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The tidal response of compact objects in an inspiraling binary system is measured by a set of tidal Love
and dissipation numbers imprinted in the gravitational waveforms. While a four-dimensional black hole in
vacuum within general relativity has vanishing Love numbers, a black hole in alternative theories of gravity
can acquire nonvanishing Love numbers. The dissipation numbers may quantify Planckian corrections at
the horizon scale. These properties will allow a test of classical theories of gravity in the strong-field regime
with gravitational-wave observation. Since black holes are not in the exact vacuum environment in
astrophysical situations, the following question arises: Can the environment affect the tidal response? In
this paper, we investigate the stability of the tidal response of a Schwarzschild black hole for frequency-
dependent tidal-field perturbations against a small modification of the background. Our analysis relies on
the scattering theory, which overcomes difficulties in computing the relativistic tidal Love numbers. The
tidal Love and dissipation numbers can be understood from the property of sufficiently low-frequency
scattering waves. We show that the tidal Love numbers are sensitive to the property of the modification.
Therefore, we need careful consideration of the environment around the black hole in assessing
the deviation of the underlying theory of gravity from general relativity with the Love numbers. The
modification has less impact on the dissipation numbers, indicating that quantifying the existence of the
event horizon with them is not spoiled. We also demonstrate that in a composite system, i.e., a compact
object with environmental effects, the Love and dissipation numbers are approximately determined by the
sum of the numbers of each component.
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I. INTRODUCTION AND SUMMARY

After the first detection of the binary black-hole merger
GW150914 [1,2], the advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO) [3] and the
Virgo interferometer [4] have already detected around
a hundred coalescences of binary black holes, binary
neutron stars, and binary black hole–neutron star. This
observational success has given new insights into astro-
physics [5–7], fundamental physics [8–12], and cosmology
[13,14]. The detection of gravitational waves from the
binary neutron-star merger GW170817 [15], which is
associated with the electromagnetic counterpart, i.e., a
short gamma-ray burst and a kilonova [16,17], has opened
up the field of multimessenger astronomy [18] and pro-
vided a stringent constraint on the propagation speed of the
graviton [16,19]. Future observations with improved detec-
tor sensitivity and/or new facilities including KAGRA [20]
may provide the decisive answer to one of the most
fundamental questions: To what extent is general relativity
correct in the strong-gravity regime?
In binary coalescences, the tidal interaction deforms their

bodies, thereby modifying their orbital motion in the last

stage of the inspiral phase. Tidal deformability at the linear
level is quantified by a set of the so-called tidal Love
numbers as the response of the object to an external static
tidal field [21–23]. The phase evolution of gravitational
waves from the inspiraling binary reflects the underlying
theory of gravity as well as the internal structure of the
objects through the tidal Love numbers. Measurement of
them, thus, allows one to access the strong-field gravity
of black holes or the extremely dense inside environment of
neutron stars [24–26].
Intriguingly, the Love numbers vanish exactly in

theory for a black hole in vacuum in four-dimensional
general relativity, i.e., Schwarzschild and Kerr black holes
[23,27–31]. The measurement of the tidal Love numbers
of compact binaries can, thus, put a constraint on
quantum corrections of the event horizon [32–40] and
work for testing theories of gravity in the strong-field
regime [33,41–45]. In other words, a nonzero tidal Love
number can be evidence of new physics. From the
theoretical point of view, various authors [46–55] have
argued a connection between the vanishing of the Love
numbers and a hidden symmetric structure of the equation
for linear gravitational perturbations around a black hole.

PHYSICAL REVIEW D 108, 084049 (2023)

2470-0010=2023=108(8)=084049(21) 084049-1 © 2023 American Physical Society

https://orcid.org/0000-0002-3755-3093
https://orcid.org/0000-0001-5922-180X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.084049&domain=pdf&date_stamp=2023-10-24
https://doi.org/10.1103/PhysRevD.108.084049
https://doi.org/10.1103/PhysRevD.108.084049
https://doi.org/10.1103/PhysRevD.108.084049
https://doi.org/10.1103/PhysRevD.108.084049


At a practical level, the following concern still remains
regarding the usefulness of the tidal Love numbers.
Although the vanishing of the Love numbers of
Schwarzschild and Kerr black holes is based on the exact
vacuum assumption, in realistic situations, tidal interactions
are more or less inevitably accompanied by the environ-
mental effect such as the presence of surrounding matter,
giving rise to nonzero Love numbers [56–60]. The mea-
sured Love numbers would exhibit strong sensitivity to the
property of small environmental effects, and its deviation
from zero would be much larger than the scale of the
environment, indicating destabilization of the tidal Love
numbers. Such destabilization may interfere with the test
of general relativity. It is, thus, important to theoretically
assess the property of the tidal Love number induced by the
deviation from the vacuum environment around a black
hole within general relativity in advance of future gravi-
tational-wave observation.1

In such a situation, a strategy within a theory or model-
agnostic framework will be useful, because no one knows
either the “true” theory of gravity or the accurate model of
surrounding matter fields around astrophysical black holes.
However, one immediately encounters a difficulty in
evaluating the relativistic tidal Love numbers, except for
exactly solvable systems, because it relies on the property
of the hypergeometric function: The tidal Love numbers
are understood from the connection coefficient between
two fundamental solutions for a tidal field, which are
constructed, respectively, around the event horizon and
around large distances, based on the analytic continuation
of the hypergeometric or associated functions [23,27–31]
as will be seen in Sec. III. Without an analytic solution
capturing the physical property of a tidal field near the
event horizon, it is difficult to obtain the corresponding
coefficients in general, even in a system slightly modified
from the Schwarzschild or Kerr background. Furthermore,
even if one tries to construct local solutions analytically, for
example, with the Frobenius method, there is another
problem stated in the following.
One here must address a more fundamental problem: a

potential ambiguity in computation of the relativistic tidal
Love numbers [22,66,67]. To see this, let us consider the
asymptotic behavior of the quadrupolar mode Φ2 of the
static gravitational perturbation to an asymptotically flat
spacetime at infinity, which schematically takes the form

lim
r→∞

Φ2 ∝ r3½1þOð1=rÞ� þ κ

r2
½1þOð1=rÞ�; ð1:1Þ

where κ is the ratio of the coefficient of the decaying
term in r to that of the growing term, corresponding to
the quadrupolar tidal Love number [21–23] (see the

precise definition in Sec. II). However, if one considers
the subleading contribution of the term of r3, say,
r3½1þ � � � þ δ5=r5 þOð1=r6Þ�, that ratio changes, i.e.,
κ → κ þ δ5. That is, the coefficient of the decaying term
degenerates with that of the subleading term of the growing
term.2 This ambiguity leads to the discrepancy between
the theoretical definition within the linear gravitational
perturbation theory and the observational one appearing
in gravitational-waveform models based on the post-
Newtonian approximation (see the details in Ref. [67]).
An analytic continuation of the multipolar index from

an integer to a generic number allows us to avoid the
aforementioned degeneracy [27–31,69]; however, for static
perturbations, another problem, i.e., the gauge dependence
of the tidal Love numbers [67], still remains. On the other
hand, as pointed out in Ref. [69], together with the analytic
continuation, the extraction of them from frequency-
dependent perturbations bypasses the gauge ambiguity
because of the imposition of boundary conditions that
capture both the physical properties of the compact object
and the perturbation field (see also the details in Ref. [30]).
Despite these efforts, there still remains, in general, yet
another subtlety of the definition: Perturbation fields in
generic systems do not necessarily take the simple form of
Eq. (1.1) at large distances but instead include the loga-
rithmic term [27,31,44,66]. Recently, to avoid these issues,
several authors have attempted to evaluate the linear
response in terms of scattering amplitude [69,70] and
the worldline effective field theory approach [71].
In this paper, we study the property of the destabilization

effect on the tidal Love numbers, introduced by tiny
deformation to the Schwarzschild background. To overcome
the difficulties in computing the relativistic tidal Love
numbers, our analysis relies on the scattering theory of
linear frequency-dependent gravitational fields around a
Schwarzschild black hole. We also discuss stability of
another quantity characterizing frequency-dependent tidal
response, i.e., the dissipation number [28–31,71] (see the
precise definition in Sec. II), which quantifies the absorption
of the external tidal field into the event horizon and is
imprinted in gravitational waveforms from an inspiraling
binary [36,72–77]. Black holes have nonzero dissipation
numbers, while the dissipation numbers vanish for non-
rotating horizonless objects. This property may allow one to
constrain Planckian corrections at the horizon scale [35,36].
In Sec. II, after reviewing the relativistic tidal Love

numbers of a Schwarzschild black hole for a static tidal
field, we introduce the dissipation numbers.
We first show in Sec. III that the tidal Love and

dissipation numbers can be extracted from a response
function (3.31) that is defined from a low-frequency

1A similar problem has been discussed in the context of
quasinormal modes in Refs. [61–64] in the past few years and in
Ref. [65] a long time ago.

2The Newtonian tidal Love numbers are unambiguously
computed, because solutions of the Laplace equation have no
such subleading terms [68].

KATAGIRI, NAKANO, and OMUKAI PHYS. REV. D 108, 084049 (2023)

084049-2



scattering wave, giving another physical interpretation for
them as a property of the scattering wave [30,69,70]. We
further derive the formulas for the Love and dissipation
numbers, i.e., Eqs. (3.34) and (3.35), in terms of the response
function, which allows us to provide further insights into
them from the viewpoint of the scattering problem.
Following Refs. [30,69–71], our discussion overcomes the
potential gauge ambiguity in computation of the relativistic
tidal Love numbers by defining them in terms of scattering
waves under the boundary conditions that capture the
physical property of a compact object in the strong-field
regime and of a scattering wave in the weak-field regime. In
addition, we use the analytic continuation of the multipole
number from an integer to a generic number, which resolves
the aforementioned degeneracy [69].
In Sec. IV, we study the tidal response of the

Schwarzschild black hole with a slight potential modifi-
cation in the shape of a Gaussian small bump (see Fig. 2).
The tidal Love and dissipation numbers are calculated
from the response function numerically. We find that the
bump leads to a nonzero Love number, while it has less
impact on the dissipation number. The deviation from the
vanishing Love numbers is much larger than the scale of
the Gaussian bump and is quite sensitive to the property of
the bump, i.e., the location, height, and width, while the
dissipation number is not. This shows that the tidal Love
numbers are easily destabilized by a tiny deviation from
the exact vacuum environment, while the dissipation
numbers are stable.
Why does a tiny modification to the Schwarzschild

background destabilize the tidal Love numbers but not
the dissipation numbers? This comes from the fact that the
tidal response consists of both those of the black hole and
the Gaussian bump. In a composite system, i.e., a
Schwarzschild black hole with environmental effects, the
tidal Love and dissipation numbers are approximately
determined by the linear combination of the numbers of
each component.
As shown in Appendix A, a Gaussian bump in the

Minkowski spacetime causes a nonzero Love number and
zero dissipation number. In fact, the former takes a value
close to that of the Schwarzschild black hole with the same
Gaussian bump and shares the qualitatively same feature,
e.g., the dependence on the location of the bump [see
Figs. 9(a) and 9(b)]. The latter has less impact on the
dissipation numbers of the black hole.
Furthermore, we analyze in Sec. IV the tidal response of

a Schwarzschild black hole with a combination of the two
of Gaussian bump and/or dip (see Fig. 6). It is demonstrated
in Appendix B that such a combined modification can be
realized due to the presence of local matter. We show that
the tidal Love and dissipation numbers of the composite
system are almost the same as the linear combination of the
numbers for each modification. It is also found that the
dissipation numbers are still stable.

In Sec. V, we discuss the astrophysical implication of our
results. The destabilization indicates that a test of theories
of gravity with the tidal Love numbers may require careful
consideration of the environment in which black holes are
immersed. From another viewpoint, a nonzero Love num-
ber allows us to catch a glimpse of the extreme property of
matter fields around a black hole through gravitational-
wave observation. In yet another context, the destabiliza-
tion of the Love numbers may hinder constraining the
matter equation of state in neutron stars, because the
destabilization also occurs even for horizonless compact
objects such as a neutron star as seen in Appendix C. For an
inspiraling binary, the environmental effect varies with time
as the orbital separation decreases. Consequently, the tidal
response induced by the environment varies with time,
while that arising from modification in theories of gravity
remains constant. Thus, the extraction of the constant
component from the time-varying tidal response will be
an important step in testing theories of gravity in the strong-
field regime. We also discuss theoretical application to
“parametrized” formalism for the effective potential as in
Refs. [78–80].
In Appendix C, we discuss the case of horizonless

compact objects that have a reflective boundary at a
slightly larger radius than the Schwarzschild radius.3

We find that a Gaussian bump destabilizes the tidal
Love numbers and still maintains the vanishing of the
dissipation numbers. The value of the tidal Love number
of the total system is mostly determined by the Gaussian
bump. Thus, it may be challenging to distinguish hori-
zonless compact objects from black holes in the presence
of environmental effects in terms of the Love numbers. On
the other hand, the dissipation numbers are stable and,
therefore, tell their difference.

II. TIDAL RESPONSE OF A SCHWARZSCHILD
BLACK HOLE

In this section, we review linear gravitational perturba-
tion theory of a Schwarzschild black hole and then
introduce relativistic tidal Love and dissipation numbers
based on Refs. [21–23].

A. Linear gravitational perturbation theory

To discuss the tidal response of a Schwarzschild
black hole to an external tidal field, we review linear
gravitational perturbation theory around the black hole. In
spherical polar coordinates ðt; r; θ;φÞ, the metric of the
Schwarzschild black-hole spacetime is given by

3Horizonless compact objects have been discussed as one
possibility of signatures of a quantum correction in the strong-
gravity regime; see Refs. [81–85].
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gð0Þμν dxμdxν ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2 θdφ2Þ; ð2:1Þ

where M is the Arnowitt-Deser-Misner mass. Here, the
coordinate range is restricted to −∞<t<∞, 2M<r<∞,
0 ≤ θ < π, and 0 ≤ φ < 2π. The linearly perturbed space-
time metric is given by

gμν ¼ gð0Þμν þ hμν; ð2:2Þ

where the perturbation field hμν satisfies jhμνj ≪ jgð0Þμν j.

Given the spherical symmetry of the background space-
time (2.1), each component of hμν can be decomposed in
terms of the tensor spherical harmonics. The perturbation
field can be separated into even- and odd-parity modes

hðevenÞμν and hðoddÞμν , respectively, subject to the parity trans-
formation P∶ðθ;φÞ → ðπ − θ;φþ πÞ. There is no mixing
between the even- and odd-parity modes, because the
Schwarzschild metric (2.1) is invariant under the parity
transformation P; one can, therefore, treat each parity mode
independently.
With appropriate gauge fixing, i.e., the so-called Regge-

Wheeler gauge [86], the harmonic modes of hμν in the
frequency domain can be described by

ðhðevenÞlm Þμν ¼

0
BBB@

ð1 − 2M
r ÞHlm

0 Ylm Hlm
1 Ylm 0 0

Hlm
1 Ylm ð1 − 2M

r Þ−1Hlm
2 Ylm 0 0

0 0 r2KlmYlm 0

0 0 0 r2sin2θKlmYlm

1
CCCA ð2:3Þ

and

ðhðoddÞlm Þμν ¼

0
BBBBB@

0 0 hlm0 Slmθ hlm0 Slmφ

0 0 hlm1 Slmθ hlm1 Slmφ

hlm0 Slmθ hlm1 Slmθ 0 0

hlm0 Slmφ hlm1 Slmφ 0 0

1
CCCCCA
;

ð2:4Þ

where Ylm are the scalar spherical harmonics and
ðSlmθ ; Slmφ Þ ≔ ð−∂φYlm=sin θ; sin θ∂θYlmÞ. This form is
valid only for l ≥ 2. Here, the Fourier transformation with
respect to the time variable has been performed as

Fðr;ωÞ ¼
Z

∞

−∞
dtF̃ðt; rÞeiωt; ð2:5Þ

where F and F̃ correspond to Hlm
0 , Hlm

1 , Hlm
2 , Klm, hlm0 ,

and hlm1 in the frequency domain and those in the time
domain, respectively.
The vacuum linearized Einstein equation δRμν ¼ 0 leads

to two independent equations, respectively, for the even-
and odd-parity modes, which take the following unified
form in the frequency domain [86,87]:

�
1 −

2M
r

�
d
dr

��
1 −

2M
r

�
d
dr

Φ�
lmðr;ωÞ

�

þ ðω2 − V�
lmÞΦ�

lmðr;ωÞ ¼ 0; ð2:6Þ

with

Vþ
lm ≔

�
1 −

2M
r

��
2λ2ð1þ λÞr3 þ 6λ2Mr2 þ 18λM2rþ 18M3

r3ðλrþ 3MÞ2
�
;

V−
lm ≔

�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
; ð2:7Þ

where λ ≔ ðl − 1Þðlþ 2Þ=2. Here, Φþ
lm and Φ−

lm are gauge-invariant variables for the even- and odd-parity modes,
respectively, and are defined by [88]

Φþ
lm ≔

rðr − 2MÞ
ðλþ 1Þðλrþ 3MÞ

�
Hlm

2 − r
dKlm

dr
þ λrþ 3M

r − 2M
Klm

�
;

Φ−
lm ≔

r
λ

�
r2

d
dr

�
hlm0
r2

�
þ iωhlm1

�
: ð2:8Þ
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Equations for Φþ
lm and Φ−

lm in Eq. (2.6) are called the Zerilli and Regge-Wheeler equations, respectively [86,87]. One can

reconstruct all the nonvanishing components of ðhðevenÞlm Þμν and ðhðoddÞlm Þμν from Φþ
lm and Φ−

lm, respectively:

Hlm
0 ¼ 1

λrþ 3M

��
λðλr2 þ 6M2Þ
rðλrþ 3MÞ þ 3M2

r2
þ λ2 − ω2r2

λrþ 3M
r − 2M

�
Φþ

lm −
�
Mðλrþ 3MÞ

r
− λðr − 2MÞ

�
dΦþ

lm

dr

�
;

Hlm
1 ¼ −iω

λrðr − 2MÞ −Mðλrþ 3MÞ
ðr − 2MÞðλrþ 3MÞ Φþ

lm − iωr
dΦþ

lm

dr
;

Hlm
2 ¼ Hlm

0 ;

Klm ¼ λðλþ 1Þr2 þ 3λMrþ 6M2

r2ðλrþ 3MÞ Φþ
lm þ

�
1 −

2M
r

�
dΦþ

lm

dr
; ð2:9Þ

and

hlm0 ¼
�
1 −

2M
r

�
d
dr

ðrΦ−
lmÞ;

hlm1 ¼ −
iωr2

r − 2M
Φ−

lm: ð2:10Þ

B. Definition: Tidal Love numbers

In this subsection, the tidal Love numbers are introduced
within a relativistic framework. Assuming that the tidal

field is weak and slowly varying in time, we can apply
linear static gravitational perturbation theory. To define the
tidal Love numbers for the static perturbation, we first
introduce the notion of induced multipole moments and
tidal moments of a generic metric function following
Refs. [21,33,89].
In asymptotically Cartesian and mass centered coordi-

nates ðt; r; θ;φÞ, induced multipole moments and tidal
moments of any static, spherically symmetric, and asymp-
totically flat spacetime can be extracted from the asymp-
totic behavior of the metric components in the
asymptotically flat region:

gtt ¼ −1þ 2M
r

−
X
l≥2

�
2

lðl − 1Þ r
lðElYl0 þ ðl > l0ÞÞ − 2

rlþ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
MlYl0 þ ðl > l0Þ

��
;

gtφ ¼
X
l≥2

�
2

3lðl − 1Þ r
lþ1ðBlSl0φ þ ðl > l0ÞÞ þ 2

rl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Sl

l
Sl0φ þ ðl > l0Þ

��
; ð2:11Þ

where we have defined M as the Arnowitt-Deser-Misner
mass of the central gravitational source; El and Bl as even-
and odd-parity components of tidal moments, respectively,
which correspond to the amplitudes of even- and odd-parity
modes of the external tidal field, respectively; Ml and Sl
as the induced mass multipole moments and induced
current multipole moments, respectively. The notation of
ðl > l0Þ denotes the contribution of l0 (< l) poles.
We now define components of the tidal Love numbers

for even- and odd-parity modes, respectively, as [33]

κEl ≔ −
lðl − 1Þ
2r2lþ1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Ml

El
;

κBl ≔ −
3lðl − 1Þ

2ðlþ 1Þr2lþ1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2lþ 1

r
Sl

Bl
; ð2:12Þ

where r0 is the radius of the central gravitational source.
These are also called electric-type and magnetic-type

tidal Love numbers, respectively. The tidal Love numbers
correspond to the dimensionless ratio of the coefficient
of the growing part in r to that of the decaying part of
the asymptotic behavior of the metric components
in Eq. (2.11).
For the Schwarzschild black hole, the tidal Love num-

bers can be read off from Φ�
lm [27]:

Φ�
lm

			
ω¼0;r→∞

∼
�

r
2M

�
lþ1

�
1þOð2M=rÞ

þ 2
ðlþ 2Þðlþ 1Þ

lðl − 1Þ κE=Bl

�
r
2M

�
−2l−1

× ½1þOð2M=rÞ�
�
: ð2:13Þ

Note that Φ�
lm are required to be regular at the black-hole

horizon r ¼ 2M. The well-known intriguing result is that
the horizon-regular solutions of Φ�

lm have no decaying
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series in r, i.e., Φ�
lmjr≫2M ∝ ½r=ð2MÞ�lþ1½1þOð2M=rÞ�,

indicating the vanishing of the tidal Love numbers, i.e.,
κEl ¼ κBl ¼ 0 [21–23].

C. Definition: Dissipation numbers

We here also introduce the relativistic dissipation num-
bers. Now, an external tidal field is assumed to be weak and
has a low frequencyω ≪ 1=ð2MÞ. The dissipation numbers
of a Schwarzschild black hole can then be read off from
Φ�

lm at large distances as follows. Under the requirement of
no outgoing tidal field from the event horizon, the variables
Φ�

lm with a low frequency ω ≪ 1=ð2MÞ at large distances
2M ≪ r ≪ 1=ω take the following forms (see Sec. III B):

Φ�
lm

			
2M≪r≪1=ω

∼
�

r
2M

�
lþ1

�
1þOð2M=rÞ

þ 2
ðlþ 2Þðlþ 1Þ

lðl − 1Þ FE=B
l ðωÞ

�
r
2M

�
−2l−1

× ½1þOð2M=rÞ�
�
; ð2:14Þ

with the functions FE=B
l of ω defined by

FE=B
l ¼ κE=Bl þ i

2
νE=Bl ð2ωMÞ þOðð2ωMÞ2Þ: ð2:15Þ

Here, κE=Bl are the electric-type and magnetic-type tidal
Love numbers, respectively, of the Schwarzschild black
hole for each l-pole mode, and then κEl ¼ κBl ¼ 0 [21–23].
The quantities νE=Bl correspond to electric-type and

magnetic-type dissipation numbers, which quantify the
dissipation of the tidal field into the event horizon.
Schwarzschild black holes have nonzero dissipation num-
bers owing to the presence of the event horizon [28–31,71].
This is also the case for Kerr black holes [30,31,71].4 On the
other hand, the dissipation numbers of a nonrotating
horizonless object vanish due to the absence of the event
horizon. Those properties allow one to quantify the existence
of the event horizon in the context of testing classical
theories of gravity in the strong-field regime [32–36,38,39].

III. TIDAL RESPONSE OF A SCHWARZSCHILD
BLACK HOLE IN SCATTERING THEORY

In astrophysical applications such as to binary systems,
the gravitational field generated by objects varies with time.
A time-varying weak tidal field, i.e., a gravitational wave,
around a Schwarzschild black hole is described by a
solution of the Zerilli and Regge-Wheeler equations (2.6).
In this section, we discuss the frequency-dependent tidal

response in terms of the scattering theory of gravitational
waves around a Schwarzschild black hole. In particular,
we show that the tidal Love and dissipation numbers of a
Schwarzschild black hole can be extracted from a response
function that is defined from the property of scattering
waves. Although we here focus only on the odd-parity
mode, we expect to be able to extract tidal responses from
scattering waves even for the even-parity mode thanks to
the existence of isospectrality [90]. We have also checked
that the results in this section are valid for both scalar and
vector-field perturbations.

A. Scattering waves around a Schwarzschild black hole

We here introduce basics of scattering gravitational
waves around a Schwarzschild black hole by focusing
on the Regge-Wheeler equation in the frequency domain:

�
1 −

rH
r

�
d
dr

��
1 −

rH
r

�
dΦ
dr

�

þ
�
ω2 −

�
1 −

rH
r

��
lðlþ 1Þ

r2
−
3rH
r3

��
Φ ¼ 0; ð3:1Þ

where rH ≔ 2M. Note that this is identical to the one of
Eq. (2.6). Now, let us consider the situation where a
monochromatic plane wave with a frequency ω propagates
along the x axis toward a Schwarzschild black hole and is
scattered off by its effective potential.
Analogous to the problem in quantum mechanics, the

scattering wave Φ at large distances schematically takes
the form of a superposition of the incident plane wave along
the x axis and the outgoing spherical wave5:

lim
r→∞

X∞
l¼2

Φ
r
Yl0ðθÞ ∼ e−iωx þ fðθÞ e

iωr�

r�
; ð3:2Þ

where r� is the tortoise coordinate defined as

r� ≔ rþ rH ln

�
r
rH

− 1

�
ð3:3Þ

and θ is the angle measured with respect to the x axis. Here,
the coefficient fðθÞ is called a scattering amplitude, which
can be expanded in terms of the Legendre polynomial:

fðθÞ ¼
X∞
l¼2

ð2lþ 1Þ e
2iδlðωÞ − 1

2iω
Plðcos θÞ: ð3:4Þ

Here, δl is a complex-valued phase shift. By performing
the partial-wave decomposition of the incident plane wave,
the asymptotic expression for each l-pole mode of the

4Kerr black holes have nonzero dissipation numbers even for
static perturbations because of a relative motion with a static
environment, which is sourced by rotation [30,31,71].

5One can set m ¼ 0 in the spherical harmonics Ylm without
loss of generality because of the spherical symmetry of the
background.
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scattering wave in Eq. (3.2) can be written as a super-
position of ingoing and outgoing spherical waves:

lim
r→∞

Φ
r
∼
2lþ 1

2iωr�
½e2iδleiωr� − ð−1Þle−iωr� �: ð3:5Þ

The quantity e2iδl is called an S matrix and corresponds to
the ratio of the amplitude of the outgoing spherical wave to
that of the ingoing spherical wave. Therefore, the S matrix
and, in particular, the phase shift δl have information on
“strength” of the scattering.

B. Tidal Love and dissipation numbers
from scattering waves: Analytical results

We here show analytically how tidal Love and dissipa-
tion numbers are imprinted in scattering waves. For later
convenience, by introducing new parameters

ω̄ ≔ ωrH; z ≔ ωr; ð3:6Þ

we rewrite the Regge-Wheeler equation (3.1) as

�
1 −

ω̄

z

�
d
dz

��
1 −

ω̄

z

�
dΦ
dz

�

þ
�
1 −

�
1 −

ω̄

z

��
lðlþ 1Þ

z2
−
3ω̄

z3

��
Φ ¼ 0: ð3:7Þ

In the following, we solve Eq. (3.7) with the matched
asymptotic expansion method [91]. This strategy utilizes
the analytical property of the hypergeometric functions
[92], in which an analytic continuation of l from an integer
to generic numbers plays an important role. Henceforth, we
assume l to be a generic number.
First, we assume that a tidal field has low frequencies,

i.e., ω̄ ≪ 1. For the inspiral of a black-hole binary system,
this assumption can be justified except for a short pre-
merger phase. For such a low-frequency field, one can
divide the exterior of the event horizon into two regions,
i.e., the near ðω̄ < z ≪ 1Þ and far ðz ≫ ω̄Þ regions. We
then solve Eq. (3.7) and obtain an approximate solution in
each region. Finally, by matching the solutions near and far
regions in an intermediate region ðω̄ ≪ z ≪ 1Þ, we con-
struct the global analytic solution for the scattering wave
approximately.

1. Near-region solution

We here derive an approximate solution of Eq. (3.7)
in the near region ðω̄ < z ≪ 1Þ. By introducing an aux-
iliary function

XNðzÞ ≔
�
1 −

ω̄

z

�
−iω̄

�
ω̄

z

�
−l
Φ ð3:8Þ

and a new coordinate variable

x ≔ 1 −
ω̄

z
; ð3:9Þ

the Regge-Wheeler equation (3.7) can be reduced to the
following equation for XN:

xð1 − xÞ d
2XN

dx2
þ ½γN − ðαN þ βN þ 1Þx� dXN

dx

−
�
αNβN þ x2 − 3xþ 3

ðx − 1Þ3 ω̄2

�
XN ¼ 0; ð3:10Þ

where

αN ≔ lþ 3þ iω̄þOðω̄2Þ;
βN ≔ l − 1þ iω̄þOðω̄2Þ;
γN ≔ 1þ 2iω̄: ð3:11Þ

For the range of z ≪ ω̄1=3, in the last large bracket on the
left-hand side of Eq. (3.10), the second term is much
smaller than the first term αNβN. By neglecting this term,
the general solution of Eq. (3.10) can be written in terms of
the Gaussian hypergeometric function around x ¼ 0 [92]:

XN ¼ Ain;Nx−2iω̄2F1ðαN − γN þ 1; βN − γN þ 1; 2 − γN; xÞ
þ Aout;N2F1ðαN; βN; γN; xÞ; ð3:12Þ

where Ain;N and Aout;N are functions of ω̄.
Reconstructing the original variableΦwith Eq. (3.8), the

general solution of Eq. (3.7) in the near region ðω̄ < z ≪ 1Þ
is obtained as

ΦNjω̄<z≪1 ¼ Ain;N

�
1 −

ω̄

z

�
−iω̄

�
ω̄

z

�
l

2F1ðαN − γN þ 1; βN − γN þ 1; 2 − γN; 1 − ω̄=zÞ

þ Aout;N

�
1 −

ω̄

z

�
iω̄
�
ω̄

z

�
l

2F1ðαN; βN; γN; 1 − ω̄=zÞ: ð3:13Þ

The first and second terms correspond to the ingoing and outgoing waves at the horizon, respectively. We impose the
ingoing-wave boundary condition Aout;N ¼ 0 at the horizon:
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ΦNjω̄<z≪1 ¼ Ain;N

�
1 −

ω̄

z

�
−iω̄

�
ω̄

z

�
l

2F1ðαN − γN þ 1; βN − γN þ 1; 2 − γN; 1 − ω̄=zÞ: ð3:14Þ

Following the conventional manner [23,27,30,31,33], it can be seen that the tidal Love numbers of the Schwarzschild
black hole exactly vanish, while the dissipation numbers are not zero. To see this, we investigate the asymptotic behavior
of ΦN in Eq. (3.14) at large distances z ≫ ω̄. For the coordinate domain of the near region z ≪ 1, the near-region
solution (3.14) at large distances takes the form

ΦNjω̄≪z≪1 ¼ Ain;N
Γð2 − γNÞΓðαN þ βN − γNÞ

ΓðαN − γN þ 1ÞΓðβN − γN þ 1Þ
�
z
ω̄

�
lþ1

½1þ iω̄ ln zþOðω̄=z; ω̄2Þ�

×

�
1þOðω̄=zÞ þKlðω̄Þ

�
z
ω̄

�
−2l−1

½1þOðω̄=zÞ�
�
; ð3:15Þ

where the coefficient of the decaying term is defined as

Klðω̄Þ ≔
Γð−2l − 1ÞΓðlþ 3 − iω̄ÞΓðl − 1 − iω̄Þ
Γð2lþ 1ÞΓð−lþ 2 − iω̄ÞΓð−l − 2 − iω̄Þ :

ð3:16Þ

Here, we have used the relations of the hypergeometric
functions, Eqs. (D1) and (D2).
Comparison of Eq. (3.15) with Eq. (2.14) tells that the

real part of the function Kl is related to the (lth-pole)
magnetic-type tidal Love number in the static limit ω̄ → 0.
In fact, one can analytically show that the function Re½Kl�
indeed vanishes when ω̄ → 0:

lim
ω̄→0

Re½Kl� ¼
ð−1ÞlΓðl − 1Þ2Γðlþ 3Þ

2Γð2lþ 1ÞΓð2lþ 2ÞΓð−l − 2Þ ¼ 0;

ð3:17Þ

due to the presence of 1=Γð−l − 2Þ from the relation
1=Γð−nÞ ¼ 0 for n ¼ 0; 1; 2;…. We have here used the
relation of the gamma functions, Eq. (D5). The imaginary
part Im½Kl� also vanishes in the limit ω̄ → 0. Furthermore,
comparing Eq. (3.15) with Eq. (2.14), we can see that the
(lth-pole) magnetic-type dissipation number is related to
the quantity Im½Kl�=ω̄ at ω̄ → 0:

lim
ω̄→0

Im½Kl�
ω̄

¼ Γðl − 1Þ2Γðlþ 3Þ2
Γð2lþ 1ÞΓð2lþ 2Þ ; ð3:18Þ

which is a positive value, for example, 0.20 for the
quadrupolar (l ¼ 2) mode, giving νB2 ¼ 0.0333.

2. Far-region solution

We here derive an approximate solution of Eq. (3.7) in
the far region ðz ≫ ω̄Þ. Introducing an auxiliary function

YFðzÞ ≔ e−iz
�
z
ω̄

�
−l−1

Φ ð3:19Þ

and a coordinate variable

y ≔ −2iz; ð3:20Þ

Eq. (3.7) leads to

y
d2YF

dy2
þ ðβF − yÞð1þ ϵ1ðzÞÞ

dYF

dy
− αFð1þ ϵ2ðzÞÞYF ¼ 0;

ð3:21Þ

with

αF ≔ lþ 1 − iω̄; ð3:22Þ

βF ≔ 2lþ 2: ð3:23Þ

Here, we have defined

ϵ1ðzÞ≔
ω̄

2ðlþ 1þ izÞðz− ω̄Þ ;

ϵ2ðzÞ≔ iω̄
z½l2− 4þ ω̄ðiþ 2ω̄Þ�− ðl2− 4Þω̄− z2ðiþ 3ω̄Þ

2ðlþ 1− iω̄Þzðz− ω̄Þ2 :

ð3:24Þ

The absolute values of ϵ1ðzÞ and ϵ2ðzÞ are both much
smaller than unity in the far region (z ≫ ω̄) for jω̄ðl2 − 4Þ=
ð2ðlþ 1ÞÞj ≪ z2. By neglecting ϵ1ðzÞ and ϵ2ðzÞ, Eq. (3.21)
takes the form of the differential equation for the confluent
hypergeometric functions. The general solution of
Eq. (3.21) can be well approximated by a linear combina-
tion of two independent confluent hypergeometric func-
tions around z ¼ 0 [92]:

YF ¼ AþMðlþ 1 − iω̄; 2lþ 2;−2izÞ
þ A−Uðlþ 1 − iω̄; 2lþ 2;−2izÞ; ð3:25Þ

where Mð; ;−2izÞ and Uð; ;−2izÞ are confluent hyper-
geometric functions, which are Kummer’s and Tricomi’s
functions, respectively; Aþ and A− are functions of ω̄.
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Reconstructing the original variable Φ, we obtain the general solution of Eq. (3.7) in the far region ðz ≫ ω̄Þ:

ΦFjz≫ω̄ ¼ Aþ

�
z
ω̄

�
lþ1

eizMðlþ 1 − iω̄; 2lþ 2;−2izÞ þ A−

�
z
ω̄

�
lþ1

eizUðlþ 1 − iω̄; 2lþ 2;−2izÞ: ð3:26Þ

Using the relations of the confluent hypergeometric functions, Eqs. (D3) and (D4), the asymptotic behavior at infinity
z → ∞ takes the following form:

lim
z→∞

ΦF

			
z≫ω̄

¼Aþ
ð−1Þlþ1

ð−2iÞlþ1þiω̄ω̄lþ1

Γð2lþ2Þ
Γðlþ1− iω̄Þ

n
e2iδleiðzþω̄lnðz=ω̄−1ÞÞ½1þOð1=zÞ�−ð−1Þle−iðzþω̄ lnðz=ω̄−1ÞÞ½1þOð1=zÞ�

o
;

ð3:27Þ

where δlðω̄Þ is the complex-valued phase shift defined by

e2iδl ¼ Γðlþ 1− iω̄Þ
Γðlþ 1þ iω̄Þ ½1þ 2iω̄ ln ð2ω̄Þ þOðω̄2Þ� þ ð−1Þlþ1

Γðlþ 1− iω̄Þ
Γð2lþ 2Þ

A−

Aþ
f1þ ω̄½πþ 2i ln ð2ω̄Þ� þOðω̄2Þg: ð3:28Þ

Equation (3.27) implies that the leading behavior of the far-region solution (3.26) at infinity consists of a superposition of
outgoing and ingoing spherical waves, i.e.,

lim
z→∞

ΦF

			
z≫ω̄

∝ e2iδleiz� − ð−1Þle−iz� ; ð3:29Þ

where z� ≔ zþ ω̄ lnðz=ω̄ − 1Þ is the asymptotic expression for the tortoise coordinate (3.3) normalized by ω.
To match the far-region and near-region solutions, we investigate the asymptotic behavior of ΦF in Eq. (3.26) in the

intermediate region ðω̄ ≪ z ≪ 1Þ, which is given by

ΦFjω̄≪z≪1 ¼ Aþ

�
z
ω̄

�
lþ1

½1þOðω̄=zÞ�
�
1þOðzÞ þ F lðω̄Þ

�
z
ω̄

�
−2l−1

½1þOðzÞ�
�
: ð3:30Þ

Here, a response function is introduced as [30,69,93]

F l ≔ i
ð−1Þl

22lþ1ω̄2lþ1

Γð2lþ 1Þ
Γðlþ 1 − iω̄Þ

A−

Aþ
: ð3:31Þ

In Eq. (3.28), writing A−=Aþ in terms of F l, we obtain

e2iδl ¼ Γðlþ 1 − iω̄Þ
Γðlþ 1þ iω̄Þ ½1þ 2iω̄ ln ð2ω̄Þ þOðω̄2Þ� þ i

22lþ1ω̄2lþ1Γðlþ 1 − iω̄Þ2
Γð2lþ 1ÞΓð2lþ 2Þ F lf1þ ω̄½π þ 2i ln ð2ω̄Þ� þOðω̄2Þg:

ð3:32Þ

We have here used the relation of the gamma function, Eq. (D6).

Equation (3.30) shows that the asymptotic behavior of
the far-region solution ΦF in the intermediate region ðω̄ ≪
z ≪ 1Þ consists of a linear combination of the growing and
decaying terms with increasing z. The response function
F l corresponds to the ratio of their coefficients.
Comparison of Eq. (3.30) with Eq. (2.14) suggests that
the response function F l captures the tidal response. In the
following, we see that this is indeed the case.

3. Matching of near- and far-region solutions and a tidal
response from the response function

The global solution is constructed by matching the near-
region solution (3.14) with the far-region solution (3.27).
We then show that the function Kl in Eq. (3.16) can be
extracted from the response function F l in Eq. (3.31). We
further derive the formulas for the Love and dissipation
numbers in terms of the response function.
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From the asymptotic behaviors of the near-region (3.15)
and far-region (3.30) solutions, for successful matching of
the two solutions, it is required that the response function
F l in Eq. (3.31) coincides with the function Kl in
Eq. (3.16) up to the overall factor, i.e.,

F l ¼ Kl: ð3:33Þ

This means that the response function F l captures the
magnetic-type tidal Love and dissipation numbers through
Kl. We, thus, obtain simple formulas for the tidal Love and
dissipation numbers in terms of F l:

κBl ¼ lðl − 1Þ
2ðlþ 2Þðlþ 1Þ limω̄→0

Re½F l� ð3:34Þ

and

νBl ¼ lðl − 1Þ
ðlþ 2Þðlþ 1Þ limω̄→0

Im½F l�
ω̄

: ð3:35Þ

These formulas are useful for several extensions to systems
that are slightly modified from the Schwarzschild space-
time due to the presence of some matter fields or modi-
fication of theories of gravity. If the modification is only in
the vicinity of a black hole, the far region is less affected.
For this reason, one can still use the same response function
(3.31) and can safely compute the Love and dissipation
numbers from Eqs. (3.34) and (3.35) without the ambi-
guities once we obtain the values of Aþ and A− in
Eq. (3.26) by numerical approach, e.g., by fitting the
far-region solution (3.26) with the numerical solution.6

With the matching condition (3.33), Eq. (3.32) yields the
analytic expression for the phase shift in terms of Kl:

e2iδl ¼ Γðlþ 1 − iω̄Þ
Γðlþ 1þ iω̄Þ ½1þ 2iω̄ ln ð2ω̄Þ þOðω̄2Þ� þ i

22lþ1ω̄2lþ1Γðlþ 1 − iω̄Þ2
Γð2lþ 1ÞΓð2lþ 2Þ Klf1þ ω̄½π þ 2i ln ð2ω̄Þ� þOðω̄2Þg:

ð3:36Þ

This shows that tidal Love and dissipation numbers are
imprinted in the phase shift, in principle. However, the
Love and dissipation numbers are at least at Oðω̄2lþ1Þ and
Oðω̄2lþ2Þ, respectively, indicating they degenerate with the
subleading corrections of the first series on the right-hand
side in Eq. (3.36). This means that the extraction of a tidal
response from the phase shift is technically challenging.

C. Tidal Love and dissipation numbers
from scattering waves: Numerical results

We here numerically show that the matching condition
(3.33) is indeed satisfied and then demonstrate that Re½F l�
and Im½F l�=ðωrHÞ go to, respectively, zero and the value
given in Eq. (3.18) in the limit ω̄ → 0 by extrapolating them
from a nonzero frequency.
In the numerical analysis, we use Mathematica and

integrate the Regge-Wheeler equation (3.1) from a radius
slightly outside of the event horizon, r ¼ 2Mð1þ 10−5Þ,
to large distances r ¼ 220M under the ingoing-wave
boundary condition at the horizon. By fitting the far-region
solution (3.26) with the numerical solution in the region of
200M ≤ r ≤ 220M, we read off the coefficients Aþ and A−
and determine the response function (3.31). We have
obtained the qualitatively same results for various upper
limits of the integration and the locations of the fitting
region with various widths.
Figures 1(a) and 1(b) demonstrate the behavior of the

functions Re½F 2�=12 and Im½F 2�=ð6ωrHÞ, which corre-
spond, respectively, to the quadrupolar magnetic-type
tidal Love number κB2 and dissipation number νB2 in the

limit ω → 0. The overlapping of Re½F 2�=12 (black solid
line) and Re½K2�=12 (orange dashed line) means that the
matching condition (3.33) is indeed satisfied. In Fig. 1(a),
we can see that the function Re½F 2�=12 approaches zero
within the numerical error as ωM becomes sufficiently
small, showing the vanishing of the Love number. This is
consistent with the analytic consideration in the previous
section. In Fig. 1(b), Im½F 2�=ð6ωrHÞ is almost constant
0.0333 in good agreement with the analytic result from
Eq. (3.18).

D. Advantage of computation of the tidal Love
and dissipation numbers from the response function

The computation of a tidal response in terms of scatter-
ing waves allows one to overcome the difficulties stated in
Sec. I. The evaluation of the tidal Love and dissipation
numbers does not fully rely on the property of the hyper-
geometric function. As already seen in Eq. (3.15), the
conventional manner relies on the analytic continuation
between the fundamental solutions around the event hori-
zon and around large distances in the near region.
If one considers a tiny modification to the Schwarzschild

background in the strong-field regime as in the following
section, it is, in general, difficult to derive the exact solution

6In Refs. [69,94], the computation of scattering-wave ampli-
tudes of Schwarzschild spacetimes in terms of scalar waves has
been conducted and has then been connected to gauge-invariant
quantities within an effective field theory framework, thereby
obtaining the Love and dissipation numbers in a gauge-invariant
manner.
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in the near region in the form of a well-known function.
Therefore, it is hard to obtain the coefficient corresponding
toKl in Eq. (3.16). On the other hand, perturbation fields in
the far region are less affected by such modification near
the horizon; therefore, a far-region solution can be still
described by Eq. (3.26). Here, the analytic continuation of
l from an integer to a generic number makes the distinction
between the growing term in r and the decaying one. To
end, computing a tidal response boils down to the problem
to evaluate the static limit of the response function F l in
Eq. (3.31) once we obtain the values of Aþ and A− in the
far-region solution (3.26) numerically and then obtain the
Love and dissipation numbers through the formulas for κBl
and νBl shown in Eqs. (3.34) and (3.35).
The gauge ambiguity is bypassed by computing the tidal

Love and dissipation numbers in terms of the response
function. This is because the Love and dissipation numbers
as the property of sufficiently low-frequency scattering
waves are determined under the boundary conditions
that capture the physical property of a compact object in
the strong-field regime and that of scattering waves in the
weak-field regime [30,69–71].

IV. STABILITY OF TIDAL LOVE AND
DISSIPATION NUMBERS

In this section, we discuss the effect of a small defor-
mation of the effective potential in the Regge-Wheeler
equation on the tidal Love and dissipation numbers by
using the formulas (3.34) and (3.35). We then show that a
small deformation of the potential in the form of a Gaussian
small bump gives rise to nonzero values sensitive to
the property of the bump and its deviation from zero is
much larger than the scale of the bump, exhibiting
destabilization of the Love numbers. The dissipation

numbers, on the other hand, are stable. We also analyze
stability against a potential modification that consists of
combination of Gaussian bump and dip. In Appendix C, we
discuss stability of tidal Love and dissipation numbers in
the case where one imposes a reflective boundary condition
at a radius slightly outside the Schwarzschild radius as a
proxy of horizonless compact objects.

A. Modeling

Let us consider the Regge-Wheeler equation with its
effective potential slightly deformed:

�
1 −

2M
r

�
d
dr

��
1 −

2M
r

�
dΦ
dr

�

þ
�
ω2 −

�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
− δV

�
Φ ¼ 0:

ð4:1Þ

As the potential deformation, we here consider a Gaussian
small bump:

δV ¼ h exp

�
−
ðr − aÞ2
2σ2

�
; ð4:2Þ

which is characterized by its height hð≪ 1=M2Þ, width σ,
and location of the peak a. The explicit form of the
deformed potential, as an example, is presented in Fig. 2
for the quadrupolar mode l ¼ 2.
A small bump can be realized by some spherically

symmetric local matter distribution [62]. Such a configu-
ration may not be necessarily realistic in astrophysical
situations but can be expected to provide a certain insight
into the environmental effect on the tidal Love numbers by
matter surroundings including accretion disks [57].

(a) (b)

FIG. 1. Left: the functions Re½F 2�=12 (black solid line) and Re½K2�=12 (orange dashed line), which correspond to the quadrupolar
magnetic-type tidal Love number κB2 in the static limit ω → 0. Right: the functions Im½F 2�=ð6ωrHÞ (black solid line) and
Im½K2�=ð6ωrHÞ (orange dashed line), which correspond to the quadrupolar magnetic-type dissipation number νB2 in the limit
ω → 0. The value of Im½F 2�=ð6ωrHÞ is almost constant 0.0333 in good agreement with the analytic result from Eq. (3.18).
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B. Effect of a Gaussian bump on the tidal Love
and dissipation numbers

We first discuss the behavior of the response functionF l
in Eq. (3.31). Figures 3(a) and 3(b) give the functions
Re½F 2�=12 and Im½F 2�=ð6ωrHÞ. The values on the vertical
axis correspond to the quadrupolar magnetic-type tidal
Love number κB2 and dissipation number νB2 , respectively.
Figure 3(a) shows that the tidal Love number takes a
negative value due to the small modification of the effective
potential as κB2 ≃ −96. This implies that a tiny deviation
from the exact vacuum environment gives a nonzero Love
number whose deviation from zero is much larger than the
scale of the small potential modification. On the other hand,
Fig. 3(b) shows νB2 ≃ 0.0328 even in the presence of the

bump, implying that the modification has less impact on the
imaginary part of the response function.
We next compute the Love and dissipation numbers from

the formulas (3.34) and (3.35) in the current deformed
system. Figures 4(a) and 4(b) give the quadrupolar mag-
netic-type tidal Love numbers with the opposite sign, i.e.,
−κB2 , for various values of the location a and height h,
respectively, of the Gaussian bump (4.2). It is demonstrated
that the tidal Love number blows up nonlinearly (linearly)
with increasing location (height). This implies that the Love
numbers are sensitive to the properties of small modifica-
tions to the effective potential, exhibiting destabilization of
the tidal Love numbers. This destabilization comes from
the property of the Love number of the Gaussian bump as
seen in Appendix A. The nonlinear blowup with respect to
the location is consistent with the analytic result for a thin
shell in Ref. [57]. We comment that the absolute value of
the Love number, i.e., jκB2 j, grows as σ increases, indicating
that a wider bump renders a larger tidal deformation.
Figures 5(a) and 5(b) show that the quadrupolar

magnetic-type dissipation number νB2 is smaller for a
bump at a more distant location and with a higher height.
This implies that a more distant or higher bump obstructs
more the absorption effect of the black hole. The relative
differences from νB2 jδV¼0 (¼ 0.0333) are kept within 20%
in the current parameter domain. The less sensitivity to
the property of the modification means that the dissipa-
tion numbers are stable.
Why does such destabilization occur for tidal Love

numbers and does not for dissipation numbers? The answer
is as follows: A tidal response of a modified system consists
of that of the black hole and of the outer Gaussian bump.
In other words, the tidal Love and dissipation numbers in a
composite system are approximately determined by the
linear combination of those of each component of the

(a) (b)

FIG. 3. The functions Re½F 2�=12 (left panel) and Im½F 2�=ð6ωrHÞ (right panel) which correspond to, respectively, the quadrupolar
magnetic-type tidal Love number κB2 and dissipation number νB2 in the limit ω → 0, showing κB2 ≃ −96 and νB2 ≃ 0.0328, in the presence
of the Gaussian bump with h ¼ 10−3=M2, σ ¼ M, and a ¼ 20M (orange line). The black line corresponds to the unperturbed potential
case (δV ¼ 0) and is the same as those in Figs. 1(a) and 1(b).
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FIG. 2. The unperturbed potential δV ¼ 0 (black line) and
deformed potential by the Gaussian bump (4.2) with h¼10−3=M2,
σ ¼ M, and a ¼ 20M (orange line). Here, VRW is the Regge-
Wheeler potential; VRW ¼ ð1 − 2M=rÞ½lðlþ 1Þ=r2 − 6M=r3�.
The inset shows the enlargement around the bump.
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system. A Gaussian bump in the Minkowski spacetime
has nonzero Love numbers and zero dissipation numbers
(see Appendix A). In fact, the former takes a value close to
that of the Schwarzschild black hole with the same
Gaussian bump and shares the almost same dependence
on the parameters of the bump [see Figs. 9(a) and 9(b)].
The latter has less impact on the dissipation numbers of the
black hole. The above result on the tidal Love number
supports the claim of Ref. [57].
We have checked that a negative h, i.e., a “dip,” leads to

a positive tidal Love number and a positive dissipation
number, which is larger than νB2 jδV¼0 (¼ 0.0333). They are
more for a deeper Gaussian dip. It is worth noting that the
sign of the tidal Love number is governed solely by that of
h, which controls whether the Gaussian modification is
repulsive or attractive for scattering waves at sufficiently
low frequencies.
The behavior of the dissipation number can be

interpreted in terms of the scattering. The nonzero dis-
sipation number arises from the dissipation of sufficiently

low-frequency scattering waves. In the presence of a
Gaussian bump, the obstruction of absorption into the
event horizon results in the decrease of the dissipation
number. A Gaussian dip, on the other hand, leads to more
attenuation of outgoing spherical waves, resulting in larger
dissipation numbers. Note that the dissipation number
never changes its sign while varying the height of the
Gaussian bump, because the modification plays a role only
in obstructing the absorption of waves into the black-hole
horizon. The negative dissipation number means the
existence of outgoing waves from the horizon even though
we imposed the ingoing-wave boundary condition, con-
tradicting physical intuition.

C. Stability against combination
of the potential deformation

We consider a system where a potential deformation
comes from combination of any two of Gaussian bump(s)
and/or dip(s):

(a) (b)

FIG. 5. The quadrupolar magnetic-type dissipation numbers νB2 for various locations a and heights h of the Gaussian bump (4.2)
(orange line) and those of the Schwarzschild black hole without the bump, i.e., νB2 jδV¼0 (¼ 0.0333) (black line). The parameter set is the
same as that in Figs. 4(a) and 4(b).

(a) (b)

FIG. 4. The quadrupolar magnetic-type tidal Love numbers with the opposite sign, i.e., −κB2 , for various locations a and heights h of
the Gaussian bump (4.2). Left: for the locations from the radius of the innermost stable circular orbit a ¼ 6M to a ¼ 50M with
h ¼ 10−3=M2 and σ ¼ M. Right: for the heights from h ¼ 10−6=M2 to h ¼ 10−2=M2 with a ¼ 20M and σ ¼ M.
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�
1 −

2M
r

�
d
dr

��
1 −

2M
r

�
dΦ
dr

�
þ
�
ω2 −

�
1 −

2M
r

��
lðlþ 1Þ

r2
−
6M
r3

�
− δV1 − δV2

�
Φ ¼ 0; ð4:3Þ

where

δV1 ¼ h1 exp

�
−
ðr − a1Þ2

2σ21

�
;

δV2 ¼ h2 exp
�
−
ðr − a2Þ2

2σ22

�
: ð4:4Þ

Here, we have assumed jh1j ≪ 1=M2 and jh2j ≪ 1=M2

and that the second modification δV2 is located at a larger

radius than the first one δV1, i.e., a2 ≥ a1. The explicit form
of the deformed potential is depicted in Fig. 6 for the
quadrupolar mode l ¼ 2. An example of such a bumpy
deformation around the Regge-Wheeler potential, which is
caused by a local matter distribution, is presented in
Appendix B (see Fig. 11).
To be specific, we consider combination of a Gaussian

bump δV1 with h1 > 0 and dip δV2 with h2 < 0 in the
following. For other cases where the inner and outer
modifications are the Gaussian dip and bump, respectively,
or both are bumps or dips, the following results remain
qualitatively the same.
Figures 7(a) and 7(b), respectively, show the quadrupolar

magnetic-type tidal Love number with the opposite sign,
i.e., −κB2 , as a function of the location and depth of the
Gaussian dip δV2 with the Gaussian bump δV1 being fixed
with the same parameter set as in Figs. 3(a) and 3(b). Notice
that the value in the presence of both δV1 and δV2 (orange
solid line) is almost the same as the linear combination of
those in case where each of the Gaussian bump δV1 or the
Gaussian dip δV2 is present, i.e., −ðκB2 jδV2¼0 þ κB2 jδV1¼0Þ
(blue dashed line). This implies that the tidal Love number
in a composite system is mostly determined by the linear
combination of the Love number of each component in the
system. It is worth mentioning that, in Fig. 7(b), the tidal
Love number can vanish for a specific modification.
Figures 8(a) and 8(b) present the quadrupolar magnetic-

type dissipation number νB2 as a function of the location a2
and depth h2 of the Gaussian dip δV2, respectively.
The value of νB2 (orange solid line) is almost the same
as νB2 jδV2¼0 þ νB2 jδV1¼0 − νB2 jδV1¼δV2¼0 (blue dashed line),
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FIG. 6. The unperturbed potential δV1 ¼ δV2 ¼ 0 (black line)
and deformed potential by the Gaussian bump and dip in Eq. (4.4)
with h1 ¼ −h2 ¼ 10−3=M2, σ1 ¼ σ2 ¼ M, a1 ¼ 20M, and a2 ¼
a1 þ 10M (orange line). Here, VRW is the Regge-Wheeler
potential, VRW ¼ ð1 − 2M=rÞ½lðlþ 1Þ=r2 − 6M=r3�. The inset
shows the enlargement around the bump and dip.

(a) (b)

FIG. 7. The quadrupolar magnetic-type tidal Love numbers with the opposite sign, i.e., −κB2 , for various locations a2 and depths h2 of
the Gaussian dip δV2 in Eq. (4.4) with a fixed Gaussian bump δV1 (orange solid line) and the values of −ðκB2 jδV2¼0 þ κB2 jδV1¼0Þ (blue
dashed line), Left: for the locations from a2 ¼ a1ð¼ 20MÞ to a2 ¼ a1 þ 10M with h2 ¼ −h1 ¼ −10−3=M2 and σ2 ¼ σ1 ¼ M. Right:
for the depth from −h2 ¼ 10−6=M2 to −h2 ¼ 10−2=M2 with a2 ¼ a1 þ 5M and σ2 ¼ σ1 ¼ M. The parameter set of δV1 is the same as
those in Fig. 3(a).
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where the last subtraction eliminates the overlap of the
contribution from the purely black-hole case,
νB2 jδV1¼δV2¼0 ¼ 0.0333, in the combination of the first
two components. This implies that the dissipation number
is approximately determined by the linear combination
of the number of each component in the system. Since its
deviation from νB2 jδV1¼δV2¼0 is small, we conclude that the
dissipation numbers are still stable even in the presence of
another modification.

V. DISCUSSION

We discuss the astrophysical implication and theoretical
application of the results shown in the previous sections.

A. Astrophysical implications

In the previous sections, it is shown that a Schwarzschild
black hole acquires nonzero tidal Love numbers due to the
presence of a Gaussian small modification and their values
are sensitive to the property of the deformation. This means
that, even if a nonzero Love number is measured in future
gravitational-wave observations, we cannot immediately
conclude deviation of the underlying theory of gravity from
general relativity without careful consideration on environ-
mental effects. From another viewpoint, a nonzero Love
number allows us to catch a glimpse of the extreme property
of matter fields around a black hole through gravitational-
wave observations. In yet another context, the destabilization
of the Love numbers may hinder constraining the matter
equation of state in neutron stars, because the destabilization
occurs even for horizonless compact objects including a
neutron star as seen in Appendix C.
The dissipation numbers are stable for small modifica-

tions. Therefore, in the context of a test of quantum
corrections in the strong-field regime [35,36], quantifying

the existence of the event horizon is not spoiled even
with deformation of the potential due to the presence of a
matter field.
In an inspiraling binary, the environmental effect causing

a potential deformation varies with time as the orbital
separation decreases. Therefore, the tidal response induced
by the environment is not constant (see, e.g., Ref. [60]).
On the other hand, the tidal Love numbers arising from the
modification in theories of gravity remains constant. The
tidal response measured with gravitational-wave observa-
tions will be approximately determined by the linear
combination of the time-varying part and the constant part.
Thus, the extraction of the constant component from the
time-varying tidal response will be an important step in
testing theories of gravity in the strong-field regime.

B. Theoretical application: Power-law correction
to the effective potential

Toward testing theories of gravity in the strong-gravity
regime within linear perturbation theory, “parametrized”
formalism is expected to be useful [78–80]:

�
1 −

rH
r

�
d
dr

��
1 −

rH
r

�
dΦ
dr

�

þ
�
ω2 −

�
1 −

rH
r

��
lðlþ 1Þ

r2
−
3rH
r3

�
− δV

�
Φ ¼ 0;

ð5:1Þ

with

δV ¼ 1

r2H

�
1 −

rH
r

�X∞
j¼0

αj

�
rH
r

�
j
; ð5:2Þ

(a) (b)

FIG. 8. The quadrupolar magnetic-type dissipation numbers νB2 for various locations a2 and depths h2 of the Gaussian dip δV2 in
Eq. (4.4) with a fixed Gaussian bump δV1 (orange solid line) and the values of νB2 jδV2¼0 þ νB2 jδV1¼0 − νB2 jδV1¼δV2¼0 (blue dashed line).
The last subtraction eliminates the overlapping of the contribution from the purely black-hole case, νB2 jδV1¼δV2¼0 ¼ 0.0333, in the
combination of the first two components. The horizontal black solid line corresponds to νB2 jδV1¼δV2¼0 ¼ 0.0333. The parameter set of
δV1 and δV2 is, respectively, the same as those in Fig. 3(a) and those in Figs. 7(a) and 7(b).

STABILITY OF RELATIVISTIC TIDAL RESPONSE AGAINST … PHYS. REV. D 108, 084049 (2023)

084049-15



where jαjj ≪ ð1þ 1=jÞjðjþ 1Þ [78]. Choosing the coef-
ficient αj appropriately, one can reconstruct the effective
potential for linear odd-parity gravitational perturbations
around a static and spherically symmetric black hole in a
specific theory (see Ref. [78]). As another application, the
parametrized formalism may also be of use for modeling
the deviation from a Schwarzschild background due to a
continuous matter distribution [56].
The analysis in terms of the Gaussian bump or dip in

Sec. IV gives various suggestions for the properties of tidal
Love and dissipation numbers in a deformed system (5.1).
First, the dissipation numbers take values close to those in
the purely Schwarzschild case at least for small jαjj. Second,
the Love and dissipation numbers for multiple corrections
can be interpreted as the linear combination of those of
single power-law corrections and those of the Schwarzschild
black hole approximately. Third, the Love number can
vanish even with the corrections. Fourth, different parameter
sets of αj and j can give an identical Love number. For the
Gaussian bump, this degeneracy can be seen in Figs. 4(a)
and 4(b). Finally, for multiple corrections, a lower-order
contribution of j dominates over a higher-order one in
determining the Love numbers if the absolute value of the
coefficient of the lower-order one is larger than or compa-
rable with those of the higher-order one.
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APPENDIX A: TIDAL RESPONSE OF A
GAUSSIAN BUMP IN THE MINKOWSKI

SPACETIME

We discuss a tidal response of a Gaussian bump in the
Minkowski spacetime. The bump (4.2) is introduced in
Eq. (4.1) with M ¼ 0:

d2Φ
dr2

þ
�
ω2 −

lðlþ 1Þ
r2

þ δV

�
Φ ¼ 0: ðA1Þ

If δV ¼ 0, we have an analytic solution regular at the
origin r ¼ 0, i.e.,

Φ ¼ r1=2Jlþ1=2ðωrÞ; ðA2Þ

where Jlþ1=2 is the Bessel function of the first kind. We
obtain the response function from a numerical solution
which is obtained by integrating Eq. (A1) from the origin to
large distances under the boundary condition (A2) at r ¼ 0.

(a) (b)

FIG. 9. The quadrupolar magnetic-type tidal Love numbers with the opposite sign, i.e., −κB2 , for various locations a and heights h of
the Gaussian bump (4.2). The black and orange lines correspond to the values of the Schwarzschild black hole with the Gaussian bump
and those of the Gaussian bump in the Minkowski spacetime, respectively. Here, L is a length scale of the Gaussian bump in the
Minkowski spacetime. Left: for the locations from a ¼ 20M ¼ 20L to a ¼ 30M ¼ 30L with h ¼ 10−3=M2 ¼ 10−3=L2 and
σ ¼ M ¼ L. Right: for the heights from h ¼ 10−6=M2 ¼ 10−6=L2 to h ¼ 10−2=M2 ¼ 10−2=L2 with a ¼ 20M ¼ 20L and σ ¼ M ¼ L.
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Figures 9(a) and 9(b) give the quadrupolar magnetic-type
tidal Love numbers for various location with the opposite
sign, i.e., −κB2 , and heights of the Gaussian bump, dem-
onstrating that those of the bump in the Minkowski
spacetime and those in the Schwarzschild spacetime have
close values and share qualitatively the almost same
behavior for the property of the potential deformation.
We have checked that the relative difference of them is at
most 10%. This implies that the tidal Love numbers of a
Schwarzschild black hole with a Gaussian bump are mostly
determined by the property of the bump.
It is found that the dissipation number νB2 of the Gaussian

bump in the Minkowski spacetime is a quite smaller value
than unity, meaning it is vanishing. This implies that the
Gaussian bump has less impact on the dissipation numbers
of a Schwarzschild black hole.

APPENDIX B: POTENTIAL DEFORMATION
BY A LOCAL MATTER DISTRIBUTION

We here construct a static and spherically symmetric
black-hole solution with an anisotropic matter field and
then derive an effective potential for an odd-parity linear
gravitational perturbation. In spherical polar coordinates
ðt; r; θ;φÞ, a line element of a static and spherically
symmetric spacetime is given by

ds2 ¼ −AðrÞdt2 þ
�
1 −

2mðrÞ
r

�
−1
dr2

þ r2ðdθ2 þ sin2 θdφ2Þ; ðB1Þ
where A and m are functions of the areal radius r. The
functionm is the Misner-Sharp mass [95,96]. We introduce
a stationary system consisting of many gravitating masses
which are assumed to be anisotropic and have only
tangential pressure in the angular directions without the
radial pressure. The energy-momentum tensor is given by

Tμ
ν ¼ diag½−ρðrÞ; 0; PtðrÞ; PtðrÞ�: ðB2Þ

The Bianchi identity gives the relation between the local
energy density ρ and the pressure Pt:

Pt ¼
ρr
4A

dA
dr

: ðB3Þ

In addition, the ðr; rÞ component of the Einstein equation
leads to a constraint:

r
2

dA
dr

¼ m
r − 2m

: ðB4Þ

Now, we assume that the local energy density is given by

ρ ¼ 2ϵm
Mr2

cosh−2
�
r − am
M

�
; ðB5Þ

where ϵm and am determine the peak value of the energy
density and a location of the peak, respectively; M is a
length scale to be interpreted as a mass of a black hole
below. The distribution is depicted in Fig. 10. From the
ðt; tÞ component of the Einstein equation, the function m in
Eq. (B1) takes the form

m ¼ M þ ϵm

�
1þ tanh

�
r − am
M

��
: ðB6Þ

Equations (B3) and (B4) then determine the pressure Pt and
the metric component A.
A linear gravitational perturbation to the geometry

constructed above is written as

gμν ¼ gð0Þμν þ hμν; Tμν ¼ Tð0Þ
μν þ δTμν; ðB7Þ

where the superscript (0) denotes a background tensor field.
As reviewed in Sec. II, a symmetric tensor-field perturba-
tion can be decomposed into two independent components,
i.e., the even- and odd-parity perturbations, because of
the parity invariance of the background. The linearized
Einstein equation δGμν ¼ 8πδTμν leads to a radial equation
with the harmonic decomposition, thereby obtaining the
equation for the odd-parity perturbation Φ:

d2Φ
dR2

þ ðω2 − VmÞΦ ¼ 0; ðB8Þ

with

Vm ¼ A

�
lðlþ 1Þ

r2
−
6m
r3

þ 1

r2
dm
dr

�
; ðB9Þ

where dR=dr ¼ ½Að1 − 2m=rÞ�1=2. The explicit form of Vm
is presented in Fig. 11.
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FIG. 10. The local energy density ρ in Eq. (B5) with ϵm ¼ M
and am ¼ 20M.
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APPENDIX C: STABILITY OF THE TIDAL
RESPONSE OF A HORIZONLESS

COMPACT OBJECT

We discuss stability of tidal Love and dissipation
numbers when imposing a reflective boundary condition,
i.e., the Dirichlet boundary condition

Aout;N

Ain;N
¼ −ξ−2iωrH ; ðC1Þ

on Eq. (3.13), at a radius r0 ≔ rHð1þ ξÞ ð0 < ξ ≪ 1Þ.
Figure 12 shows that, in the absence of the Gaussian
bump (orange solid and blue dashed lines), the Dirichlet
boundary condition leads to a nonzero tidal Love number
whose absolute value increases for a larger boundary
radius. The orange solid line and the blue dashed line
are, respectively, the numerical result and a model function
kB2 ¼ −0.0177=ð1.0375þ ln ξÞ. The results of the loga-
rithmic dependence on ξ and the negative Love numbers
are consistent with the analytical result in Ref. [33]. We
have checked that the dissipation numbers are quite
smaller values than unity with or without the Gaussian
small bump.
In the presence of the Gaussian bump (black solid line),

the quadrupolar magnetic-type tidal Love number κB2 takes
approximately −96. This value is less sensitive to the
boundary radii and close to the tidal Love number of a
Schwarzschild black hole with the same Gaussian bump
[see the orange line in Fig. 3(a)], i.e., κB2 ≃ −96. This
implies that the property of the Gaussian bump mostly
determines the value of the Love numbers in the current
system. On the other hand, the dissipation numbers may tell
the difference between black holes and horizonless objects.

APPENDIX D: USEFUL FORMULAS FOR
SPECIAL FUNCTIONS

The useful formulas used in the main text are summa-
rized based on Ref. [92] in the following. For the Gaussian
hypergeometric functions,

2F1ða; b; c; sÞ

¼ ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ ð1 − sÞ−a−bþc

×

�
2F1ð−aþ c;−bþ c;−a − bþ cþ 1; 1 − sÞ

þ ð1 − sÞaþb−c Γð−a − bþ cÞΓðaÞΓðbÞ
Γðaþ b − cÞΓð−bþ cÞΓð−aþ cÞ

× 2F1ða; b; aþ b − cþ 1; 1 − sÞ
�

ðD1Þ

and

lim
s→∞2F1ð; ; ; 1 − sÞ ¼ 1þOð1=jsjÞ: ðD2Þ

For the confluent hypergeometric functions,
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FIG. 11. For the quadrupolar mode l ¼ 2, the Regge-Wheeler
potential VRW ¼ ð1 − 2M=rÞ½lðlþ 1Þ=r2 − 6M=r3� (black line)
and the potential Vm in Eq. (B9) (orange line) whose parameter
set is the same as that in Fig. 10. The inset shows the enlargement
around the peak of the energy density.
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FIG. 12. The dependence of the quadrupolar magnetic-type
tidal Love number with the opposite sign, i.e., −κB2 , on the radius
at which the reflective boundary condition (C1) is imposed. The
orange solid and blue dashed lines correspond to the results
without the Gaussian bump. The former is the numerical result,
while the latter is a model function kB2 ¼−0.0177=ð1.0375þ lnξÞ,
whose logarithmic dependence on ξ is consistent with the
analytical result in Ref. [33]. The black solid line is the result
with the Gaussian bump (4.2) whose parameter set is the same as
those in Fig. 3(a). The black solid line is almost constant,
κB2 ≃ −96, which is the almost same as the Love number of
the Schwarzschild black hole with the same Gaussian bump [see
the orange line in Fig. 3(a)].
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lim
s→∞

Mða; b; sÞ ¼ ΓðbÞ
ΓðaÞ e

ssa−b½1þOð1=jsjÞ�

þ ΓðbÞ
Γðb − aÞ ð−sÞ

−a½1þOð1=jsjÞ� ðD3Þ

and

lim
s→∞

Uða; b; sÞ ¼ s−a½1þOð1=jsjÞ�: ðD4Þ

For the gamma function,

Γð−2l − 1Þ
Γð−lþ 2Þ ¼ ð−1Þlþ1

Γðl − 1Þ
2Γð2lþ 2Þ ðD5Þ

and

ΓðsÞ
Γð2sÞ ¼

π1=22−2sþ1

Γðsþ 1=2Þ : ðD6Þ
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