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This work deals with the tail and “failed” tail sectors of the conservative dynamics for compact binary
systems at the 5PN order. We employ the Fokker Lagrangian method with dimensional regularization, and
our results for the tail sector are perfectly consistent with the previous effective field theory computations.
As for the failed tail sector, we have good hopes that this new computation will help solving the current
discrepancy in the literature.
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I. INTRODUCTION

The post-Newtonian (PN) approximation scheme is a
very efficient framework that relies on weak-field and
slow-velocity approximations to perturbatively solve
Einstein’s equation. It has been notably implemented
through a large class of methods to resolve the dynamics
of bound compact binaries system, see, e.g., [1–3] for
reviews. In the conservative sector,1 the current accuracy is
the fourth PN order (i.e., the ðv=cÞ8 correction to the
Newtonian energy and angular momentum), that was
obtained by means of the canonical Hamiltonian formal-
ism [8–10], the Fokker method [11–15], and effective field
theory (EFT) approach [16–23]. Starting at this 4PN
precision, the conservative dynamics can be split between
an “instantaneous” sector and a “hereditary” one. The
latter takes into account the backreaction of emitted
radiation onto the dynamics of the binary, which induces
nonlocal in time effects (thus the name). The computation
of the instantaneous dynamics has been completed at 5PN
by a large variety of methods [24–27], and pushed up to the
6PN precision [28] (see also [29]). As for the hereditary
sector, due to the very subtle nature of the computations,
only partial results exist. For instance, the tail sector

(due to the scattering of waves onto the static curvature
induced by the ADM mass) has been computed by means
of EFT [30]. As for the “failed” tail2 (due to the scattering
of waves onto the static curvature induced by the ADM
angular momentum), it was also derived within the EFT
framework. However, there is a discrepancy between
previous results [31,32] and the recent work of [33].
Note also that the logarithmic dependencies in the binding
energy (due to this hereditary sector) are known up to the
7PN order [34].
The aim of this work is to derive the (failed) tail effects

by means of the Fokker method using dimensional
regularization. We thus work with d ¼ 3þ ε space-like
dimensions and the d-dimensional gravitational strength,
G, is linked to the usual Newton constant GN by a
new length scale l0 as G ¼ lε

0GN (this regularization
constant is directly related to the scale μ used in EFT
framework [30,33] as l0 ¼ μ−1). The tail interactions
entering at 5PN involve the constant ADM mass M, the
mass octupole Mijk and the current quadrupole Sijjk (as
we work in d dimensions, we use the notations and
conventions of [35] for current moments). As for the
failed tail, it describes the interaction between the
constant angular mometum Sijj and the mass quadrupole
Mij. Note that the d-dimensional current dipole,
Sijj, simply reduces in three dimensions to limd→3 Sijj ¼
εijkLk, where Li is the usual angular momentum. Our
result reads*quentin.henry@aei.mpg.de

†francois.larrouturou@desy.de
1This paper focuses on the conservative sector, i.e., the study of

the (conserved) dynamics of the system. Nevertheless, those PN
frameworks are also in use to solve the dissipative sector, i.e., to
derive the waveform. Notably, using matched post-Newtonian
and multipolar-post-Minkowskian methods [4], the gravitational
flux at 4PN and phase at 4.5PN were recently obtained [5,6].
Note also that the 2PN sector of the gravitational flux has been
confirmed by EFT means [7].

2We borrow this nomenclature to [31], where it has
been dubbed “failed” as, although it comes as an hered-
itary effect, this interaction fails to induce a nonlocal-in-time
sector.
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where parenthetical superscripts denote time derivations
and we have dressed the pole as

KεðτÞ≡ 1

ε
− 2 ln

�
c

ffiffiffī
q

p
τ

2l0

�
; with q̄≡ 4πeγE ; ð1:2Þ

where γE is the Euler constant. The first line of (1.1),
corresponding to the tail interactions, is in perfect agree-
ment with Eqs. (5) and (9) of [30]. As for the failed tail (the
second line), we fully agree with the recent result of [33],
obtained by an independent method.
The plan of this paper is as follows. Section II describes

the method employed to derive the (failed) tail effects,
namely the Fokker method with dimensional regulariza-
tion. This method is then applied to each interaction
separately in Sec. III. Finally, Sec. IV concludes our work.

II. GENERAL METHOD

In order to perform the computation of the conservative
(failed) tail sector at 5PN, we follow the method that was
used for the lowest-order tail M ×Mij ×Mij, entering at
4PN [13,14]. The following section briefly recalls and
discuss its main steps.3

A. Tail effects in the action

The starting point of the method is naturally an action
composed of two sectors: the gravitational kinetic term and
the matter description. For the first one, we work with the
usual Landau-Lifschitz Lagrangian, together with a gauge-
fixing term (see, e.g., [11])

Sg ¼
c4

16πG

Z
dtddx

ffiffiffiffiffiffi
−g

p �
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�
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μρΓ

ρ
νλ − Γλ

μνΓ
ρ
ρλ

	
−
1

2
gμνΓμΓν



; ð2:1Þ

where Γμ
νρ are the Christoffel symbols and the last term

enforces the gauge Γμ ≡ gαβΓμ
αβ ¼ 0. In terms of the so-

called “gothic metric” gμν ≡ ffiffiffiffiffiffi−gp
gμν, this action becomes

Sg ¼
c4

32πG

Z
dtddx

�
gαβ

�
∂μgαν∂νgβμ − ∂μgαμ∂νgβν

	
−
1

2
gαβgμνgστ

�
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1

d − 1
∂αgμν∂βgστ

�

:

ð2:2Þ
As for the matter sector, we consider structureless, non-
spinning point-particles, thus described by the action

Spp ¼ −c
X
A

mA

Z
dτA ¼ −c2

X
A

mA

Z
dtddx

δA
u0A

; ð2:3Þ

where mA is the mass of the particle A, τA its proper time,
u0A ≡ ½−ðgμνÞAvμAvνA=c2�−1=2 is the associated Lorentz fac-
tor, vμA ¼ ðc; viAÞ (with viA the usual velocity), and the
d-dimensional Dirac distribution δA ≡ δ½x − yAðtÞ� locates
the Lagrangian on the world-line of the particles. As we are
interested by the dynamics of binary systems, we will run A
only over two values.
From the gothic metric, we define the exact perturbation

hμν ≡ gμν − ημν; ð2:4Þ
for which the gauge condition Γμ ¼ 0 translates into the
usual harmonic gauge ∂νhμν ¼ 0. This perturbation obeys a
wave equation source by the Laundau-Lifschitz pseudo-
tensor τμν

□hμν ¼ τμν ¼ 16πG
c4

jgjTμν þ Λμν; ð2:5Þ

where Tμν is the stress-energy tensor of the matter dis-
tribution and Λμν encrypts the nonlinearities intrinsic to
GR. Its d-dimensional expression reads [1]

Λμν ¼ −hαβ∂αβhμν þ ∂αhμβ∂βhνα þ
1

2
gμνgαβ∂ρhασ∂σhβρ

− 2gαðμgρβ∂σhνÞβ∂αhρσ þ gαβgρσ∂αhμρ∂βhνσ

þ 1

4

�
2gμαgνβ − gμνgαβ

	�
gρσgλτ −

1

d − 1
gρλgστ

�
× ∂αhρλ∂βhστ: ð2:6Þ

We are interested here in the near-zone behavior of the
metric, i.e., we aim at solving□hμνNZ ¼ τ̄μν, where τ̄μν is the

3The conventions employed throughout this work are as follows:
we work with a mostly plus signature; greek letters denote
spacetime indices and latin ones, purely spatial indices; bold font
denotes d-dimensional vectors, e.g., yA ¼ yiA; we use the multi-
index notations of [35] (coming from Young tableaux), i.e. ML ¼
Mi1i2…il and SijL ¼ Sijil…i2i1 ; hats and angular brackets denote a
symmetric and trace-free operator, x̂L ¼ xhLi ¼ STF½xL�; the
d’Alembertian operator is defined with respect to the flat Min-
kowski metric □≡ ημν∂μν ¼ Δ − c−2∂2t ; (anti-)symmetrizations
are weighted, e.g., AðijÞ ¼ ðAij þ AjiÞ=2; the Lagrangian and
Lagrangian density are denoted as S ¼ R

dtL ¼ R
dtddxL, and

we will refer to “Lagrangian” for “Lagrangian density” henceforth;
finally, and as usual, we dubb “nPN” a quantity of order Oðc−2nÞ.
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PN expansion of τμν. The solution to such wave equation
can be split in two sectors, as

hμνNZ ¼ h̄μν þHμν: ð2:7Þ
The first sector, h̄μν, is a particular solution of the wave
equations, corresponding to the potentialmodes of the EFT
framework. It is computed by applying the PN-expanded,
regularized Green function on τ̄μν, see e.g., Eq. (2.5)
of [13], and its expression is known up to 4PN [36].
Due to PN expansions and regularization of the Green
function, the metric h̄μν is not computed using the correct
prescription. Thus we have to add an homogeneous
solution, Hμν, in order to get the complete solution. This
solution is a consequence of the matching equation linking
the near- and far-zone behaviors of the metric [1,4], and its
construction is the purpose of the next section. As will be
clear there, it corresponds to the conservative sector of the
waves radiated by the source, and thus one can associate it
to the radiative modes of the EFT framework.
Following the spirit of the Fokker method, we inject the

near-zone metric (2.7) into the conservative action (2.2)–
(2.3), in order to obtain a resulting Lagrangian depending
only on the matter variables (which accounts to integrating
out the gravitational modes). This yields an action mixing
potential and radiative modes. The sector free from anyHμν

is the usual, instantaneous action, computed at 5PN by EFT
means in, e.g., [26,27], and we let its re-computation within
the Fokker framework for future studies. What interests us
here is the linear-in-Hμν sector of the action, encompassing
the leading order (failed) tail effects.4 This linear sector can
be interpreted as the backreaction of the scattered wave,
Hμν, onto the dynamics of the binary, thus describing
indeed a tail effect. This point of view corresponds to the
closure of radiative Feynamm diagrams, performed in [33].
As will be explicit hereafter, the different components of

the radiative metric at a given PN order will follow Hμν ¼
Oðc−2n−2; c−2n−1; c−2nÞ with Hkk ¼ Oðc−2n−2Þ (in particu-
lar, n ¼ 5 for this work). The leading PN order of the
linear-in-Hμν sector of the action reads

Stails
LO ¼ −

Z
dtddx

�
m1c2

8

�
H00ii −

4vi1
c

H0i þ 2vij1
c2

Hij



δ1

þ ðd − 1ÞHij

64ðd − 2ÞπG ∂iV∂jV

�
þ ð1 ↔ 2Þ;

ð2:8Þ
where we have shortened H00ii ≡ 2

d−1 ½ðd − 2ÞH00 þHii�.
From the compact terms (proportional to the Dirac

distribution), one will be able to reconstruct the
Newtonian value of the moments.5 As for the noncompact
term (the last piece), it is treated by using the generalized
Riesz formulas displayed in Appendix A of [37].

B. Computation of the radiative metric

The radiative metric Hμν corresponds to an homo-
geneous solution of the wave equations (2.5), regular in
the source (when r → 0). This means that it has the
structure

Hμν ¼
X
j;l≥0

Δ−jx̂L

�
d
cdt

�
2j
fμνL ðtÞ; with

Δ−jx̂L ¼ Γðd
2
þ lÞ

Γðd
2
þ lþ jÞ

r2jx̂L
22jj!

; ð2:9Þ

where the functions fμνL ðtÞ are determined by the matching
equation [1,4], i.e., by imposing that the near- and far-zone
expansions of the metric agree in some overlapping region.
Therefore it is clear that Hμν encodes the fact that the
dynamics of the system is sensitive to the gravitational
waves radiated at spatial infinity.
This fact is even more evident when looking at the

practical computation of Hμν. As derived in [14], the
matching equation imposes that Hμν is nothing but an
homogeneous solution of the far-zone expansion of the
wave equations (2.5). It is thus sourced by the expansion of
Λμν (2.6) at spatial infinity6 and can be computed by means
of the d-dimensional usual multipolar-post-Minkowskian
algorithm.
This algorithm starts with the d-dimensional generali-

zation of Thorne’s linearized metric [38], namely [35]

h001 ¼ −
4

c2
X
l≥0

ð−Þl
l!

b∂LM̃L; ð2:10aÞ

h0i1 ¼ 4

c3
X
l≥1

ð−Þl
l!

�b∂L−1M̃ð1Þ
iL−1 þ

l
lþ 1

b∂LS̃ijL



; ð2:10bÞ

hij1 ¼ −
4

c4
X
l≥2

ð−Þl
l!

�b∂L−2M̃ð2Þ
ijL−2 þ

2l
lþ 1

b∂L−1S̃ð1Þ
ðijL−1jÞ

þ l − 1

lþ 1
b∂LK̃ijjL



: ð2:10cÞ

Underlined indices are excluded from symmetrization, and
we have introduced the notation

4As the constant (ADM) masses and angular momentum do
not radiate, the quadratic-in-Hμν sector of the action cannot
contribute to tail effects at leading order. Note however that, at
5PN, this quadratic sector can contribute to the memory effect
and to the 1PN corrections to the M ×Mij ×Mij tail effect. The
study of both those effects are left for future works.

5For example, if H00ii ¼ x̂ijkFijkðtÞ, where Fijk only depends
on time, then

R
ddxm1H00iiδ1þð1↔2Þ¼OijkFijk, whereOijk ¼

m1ŷ
ijk
1 þm2ŷ

ijk
2 is the Newtonian mass octupole moment.

6We consider compact binaries, and so a compact-supported
matter stress-energy tensor: at spatial infinity, τμν reduces to Λμν.
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M̃Lðr; tÞ≡ k̃
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where

k̃≡ Γ
�
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is such that limd→3 M̃Lðr; tÞ ¼ MLðt − r=cÞ=r. Note the
presence of the additional set of momentsKijjL, which are a
pure artifact of working in d ≠ 3 dimensions [35].
For our practical purpose, we will only consider inter-

actions between a static moment (either the ADM mass
M or angular momentum Sijj) and a propagating one.
Therefore, injecting in Λμν (2.6) the sectors of the linear
metric (2.10) that are of interest for us, the quadratic
sources are of the form

Nðx; tÞ ¼ n̂L
lqε
0

rpþqε

Z þ∞

1

dzγ1−d
2
ðzÞzkF

�
t −

zr
c

�
; ð2:13Þ

where FðtÞ represents a product of fM; Sijjgwith (temporal
derivatives of) one of the moments fMij;Mijk; Sijjkg and
ðk;l; p; qÞ take natural integer values. Following the
computation performed in [14], we then define the homo-
geneous solution Uμν corresponding to the source (2.13) as

U ¼ ð−Þpþl

dþ 2l − 2
PF
B¼0

Γðqε − BÞ
Γðpþ l − 1þ qε − BÞ

× Ck;p;q
l

X
j∈N

Δ−jx̂L

Z
∞

0

dτ
τB−qε

rB0

Fð2jþlþp−1Þðt − τÞ
c2jþlþpþqε−B ;

ð2:14Þ

where the PF operator corresponds to the finite part
operation when B → 0 [39], and Ck;p;q

l reads

Ck;p;q
l ≡

Z þ∞

1

dyγ1−d
2
−lðyÞ

×
Z þ∞

1

dzγ1−d
2
ðzÞzkðyþ zÞl−2þpþqε−B: ð2:15Þ

These coefficients are generalizations for q∈Z of the ones
introduced in [14], and can be computed following the lines
of the Appendix D of that work.7

If Uμν is of the form (2.9), namely an homogeneous
solution regular in the source, it is not yet the homogeneous
solution Hμν that we seek. At this stage, Uμν has no reason
to be divergenceless and thus does not verify in general the
harmonic condition. So to construct the correct solution,
we add to Uμν a suited homogeneous solution, Vμν, which
cancels its divergence, following the standard procedure
described, e.g., in [1,4]

Uμν → Vμν ¼ Hð∂μUμνÞ → Hμν ≡ Uμν þ Vμν: ð2:16Þ

In this method, Vμν is uniquely determined via the
harmonicity algorithm given by Eqs. (47)–(48) in [1]
and dubbed H here. Note that a similar removal of the
divergence was employed in the EFT computation of [33],
and was in fact a crucial step to obtain the failed tail.
Once the divergenceless Hμν is known, one can inject it

in the action (2.8) and compute the integrals to obtain the
desired effects. In order to simplify the procedure, one can
also implement a gauge transformation to “push” the ij
components of the metric to higher PN orders, and thus
only have compact integrals to perform. The metric trans-
forms under the gauge transformation with vector ξμ as

Hμν → H0μν ¼ Hμν þ ∂
μξν þ ∂

νξμ − ∂ρξ
ρημν þOðξ2Þ:

ð2:17Þ

So, by choosing ξμ adequately, one can cancel the leading
order of Hij. In the next section, both raw and shifted
metrics are displayed for each interaction, and we have
naturally verified that they give the same result.
Note that we have also performed another consistency

check on the results presented in the next section. First,
following the historical method developed in [40], we have
implemented a purely Hadamard regularization procedure,
yielding a three-dimensionalmetric,Hμν

Had. Then, using novel
techniques elaborated in [41] (and different from the one
presented above), we have derived the contribution induced
by the difference between the d-dimensional regularization
scheme and the Hadamard one, i.e., DHμν ≡Hμν

d−dim −
Hμν

Had. By summing those two contributions, we recovered
the metric computed directly in d dimensions, i.e.,
Hμν

Had þDHμν ¼ Hμν, which is a technically strong,
although conceptually simple, check of our computations.

III. RESULTS AT 5PN

Let us implement the method described in the previous
section (with extensive use of the xAct library from the
Mathematica software [42]) in the cases of the tails
appearing at 5PN in the conservative action, composed
of the M ×Mijk ×Mijk, M × Sijjk × Sijjk and Sijj ×Mij ×
Mij interactions. We recall that pole is dressed as in
Eq. (1.2). By summing the separate results, we obtain
our main result (1.1).

7In the case of the memory interaction, the two moments under
consideration are propagating, and thus sources are of the form
N ∝

R
dyγ1−d

2
ðyÞykFðt − yr=cÞ R dzγ1−d

2
ðzÞzmGðt − zr=cÞ. In such

cases, we were not able to write the homogeneous solution in a
form as simple as (2.14), notably because there are no factori-
zation similar to (2.15).
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A. Mass octupole tail

The divergenceless metric for the M ×Mijk interaction
reads at the leading order

H00ii
M×Mijk

¼ 4G2Mx̂ijk

315c12

Z
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dτ

�
KεðτÞ −
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70

�
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þOðc−14Þ; ð3:1aÞ
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þOðc−12Þ: ð3:1cÞ

By applying the following shift

ξ0M×Mijk
¼ −
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189c11

Z
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ð3:2aÞ
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113
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Mð7Þ

ijkðt − τÞ;

ð3:2bÞ

the metric becomes of orderH0μν
M×Mijk

¼Oðc−12; c−13; c−12Þ
and reads

H000ii
M×Mijk

¼ 8G2Mx̂ijk

189c12

Z
∞

0

dτ

�
KεðτÞ −

82

35

�
Mð9Þ

ijkðt − τÞ

þOðc−14Þ; ð3:3Þ

which, injected in the action (2.8), yields (upon integrations
by parts)

SM×Mijk
¼ −

G2M
189c10

Z
dt
Z

∞

0

dτ

�
KεðτÞ −

82

35

�

×Mð4Þ
ijkðtÞMð5Þ

ijkðt − τÞ þOðc−12Þ: ð3:4Þ

B. Current quadrupole tail

The divergenceless metric for the M × Sijjk interaction
reads at the leading order

H00ii
M×Sijjk ¼ Oðc−14Þ; ð3:5aÞ
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M×Sijjk ¼

8G2Mx̂jk

45c11
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∞
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30

�
Sð7Þijjkðt − τÞ

þOðc−13Þ; ð3:5bÞ
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By applying the following shift

ξ0M×Sijjk ¼ 0;

ξiM×Sijjk ¼
8G2Mx̂jk

9c10
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dτ
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�
Sð6Þijjkðt − τÞ;

ð3:6Þ

the metric becomes of orderH0μν
M×Sijjk ¼Oðc−14; c−11;c−12Þ,

and reads

H00i
M×Sijjk ¼ −

32G2Mx̂jk
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Z
∞
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dτ
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KεðτÞ −

49

20
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Sð7Þijjkðt − τÞ

þOðc−13Þ; ð3:7Þ

which, injected in the action (2.8), yields (upon integrations
by parts)

SM×Sijjk ¼ −
16G2M
45c10

Z
dt
Z

∞

0

dτ

�
KεðτÞ −

49

20

�

× Sð3ÞijjkðtÞSð4Þijjkðt − τÞ þOðc−12Þ: ð3:8Þ

C. Angular momentum failed tail

Finally, the divergenceless metric for the Sijj ×Mij

interaction reads at the leading order

H00ii
Sijj×Mij

¼ 4G2

45c12
x̂jkSijkM

ð7Þ
ij ðtÞ þOðc−14Þ; ð3:9aÞ

H0i
Sijj×Mij

¼ 4G2

9c11
x̂kSjjkM

ð6Þ
ij ðtÞ −

G2

9c11
x̂kSijjM

ð6Þ
jk ðtÞ

þOðc−13Þ; ð3:9bÞ

Hij
Sijj×Mij

¼ −
22G2

15c10
SkjðiM

ð5Þ
jÞkðtÞ þOðc−12Þ: ð3:9cÞ

By applying the shift

ξ0Sijj×Mij
¼ 4G2

45c11
x̂jkSijkM

ð6Þ
ij ðtÞ; ð3:10aÞ
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ξiSijj×Mij
¼ 8G2

15c10
x̂kSjjkM

ð5Þ
ij ðtÞ − 3G2

15c10
x̂kSijjM

ð5Þ
jk ðtÞ:

ð3:10bÞ

the metric becomes of orderH0μν
Sijj×Mij

¼Oðc−12;c−13;c−12Þ,
and reads

H000ii
Sijj×Mij

¼ −
4G2

15c12
x̂jkSijkM

ð7Þ
ij ðtÞ þOðc−14Þ; ð3:11Þ

which, injected in the action (2.8), yields (upon integrations
by parts)

SSijj×Mij
¼ G2

30c10
Sijj

Z
dtMð3Þ

ik ðtÞMð4Þ
jk ðtÞ þOðc−12Þ:

ð3:12Þ

IV. SUMMARY AND CONCLUSION

In this work, we have derived the leading order tail and
“failed” tail sectors appearing at the 5PN order in the
conservative dynamics of compact binaries, by employing

the Fokker Lagrangian framework. Making use of dimen-
sional regularization, we have computed the homogeneous
solution of the near-zone metric, and have integrated it out
in the action. Our result, given in Eq. (1.1), is consistent
with previous works performed within the EFT framework:
the tail sector agrees with [30], and the failed tail one, with
[33]. With this new computation at hand, we hope that the
current discrepancy in EFT results for the failed tail sector
will be fully understood and resolved.
The last step toward completion of the 5PN conservative

dynamics is the memory effect, i.e., the interaction of three
mass quadrupoles. In order to compute it within the Fokker
Lagrangian framework, the method presented in this work
has to be enhanced, as briefly discussed in the footnote 7.
This subtle computation is thus left for future work.
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