
j, as in (62), but also from time derivatives of the scalar

and vector constraints, as in (63). Second we might imagine
Sij should contain spatial derivatives of higher order than
two once Ett, Pi and P̃ are eliminated, since we know that
these depend quadratically on first derivatives of the fields
Ẽij, Ej, Ẽ.
To address these points, we recall the fact noted earlier,

that the action (45) when written in our momentum
variables Pi and Pij is only algebraic in Ett, having no
terms with derivatives (time or space) acting on it. Further it
is clearly algebraic in the Pi and P̃. Hence being first order
in derivatives, when this action is varied to obtain the
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Einstein equations, and in particular the components Ẽi
j,

and these are written in our momentum variables, these
contain at most first derivative terms in Ett, Pi and P̃. In
addition, since the scalar and vector constraints contain no
derivatives in Ett, Pi and P̃, and only first derivatives in the
other fields, then solving (62) and (63) for ∂tP̃ij still gives
an expression that contains at most second spatial deriv-
atives in Ẽij, Ej, Ẽ, and first spatial derivatives in the Ett, Pi

and P̃. Now finally given the structure (59), so that Ett, Pi

and P̃ depend on first derivatives (albeit quadratically)
in the other dynamical fields, when they are eliminated
to yield Sij they will generate at most second deriva-
tive terms.
As motivated by the previous discussion and by the

inclusion of higher order operators in our EFT (1), we
now simply include additional spatial diffusion terms
given by the flat reference metric into each evolution
equation as

∂tP̃ij ¼ Sij þ l2δmn
∂m∂nP̃ij;

∂tẼij ¼ U ij þ l2δmn
∂m∂nẼij; ð81Þ

∂tEi ¼ Vi þ l2δmn
∂m∂nEi;

∂tẼ ¼ W þ l2δmn
∂m∂nẼ; ð82Þ

where the scale l is the length scale associated to the short
distance completion. Then for timescales T and length
scales L such that

T ≪ 1=l2; L ≫ l; ð83Þ

these diffusion terms will be irrelevant. Now to understand
the character of the system we should linearize about a
general background, and consider the highest derivative
terms for a perturbation about this. We then see the highest
derivative terms, which are those of second order, take
the form

∂t

0
BBBB@

δP̃ij

δẼij

δEi

δẼ

1
CCCCA ¼

0
BBBB@

l2δmi δ
n
jδ

kl J ij
klmn J ij

klm J ij
kl

0 l2δmi δ
n
jδ

kl 0 0

0 0 l2δmi δ
kl 0

0 0 0 l2δkl

1
CCCCA∂k∂l

0
BBB@

δP̃mn

δẼmn

δEm

δẼ

1
CCCAþ…; ð84Þ

where the ellipses represent terms that are lower order in derivative terms. In the previous expression, the coefficients J are
understood to be evaluated on the background. Then on short scales the two derivative terms dominate, and we may think of
the coefficient functions in the matrix controlling this term as approximately constant. To elicit the local behavior, we write
the perturbation in Fourier space as

δP̃ij ¼ aije−ωteikmx
m
; δẼij ¼ bije−ωteikmx

m
; δEi ¼ cie−ωteikmx

m
; δẼ ¼ ce−ωteikmx

m ð85Þ

so that on small scales, locally we have

ω

0
BBB@

aij
bij
ci
c

1
CCCA ≃

0
BBBB@

l2δmi δ
n
j k

2 J ij
klmnkkkl J ij

klmkkkl J ij
klkkkl

0 l2δmi δ
n
j k

2 0 0

0 0 l2δmi k
2 0

0 0 0 l2k2

1
CCCCA

0
BBB@

amn

bmn

cm
c

1
CCCAþ…; ð86Þ

with k2 ¼ δijkikj. Clearly ω is given by the eigenvalues of
the matrix on the right-hand side. However its upper
triangular form implies that its eigenvalues are simply
given by its diagonal entries. Hence we have

ω ¼ l2k2; ð87Þ

for all the eigenvectors of this system, and thus all the
field and momentum perturbations diffuse on small scales,
governed by the diffusion length scale l. Thus this
diffusive short distance completion has a well-posed initial
value formulation, for any positive diffusion constant

l > 0. Given a setting with physical length and timescales
of interest, we may then choose a sufficiently small l so
that we expect the dynamics on these physical scales are
insensitive to the regulator, while the irrelevant very short
scales are controlled by it. In using such a regulator in
practice one must confirm that it is indeed the case that the
physics is insensitive to the regulator—this is essentially
the statement that the leading massive gravity is a good
EFT. For example, one could check that the physics on the
scales of interest are insensitive to doubling the chosen
value of l. We will do exactly this in our later numerical
example.
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We note that this regularization will work more generally
than our case of interest here. Take a dynamical system for
a set of fields ϕ so that ∂tϕ ¼ Fðϕ; ∂iϕ; ∂i∂jϕÞ for some
functional F that depends on only up to second derivatives,
but may be nonlinear in its arguments, e.g. could contain
a term such as ∼ð∂iϕÞð∂iϕÞð∂j∂jϕÞ. Linearizing about a
background ϕ ¼ ϕ

0
þ δϕ will give

∂tδϕ ¼ Mijðϕ
0
Þ · ∂i∂jðδϕÞ þMiðϕ

0
Þ · ∂iðδϕÞ

þ Mðϕ
0
Þ · ðδϕÞ þ Cðϕ⃗0Þ: ð88Þ

Now our regularization simply adds diffusion terms as
∂tϕ ¼ Fðϕ; ∂iϕ; ∂i∂jϕÞ þD∂i∂iϕ so that the highest deri-
vative terms which determine the principle symbol of the
PDE system are ∂tδϕ ∼Mijðϕ

0
Þ · ∂i∂jðδϕÞ þD∂i∂iðδϕÞ.

Writing, δϕðt; x⃗Þ ¼ eωteikmx
m
fðt; x⃗Þ with f being slowly

time and space varying functions yields

ωf ¼ −Mijðϕ
0
Þ · kikjf −Dk2f þ… ð89Þ

so that … are terms that are subdominant in the large k2

limit. Now if the matrix Mij is upper triangular for all ðijÞ,
then the diffusion terms will determine the diagonal
components and hence the eigenvalues of this system, so
that ω ¼ −Dk2 for all the eigenvectors, and the system
becomes well posed and of diffusive character for any
D > 0. Thus D can be taken very small, so as not to
interfere with the physical length and timescales of interest,
but will ensure well posedness on the shortest scales. In
practice, when taking some smallD it must be checked that
indeed the dynamics on the physical scales are insensitive
to the regulator, for instance by adjusting the value ofD and
confirming that the results are insensitive to the precise
value of D being used.
We may obtain this structure from relativistic dynamical

systems with suitable kinetic terms and equations of motion
that are at most second order in derivatives. In a 3þ 1
decomposition half the fields ϕ will be the fields of the
theory,ΦA, and their time derivatives will be determined by
their momenta, ΠA, and for suitably conventional kinetic
terms these relations will not involve any second spatial
derivatives of the fields or momenta. The remaining half of
ϕ will be these momenta, and their time derivatives will
involve second derivatives of the fields, but not of the
momenta. Thus we will have

∂t

�ΠA

ΦA

�
¼

�
D∂

2
kδAB Mij

AB∂i∂j

0 D∂
2
kδAB

��ΠB

ΦB

�
þ… ð90Þ

and hence obtain anMij that takes an upper triangular form.
Our massive gravity theory is of this form, except with

additional momentum fields.7 It is instructive to consider
a simple example, a single relativistic scalar field with
equation ϕ̈ − ϕ̇ − ∂

2
kϕ ¼ 0. This is well posed, and thus

obviously does not require regulation, but we may still
consider regulating it. Defining a momentum π ¼ ϕ̇ this
can be written in first order form,

∂t

�
π

ϕ

�
¼

�
D∂

2
k ∂

2
k

1 1þD∂
2
k

��
π

ϕ

�
; ð91Þ

where we have included the regulation, and clearly see the
upper triangular structure for the two derivative terms on
the right-hand side. Now eliminating π and rewriting this in
second order form we obtain

ϕ̈ − ϕ̇ − ∂
2
kϕ ¼ −D∂

2
kϕþ 2D∂

2
kϕ̇ −D2ð∂2kÞ2ϕ: ð92Þ

From the perspective of the second order system we see the
regulator has introduced a higher order spatial derivative.
Recall we are interested in D > 0 and taking the limit
D → 0. For any D > 0, no matter how small, for suffi-
ciently short scales this four-derivative term dominates and
therefore controls the character of the equation. However,
in the limit D → 0 all the terms on the right-hand side
become irrelevant on large scales compared to the two-
derivative term of the original equation on the left-hand
side. Thus for a usual second order system, our regulari-
zation method is equivalent to adding a particular set of
higher derivative terms with small coefficients.
The formulation (81) and (82), motivated by the exist-

ence of a meaningful completion allows the theory to enjoy
a well-posed continuum that can then be discretized and
numerically solved. We are taking here a pragmatic
(unashamedly artificial) approach which should not be
regarded as the actual physical completion, such as, for
example one arising from integrating out additional mas-
sive degrees of freedom.8 Rather it is a pragmatic proxy for
what one would expect to arise. We emphasize that classical
dRGT must be completed by something, but the precise
details of what this completion is, is irrelevant to the
description of long wavelength phenomena. Despite being

7We note that not all dynamical systems can be regulated in
this manner. An example is the first order system ϕ̇ ¼ ∂xϕþ
λð∂xϕÞ∂2xϕ. For general backgrounds this is not well posed.
However being a single equation, so the matrix Mij

∂i∂j is 1 × 1,
and simply given by λð∂xϕ0Þ∂2x, it does not take the required upper
triangular form. In order to regulate this one would have to add
suitable higher derivative terms, rather than two derivative
diffusion, or use a “fixing” scheme as introduced in [120].
We are very grateful to Luis Lehner for valuable discussion on
this point.

8A specific covariant example of how integrating out addi-
tional massive degrees of freedom leads to EFT operators that
change the nature of the dispersion relation and ultimately lead to
a trivial eigenvalue for the system was presented in [136,137].
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more artificial (and not formulated covariantly), our for-
mulation is very attractive from a numerical perspective,
being simple, and also is very natural when using a (3þ 1)-
phase space formulation—the decomposition in time nat-
urally defining the frame for diffusion. We also emphasize
that with a short distance completion, the theory is not
guaranteed to be free from instabilities and pathologies.
This is an independent question from that of well posed-
ness. Instabilities or pathologies may still arise in the long
wavelength dRGT dynamics, but they will not be asso-
ciated with arbitrarily short scales, and instead will be
associated to the dynamical length scales in the problem,
set by the length scale of the graviton mass, as well as the
scales included in the initial data. Such instabilities or
pathologies, should they exist, would be independent of the
irrelevant diffusion terms of the completion, and then
interpreted as physical phenomena of the long wavelength
description, signaling its breakdown. If such phenomena
arise, then a physical short distance completion would
be required to continue dynamical evolution, rather than
the artificial one we have introduced. We now turn to
explicit simulation of the dRGT theory to illustrate the
above formulation with its diffusive short distance
contributions.

VI. SPHERICAL COLLAPSE IN THE MINIMAL
THEORY

While the minimal theory is not thought to exhibit the
non-linearity required to switch on an active Vainshtein
mechanism, it is nonetheless interesting to explore what
happens under gravitational collapse, even though we do
not expect it to exhibit four-dimensional GR-like behavior
in the small mass limit. Even when the mass is not small it
is still a theory of gravity, by which we mean a theory of a
dynamic spacetime, and hence it is interesting to under-
stand its behavior. For example do (exotic) black holes
form when matter collapses? Can naked singularities form?
In what follows we therefore explore some aspects of its
dynamics under the assumption of spherical symmetry and,
as expected, we shall indeed see very different dynamics to
that of usual GR. The point of the following work is not to
disfavor the minimal theory against known gravitational
dynamics but rather to show a proof of concept of how the
dynamical evolution can be followed through numerically
in that simple (minimal) example. The application to the

nonminimal model and to other physically relevant sit-
uations will be explored elsewhere.
To proceed, we commit to a specific matter content and

consider gravitational collapse of a massless scalar field,Φ,
in spherical symmetry. The scalar equation of motion is
∇2Φ ¼ 0 and gives the matter stress tensor,

Tμν ¼ ∂μΦ∂νΦ −
1

2
gμνð∂ΦÞ2: ð93Þ

We use the coordinate invariance of the theory to choose
spatial polar coordinates for the metric and Minkowski
reference metric, xμ ¼ ðt; r; θ;ϕÞ, writing

Eμν ¼

0
BBB@

c rh 0 0

bþ 2r2a 0 0

r2ðb− r2aÞ 0

r2ðb − r2aÞ sin θ2

1
CCCA;

fμν ¼

0
BBB@

−1 0 0 0

1 0 0

r2 0

r2 sin θ2

1
CCCA; ð94Þ

so that regularity of the metric at the origin implies that
a, b, c, h should be smooth functions of r2 there. Earlier,
our Minkowski reference metric was expressed in
Minkowski coordinates. The only change to the previous
discussion from the use of spherical spatial coordinates is
at the level of the scalar and vector constraints, and in the
definition of the momenta in Secs. II C and III, where the
spatial partial derivatives, ∂i, are now replaced by spatial
covariant derivatives with respect to these spherical coor-
dinates in Minkowski. We have

∇½tEi�μ ¼ ∂½tEi�μ − Γ̃ν
μ½tEi�ν; ð95Þ

where ∇ is the covariant derivative with respect to the
reference metric fμν, so the Minkowski metric in the
spherical spatial coordinates. Since Γ̃ν

αβ vanishes if any
of its indices equal time, then the connection terms vanish
in the momenta Pi ¼ ∇½tEi�t. However they do contribute

to Pij ¼ ∇½tEi�j and its trace part P̃ ¼ 1
3
fij∇½tEi�j. We then

find first order dynamical variables and momenta,

Etr ¼ rh; Pr ¼
1

2
ð∂tEtr − ∂rEttÞ ¼

1

2
ðrḣ − ∂rcÞ;

Ẽ ¼ b; P̃ ¼ 1

6

�
3∂tẼ − ∂rEtr þ fijΓ̃ν

ijEtν

� ¼ 1

2

�
ḃ −

1

3
∂rh − h

�
; ð96Þ

with the second order geometric variable being
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Ẽrr ¼ 2r2a; P̃rr ¼
1

2

�
∂tErr − ∂rEtr þ Γ̃ν

rrEtν

�
− P̃frr ¼ r2ȧ −

1

3
r∂rh; ð97Þ

together with the matter scalar Φ and its momentum
pΦ ¼ Φ̇. The remaining component,

Ett ¼ c; ð98Þ

will be algebraically determined by the scalar constraint.
For convenience we define the following quantities from

the momenta,

ph ¼
2

r
Pr; pb ¼ 2P̃; pa ¼

1

r2
P̃rr; ð99Þ

so that ḣ ¼ ph þ…, ḃ ¼ pb þ… and ȧ ¼ pa þ…, where
terms with no time derivatives are included in the ellipses
…. This will allow us to formulate the evolution equations
for the metric functions a, b and h. We see that the metric
functions h and b are associated to Pi and P̃ and thus have a
first order dynamics, since these momenta are linearly
determined by the vector constraint and we may algebrai-
cally eliminate them. Thus it is the function a with its
momentum pa that embodies the second order dynamics in
the metric, and c is determined algebraically.
In this formulation, the vector equation has nontrivial

components,

Vt ¼
3pbðar2 þ bÞ þ 2hrð5arþ r2∂ra − ∂rbÞ − 6ar4pa

ðb − ar2Þðr2ð2ac − h2Þ þ bcÞ ;

Vr ¼
10acr − 2hr3pa − ar3ph þ 2hrpb þ brph þ 2cr2∂ra − 2c∂rb

ðb − ar2Þðr2ð2ac − h2Þ þ bcÞ ; ð100Þ

which we note are linear in ph and pb, and the scalar
constraint takes the quadratic form, a2c2 þ a1cþ a0 ¼ 0,
with the precise formulae for the coefficients ai given in
Appendix A.
These vector and scalar constraints then form an alge-

braic system for determining c, ph and pb in terms of the
other variables. While the scalar constraint takes a form
above that is quadratic in c, it is worth emphasizing that
since it depends on pb and ph, once we solve for these from
the vector constraint (which also contains c), then the
resulting algebraic equation for c takes a complicated form.
Thus in what follows we solve this system for c, pb and ph
numerically at each point, rather than analytically elimi-
nating these variables.
The Einstein equation Ẽr

r together with the scalar field
equation then determines the second order dynamics giving
˙̃Prr and pΦ.

A. Strong coupling

Since the scalar constraint is a quadratic in c, we may
formally write its solution as

c ¼ −
1

2

�
a1
a2

�
ffiffiffiffi
Δ

p �
; Δ ¼ a21

a22
− 4

a0
a2

: ð101Þ

We will call Δ the “discriminant” even though it differs
in normalization from the usual definition. We call the
“positive branch” the solution with the “þ” sign and the

“negative branch” that with the “−” sign. Linearizing about
flat spacetime,

c ¼ −1 − ϵδc; b ¼ 1þ ϵδb; h ¼ ϵδh;

a ¼ ϵδa; Φ ¼ ffiffiffi
ϵ

p
δΦ; ð102Þ

then we find

a2 ≃ −3m2 þ ϵ
�ð∂rδΦÞ2 − 21m2δb − 6m2r2δa

�
;

a1 ≃ −3m2 − 6ϵm2ð2δbþ r2δaÞ;
a0 ≃ −ϵð∂tδΦÞ2;

Δ ≃ 1 −
2ϵ

3m2

�
9m2δbþ 2ð∂tδΦÞ2 − ð∂rδΦÞ2�: ð103Þ

We recall that we are considering just the minimal mass
m2 ¼ 0 and we will rescale units such that m ¼ m1 ¼ 1.
Thus Δ ≃ 1 for small perturbations about flat spacetime,
and furthermore, c is given by the positive solution in
(101) above.
When nonlinear effects associated to strong coupling

conspire so that the vierbein components strongly deviate
from their flat spacetime values then two interesting
pathologies may occur with the scalar constraint. First Δ
may appear to become negative, indicating that no (real)
solution to the scalar constraint can exist for c. More
precisely as Δ → 0þ the solution will become infinitely
strongly coupled and the EFT breaks down before this
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point. This is easy to see if we naively perturb around the
solution with Δ ¼ 0 then we would obtain say δc∼
∓1

2

ffiffiffiffiffiffi
δΔ

p
which is inconsistent in perturbation theory if

δΔ has a first order perturbation. Requiring that δΔ starts at
second order imposes a restriction on the variables that is
indicative of a degree of freedom being lost, i.e. its kinetic
term vanishing. This is the tell-tale sign of infinite strong
coupling.
A second feature that may occur is that the quadratic

form linearizes with a2 → 0 (with a1 remaining finite).
Whilst we would not normally regard this as a pathology
for a quadratic equation, depending on the sign of a1 this
then picks a particular branch. The “correct” branch for
a1 > 0 is the positive branch, and for a1 < 0 it is the
negative branch, and then the usual linear solution is
reproduced c ≃ −a0=a1 in this limit a2 → 0. However
being on the opposite “wrong” branch implies c ≃ −a1=a2
and diverges as a2 → 0. We note that for flat spacetime we
have a1 < 0 and are on the positive branch. If a situation
arose where a2 → 0with a1 staying the same sign, then this
would correspond to being on the “wrong” branch, and the
solution for c would diverge which in itself indicates
infinite strong coupling and the breakdown of the EFT.
We may identify these two pathologies by either Δ

tending to zero (strictly small values) or alternatively Δ
diverging positively as a2 → 0. In this latter case c would
diverge positively. Later we will see that for certain choices
of initial data indications of both these behaviors in the
nonlinear collapse dynamics.

B. Initial data

We begin with initial data that is an approximately
ingoing pulse of the scalar field, starting initially away from
the origin. We must then solve the Hamiltonian and
momentum constraints as well as the scalar and vector
constraints. We choose the width of the scalar pulse to be
approximately the length scale associated to the graviton
mass, ∼1=m1. In doing so we depart very much from the
phenomenologically interesting regime of massive gravity
since this would presuppose a spherical symmetric source
of the size of the Hubble radius. For our purposes this
is merely a proof of principle that the dynamical formu-
lation we have developed is well defined. It is beyond
the scope of this paper to consider the type of hierarchies
and boundary conditions needed for phenomenological
applications.
Thus from now on we choose units so that m1 ¼ 1. For

the results we present here we take an initial approximately
Gaussian profile for the scalar, localized at a radius of r ≃ 2,
with a momentum profile that in flat spacetime would give
a purely ingoing pulse,

Φðt ¼ 0; rÞ ¼ A
A0

r4 exp

�
−
ðr2 − 2Þ2

10

�
; ð104Þ

pΦðt ¼ 0; rÞ ¼ ∂rΦðt ¼ 0; rÞ þ 1

r
Φðt ¼ 0; rÞ: ð105Þ

Here A0 is chosen so that A ¼ max ðΦðt ¼ 0; rÞÞ is a
constant giving the maximum amplitude of the scalar
profile. The metric function a is the one that has second
order dynamics, and we initially choose it to have its flat
space value (which is zero), and vanishing momentum,
so that

aðt ¼ 0; rÞ ¼ paðt ¼ 0; rÞ ¼ 0: ð106Þ

Recalling that the momenta ph and pb are eliminated using
the vector constraint, then it remains to give the metric
functions c, h and b to determine the initial data. Now c is
determined from the scalar constraint, but we must also
solve the Hamiltonian and momentum constraints, giving
the two conditions for h and b. These involve second spatial
derivatives of b, and first derivatives of h.
We may solve the nonlinear system of scalar,

Hamiltonian and momentum constraints by using an
iterative relaxation method or Newton’s method—we have
implemented both. Since our scalar pulse is quite far from
the origin, and we start it with relatively small amplitude,
the solution is close to the solution to the linearized system
which is easily determined by taking the metric functions
close to their flat spacetime values,

cðt ¼ 0; rÞ ¼ −1 − ϵδc;

bðt ¼ 0; rÞ ¼ 1þ ϵδb;

hðt ¼ 0; rÞ ¼ ϵδh;

Φðt ¼ 0; rÞ ¼ ffiffiffi
ϵ

p
δΦ; ð107Þ

where one then finds δb is determined from the ordinary
differential equation,

2δb00 þ 4δb0

r
− 3m2δb ¼ −

δΦ2

2r2
−
δΦδΦ0

r
− δΦ02; ð108Þ

which may be solved by quadrature with the boundary
condition that δb → 0 as r → ∞, and is regular at the
origin. The remaining δh and δc are given algebraically in
terms of δΦ and the solution to δb as

−3m2r2δc ¼ 9m2r2δbþ 2rδΦδΦ0 þ δΦ2;

m2rδh ¼ δΦ0
�
δΦ0 þ δΦ

r

�
: ð109Þ

Wemay use this linearized approximate solution as an initial
guess to solve the scalar, Hamiltonian and momentum
constraints by an iterative relaxation or Newton’s method.
For convenience we compactify the radial coordinate as

r̃ ¼ r=ð1 − r2Þ, so that the real axis is compactified to the
interval [0, 1] for r̃. We then employ sixth order spatial
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differencing. For the iterative relaxation scheme we use a
method analogous to Gauss-Seidel for the Poisson equa-
tion, solving each of the three equations in turn at each
lattice point, then moving to the next until the whole grid
has been covered, and then we repeat until convergence is
reached. This method, while crude, works well and is
straightforward to implement, giving the same results as the
Newton solver.
An example of this initial data if given in Fig. 1 for one of

the largest amplitudes, A ¼ 0.2 used later in the discussion.
In the figure we have plotted both the full nonlinear
solution as well as the linearized approximation, which
can be seen to be close.

C. Evolution

We then evolve this initial data by imposing the scalar
constraint, vector constraint and evolution equation Ẽr

r
together with the matter scalar equation. As for finding the
initial data, we use the compactified radial coordinate
r̃ ¼ r=ð1 − r2Þ, and sixth order finite differencing for

spatial derivatives on the interval [0, 1] in r̃. For time
derivatives we use an implicit Crank-Nicolson differencing
scheme. We solve this implicit system using iterative
relaxation. As mentioned above, while we may in principle
solve the vector and scalar constraints to eliminate c, ph
and pb from the remaining equations, in practice since we
implement an implicit schemewhich must be solved at each
time step anyway, we have found it convenient to simply
solve the constraints as part of this implicit system.
Recall that we are using units for which the mass

m1 ¼ m ¼ 1. We take initial data to be a pulse with
approximately unit width. Thus all scales in the problem
are comparable, and the parameter we now vary is the
scalar pulse amplitude A. For small amplitude we expect
the theory to be well described by linear dynamics, where
the pulse will travel in to the origin, pass through it and then
disperse to infinity. As we increase the amplitude A we
expect to see nonlinear behavior, and it is this that is our
focus. The natural question is whether in this massive
theory of gravity we see a horizon form, or some different
nonlinear phenomena.

FIG. 1. The top left plot shows the initial radial profile for the scalar Φ and its momentum pΦ for amplitude A ¼ 0.20 (in our units
where the mass m ¼ 1). Solving the scalar, Hamiltonian and momentum constraints with this matter, we then obtain the initial metric
functions c, b and h, shown as solid curves in the top right, bottom left and bottom right frames, respectively. Recall we are choosing the
remaining metric function a and its momentum to vanish. In order to solve this coupled nonlinear system we use relaxation or Newton’s
method, with an initial guess given by the linear approximation—these linear solutions are shown as dotted curves for each of these
metric functions, and since the scalar pulse starts quite far from the axis with relatively small amplitude, it is close to the full nonlinear
solution.
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In order to ensure that our continuum 3þ 1 system is
well posed under time evolution, we complete it at short
distance by adding the diffusion terms as discussed in the
previous section. Focussing on the long wavelength physics
and typical dynamical timescales we will see we are
insensitive to this term, provided the diffusion constant,
D ¼ l2, is sufficiently small. Without the diffusion term, so
setting D ¼ 0, we find some short distance instability on
the scale of the lattice spacing when employing resolutions
greater thanN > 100 points, and becoming more severe for
evolutions that deviate further from flat space. The insta-
bility typically arises near the origin, and it is unclear at this
stage whether this is a result of the ill posedness of the
continuum equations (without diffusion) or whether it is an
artifact of the numerical discretization—recall that even
well-posed continuum equations may have lattice scale
pathologies depending in detail on the numerical scheme
chosen to discretize them.9 TakingD ¼ 0.001 stabilizes the
system for all resolutions considered here, up to the highest
we have implemented N ¼ 1600, and this value of D is
the one used to make the figures presented here unless
otherwise stated. As discussed later, by varying the value of
this diffusion constant, we can confirm that this value is
sufficiently small that it has essentially no impact on the
solutions we find, and the diffusion term is irrelevant on the
length scales and timescales of interest, i.e. those of order
∼Oð1Þ in size.
We are able to simulate for a range of lattice spacings.

The data we show here is for N ¼ 400 lattice points, which
gives very good accuracy with our sixth order spatial finite
difference. A small time step is required for stability of
the Crank-Nicholson scheme, and in the data shown we
typically take Δt ¼ 0.00002. Refining N indeed shows that
our code converges to a good continuum limit, and we give
more details of this convergence in Appendix B. However,
since we modify the short distance physics using the
diffusion terms, and we regard these short scales as being
beyond the validity of our EFT, in practice we find that our
resolution of N ¼ 400 is sufficient to reproduce the long
distance physics of interest for D ¼ 0.001. Taking higher
resolutions shows our discretization properly approaches
the continuum given by the well-posed low energy trunca-
tion together with short distance diffusive completion, but
refining past N ¼ 400 accesses the scales dominated by
this diffusion and does not reveal the low energy physics
we are interested in more accurately.
Finally the Hamiltonian and momentum constraints,

once satisfied for the initial data, are preserved during
the evolution if one takes only the low energy truncation.
However, with the diffusion terms added then already at the

level of the continuum PDEs the constraints will no longer
be exactly preserved under evolution. In Appendix B we
study the violation of these constraints under evolution as
we change the resolution,N, and also the diffusion constant
D. As expected we find that for a given small diffusion
constant D, refining N makes this constraint violation
smaller until some value of N past which the violation is
caused by the diffusion terms at the level of the continuum
PDEs and is not due to numerical discretization error. For
smaller D, a larger N is reached before diffusion dominates
the violation, and the smaller the constraint violation
becomes. Again for our typical choice of D ¼ 0.001 we
find that for N ¼ 400 the constraint violation is small, and
is dominated by the diffusion terms rather than numerical
discretization error.

D. Low amplitude initial data

First let us consider the collapse of a small amplitude
scalar pulse, taking small A ¼ 0.01, so that the subsequent
evolution is a weak perturbation of Minkowski spacetime,
bearing in mind that this is far from a phenomenologically
realistic situation. The initial ingoing pulse of the scalar
traverses towards the center, increasing in amplitude as it
becomes increasingly focussed. It then reaches the origin,
with still a relatively small peak height of jϕj ∼ 0.05, passes
though, and subsequently disperses. In Fig. 2, we show the
scalar field as a function of time and the radial coordinate.
The behavior is qualitatively similar to that for GR,
although obviously in detail differs due to the mass.
Also in the figure the vierbein function cðt; rÞ is shown,
and we see that this metric component deviates from its flat
space value of zero with a maximum amplitude of ∼0.02.
The same is true for the other components. As a result the
discriminant function, also shown, remains very close to its
Minkowski vacuum value Δ ≃ 1.
To examine the nature of the spacetime, we further show

that the Ricci scalar deviates from its trivial zero value at
order Oð10−5Þ, and the trace of the stress tensor Tμ

μ has
amplitude ∼0.05 as the pulse traverses the origin. Recall
that m ¼ 1 in our units, and all scales in the initial data are
∼Oð1Þ too. We see that the Ricci scalar is much smaller
than this stress tensor trace, as we expect from linear theory
where it vanishes for massive gravity. (Recall that in GR we
would simply have R ¼ −T in our units.)
For comparison purposes, we then show in Fig. 3 the

collapse of an ingoing pulse with a greater initial amplitude
of A ¼ 0.04. Here we see a stronger nonlinear response to
the pulse, although a similar qualitative behavior as the
pulse reaches the origin with a height of ∼0.2 and again
then disperses. Now the metric function c is clearly
perturbed from its zero Minkowski value by an Oð1Þ
amount as the matter traverses the origin. The same is
true for the other vierbein components. While the Ricci
scalar remains small compared to the characteristic scales
of the problem, we see a much stronger response than for

9It is interesting to note that the most well-behaved PDE, the
diffusion equation itself, it unstable numerically when using
explicit time differencing, and even using an implicit Crank-
Nicholson scheme it requires the time step to be sufficiently small
to avoid lattice scale instabilities.
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the pulse with A ¼ 0.01, reflecting the fact that the Ricci
scalar reacts nonlinearly (recall it vanishes in linear theory).
We see that the discriminant Δ now reaches much smaller
values, dipping to ∼0.1 near the origin as the pulse transits
through. As already discussed, ifΔ becomes very small one
may still be able to classically evolve the leading terms of

the EFT, but the full theory will become strongly coupled
and is classically no longer under control. We emphasize
that precisely the same phenomena happens for GR—in
principle we may evolve classical GR right up to a
curvature singularity, but we should not trust the full
theory once curvatures reach the Planck scale due to strong

FIG. 2. Figure showing the scalar field for weak initial data with A ¼ 0.01 in the top left-hand frame. During the evolution all the
metric components remain close to their values for Minkowski spacetime, with the ingoing scalar pulse passing through the origin and
then dispersing. The vierbein component c is shown in the top right-hand frame, and the other metric components have a response of
similar amplitude. The middle left figure shows the discriminant function, Δ, for the quadratic scalar constraint. The middle right-hand
figure shows the Ricci scalar R and the bottom plot shows trace of the stress tensor T. For linear perturbations the Ricci scalar vanishes in
massive gravity (unlike GR where R ¼ −T).
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coupling. For Δ ∼Oð1Þ ≫ l2, one can in principle still
expect to trust the theory, but as we carry on with stronger
initial data, as we shall do shortly, we will reach a point
where the EFT truncation can no longer be used to describe
the system dynamics.

E. Large amplitude initial data and a breakdown of
evolution leading to strong coupling

We now consider larger amplitudes of initial data. In
Figs. 4 and 5 we plot Φ, c, Δ and also the quadratic
coefficient a1 in the scalar constraint for the amplitudes

FIG. 3. The same quantities are shown as in the previous figure, now for an ingoing scalar pulse with greater initial amplitude
A ¼ 0.04. We see a greater response in the metric function c, and correspondingly inΔ, and likewise for the trace of the stress tensor. We
see a much larger response in the Ricci scalar, of order 103 larger than for A ¼ 0.01, reflecting that its dependence on amplitude is
nonlinear (recall it vanishes in linear theory).
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A ¼ 0.12 and A ¼ 0.20, respectively. Both numerical
evolutions break down before the matter pulse reaches
the origin, in the sense that the implicit system governing
the timesteps cannot be solved. The figures show the
evolutions up until the timeslice when the simulation
breaks. Looking at the discriminant Δ and the quadratic
coefficient a1 we can see why the evolutions break down.
In both cases as the matter pulse traverses towards the
origin and grows due to the focussing, we see Δ become
small near the axis, but also appear to diverge positively
away from the axis approximately at the location of the
peak of the scalar field amplitude. We can see that although
the coefficient a1 is decreasing in the region where Δ
becomes large, it remains positive, and hence the diverging
of Δ signifies being on the “wrong” branch—as a result we
see that the vierbein function c appears to diverge in the
region where Δ does. Since this phenomenon occurs with a
change of branch, perturbations become infinitely strongly
coupled on that solution and it can hence no longer be
trusted before c even diverges.

It is difficult to definitively diagnose whether the
simulation is breaking due to Δ diverging where the matter
pulse is located, or whether it is due to Δ going towards
zero near the origin. We believe it is the former. Either way,
while in principle we can simulate the truncated EFT up to
the point of breakdown, where we can no longer solve the
Cauchy problem, the theory will become strongly coupled
before that point, and there the details of the microscopic
physics will become important and need to be folded in to
understand the true behavior.
A natural question is whether this breakdown in evolu-

tion of the truncated EFT is also associated to the develop-
ment of a curvature singularity. As usual, the Einstein
equation determines the Ricci tensor of the metric, and
from this we may compute the Ricci scalar R and the
invariant Ric2 ¼ RμνRμν. However, again as for GR, the
Kretschman invariant Riem2 ¼ RμναβRμναβ is not deter-
mined by the Einstein equation, but may be computed
directly from the metric. We plot these quantities in Fig. 6

FIG. 4. For an initial amplitude A ¼ 0.12 the evolution breaks after a time t ≃ 1.7. The top plots show the matter field Φ (left) and c
(right), and the bottom ones showΔ (left) and the coefficient a1 from the scalar constraint (right). These are plotted over the whole range
where the evolution exists. We see that near the end of the evolution Δ appears to be vanishing near the origin, whereas it appears to
diverge where the matter pulse is located. The function a1 is negative everywhere, and hence the divergence in Δ corresponds to being
on the “wrong” branch of the quadratic solution as the equation linearizes. Indeed we see c appear to diverge negatively where Δ does
so. Thus the time evolution ends as the scalar constraint becomes pathological, and cannot be solved for a finite real c.

DE RHAM, KOŻUSZEK, TOLLEY, and WISEMAN PHYS. REV. D 108, 084052 (2023)

084052-24



for the evolution A ¼ 0.12 and in Fig. 7 for A ¼ 0.20. In
both cases we see the curvature invariants increase near the
axis, and the region where Δ becomes large. In the case
A ¼ 0.12 they do not appear to be strongly diverging. The
case A ¼ 0.20 is less clear, as while Ricci and Ric2 look
well behaved, Riem2 appears as if it is quickly increasing
as Δ looks to diverge, although its value is still relatively
small when the evolution breaks down. Thus the A ¼ 0.12
example shown suggests that the pathology may be due
to a breakdown in evolution that is not associated to
diverging curvature. Such a result would be interesting
as it would indicate how strong coupling in the reference
metric sector (or its Stückelberg fields) may not necessarily
propagate in the standard gravitational sector. The A ¼
0.20 is less conclusive. Other amplitudes have similar
behaviors to the two cases shown, and thus we refrain
from making a strong statement about whether there is a
curvature blow up.
The theory is invariant under a combined coordinate

transformation of the metric and reference metric. Clearly if
curvature invariants diverge, then there is no way to remove
a singularity by changing coordinates. If instead the

evolution breakdown is not due to curvature diverging,
one might naively wonder whether these pathologies are
then simply a result of a bad unitary gauge coordinate
choice. Also in the Figs. 6 and 7 we show the ratio of
determinants of the metric and reference metric,
detðgμνÞ=detðfμνÞ for the two cases A ¼ 0.12 and
A ¼ 0.20. We see that this ratio appears to be diverging
in the region where Δ, and consequently c becomes large.
Crucially this ratio of determinants is a coordinate invari-
ant, and hence its divergence signifies this behavior cannot
be removed by a coordinate transformation. Hence even if it
is the case that curvature remains bounded, the singular
behavior we are seeing associated to Δ and c diverging is
definitely not a coordinate artifact.
In fact we can argue that neither pathology of the scalar

constraint, so the behavior associated to Δ → ∞ or that
where Δ becomes negative, can be removed by a diffeo-
morphism. Consider the case of Δ diverging, resulting in c
diverging as well (which we believe is driving the break-
down in the evolutions presented here). To render the
metric components finite would then require a singular
gauge transformation which would then yield a divergent

FIG. 5. This figure shows the same plots as in the previous figure for a larger amplitude A ¼ 0.2. Here we see the time evolution breaks
even earlier at t ≃ 1.5. We see the same behavior in the various functions plotted, and in particular again we see a divergence in Δ which
we believe ultimately signals the scalar constraint becomes pathological and cannot be satisfied.
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reference metric. One can move the divergence between the
metric and the reference metric, but there will be no choice
of coordinates where both are smooth. Now consider the
other case that Δ shrinks to zero. Extending past this point
presumably requires negative Δ and hence complex c
(although it may be bounded in magnitude), and conse-
quently a complex metric. Again a complex coordinate
transformation might restore the metric to a real form, but
would then render the reference metric to be complex. Thus
both pathologies would represent genuine physical break-
down of the EFT, and are not simply coordinate artifacts,
even if they do not give rise to curvature blow up.
As the initial scalar amplitude is increased from A ¼ 0.2

the evolution breaks earlier, and as it is decreased the
evolution runs longer, with the apparent breakdown in
the scalar constraint occurring when the pulse is nearer to
the origin. An amplitude of approximately A≃ 0.06 appears
to divide the weak field dispersive behavior from the large
amplitude evolutions which break down. This is shown in
Fig. 8 where we plot the value of Δ at the origin as a
function of time for increasing initial amplitude. For the

curves with A ¼ 0.06 and 0.07 then Δ is only plotted for
times up until the evolution breaks down. For these smaller
amplitudes it is unclear whether the evolution breaks due
to the scalar constraint becoming pathological precisely at
the origin, or close to it. In the previous figures, say for
A ¼ 0.12, we clearly see a candidate pathology away from
the axis of symmetry. It would be interesting to explore
whether there is a critical behavior associated to this
transition regime in between dispersion and breakdown of
evolution with its associated strong coupling (i.e. examine
whether the two behaviors are continuously connected as in
a “second order transition”).
As the evolution breaks down it is interesting to see how

other physical quantities are affected. An interesting one is
the light cone structure governing the scalar field matter, as
measured in the rest frame of the reference metric. Since the
coordinates we use to evolve are naturally defined by the
reference metric, we may determine the null in and out-
going one forms of the inverse metric at a point, and then
use the reference metric to convert these to vectors. We plot
these in Fig. 9 for both the evolutions with A ¼ 0.12 and

FIG. 6. This figure shows the following curvature invariants for the A ¼ 0.12 evolution: Ricci scalar (top left), Ric2 ¼ RμνRμν (top
right) and Riem2 ¼ RμναβRμναβ (bottom left). While these increase in the region where the strong coupling develops, they remain quite
small. It is therefore unclear whether the pathology in evolution of the truncated EFT is associated to a curvature singularity developing.
In the bottom right frame we plot the ratio of determinants detðgμνÞ=detðfμνÞ, which is a coordinate invariant, and this appears to become
singular, diverging positively in the region where Δ and c look to be blowing up.
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0.20. For A ¼ 0.12, we clearly saw (in earlier Fig. 4) the
vierbein component c appearing to diverge at the point of
breakdown where Δ → ∞, which is away from the origin,
and in this region we see the scalar field light cones tip so
that the ingoing propagation speed appears to be diverging.
We also plot these ingoing speeds, again measured relative
to the rest frame of the reference metric, in the figure. We
see precisely the same phenomena for A ¼ 0.2, although
there we also see a closing of the light cones near the origin,
presumably associated to Δ becoming small. One might
wonder whether it is this divergence in the matter light cone
that is driving the breakdown in the evolution. We believe
this is a consequence of the breakdown, due to diverging
vierbein components, rather than the factor directly causing
it. Here the massive graviton is dynamical in spherical
symmetry (unlike the usual graviton of GR, as reflected in
Birkhoff’s theorem) with its somewhat complicated con-
strained dynamics. Deducing whether this graviton has a
hyperbolic light cone structure is a complicated task which
we leave for future investigations, but certainly we have
seen that the scalar constraint it must obey becomes

FIG. 7. This figure shows the same curvature and coordinate invariants as in the previous one, now for A ¼ 0.20. We see that while
Riem2 remains relatively small, it does appear to grow quickly in the region where Δ and c diverge. Thus in this case it also remains
ambiguous whether curvatures remain bounded as the evolution breaks down.
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FIG. 8. Plot showing the value of the scalar constraint dis-
criminant, Δ, at the origin, as a function of time for evolutions
with different initial amplitudes A. For evolutions with initial
A ≤ 0.05 the scalar pulse passes through the origin at t ∼ 2 and
subsequently disperses, and Δ returns to its Minkowski value of
ΔMink ¼ 1. However for larger values, A ¼ 0.06 and 0.07 (or
indeed greater values) the numerical evolution breaks down
before t ∼ 2 and is associated to strong coupling, and the curves
are plotted only up to the point the simulation fails, indicated by
the red markers.
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pathological at the breakdown, as seen through the behav-
ior of Δ. Hence we believe the breakdown is driven by the
graviton dynamics rather than that of the matter sector.

F. Independence on the diffusion terms

As stated earlier, the previous figures were made for
evolutions with diffusion constant D ¼ l2 ¼ 0.001. A key
concept is that this diffusion constant must be sufficiently
small to ensure good behavior on small scales, whilst being
irrelevant for the low energy physics we are interested in. If
we try to remove the diffusion altogether, setting D ¼ 0,
simulations where we see reasonable deviations from flat

spacetime break down due to lattice scale instabilities.
As with any numerical discretization it is difficult to say
whether this is a result of the low energy truncation being ill
posed, or whether it is our numerical scheme introducing
lattice pathologies. However taking D ¼ l2 ¼ 0.001 con-
trols lattice scales up to the highest resolutions we probed
(N ¼ 1600), and is sufficiently small that it is irrelevant for
the low energy behavior we are studying.
To demonstrate this we may run the same initial data

with different diffusion constants to see a good limiting
behavior as D becomes small. In Fig. 10 we plot the
function Δ at the axis as a function of the time coordinate
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FIG. 9. Plot showing the light cones of the scalar field in the t and r coordinates, which are the natural rest frame defined by the
reference metric, and also the coordinates we use for the evolution. The upper left plot shows the light cones for the evolution with
A ¼ 0.12 until the point the evolution breaks down, and the upper right plot shows the same for A ¼ 0.20. We see that the ingoing waves
peed appears to diverge in the region where Δ → ∞ for these evolutions. For A ¼ 0.20 we also see the light cones narrow at the origin
whereΔ becomes small. In the lower left and right plots we display this ingoing wave speed relative to the reference metric rest frame for
A ¼ 0.12 and 0.20, respectively, clearly seeing the divergence at the point where the evolution ends.
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for both A ¼ 0.01 and A ¼ 0.04 for a sequence of diffusion
constants, each half the previous one (all for a fixed
resolution of N ¼ 400 points). We plot the sequence D ¼
2n × 10−3 for integer −2 ≤ n ≤ 5 so that D spans the range
from ∼0.0002 up to ∼0.03. We see that by eye the resulting
curves are very similar for n ≤ 0, so D ≤ 0.001. Indeed
the same is true for all the functions plotted above in
Figs. 2 through to 7—the effect of the diffusion term for
D ¼ 0.001 is nearly everywhere less than percent level and
doubling the value of D results in new figures whose
difference from those with the original value cannot be
distinguished by eye. The exception to this is regions where
the theory becomes strongly coupled. As we can see in
Fig. 10, for A ¼ 0.04 near the second peak of Δ, the effect
of the diffusion is slightly larger, at a few percent. This is
consistent with the expectation that where the theory starts
to develop strong coupling we should become increasingly
sensitive to these higher order operators.

G. Lack of horizon formation

We have seen for sufficient amplitude initial data we
apparently see a breakdown in evolution associated to
strong coupling. The dynamics in such a region of strong
coupling will then sensitively depend on the short distance
completion of the theory. A crucial question is then whether
this region is visible to an asymptotic observer. An
interesting quantity to compute is the value of gtt, the
time-time component of the metric at the origin. Since
the curve r ¼ 0 at the origin is a timelike geodesic, then
gtt ¼ −c2 is a physical quantity that measures the relative
redshift/blueshift of this geodesic as seen by an asymptotic
observer. In Fig. 11 we plot jgttj at the origin against time
for increasing amplitudes of initial data, up to A ¼ 0.06
where the evolution just breaks down, apparently at or very
near to the origin.

We see a very different pattern to that in GR, where
collapsing matter leads to a decrease in jgttj, corresponding
to a redshift of physics at the origin as seen by an
asymptotic observer, and for sufficient amplitudes jgttj
vanishes as a horizon forms. Instead in this minimal
massive theory we see the collapsing matter shell leads
to a significant blue shift just before the matter reaches the
origin at t ∼ 2, when there is then a redshifting, before
another period of even larger blue shift while the matter
disperses. Looking at this redshifted period, the minimum
value of jgttj attained for each evolution does not seem to be
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FIG. 10. Figure showing the effect of varying the diffusion coefficientD ¼ l2 on the time dependence of Δ evaluated at the origin, for
an initial amplitude A ¼ 0.01 (left), or A ¼ 0.04 (right), shown at times 1 ≤ t ≤ 4. We take values D ¼ 2n × 10−3 and show curves for
−2 ≤ n ≤ 5. We see that as D approaches zero, so n gets smaller, the curves appear to converge on a (putative) continuum value.
However if D is taken too small, such as for n ¼ −2 in the right-hand plot (marked by the red dot), then the simulation breaks due to
lattice scale instabilities. We see that setting n ¼ 0, so D ¼ 0.001, as we have for most of the plots in this work, is sufficiently small to
allow long time simulations, and yet keep corrections from the diffusion terms being irrelevant.
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FIG. 11. The behavior of the gtt component of the physical
metric at origin, where it is equal to −c2. When r ¼ 0 the off-
diagonal terms in the metric vanish, so we can take this to be a
diagnostic of the formation of an apparent horizon, which would
happen for gtt ¼ 0. As we see jgttj remains positive for the case
A ¼ 0.06 where the evolution breaksdown, as indicated by the
red marker. It does not appear to tend to zero, but instead we see
periods of time where there is a strong blueshifting with jgttj
becoming quite large for the stronger amplitudes A ¼ 0.05
and 0.06.
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tending to zero as the amplitude is increased to the limit
value of A ¼ 0.06when the evolution breaks. For A ¼ 0.06
the minimum value is jgttj ≃ 0.3, occurring when the
evolution breaks at or near the origin, so still somewhat
greater than zero. Thus there is no suggestion of a horizon
developing.
For larger amplitudes the evolution apparently breaks

away from the axis and we should consider whether a
trapped surface forms at any radius, not just consider gtt at
the origin. In our spherically symmetric context a trapped
surface occurs when the expansion of outward radially
directed null rays vanishes. This expansion is computed as

Θ ¼ 1

2
kμ∂μ log ðgθθgϕϕÞ; ð110Þ

where kμ is the outward directed null vector with non-
vanishing components kt ¼ 1 and kr solving the outward
null condition. In Fig. 12 we show this expansion Θ as a
function of time and radial coordinate for the various

amplitudes displayed as examples here, so A ¼ 0.01,
0.04, 0.12 and 0.2. We plot rΘ rather than Θ as near the
origin Θ ∼ 1=r which obscures the behavior. We see that
rather than the expansion becoming smaller and vanishing
to give a trapped surface, instead it becomes very large in
the region of strong coupling in the cases A ¼ 0.12 and
A ¼ 0.2 where the evolution breaks down, presumably
reflecting the diverging c component, and suggesting a
blueshifting associated to the strong coupling, rather than
redshifting.
An important conceptual point is that for conventional

GR and matter the existence of a trapped surface proves the
region lies within an event horizon—however for massive
gravity it is unclear such a statement would hold. Thus
finding a trapped surface or otherwise in this theory cannot
prove or disprove the existence of an event horizon—for
that presumably one would need to construct the full
spacetime and consider the past of Iþ. However the lack
of a trapped surface is suggestive that no event horizon has
formed.

FIG. 12. Plots of the outgoing null expansionΘ plotted as rΘ to make the behavior more evident. In the top left frame and right frames
we plot this for A ¼ 0.01 and A ¼ 0.04, respectively, and in the bottom left and right frames are plotted the cases A ¼ 0.12 and A ¼ 0.2.
Vanishing Θ indicates a trapped surface. Rather than Θ becoming small, instead we see Θ becoming very large in the region where
strong coupling occurs, indicating no horizon is forming. The peak of Θ, which is cutoff in the plot, is ∼100 when evolution stops in the
case A ¼ 0.12 and even greater in the case A ¼ 0.2. This suggests the region of strong coupling will be visible to asymptotic observers.
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H. Varying mass

While exploring the full phenomenology of collapse for
the minimal theory is beyond the scope of this work, we
briefly consider how the behavior changes as we vary the
graviton mass from m ¼ 1, whilst keeping the profile of
the initial ingoing scalar pulse the same. In Fig. 13 we show
the behavior of Δ at the origin as a function of time for the
same initial data A ¼ 0.01 and masses ranging from
m2 ¼ 4 to m2 ¼ 0.25. For smaller values of m2 we see the
same initial data elicits a stronger response. This presum-
ably reflects the behavior of the linear theory, which breaks
down as we take m → 0, again indicating nonlinear effects
become more important in the small mass limit for the same
matter behavior.

VII. CONCLUSION

For dRGT massive gravity with its minimal and quad-
ratic mass terms we have provided a 3þ 1 dynamical
formulation of the theory using a symmetric vierbein.
With an appropriate choice of momentum variables the
vector and scalar constraints, which are second class and
thus must be applied on every time slice, can be solved
algebraically for the time-time vierbein component together
with certain momenta, yielding a system of evolution
equations that can straightforwardly be implemented
numerically. With no symmetry assumption this then leaves
five second order geometric dynamical variables, which
correctly counts the number of massive gravitational
degrees of freedom. Our construction cannot be applied
if the remaining cubic mass term is included, but we
emphasize that phenomenological constraints already rule
this cubic term out [43,56,57].
As a low-energy EFT, the truncated theory is not

expected to be well-posed on its own. While remaining
agnostic as to the details of its high energy embedding, one

can however include spatial diffusion terms to the low-
energy EFT which are natural in such a 3þ 1 formulation.
In the presence of these terms, one can successfully prove
that the formulation gives a well-posed initial value
problem of diffusive character. Furthermore, the diffusion
constant controlling these terms can be taken to be as small
as one wishes, and hence can be made sufficiently small
to not affect length and timescales of physical interest.
We demonstrate this framework by numerically evolving
dynamical collapse of massless scalar field matter in
spherical symmetry, restricting for simplicity to the theory
with minimal mass term. This minimal model is not
expected to exhibit a smooth massless limit to GR due
to the absence of a Vainshtein mechanism present in more
general massive gravity models. Moreover in our numerics
we consider sources of comparable size to the graviton
Compton wavelength which is far from the regime of
phenomenological interest. Nonetheless being an EFT of
gravity in its own right it is interesting to ask how the
minimal model responds to collapsing matter. We explicitly
check our results are insensitive to diffusion terms added to
render the continuum PDEs well posed.
We focus on the situation when all scales in the

problem—i.e. the mass and the characteristic length scales
in the initial data—are approximately equal, so there is no
parametric scale separation. Our simulations reveal the
expected dispersive behavior for low amplitude initial data.
However as the amplitude is increased, and the response
becomes nonlinear, we see pathologies occur in the scalar
constraint equation, which taking a quadratic form is not
guaranteed to have solutions. As a consequence it appears
that evolution breaks down before the matter reaches the
origin. We have argued that strong coupling will develop in
the region before the evolution fails, so that the EFT is
breaking down, and evolution past this point would become
sensitive to the precise form of the short distance com-
pletion. Our results remain ambiguous over whether the
breakdown is associated to large curvatures. While we see
curvatures are relatively small up until the breakdown, for
some cases such as the case A ¼ 0.20 shown above, the
curvature does appear to be increasing in the regions where
strong coupling appears to develop. Interestingly we see no
formation of trapped surfaces, which is suggestive that the
region where the strong coupling develops is not shielded
from asymptotic observers by a horizon.
In future work we will examine collapse in the theory

with quadratic mass term, which is expected to exhibit a
Vainshtein mechanism that will yield GR behavior for
small graviton masses. Another interesting direction is to
refine understanding of the evolution breakdown in the
minimal theory. In particular it would be interesting to
determine whether it is the divergence of Δ (being on the
“wrong” branch as the quadratic constraint linearises) or Δ
being driven negative (associated to the solution for c
becoming complex) that finally breaks the evolution—both
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FIG. 13. The effect of varying the graviton mass m whilst
keeping the amplitude A ¼ 0.01 and initial scalar profile con-
stant. We again concentrate on the behavior ofΔ at the origin, and
note that it takes the value Δ ¼ 1 for flat spacetime for all values
of mass. We see that decreasing the mass is analogous to
increasing the amplitude, indicating nonlinear effects become
increasingly important.
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seem to occur in different locations at very similar times.
Another question to resolve is whether the curvatures seen
by the matter degrees of freedom remain bounded or not.
It would also be interesting to find coordinates which
excise the region where the theory breaks down, and allow
evolution outside the future light cone of the pathology,
rather than have to halt evolution on our timeslice as soon
as evolution breaks down at one point. Finally, ultimately
we would like to know what happens for more phenom-
enologically relevant physical situations where there is
typically a large hierarchy between the size of the source
and the Compton wavelength of the graviton. For example,
in realistic applications of massive gravity, the graviton
Compton wavelength should be taken to be comparable to
the Hubble scale, many orders of magnitude larger than the
astrophysical scales of collapsing matter distributions.
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APPENDIX A: SCALAR CONSTRAINT DETAILS

Here we present some further details. First we give an
argument for the simplification that leads to the quadratic
and cubic forms in Eq. (53). We then give the explicit
expressions for the coefficients of the quadratic scalar
constraint in the minimal model for our spherically sym-
metric ansatz.

1. Polynomial expansion in Ett of scalar constraint

We may understand the simplification that we saw in
Eq. (53) relative to the naive expectation in (52) by writing
the 3þ 1 decomposition of the symmetric vierbein as

Eμν ¼
�
ϕþ nini ni

hij

�
; ðA1Þ

where now indices are raised/lowered with respect to hij
and its inverse hij ¼ ðhijÞ−1. Then the inverse can be
written as

�
E−1

�
μν ¼ 1

ϕ
nμnν þ hμν; ðA2Þ

where htt ¼ hti ¼ 0 and nμ ¼ ð1;−niÞ. We note that
jEj ¼ ϕ det hij and the inverse metric is

gμν ¼ J
ϕ2

nμnν þ 2

ϕ
nðμvνÞ þHμν; vμ ¼ ημνnν;

J ¼ nμvμ; Hμν ¼ hμαηαβhβν: ðA3Þ

Consider Aαβγμνρ
ð1Þ as given in Eq. (43). It comprises a term

∼ηγρgα½μgν�β, which one would naively expect to go as
ηγρgα½μgν�β ∼ 1

ϕ4 in an expansion in inverse powers of ϕ.

However due to the antisymmetry in the ½αβ� and ½μν� index
pairs, and the structure of the leading terms in gμν above, we
see such a term vanishes. Likewise the subleading 1=ϕ3

behavior also vanishes, again due to this index antisym-
metry. Thus in fact ηγρgα½μgν�β ∼ 1

ϕ2. Noting that jEj ∼ ϕ,

then jEj2ηγρgα½μgν�β is a quadratic polynomial in ϕ, and
hence is also a quadratic polynomial in Ett (since Ett is
linear in ϕ). A similar argument applies to the other two
terms in Aαβγμνρ

ð1Þ , showing they also give quadratic con-

tributions in ϕ when multiplied by jEj2 due to the index
antisymmetries. Likewise analogous arguments show that
jEj3Aαβγμνρ

ð2Þ is a cubic in Ett.

2. Scalar constraint coefficients

The coefficients a2, a1 and a0 of the scalar constraint in
the spherically symmetric minimal model of Sec. VI are
given by

a2 ¼ −48a4m2r8 þ 6a3ð8b − 3Þm2r6 þ a2r2ð36b2m2r2 − 9bm2r2 þ r2∂rΦ2 − 50Þ
− 2arðrð12b3m2 − 9b2m2 þ b∂rΦ2 þ 10r∂raÞ − 10∂rbÞ − 12b4m2 þ 9b3m2 þ b2∂rΦ2 − 2ð∂rb − r2∂raÞ2; ðA4Þ

a1 ¼ −ðb − ar2Þ�3m2ð−4a3r6 þ b2r2ð3a − 8h2Þ þ bh2r2ð5 − 8ar2Þ þ ah2r4ð16ar2 þ 7Þ þ b3Þ þ 2hr∂rΦpΦðb − ar2Þ
þ 4rphðrð5aþ r∂raÞ − ∂rbÞÞ þ 4hrpbð∂rb − rð5aþ r∂raÞ

�þ 4hr3paðrð5aþ r∂raÞ − ∂rbÞ; ðA5Þ
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a0 ¼ −4a4r8p2
Φ þ 2a3r6ð2bp2

Φ þ 3h2m2r2 þ 2hr∂rΦpΦÞ þ a2r4
�
3ð−8r2papb þ 8r4p2

a þ b2p2
ΦÞ

− 2hrð40rpa þ 3b∂rΦpΦÞ þ h2ð−9bm2r2 þ r2p2
Φ þ r2ð−∂rΦ2Þ þ 50Þ þ 20hpb − 12h4m2r4Þ

þ b2ð−6r4p2
a þ 6p2

b þ h2r2ð−12h2m2r2 þ p2
Φ − ∂rΦ2ÞÞ þ 2ar2ð−bð6r2papb þ b2p2

Φ − 6p2
bÞ

þ 2hðr2pað5b − r2ph − 4r3∂raþ 4r∂rbÞ þ pbð10bþ r2ph þ r3∂ra − r∂rbÞÞ þ 3ð4b − 1Þh4m2r4

þ h2rð−brp2
Φ þ rðb∂rΦ2 þ 10r∂raÞ − 10∂rbÞ

�þ 2bhrð2r2paðrph þ r2∂ra − ∂rbÞ
− 2pbðrph − 2r2∂raþ 2∂rbÞ þ 3h3m2r3Þ þ 2h2r2ð2r2papb þ r4ð−p2

aÞ − p2
b þ ð∂rb − r2∂raÞ2Þ

− b4p2
Φ þ b3hrð3hm2rþ 2∂rΦpΦÞ: ðA6Þ

APPENDIX B: NUMERICAL DETAILS AND
CONVERGENCE

As discussed in the main text, the dynamical evolution
is performed with a compactified radial coordinate, r̃ ¼
r=ð1 − r2Þ on the interval [0, 1]. Spatial differences are
approximated using sixth order finite differencing, and time
derivatives using a Crank-Nicholson scheme so that the
system is implicit. The exception to this is that the diffusion
terms are differenced using the same spatial scheme, but
forward Euler differencing in time. We are not concerned in
accurately simulating the diffusion terms which should be
irrelevant on the scales we are interested in, and taking
second order Crank-Nicholson differencing in time would
necessitate an analog of the Courant condition for the time
step associated to these terms.

1. Iterative solution of the implicit time step

We solve the implicit system as follows: suppose we
have the data X⃗ ¼ ðẼi

j; Ei;…Þ on some time slice t. The
equations of motion then allow us to determine the time
derivative X⃗t at t. With that we make an initial guess of the
data at tþ Δt as Y⃗ ¼ X⃗ þ ΔtX⃗t. The method then enters an
iterative stage with the following steps:

(i) Estimate the data at tþ Δt=2 by Z⃗ ¼ ðX⃗ þ Y⃗Þ=2.
(ii) Compute the equations of motions to find Z⃗t.
(iii) Update Y⃗new ¼ Z⃗ þ ΔtZ⃗t=2.

This continues until the maximal difference between Y⃗ and
Y⃗new becomes smaller than a set error tolerance, which for
the results in this paper was taken to be 10−8.

2. Convergence

In this section, we examine the convergence of our
numerical results as we vary the spatial resolutionN and the
diffusion coefficient D. While there is also numerical error
associated to our discretization in time, in practice the time
step size we use is sufficiently small that discretization error
is dominated by the spatial resolution. To compare the
results across the entirety of the spatial slices, we use the L2

norm in spherical symmetry, given by

kfkL2 ≔
�Z

∞

0

r2jfðrÞj2dr
�

1=2
: ðB1Þ

As a first check, Fig. 14 examines the behavior of the time-
time component of the vierbein Eμν, so the function c, as N
is varied between 100 and 1600 by doubling it, keeping the
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FIG. 14. Figure showing the effect of varying the spatial resolution N while keeping all other parameters constant, in particular
D ¼ 0.001. The plots display the norm of the difference between the values for the c vierbein component obtained for a resolutionN and
half that resolution, so jcN − cN=2j, as a function of time. The left-hand side has A ¼ 0.01, and the right A ¼ 0.04. In both cases these
differences decrease with resolution, with the decrease being consistent with our sixth order finite differencing—the difference decreases
by a factor of ∼26 for a doubling of the resolution N.
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diffusion constant fixed at D ¼ 0.001. We use the notation
that cN is the solution for c at resolution N, and then plot
the norm of the difference of c between a resolution N and
N=2 as a function of coordinate time, so jcN − cN=2j against
time t. In the figure we show this for two initial amplitudes,
A ¼ 0.01 and A ¼ 0.04. We see that this difference
decreases as the resolution increases, and is consistent
with the sixth order spatial finite differencing we employ—
the differences decrease by a factor ∼26 upon doubling the
resolution. Thus the solutions are consistent with conver-
gence to a continuum solution. However, we emphasize
that this continuum solution is that of massive gravity
together with our diffusive term higher order terms, and not
of the “bare” system of equations (17).
We now turn to the (non)conservation of the Hamiltonian

and momentum constraints during evolution. The reason
for this constraint violation is twofold: it includes the errors
introduced by the discretization of the PDEs, as well as the
effects of the diffusion term not present in the Einstein
equations (17). Above in Sec. VI F we have argued that
the precise value of the diffusion coefficient D does not
affect the long-range dynamics of our system. In Fig. 15
we further examine the effect of varying D, for a small
amplitude A ¼ 0.01 and resolutions N ¼ 200 and 400. In
both cases we see that decreasing the diffusion coefficient

initially leads to an improvement in the constraint violation.
However, for the smallest values considered (D ¼ 0.0001
and 0) the simulation breaks before t ¼ 1 due to lattice
scale instabilities—some amount of diffusion is indispen-
sable if we want to evolve our system for an appreciable
amount of time. Also for N ¼ 200 we see that eventually
the curves for decreasing values of D coincide (before the
onset of instability), indicating that the discretization error
dominates over the effects of diffusion in causing the
constraint violation.
Finally in Fig. 16 we study the effects of varying N

between 50 and 400 for the unstable case D ¼ 0 and the
case used throughout this work,D ¼ 0.001. Again we have
set A ¼ 0.01 and evolve until t ¼ 1.
In the D ¼ 0 case, we find that increasing the resolution

always leads to an improvement in the values of the
constraints, but also pushes forward the onset of lattice
scale instabilities which break the simulation, so that for
N ¼ 400we can only evolve up to t ≃ 0.1. In contrast, if we
set D ¼ 0.001 then all the resolutions are stable in the
plotted time period. However, we see that eventually
improving the resolution ceases to improve the results,
and all curves obtained for N ≥ 200 are essentially iden-
tical. This is due to the effects of diffusion becoming more
important than the discretization error. In other words,
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FIG. 15. The behavior of the L2 norm of the Hamiltonian (left) and momentum (right) constraints against time for A ¼ 0.01 as D is
varied between 0 and 0.002. The top figures have a resolution N ¼ 400, whilst for the lower ones N ¼ 200. We see the expected
convergence of these constraints to zero as D is initially decreased, but the simulations become increasingly susceptible to lattice scale
instabilities in that limit, and so for D that is too small the simulations break down, as indicated by the red markers. For N ¼ 200,
eventually there is little benefit in further decreasing D, signaling that the numerical errors associated with the discretization dominate
over the effects of diffusion.
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we are converging to a solution of the modified system of
equations, which includes diffusive effects and hence no
longer exactly respects the Hamiltonian and momentum
constraints. Since there are no appreciable changes to our

results above N ¼ 200, the choice N ¼ 400, which was
made for most of the plots in this paper, is justified, as
further refining the resolution would not have revealed any
new physical effects.
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