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Recently, the piercing of a mini boson star by a black hole was studied, with tidal capture and the
discovery of a “gravitational atom” being reported [Cardoso et al., Phys. Rev. D 106, 044030 (2022).].
Building on this research, we extend the study by including a hexic solitonic potential and explore the
piercing of a solitonic boson star by a black hole. Notably, the solitonic boson star can reach higher
compactness, which one might expect could alter the dynamics in this context. Our findings suggest that
even when the black hole’s size approaches the test particle limit, the solitonic boson star is easily captured
by the black hole due to an extreme tidal capture process. Regardless of the black hole initial mass and
velocity, our results indicate that over 85% of the boson star material is accreted. Thus, the self-interaction
does not alter the qualitative behavior of the system.
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I. INTRODUCTION

Based on a range of existing observational evidence, it is
widely accepted that most of the Universe is made of dark
matter and energy, which gravitate but otherwise interact at
most feebly with the Standard Model particles [1–4]. Thus
far, endeavors to pinpoint the nature and attributes of dark
matter and incorporate it within a theoretical framework
have proved futile, but these efforts will persist in the
foreseeable future [5,6].
It is reasonable to expect that, in the same way that

Standard Model particles come together to form stars and
planets, dark matter particles also form self-gravitating
structures, or “dark stars” of various types due to gravity,
consequently constituting a considerable portion of astro-
physical environments. Dark stars—if they exist and are not
black holes (BHs)—have so far gone undetected, but the
advent of gravitational-wave (GW) astronomy has the
potential to revolutionize our knowledge of the Universe
[7–11]. Here, we will focus on a special type of dark matter
(which might constitute the whole or just a fraction of the
dark matter content in the cosmos)—light scalar fields. The
possibility that the dark matter detected in galaxies is
composed of ultralight scalar particles in a Bose-Einstein
condensate was put forward some time ago [12]. The
significance of these candidates in cosmology arises from
the fact that their de Broglie wavelength is of comparable
magnitude to astrophysical scales, potentially alleviating
some of the tension with observations [13]. These new
fundamental fields can indeed form self-gravitating

structures, which in a purely general relativistic context
are known as boson stars (or Proca stars when the
fundamental constituents are massive vectors) [14].
Thus far, efforts to study dark stars have focused mostly

on collisions of boson stars with similar sizes and masses
[15–18], but some scenarios involving larger mass ratios
have also been studied [19,20]. As previously studied in
[21,22], it is possible that dark matter stars are structures
with a larger scale, inwhich case it is important to studywhat
happenswhenBHs or compact objects cross such amedium,
or its effect on a tight, GW-emitting binary. In particular,
dynamical friction, accretion and emission of dark matter
will affect the dynamics of the system and a precise
knowledge of the process is necessary [11,21,23–32].
Numerical relativity can yield precise results for the

dynamics and GW emission details, when the length scales
of different objects are similar [15,19,20,33,34]. However,
situations where the length scales differ substantially are
challenging and probe the limits of current infrastructure.
We have recently studied highly diluted miniboson stars
(without self-interactions) as a model for dark matter cores
in halos, and examined the behavior of small BHs as they
traverse through such large boson star structures [21]. We
observed dynamical friction and tidal-induced capture
which led to the accretion of the entire boson star, even
when it was 2 orders of magnitude larger than the BH itself.
The addition of a repulsive self-interaction term intro-

duces extra resistance to gravitational collapse and
may modify drastically the relevant length scales [35].
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Moreover, the maximum mass of miniboson stars Mmax ≈
M2

Planck=μ is significantly smaller than the Chandrasekhar
mass MCh ≈M3

Planck=μ
2 for bosonic particle candidates

with typical masses, where μ is the mass of particle
[14,36,37]. Dark stars are anticipated to accrete mass from
their surroundings, regardless of their initial mass. As a
result of this accretion process, their mass can increase
by as much as 107M⊙ [38]. To extend the limit of the
potential to astrophysical masses that are comparable to the
Chandrasekhar mass, a self-interaction component has
been incorporated into the potential to provide additional
pressure to counteract gravitational collapse [39].
Our purpose here is to generalize Ref. [21] to solitonic

boson stars (SBSs). As the simplest example of non-
topological solitons, an SBS can even exist in the absence
of gravity and is referred to as a Q-ball [14,40–42].
Miniboson stars attain stability through the balance
between gravitational and repulsive pressure forces. On
the other hand, the stability mechanism of SBSs differs,
with a bubblelike structure emerging in the densest region
of the parameter space. Stability arises from the accumu-
lation of energy near the surface, engendering surface
tension among distinct vacua [41].
Evidence also suggests that SBSs can describe dark

matter cores in subhalos. A subhalo is a smaller clump of
dark matter that is gravitationally bound within a larger
dark matter halo and is created when smaller halos are
accreted and tidally disrupted by larger ones [43]. A
solitonic core can be considered as a special type of
subhalo that has a different profile and properties than
other subhalos [44]. However, the variability of the core-
halo relation can make the discrepancy between soliton and
subhalo less strong for larger halos [45]. If dark matter is
made up of ultralight bosons, it is possible for solitonic
cores to form at the centers of dark matter halos [46]. It is
worth noting that Refs. [47,48] provides evidence that the
density profiles of different mergers of solitonic cores
conform to the SBS profile in ultralight axion dark matter
halos. In addition, although the well-known cusp-core
problem can be overcome by introducing a quartic term
in the self-interaction scalar potential [49,50], the scaling
relation between the dark matter halo radius and central
density still contradicts the observations [51]. With an
additional ϕ6-term in the potential, the problem could be
resolved and the cores would have a nontrivial phase
structure [51,52]. In this work, by focusing on SBSs, we
aim to gain a comprehensive understanding of how
solitonic cores behave in the presence of drifting perturbers.
We note, however, that for relativistic fuzzy dark matter
models, the boson mass is approximately of the order of
10−22 eV, which would correspond to a solitonic core
radius of order 1 kpc [13]. Considering the largest known
astrophysical black hole, Tonantzintla 618, its radius
is of the order of 10−6 kpc [53], resulting in a length ratio of
106 which is impossible to resolve with our current

approach. As a model for such systems, we will present
the largest ratios that are feasible with our computational
infrastructure, and as we will argue later, we do not expect
our results to change significantly for larger length ratios
that remain within 1 order of magnitude. Probing length
scales much higher than these currently considered would
necessitate a fundamentally different approach.
We use units where G ¼ c ¼ ℏ ¼ 1 throughout.

II. FRAMEWORK

A. Solitonic boson star

We consider the Lagrangian density of a self-gravitating,
complex scalar field Φ with a solitonic potential
V ¼ VðjΦj2Þ,

Lm ¼ R
16π

− ½gab∇aΦ∇bΦ� þ V�; ð1Þ

where gab is the metric of the spacetime, R is the Ricci
scalar,Φ� is the complex conjugate of the scalar field and V
is the potential,

V ¼ μ2jΦj2
�
1 − 2

jΦj2
σ2

�
2

: ð2Þ

Here μ is the scalar field mass and σ is a free parameter
controlling the self-interaction. The self-interaction poten-
tial is chosen to provide configurations that can exist even
in flat spacetime [40–42] and is a standard choice in the
literature (e.g. [15,54]). Variation of the corresponding
action with respect to the metric gab gives the equations of
motion,

Rab −
1

2
Rgab ¼ 8πTab; ð3Þ

gab∇a∇bΦ ¼ Φ
dV
djΦj2 ; ð4Þ

with energy-momentum tensor,

Tab ¼∇aΦ∇bΦ� þ∇aΦ�∇bΦ−gabð∇cΦ∇cΦ� þVÞ: ð5Þ

Following Refs. [14,21,55], we write down equilibrium
equations with the general, spherical symmetric metric in
Schwarzschild-like coordinates,

ds2 ¼ −α2dt2 þ a2dr2 þ r2dΩ2
2; ð6Þ

where α ¼ αðrÞ, a ¼ aðrÞ. In addition, to get the time-
independent solution, we assume a harmonic ansatz,

Φ ¼ ϕðrÞeiωt: ð7Þ
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Then, the Einstein-Klein-Gordon system can be written as
three coupled ordinary differential equations,

2a0

a
¼ 1− a2

r
þ 8πr

��
ω2

α2
þ μ2ðσ2 − 2ϕ2Þ2

σ4

�
a2ϕ2 þ ðϕ0Þ2

�
;

2α0

α
¼ a2 − 1

r
þ 8πr

��
ω2

α2
−
μ2ðσ2 − 2ϕ2Þ2

σ4

�
a2ϕ2 þ ðϕ0Þ2

�
;

ϕ00 ¼ −
�
1þ a2 − 8πr2μ2a2ϕ2

ðσ2 − 2ϕ2Þ2
σ4

�
ϕ0

r

−
�
ω2

α2
− μ2 −

4μ2ϕ2

σ4
ð3ϕ2 − 2σ2Þ

�
ϕa2;

where primes stand for radial derivatives ∂r. To obtain a
physical solution, the following boundary conditions must
be imposed on this system:

ϕð0Þ ¼ ϕ0; ϕ0ð0Þ ¼ 0; að0Þ ¼ 1; ð8Þ

lim
r→∞

ϕðrÞ ¼ 0; lim
r→∞

αðrÞaðrÞ ¼ 1: ð9Þ

ϕ0 can be specified arbitrarily and roughly determines the
mass of the boson star. We can find a simpler system by
rescaling the variables in the following manner:

ϕ̃≡ ϕ

σ
; r̃≡ μr; t̃≡ ωt; α̃≡ ðμ=ωÞα:

Then the equations become

a0 ¼a
2

�
1−a2

r̃
þ8πσ2r̃

��
1

α̃2
þð1−2ϕ̃2Þ2

�
a2ϕ̃2þðϕ̃0Þ2

��
;

α̃0 ¼ α̃

2

�
a2−1

r̃
þ8πσ2r̃

��
1

α̃2
−ð1−2ϕ̃2Þ2

�
a2ϕ̃2þðϕ̃0Þ2

��
;

ϕ̃00 ¼−½1þa2−8πμ2σ2r̃2a2ϕ̃2ð1−2ϕ̃2Þ2�ϕ̃
0

r̃

−
�
1

α̃2
−1−4ϕ̃2ð3ϕ̃2−2Þ

�
ϕ̃a2; ð10Þ

where primes now stand for derivatives with respect to r̃. To
integrate these equations, we need to understand their
asymptotic behavior. At the origin, r̃ ¼ 0, we can expand
all quantities in a Taylor series to find

aðr̃Þ ¼ 1þ 4πr̃2σ2ϕ̃2
0

3α̃20
½1þ α̃20ð1 − 2ϕ̃2

0Þ2� þOðr̃4Þ;

α̃ðr̃Þ ¼ α̃0 þ
4πσ2r̃2ϕ̃2

0

3α̃0
½2 − α̃20ð1 − 2ϕ̃2

0Þ2� þOðr̃4Þ;

ϕ̃ðr̃Þ ¼ ϕ̃0 þ
r̃2ϕ̃0

6

�
1 −

1

α̃20
− 8ϕ̃2

0 þ 12ϕ̃4
0

�
þOðr̃4Þ;

where ϕ̃ð0Þ ¼ ϕ̃0, α̃ð0Þ ¼ α̃0. At large distances, the
asymptotic behavior of ϕ is

ϕ̃ðr̃ → ∞Þ ∼ 1

r̃
exp

�
−r̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α̃−2

p 

: ð11Þ

Equation (2) results in the potential of mini boson stars in
the limit σ → ∞ [56]. A SBS is not always dynamically
stable against linear fluctuations. An unstable solution
evolves on timescales possibly shorter than those of
collision processes we aim to study; hence it is crucial
to select linearly stable solutions as initial data. The
stability of spherically symmetric boson stars has been
investigated with findings showing that stability changes at
a mass extremum, meaning it is marginally stable at a
particular value of ϕ0: dM=dϕ0 ¼ 0 (See II. C in Ref. [57]
for details). This result reveals, as indicated in Fig. 2 of
Ref. [58], that SBSs possess two stable and two unstable
branches for any value of σ ≪ 1 [41,42,59,60].
The first stable branch of SBSs arises from the non-

relativistic limit (ϕ0=σ → 0) with weak self-interactions,
leading us to anticipate that it will yield results similar to
those of the miniboson star. In contrast, the second stable
branch is situated near ϕ0=σ and possesses significantly
stronger self-interactions. This allows for a more compact
configuration of SBSs compared to the first branch.
It is also worth noting that while SBSs may initially form

in a dilute state, subsequent interactions and coalescence
could lead to more compact configurations [41,61].
Moving forward, we will standardize units such that
μ ¼ 1. All our results will be shown and analyzed using
this unit measure. In the following analysis, we will
focus on the second branch and utilize a ground-state
SBS characterized by ϕ̃0 ¼ 0.7, σ ¼ 0.1, M ¼ 0.20, and
R98 ¼ 4.41, where R98 represents the radius that encom-
passes 98% of the SBS mass. This configuration is depicted
in Fig. 1.

B. Black hole—boson star binary

To construct initial data of BH-SBS spacetime, we
transform radial coordinates of SBS into isotropic coor-
dinates R and superpose this solution with a boosted
Schwarzschild BH, the details of which are demonstrated
in Ref. [21].
To evolve this system, we employ the Baumgarte-

Shapiro-Shibata-Nakamura formulation of Einstein’s
equations [62–64] for our numerical simulations and rely
on the infrastructure of the Einstein Toolkit [65–67] for the
numerical evolutions. Mesh refinement capabilities are
facilitated by Carpet [68], apparent horizons are located
and tracked using AHFinderDirect [69,70], and BH mass is
extracted using QuasiLocalMeasures [71]. The spacetime
metric and scalar field variables are evolved in time using
the LeanBSSNMoL and ScalarEvolve codes [72,73]. We
employ the method of lines, coupled with the fourth-order
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Runge-Kutta technique, to advance our equations over
time. In the integration process, we use outgoing (radiative)
boundary conditions alongside the common 1þ log and
Gamma-driver gauge conditions [74]. For all simulations
we use a square numerical domain with ximin ¼ −430,
ximax ¼ 430. We tested also with larger domain sizes and it
did not change the final results. We consistently employ a
minimum of 40 points to cover the BH, thereby guarantee-
ing sufficient grid points to achieve satisfactory resolution
and use the same grid structure as in Ref. [21]. We have run
simulation IVA until t ∼ 1500 and simulation IVB until
t ∼ 800. The data analysis for this project was performed
utilizing the Python package “kuibit” [75].

C. Diagnostic tools

To gain a clearer understanding and more precise
characterization of some of the physics involved, we track
the following quantities, whose definitions can be found
in Ref. [21]:

(i) The spherical harmonics decomposition of the scalar
field ϕlmðt; rÞ in the vicinity of the moving BH,
using a frame that is comoving with the BH. We use
a coordinate system where the dynamics is axisym-
metric; hence the only contributing multipoles have
azimuthal number m ¼ 0.

(ii) The energy Erad and momentum Prad radiated in
GWs at large distances.

(iii) The total energy density Qt of the scalar field into
the BH horizon.

III. NUMERICAL RESULTS

We conducted a study on a range of initial conditions,
varying the initial mass and velocity of the BH. We use
coordinates such that the SBS is initially at rest at the
origin, and the BH is located along the z axis, initially at

ð0; 0; z0Þ and moving in the positive z-direction. The
Appendix demonstrates the convergence of our numerical
simulations. The initial conditions are summarized in
Table I, and our numerical results and findings are
summarized in Table II and Figs. 2–7. In the following
subsections, we focus on two typical cases, Run IIIB and
Run IVB, as our main interest lies in small BHs. However,
to more clearly illustrate tidal deformation, we opt to
showcase Run IB rather than Run IIIB in Sec. III A.

A. Dynamics and accretion during collision

Snapshots of the evolution of the scalar field for initial
data IB and IVB are shown in Figs. 2 and 3, respectively.
In both figures the tidal distortion of the boson star as the
BH approaches is clear, probably due to their large (and
positive) tidal Love numbers compared to compact systems
[76,77]. The distortion becomes more visible as the BH
approaches the BS along the BH-BS axis. Tidal effects
become crucial to capture the BH, and this is evident for
simulation IVB: a much smaller BH, moving at half the
speed of light is still captured by the SBS via tidal effects,
ending up by accreting almost all of the SBS. The tidal
capture is clearly illustrated in bottom panel of Fig. 4,
where the BH’s velocity even becomes negative for a short
period.
Some of the main numerical results are reported Table II,

which shows a few interesting aspects of this process. For
all simulations we performed, across the different mass

FIG. 1. Scalar field and metric components as functions of the
isotropic radial coordinate R for an isolated SBS with mass
M ¼ 0.20, ϕ̃0 ¼ 0.7, σ ¼ 0.1, ω ¼ 0.1, R98 ¼ 4.41. In this work
we focus on this specific SBS.

TABLE I. List of simulations analyzed for collisions between a
BH of mass parameter MBH and an SBS with mass M ¼ 0.20.
The BH is initially moving along the z-axis with a velocity of v0
and starting from position z0 ¼ −50. The SBS is characterized by
a frequency of ω ¼ 0.759 and values of ϕ̃0 ¼ 0.7, σ ¼ 0.1,
α0 ¼ 0.827 at the origin. The total energy of the system, Mtot,
can be approximated using a Newtonian approach as
Mtot ¼ ΓMBH þM − ΓMBHM=z0, where Γ is the Lorentz factor.
The total momentum of the boosted BH is ΓMBHv0. The
simulations use a mass ratio of q ¼ M=MBH and a length ratio
of L ¼ R98=ð2MBHÞ as parameters. It should be noted that
initially the mass parameter MBH is approximately equal to
the irreducible mass Mirr to within 0.5%. The irreducible mass
can be calculated as A ¼ 16πM2

irr , where A is the area of the
apparent horizon. Recall that all results are presented in units
where μ ¼ 1.

Run MBH L v0 Mtot Ptot

IA 0.5 4 10−4 0.70 0
IB 0.5 4 0.5 0.78 0.289
IIA 0.25 9 10−4 0.45 0
IIB 0.25 9 0.5 0.49 0.144
IIIA 0.125 18 10−4 0.33 0
IIIB 0.125 18 0.5 0.35 0.072
IVA 0.0625 35 10−4 0.26 0
IVB 0.0625 35 0.5 0.27 0.036
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ratios, the BH ends up accreting the SBS. The reason for
this is most likely threefold: accretion and dynamical
friction slows the BH down as the plunges through the
SBS material [30,32,78], but for the process to be fully
effective, tidal capture ensures that the BH remains inside
the SBS, eventually accreting it all or almost all.
Accordingly, the velocity of the BH at late times is well
estimated by simple momentum conservation as can be
seen from Table II.
Given the velocity dependence of dynamical friction, it is

unlikely that yet higher velocities would allow for the BH
to cross the SBS and exit without first accreting it
[30,32,78], unless of the course one gets to more extreme
mass ratios. In fact, the BH absorption cross section is the
main factor that determines whether a BH can pass through
a boson star without destroying it, and to decrease it one
needs to make the BH smaller. Table II seems to indicate
indeed that the residual scalar field increases for smaller
BH mass. We can infer that for yet smaller BHs than those
simulated here, the BH may pierce through the SBS,
consuming only a small portion of scalar field, thereby

leaving a smaller SBS in its wake. However, our numerical
simulations would take a prohibitively long time to evolve
such cases. As a result, within this theoretical framework, it
is very difficult to verify whether a BH can pass through a
boson star without destroying it.

B. The tidal capture and gravitational-wave emission

When small BHs are tidally captured, we find that they
oscillate around the center of the SBSs like a harmonic
oscillator. The phenomenon is clearly observable for IVB
case in both bottom panel of Fig. 5 and upper panel of
Fig. 6, which features multiple peaks, indicating various
stages of oscillation. The peaks depicted in the bottom
panel of Fig. 5 indicate a high accretion rate, suggesting
that the BH is traversing the core of the SBS. Due to the
deformation of the SBS, this core is identified as the region
where the absolute value of the scalar field jΦj reaches its
maximum at this stage. Meanwhile, the peaks seen in the
upper panel of Fig. 6 stem from the acceleration and
deceleration of the relative movement between the SBS and

TABLE II. Summary of the results of the dynamical evolution of the initial data in Table I. Here, Mf represents the final BH
irreducible mass, and vf denotes the final BH velocity, calculated from the puncture trajectory. In parentheses, we display the expected
value MBHv0=Mtot based on momentum conservation, assuming that the entire BS is accreted onto the BH (note the strong agreement
between these two estimates). Erad and Prad stand for the energy and momentum radiated in GWs, respectively. These values are
calculated from ψ4. Lastly, the total momentum and energy flux of the scalar field into the BH horizon are presented in the final two
entries. Junk radiation is present in all cases, but its effect has been excluded.

Run MBH Mf v0 vf 104Erad 104Prad
z Qinitial

t Qfinal
t

IA 0.5 0.70 10−4 −3 × 10−3 (0) 2.10 0.26 0.20 2.6 × 10−4

IB 0.5 0.75 0.5 0.36(0.36) 4.99 −1.72 0.20 6.3 × 10−4

IIA 0.25 0.45 10−4 −4.8 × 10−3 (0) 1.05 0.08 0.19 2.0 × 10−3

IIB 0.25 0.48 0.5 0.27(0.26) 3.09 −0.84 0.20 2.0 × 10−3

IIIA 0.125 0.29 10−4 −1.9 × 10−2 (0) 0.46 9.7 × 10−3 0.19 2.8 × 10−2

IIIB 0.125 0.31 0.5 0.17(0.18) 1.35 −0.31 0.20 2.4 × 10−2

IVA 0.0625 0.24 10−4 1.0 × 10−3 (0) 0.29 0.005 0.19 1.9 × 10−2

IVB 0.0625 0.25 0.5 0.12(0.12) 0.52 −0.09 0.20 2.9 × 10−2

FIG. 2. Snapshots of evolution for the simulation IB, where the BH and SBS are nearly of equal mass. Color intensity depicts scalar
field absolute value jΦj. Snapshots are shown at instants t ¼ 80, 100, 102, 112 from left to right. The pink lines depict contours of
constant lapse function α ¼ 0.2, a rough measure for the location of the apparent horizon. This figure illustrates that the SBS undergoes
considerable tidal distortion as it nears the BH, and ultimate near-total accretion by the BH.
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the BH. It is worth noting that this oscillatory behavior is
not clear in Fig. 4, given that the SBS have nonzero velocity
in the lab frame.
To estimate the period of this oscillation and determine

how close we are to the test particle threshold, we use the
test particle approximation. By assuming this, we can use
the lapse function αðRÞ of nondeformed SBS, which
provides a good approximation of the gravitational poten-
tial. Therefore this function is also commonly referred to as

the Newton potential. When considering a test particle
oscillating within this potential, the acceleration it experi-
ences can be determined from

d2R
dt2

¼ −
dαðrÞ
dR

: ð12Þ

FIG. 3. Snapshots of evolution, depicting the scalar field absolute value jΦj for the simulation IVB. The top row displays snapshots
taken at instants t ¼ 0.0, 79.36, 94.72, and 107.52 from left to right, while the bottom row shows snapshots taken at t ¼ 120.32, 130.56,
140.8, and 145.92 from left to right. As in the previous case, the pink lines depict contours of constant lapse function α ¼ 0.2, indicating
the location of the apparent horizon. The pink circle in this figure is much smaller and harder to see compared to the one in Fig. 2, due to
the significantly smaller size of the BH. In this figure, the SBS pulls back the BH during the collision process, as depicted in panels 5 and
6. Finally, the BH swallows the BS completely. Notice that when the BH first passes through the SBS, the tidal deformation of the SBS is
quite inconspicuous. However, as the SBS accretes an increasing amount of the scalar field, the deformation becomes more pronounced.

FIG. 4. The puncture location z and the velocity v of the BH for
simulations IIIB and IVB. They provide good estimates for the
location and velocity of the BH, and these results demonstrate a
clear interaction between the BH and the BS. Notably, in
simulation IVB, the BH velocity becomes negative for a brief
period as the BH is tidally captured by the SBS.

FIG. 5. Accretion of scalar onto the BH. Top panel: normalized
BH irreducible mass Mirr=MBH for simulations IIIB and IVB.
The gray lines are the normalized total mass Mtot=MBH given in
Table I. At late times the BH mass approaches Mtot; thus the BH
ends up accreting the entire BS. Bottom panel: accretion rate for
the two different initial data. It is worth mentioning that for
simulation IVB, there are two distinct stages of accretion that we
believe are caused by tidal effects.
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The period given by the equation of motion is then

T ¼ 2πffiffiffiffiffiffiffiffiffiffiffi
α00ð0Þp ≈ 23.23: ð13Þ

Additionally, the period of the emitted gravitational wave
corresponds to half of the motion period T, which for this
case is 11.62. This period is consistent with the first peak of
gravitational waves observed in case IVB, as shown in
Fig. 6. This suggests that we are very near the test particle
threshold for simulation IVB. Therefore, it is unlikely that
we will observe any new phenomena at length ratios
slightly larger but still within one order of magnitude.
As we observe subsequent peaks, the oscillation period
gradually decreases due to the BH accretion.
Our results for gravitational wave emission, derived

using a fully relativistic approach, are presented in
Table II. We have selected two typical cases to illustrate
the waveform, as depicted in top panel of Fig. 6. Following
Ref. [21], in the case that the BH mass is much smaller than
SBS mass, the quadrupole approximation can be used to
estimate the waveforms and radiated fluxes, with the BH
moving along a spacetime geodesic defined by a radial
position rðtÞ in a background dictated by the SBS,

dE
dt

¼ 8

15
M2

BHð3ṙ ̈rþrr
…Þ2: ð14Þ

Nevertheless, the present scenario differs significantly from
the Newtonian case, which is characterized by ϕ=σ → 0,
rendering the methodology in Ref. [21] inapplicable in this
context. As an alternative solution, we use the puncture
location, puncture velocity and BH irreducible mass in

numerical simulations instead of the original semianalytic
approximation. To reduce the impact of high frequency
noise in numerical data of IIIB and IVB, we utilize a low-
pass filter on both the puncture location and puncture
velocity with a cutoff frequency ωc ¼ 2.5 (T ¼ 2π

ωc
≈ 2.51).

From the numerical results, it can be seen that the dominant
wavelength of the energy flux exceeds 2.51, indicating that
it would not significantly affect the main waveform.
However, as depicted in bottom panel of Fig. 6, this
approximation fails to describe the peaks that follow the
initial main peak in both IIIB and IVB, which emerge
from the boson star, retaining only specific remnants during
the final acceleration phase. This circumstance invalidates
our initial assumption in the quadrupolar formula, where
the BH mass MBH is significantly smaller than the boson
star mass and the trajectory of the BH is a geodesic on the
SBS background. Ideally, substituting the puncture velocity
with the relative velocity between black holes and SBS
could lead to improved results. However, defining and
calculating this relative velocity poses significant chal-
lenges. The result of quadrupolar approximation is given in
bottom panel of Fig. 6. However, in all instances, these
values are too insignificant to exert any substantial impact
on the system.

C. Late-time decay of the scalar

As noted in Ref. [21] and demonstrated in the IIIB case
in Fig. 5, when the mass of the BH is about half that of the
BS, the BH enters a violent accretion phase, during which
it absorbs most of the material from the BS. However, as
shown in the IVB case in Fig. 5, the scenario deviates
slightly. Here, the BH starts significantly smaller than the
BS. After the BH is tidally captured and begins to increase
in size, the subsequent stage of accretion becomes signifi-
cantly more violent compared to the initial phase. In any
case, a small portion of the BS remnants remains in a quasi-
bound state, moving alongside the BH, which is typical for
massive scalars. The small portion of BS remnants is
expected to be mainly composed of spherical components
and large wavelengths due to their lower accretion rate
[79,80]. Therefore, we validate the quasibound states for
l ¼ m ¼ 0 multiple, as predicted by perturbation theory,
by using the spherical harmonic decomposition technique
in the BH frame [81]. Specifically, we calculate the
quasibound state spectrum corresponding to the final
black hole mass using Leaver’s method [82–84]. We find
that the imaginary part of these modes align with the
fitting result from one of the exponential decay stages. The
results are shown in Fig. 7. Note that while there are
multiple exponential stages, it becomes challenging to
compare them with the results of perturbation theory
before the black hole mass reaches a stable stage, due
to the variations in the black hole mass during the accretion
process.

FIG. 6. Energy flux F ¼ dErad=dt of the GW for IIIB and
IVB. Top: The energy flux obtained by integrating Ψ4 over the
sphere with radius r ¼ 400. Bottom: The energy flux is calcu-
lated using the quadrupole approximation (14), which requires
numerical data from the simulation such as the puncture location,
puncture velocity, and BH mass.
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IV. CONCLUSION

We have performed simulations involving BHs and
SBSs, with length ratios as large as ∼35. Our objective
is to investigate the interaction between bosonic structures
with self-interaction, which could potentially represent
dark matter, and BHs, as well as to determine the dynamical
friction or accretion they induce on the BHs. We find that
the results are very similar to those obtained in Ref. [21],
even for a more compact SBS. The presented results in this
study, combined with those in with Ref. [21], suggest that if
a scalar field with self-interaction is a good model for
describing dark matter, then the emergence of gravitational
atoms will be very common in astrophysical environments,
and thus possible to be detected by detectors [86]. As we
expected, a gravitational atom comes into existence after
collision, characterized by a massive BH surrounded by a
quasi-bound state of the scalar field, known as the SBS
remnant. This differs from the ones in Refs. [87,88], which
are primarily mixed-state solutions of the Schrödinger-
Poisson system including spherical and dipolar compo-
nents. Given that the oscillation period of the BH located at
the center of the SBS is already close to the test particle
limit, we do not expect any new phenomena to emerge until
we reach extremely high length ratios, such as intermediate
or even extreme mass ratios. However, as we discussed in
the Introduction, the length ratio of solitonic cores formed
by relativistic fuzzy dark matter and astrophysical black

holes would be at least on the order of 106, representing
extreme mass ratio systems. Simulating such systems with
our current computational infrastructure is not possible. In
all of our scenarios, we focus on a specific SBS, illustrated
in Fig. 1. However, we anticipate that our findings will be
similar for other SBS configurations with similar compact-
ness to our present cases.
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APPENDIX: NUMERICAL CONVERGENCE

We check the convergence of our numerical results by
defining the usual convergence factor,

Qn ¼
fΔc

− fΔm

fΔm
− fΔh

¼ Δn
c − Δn

m

Δn
m − Δn

h
; ðA1Þ

where n denotes the order of the finite difference scheme
employed, while fΔc

, fΔm
, and fΔh

represent the corre-
sponding numerical solutions for a specified function f at
resolutions of Δc, Δm, and Δh.
We plot in Fig. 8 the convergence analysis for the

l ¼ 0, m ¼ 2 multipole of Ψ4, extracted at r ¼ 400M,
for configuration IB. The results are compatible with

FIG. 8. Top: The analysis of convergence for the l ¼ 0, m ¼ 2
multipole of Ψ4, which was extracted at r ¼ 400M, is presented.
The blue line represents the expected result for a second-order
convergence with a value of Q2 ¼ 1.15, while the green line
illustrates the expected result for a fourth-order convergence,
identified by Q4 ¼ 1.53. Bottom: The l ¼ 0, m ¼ 2 multipole of
Ψ4. The time interpolation order of Carpet is of the second order,
whereas Multiple Thorn, which we employed to extract Ψ02

4 ,
utilizes a third order interpolation order. Consequently, we
anticipate that the convergence order of Ψ02

4 will land between
these two values—namely, the second and third orders.

FIG. 9. Top: Convergence of the Hamiltonian constraint
violation at t ¼ 0 for IB. The green line is multiplied by
Q4 ¼ 1.70, the expected factor for fourth-order convergence.
Bottom: We employ a technique known as Richardson extrapo-
lation to derive the value of the Hamiltonian constraint
as Δ → 0.

FIG. 10. Violation of the Hamiltonian and momentum con-
straints as functions of time for run IB.
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a convergence order between second and fourth
order for physical waveform between t ¼ 500 to
t ¼ 530.
As illustrated in the bottom panel of Fig. 9, the

Hamiltonian constraint does not converge to zero,
which is attributed to the superposition procedure used
in constructing the initial data. To demonstrate the con-
vergence that aligns with the finite difference scheme that
was implemented, the top panel of Fig. 9 shows that the
violation of the Hamiltonian constraint exhibits fourth-
order convergence.
To ensure that constraint violations do not increase over

time, we track the evolution of the l2-norm of these
violations, as shown in Fig. 10. Figure 11 shows that
the apparent horizon is consistently covered by finest level
of the grid in run IB, which demonstrates that Carpet tracks
the grid structure effectively.
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