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Kastor and Traschen constructed totally antisymmetric conserved currents that are linear in the Riemann
curvature in spacetimes admitting Killing-Yano tensors. The construction does not refer to any field
equations and is built on the algebraic and differential symmetries of the Riemann tensor as well as on the
Killing-Yano equation. Here we give a systematic generalization of their work and find divergence-free
currents that are built from the powers of the curvature tensor. A rank-four divergence-free tensor that is
constructed from the powers of the curvature tensor plays a major role here and it comes from the Lanczos-
Lovelock theory.
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I. INTRODUCTION

In [1] Kastor and Traschen (KT) introduced the follow-
ing antisymmetric tensor

J μν
KT≔−

1

4

�
fσρRμνσρ−2fμσRσνþ2fνσRσμþfμνR

�
; ð1Þ

where Rμνσρ, Rμν, and R are the Riemann, Ricci tensors, and
the scalar curvature, respectively. Here fμν is a Killing-
Yano tensor, i.e. an antisymmetric tensor satisfying the
Killing-Yano equation

∇μfνσ þ∇νfμσ ¼ 0: ð2Þ

The interesting fact about J μν is that it is a theory-
independent conserved “current,” i.e.

∇μJ
μν
KT ¼ 0 ð3Þ

for all smooth metrics satisfying the Bianchi identity for the
Riemann tensor and its contractions. So Einstein equations
or any other field equations have not been used to show the
covariant conservation of the current, hence (1) is a
geometric object on a generic manifold of dimension D
larger than 3. In lower dimensions, for D ¼ 2 and D ¼ 3,
J μν

KT vanishes identically. Note that one can add a term to
this current without destroying its properties; that term
would be of the form αfμν, since ∇μfμν ¼ 0 with α an
arbitrary constant or it can be chosen to be the cosmological
constant Λ to comply with the linearity of the KT current in
the curvature. We shall comment on this below.

Any conserved current on a manifold is both a curiosity
and a valuable asset in constructing conserved quantities. In
fact, in [1], generalizing the Arnowitt-Deser-Missner [2]
and the Abbott-Deser [3] (Killing) charge constructions, (1)
was used to define conserved mass density for asymptoti-
cally flat spacetimes only in certain spatial directions which
is the case, for example, for D or p branes. The total mass
of these infinitely extended objects would be infinite, but
their mass density is preserved and positive under certain
conditions as was shown in [4]. The Kastor-Traschen
construction was extended to asymptotically transverse
anti–de-Sitter spacetimes in [5] following the formalism
of [6,7] and the first-order formulation of [8]. (Note that
one could naively worry that a conserved mass density
would not allow any type of motion, that is not the case
here. The mass density is calculated at infinity in certain
transverse directions to the extended object; it does allow
the motion of the object. For an explicit example, see the
long Weyl rod computation in [5].)
The usefulness of a KT-type conserved current, J μν

KT,
1 is

clear, but its construction and generalizations to higher
powers in the curvature are not clear, because the way (1)
appeared in the original paper seems more like serendipity,
and to be able to go beyond the linearity in the curvature
and include more powers of curvature would be rather
difficult without a systematic approach. Here we shall
remedy this and first show how (1) appears rather naturally
and how it can be extended to generic powers of curvature.
So our goal here is the following: without referring to any
field equations of a particular gravity theory, construct
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1One should be happy any time one sees a covariantly
conserved antisymmetric object as they lead to conserved
quantities.
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conserved antisymmetric currents that are linear in the
Killing-Yano tensor but nonlinear in the Riemann tensor
and its contractions for smooth manifolds of dimensions
D ≥ 4. For a recent nice summary of the uses of Killing-
Yano tensors see Ref. [9].
In Sec. II, we give a concise form of the KT current that

is amenable to generalization; in Sec. III we use the
Lanczos-Lovelock theory to build a conserved rank-four
tensor that has the same algebraic properties of the
Riemann tensor but does not obey the differential
Bianchi identity, yet it is divergence-free. In the
Appendix, we give a differential form equivalent version
of the discussion.

II. THE P TENSOR AND THE KASTOR-
TRASCHEN CURRENTS

In [10,11], for the intent of writing the conserved charges
in asymptotically AdS spacetimes in terms of the Riemann
tensor, the authors introduced a (1,3) rank tensor, the P
tensor which reads in genericD ≥ 4 dimensions as follows:

Pν
μβσ ≔ Rν

μβσ þ δνσGβμ − δνβGσμ þ Gν
σgβμ − Gν

βgσμ

þ R
2

�
δνσgβμ − δνβgσμ

�
; ð4Þ

where the (cosmological) Einstein tensor is defined as
Gμν ≔ Rμν − 1

2
gμνRþ Λgμν. In what follows we will set

Λ ¼ 0, but keeping it would not drastically alter the picture.
The P tensor has the following properties each of which
can be easily checked from its definition and the sym-
metries of the Riemann tensor and the Bianchi identities:
(1) It vanishes identically in two and three dimensions.
(2) It has the algebraic symmetries of the Riemann

tensor, and satisfies the algebraic Bianchi iden-
tity Pμ½νβσ� ¼ 0.

(3) Its trace yields not the Ricci tensor but the Einstein
tensor

Pν
μνσ ¼ ð3 −DÞGμσ: ð5Þ

(4) It does not obey the differential Bianchi identity,
namely ∇½μPρν�βσ ≠ 0, but it obeys the following
covariant divergence-free property (for all of its
indices)

∇νPν
μβσ ¼ 0: ð6Þ

Needless to say, the Riemann tensor does not have
this property for generic spacetimes.

(5) In four dimensions, it is equal to the double dual of
the Riemann tensor:

Pμναβ¼⋆R⋆μναβ≔
1

4
ϵμνσρϵαβδλRσρδλ; D¼4: ð7Þ

(6) Its contraction with the Riemann tensor yields the
Gauss-Bonnet scalar

PμναβRμναβ ¼ RμναβRμναβ − 4RμνRμν þ R2: ð8Þ

In (4), one can add the constant term − ðDþ1ÞΛ
D−1

ðδνσgβμ − δνβgσμÞ without destroying any of the above
properties and use the cosmological Einstein tensor. That
would make Pν

μβσ vanish for maximally symmetric space-
times, and make it reduce to the Weyl tensor for all Einstein
spacetimes. Here, we have not added that term.
Let us note that, in a rather surprising way, this tensor

also appeared in a new definition of the surface gravity and
the associated Hawking temperature of black holes [12].
Let us now introduce another property of this tensor,

which will help us prove the claims of this paper: the KT
current (1) is given as

J μν
KT ¼ −

1

4
Pμν

σρfσρ: ð9Þ

This equation is easy to prove as one just uses the definition
of the P tensor (4) and the antisymmetry of the Killing-
Yano tensor. Moreover, the covariant divergence property
follows immediately since

∇μJ
μν
KT ¼ −

1

4
∇μðPμν

σρÞfσρ −
1

4
Pμν

σρ∇μfσρ: ð10Þ

The first term on the right-hand side vanishes due to (6),
and the second term on the right-hand side vanishes since it
can be written as Pν½μσρ�∇μfσρ, due to the total antisym-
metry of the Killing-Yano tensor. This term is identically
zero as the first one since Pν½μσρ� ¼ 0. Note that by adding a
term proportional to Λðδνσgβμ − δνβgσμÞ in the P tensor, one
can also generate the linear term αfμν in the KT current that
we discussed at the end of the paragraph that includes (3).
Once we have an antisymmetric conserved current, it is

easy to build total conserved charges on a manifoldMwith
a boundary as follows: one defines a two-form in local
coordinates

J KT ≔
1

2
J KT

μν dxμ ∧ dxν: ð11Þ

This two-form is not closed, but it yields a natural closed
D − 2 form, ⋆J KT, i.e. d⋆J KT ¼ 0. Then the existence of
a closed D − 2 form yields the number Q ≔

R
Σ ⋆J KT

where Σ is a codimension two submanifold of the space-
time, and the number corresponds to the de Rham period or
the homology class of the submanifold [1,13].
One generalization of the rank-two KT current was

already done in the original work [1] to rank-n currents
using a rank n ≤ D Yano tensor fμ1…μn ¼ f½μ1…μn� that
satisfies
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∇αfβμ2…μn þ∇βfαμ2…μn ¼ 0; ð12Þ

and yields the covariantly conserved n-current

J μ1…μn ¼ ðn − 1ÞR½μ1μ2
ρσfμ3…μn�ρσ þ 4ð−1ÞnRσ

½μ1fμ2…μn�σ

þ 2

n
Rfμ1…μn ; ð13Þ

which can be written as [1]

J μ1…μn ¼ −Nnδ
μ1…μnαβ
ν1…νnσρf

ν1…νnRσρ
αβ; ð14Þ

with Rσρ
αβ ≡ Rσρ

αβ, Nn is a normalization constant, and the
generalized Kronecker delta reads as

δμ1…μm
ν1…νm ¼ det

��������

δμ1ν1 … δμmν1

..

. . .
. ..

.

δμ1νm … δμmνm

��������
: ð15Þ

For the case of rank-two Yano tensor (13), one has

J μ1μ2 ¼ −
1

16
δμ1μ2αβν1ν2σρf

ν1ν2Rσρ
αβ; ð16Þ

which is consistent with (9) since one can also write the P
tensor as

Pαβ
ρσ ¼ 1

4
δαβλγρσμνR

μν
λγ ; ð17Þ

as one can check by expanding the generalized Kronecker
delta in terms of the determinant of Kronecker deltas. The
above form of the current gave us a hint for generalizations
that are nonlinear in the curvature tensor which we perform
in the next section.

III. GENERALIZED KASTOR-TRASCHEN
CURRENTS FROM LANCZOS-LOVELOCK

THEORY

A. Construction of the generalized current

In D spacetime dimensions, the Lovelock gravity, or
perhaps more properly Lanczos-Lovelock gravity [14–16],
is defined by the Lagrangian2

LLLðRkl
mnÞ ≔

X½D2 �
n¼0

anLn; ð18Þ

where an’s are dimensionful constants, and ½D
2
� corresponds

to the integer part of its argument. Each part is given as

Ln ≔
1

2n
δμ1…μ2n
ν1…ν2n

Yn
p¼1

R
ν2p−1ν2p
μ2p−1μ2p ; ð19Þ

where the generalized Kronecker delta is defined as (15).
By definition, the lowest-order term is defined as the
cosmological constant: L0 ≔ −2Λ. One can compute the
next few terms: n ¼ 1 gives the Einstein-Hilbert, and n ¼ 2
gives the Gauss-Bonnet Lagrangians. If the spacetime
dimension D is even, then the highest-order term LD=2

is a pure divergence and does not contribute to the field
equations; i.e. it is a topological invariant for compact
manifolds. (See Refs. [18,19] for a somewhat detailed
discussion of the nonexistence of the Einstein-Gauss-
Bonnet theory in D ¼ 4 dimensions that gathered so much
recent attention.) The virtues of the Lanczos-Lovelock
theory are well known, and we shall not repeat them here;
they are summarized in [17,20]. Our main intention here is
to use this theory to first define a proper generalization of
the P tensor of the previous section that has the same
divergence-free property and the algebraic symmetries, but
it is nonlinear in the curvature tensor and its traces. If we
can do that, it should be clear to the astute reader by now,
we can generalize the KT currents.
Therefore, from (19), let us define the generalized, still

rank four, P tensor as3

Pμναβ
ðnÞ Rμναβ ≔

1

2n
δμ1…μ2n
ν1…ν2n

Yn
p¼1

R
ν2p−1ν2p
μ2p−1μ2p ; ð20Þ

or more explicitly,

Pμν
ðnÞαβ ¼

1

2n
δμνμ3…μ2n
αβν3…ν2n

Yn
p¼2

R
ν2p−1ν2p
μ2p−1μ2p : ð21Þ

Observe that with the above normalization Pμν
ð2Þαβ corre-

sponds to our earlier definition (4) or (17), and
Pμν

ð0Þαβ ¼ 1
2
δμναβ. It is clear from the definition (21) that

Pμν
ðnÞαβ satisfies the algebraic symmetries of the Riemann

tensor and the first Bianchi identity PðnÞα½βμν� ¼ 0. But we
need to show that it is divergence-free. Let us work this out
by direct computation:

∇νP
μν
ðnÞαβ ¼

n − 1

2n
δμνμ3…μ2n
αβν1…ν2n

∇ν

�
Rν3ν4
μ3μ4

�Yn
p¼3

R
ν2p−1ν2p
μ2p−1μ2p

¼ 1

3

n − 1

2n
δμνμ3μ4…μ2n
αβν1…ν2n

∇½νR
ν3ν4
μ3μ4�

Yn
p¼3

R
ν2p−1ν2p
μ2p−1μ2p ¼ 0;

ð22Þ

2We follow the notation of [17] but multiply the Lagrangian
by 1

2n
.

3An equivalent tensor was constructed in [21] where it was
called the Riemann-Lovelock curvature tensor.
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where in the last line we used the differential Bianchi
identity on the Riemann tensor. So this construction
generalizes all the features of Pμν

ð2Þαβ to Pμν
ðnÞαβ. Therefore,

we can now define the conserved generalized KT rank-two
current as

J μν
ðnÞ ≔ −

1

4
Pμν

ðnÞσρf
σρ ¼ −

1

4

1

2n
δμνμ3…μ2n
σρν3…ν2n f

σρ
Yn
p¼2

R
ν2p−1ν2p
μ2p−1μ2p ;

ð23Þ

which is antisymmetric and conserved ∇μJ
μν
ðnÞ ¼ 0. Note

that any linear combination of these currents in the form

J μν
ðTotalÞ ≔

X½D2 �
n¼0

cnJ
μν
ðnÞ; ð24Þ

where cn are dimensionful constants.

B. Wald’s rank-four tensor versus the P tensor

Let us comment on the connection between the P tensor
discussed above and a rank-four tensor that appears
in the Wald entropy computations in higher derivative
gravity models [22,23].4 Given a diffeomorphism invariant
action built on the metric tensor and the Riemann tensor
and its derivatives and contractions, I ¼ R

dDx
ffiffiffiffiffiffi−gp

Lðgμν;
Rμναβ;∇σRμναβ;…Þ, the field equations suggest that one
defines the following tensor that has the same algebraic
symmetries as the Riemann tensor

PW
μναβ ≔

∂L
∂Rμναβ ; ð25Þ

where we put aW subscript that refers to Wald. Generically
this tensor is not covariant divergence-free (i.e.
∇μPW

μναβ ≠ 0), nor does it obey the differential symmetries
of the Riemann tensor. Recall that the covariant divergence-
free property (6) of our P was a necessary ingredient in the
construction of the above currents. So generically PW ≠ P
and one cannot use Wald’s tensor to extend the KT currents
straightforwardly. To demonstrate what we have just stated,
let us consider a particular form of the action for which the
Lagrangian is a polynomial in the Riemann tensor only, but
does not depend on its derivatives. So we have
I ¼ R

dDx
ffiffiffiffiffiffi−gp

Lðgμν; RμναβÞ, of which the field equations
are [24] (here we use a more compact notation)

Eμν ¼ ∇λ∇σPW
μσνλ þ∇λ∇σPW

νσμλ

þ 1

2

�
PW
ρσλνR

ρσλ
μ þ PW

ρσλμR
ρσλ

ν

�
−
1

2
gμνL; ð26Þ

which is generically a fourth-order theory in terms of the
dynamical field (the metric tensor). At this stage, one could
try to restrict the set of theories by demanding that one
should have a second-order theory just like Einstein’s
gravity, then this can be achieved by setting

∇σPW
μσνλ ¼ 0; we demand this; ð27Þ

which reduces (26) to a second-order theory. Say we have
no matter fields, then from the reduced form of (26), one
obtains

L ¼ 2

D
PW
ρσλμR

ρσλμ: ð28Þ

Finally, comparing with (20), only in this case (which is the
case of Lanczos-Lovelock theories), the Wald tensor and
the P of this work are proportional to each other as

Pμναβ ¼
2

D
PW
μναβ: ð29Þ

Let us remark that for this case, the Wald entropy of a black
hole as a conserved charge of diffeomorphisms (computed
in the spatial cross section of a null horizon) reads [25]

SW ¼ 2π

Z
S
PW
μναβϵ

μνϵαβdD−2S; ð30Þ

where ϵαβ are the binormal vectors to S that involve the
timelike Killing vector (see Ref. [26] for further details).
For a physical interpretation of the conserved charges built
in this work, this connection between the Wald entropy
would be very valuable; but one has to be careful, in the
former we use Killing-Yano tensors, while in the latter the
Killing vectors.

C. Linearized KT currents

As a separate note, to further gain insight into the
physical meaning of the currents constructed here, we
can consider asymptotically flat spacetimes that only have
asymptotic (not exact) Killing-Yano tensors as was done
in [1]. This vantage point as advocated in [27] in the case of
Killing vectors leads to conserved charges (with respect to
the background of which the charges are assumed to be
zero), and it proceeds by the linearization of all relevant
tensors about the background spacetime (with the metric
ḡμν). The details of this construction can be found in the
recent review [28]. Let f̄μν be the background Killing-Yano
tensor, then linearization of (24) around the background flat
spacetime (with R̄μναβ ¼ 0); and each term in (24) is given
as in (23). Then one realizes that the only contribution
comes from the original Kastor-Traschen current that is
linear in the curvature tensor; all other terms are built with
at least two powers of the Riemann tensor and hence vanish

4We thank a conscientious referee for reminding us of this
tensor.
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for asymptotically flat backgrounds. So the current con-
struction here reduces to that of KT for all asymptotically
flat spacetimes. As an antisymmetric rank-two current, the
linearized version of the KT current in asymptotically flat
spacetimes can be written in terms of potential as
ðJ μν

ð2ÞÞL ¼ ∇σlσμν, where the potential was given in [1],

and ∇σ denotes the covariant derivative with respect to the
flat background. On the other hand, if the background
spacetime is not asymptotically flat, but say, asymptotically
anti–de-Sitter, the terms in (24) contribute to the total
current depending on the number of dimensions D, since
now R̄μναβ ≠ 0. Let us show this with an example in AdS
spacetime. Linearizing (23) about an AdS background
yields

ðJ μν
ðnÞÞL ¼ −

1

4

�
Pμν

ðnÞσρ
�
L
f̄σρ; ð31Þ

where, from (21), we have

�
Pμν

ðnÞαβ
�
L
¼ðn−1Þ

2n
δμνμ3…μ2n
αβν3…ν2n

ðRν2n−1ν2n
μ2n−1μ2nÞL

Yn−1
p¼2

R̄
ν2p−1ν2p
μ2p−1μ2p : ð32Þ

For the background we have

R̄μν
αβ ¼

2Λ
ðD − 1ÞðD − 2Þ

�
δμαδνβ − δμβδ

ν
α

�
: ð33Þ

For the sake of simplicity, let us consider the n ¼ 3 case
(corresponding to the cubic Lanczos-Lovelock theory) for
which we have to compute

�
Pμν

ð3Þαβ
�
L
¼ 1

22
δμνμ3…μ6
αβν3…ν6

�
Rν5ν6
μ5μ6

�
L
R̄ν3ν4
μ3μ4 ; ð34Þ

which reduces to

�
Pμν

ð3Þαβ
�
L
¼ Λ

ðD − 1ÞðD − 2Þ δ
μνμ3μ4μ5μ6
αβμ3μ4ν5ν6

�
Rν5ν6
μ5μ6

�
L
: ð35Þ

We can reduce the contracted generalized Kronecker delta
with six up and six down indices as follows (see Ref. [17]):

δμνμ3μ4μ5μ6αβμ3μ4ν5ν6
¼ ðD − 4Þ!

ðD − 6Þ! δ
μ;νμ5μ6
αβν5ν6

; D ≥ 6 ð36Þ

which then yields

�
Pμν

ð3Þαβ
�
L
¼ Λ
ðD−1ÞðD−2Þ

ðD−4Þ!
ðD−6Þ!δ

μνμ5μ6
αβν5ν6

�
Rν5ν6
μ5μ6

�
L
: ð37Þ

The resulting computation is still a little bit tedious; one can
show that

�
J μν

ð3Þ
�
L
¼ 4Λ

ðD − 1ÞðD − 2Þ
ðD − 4Þ!
ðD − 6Þ!

�
J μν

ð2Þ
�
L
; ð38Þ

where ðJ μν
ð2ÞÞL was shown in [5] to be written in terms of a

rank-three potential as follows:

�
J μν

ð2Þ
�
L
¼ 3!∇σ

�
f̄ρ½μ∇νhσ�ρ þ

1

2
f̄½νμ∇σ�hþ 1

2
hρ½ν∇σf̄jρjμ�

−
1

2
f̄½νμ∇jρjhσ�ρ þ

1

6
h∇½νf̄σμ�

�
; ð39Þ

where the brackets denote antisymmetrization, and hμν ≔
gμν − ḡμν is the deviation from AdS which is assumed to be
small asymptotically at spatial infinity. This form can easily
be integrated to give conserved charges which we shall
study more explicitly in a separate work. So the upshot is
that each term in (24) contributes to the KT current for
asymptotically nonflat geometries, while only the original
KT current contributes for asymptotically flat geometries
akin to the case for the Killing charges which is just the
Arnowitt-Deser-Misner [2] energy for asymptotically flat
geometries even in higher curvature theories, but higher
curvature terms contribute for asymptotically nonflat
ones [6,7].

IV. CONCLUSIONS

In this work, our goal was to generalize the Kastor-
Traschen current [1]) that is linear in the Riemann curvature
and the Killing-Yano tensor to currents nonlinear in the
curvature. For this purpose, we reformulated the original
KT current in terms of a rank-four divergence-free tensor
and used that expression and the Lanczos-Lovelock theory
to build the generalized current. In the construction of these
currents, the only ingredients are the Bianchi identities of
the Riemann tensor as well as the Killing-Yano tensor. The
currents are valid for all spacetimes that admit Killing-Yano
tensors. There are various possible extensions of our work:
we used Killing-Yano tensors here, but one can extend the
construction to the spacetimes admitting conformal
Killing-Yano tensors [29].

APPENDIX: THE P TENSOR IN THE
DIFFERENTIAL FORMS

Here we briefly give the discussion of the P tensor in
terms of differential forms. For this purpose, we need to
recast the Lanczos-Lovelock Lagrangians as D-forms first.
The Cartan structure equations for the curvature two-

form and the torsion one-form read, respectively, as

Ra
b ≔ dωa

b þ ωa
c ∧ ωc

b; ðA1Þ

Ta ≔ deab þ ωa
b ∧ eb ¼ Dea: ðA2Þ
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The Bianchi identities are

D ∧ Ra
b ¼ 0; D ∧ Ta − Ra

b ∧ eb ¼ 0; ðA3Þ

while the Lanczos-Lovelock Lagrangian as a function of
the vierbein and the spin connection reads

LLL½ea;ωab� ¼
X½D2 �
n¼0

anLðnÞ; ðA4Þ

where the D-form Lagrangian for each n is given as

LðnÞ ≔ ϵa1…aDR
a1a2 ∧ … ∧ Ra2n−1a2n ∧ ea2nþ1 ∧ :: ∧ eaD:

ðA5Þ

Then we can define the tensor-valued P (D − 2) form

Pa1a2 ≔ ϵa1…aDR
a3a4 ∧ … ∧ Ra2n−1a2n ∧ ea2nþ1 ∧ :: ∧ eaD:

ðA6Þ

We did not need them, but for completeness, let us give the
field equations for the full theory: The field equation

coming from δILL½ea;ωab�
δeb

reads

Eb ¼
X½D−1

2
�

n¼0

ðD − 2nÞanEðnÞ
b ¼ 0 ðA7Þ

where

EðnÞ
b ≔ ϵba2::aD−1

Ra1a2 ∧…∧Ra2n−1a2n ∧ea2nþ1 ∧ ::∧eaD−1 :

ðA8Þ

The field equation coming from δILL½ea;ωab�
δωbc reads

Hbc ¼
X½D−1

2
�

n¼1

nðD − 2nÞanHðnÞ
bc ðA9Þ

where

HðnÞ
bc ≔ ϵbca3::aDR

a3a4 ∧…∧Ra2n−1a2n ∧Ta2nþ1 ∧ ::∧eaD−1

ðA10Þ

and we observe that the torsion entered into the last
equation which can be set to zero. See Ref. [30] for further
details.
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