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The “ugly duckling” of the Segré-Plebański-Hawking-Ellis classification of stress-energy tensors is
believed to be either impossible or extremely difficult to realise in Einstein gravity. Effective stress-energy
tensors in alternative gravity offer a wider range of possibilities. We report a class of type-III realizations
in “first-generation” scalar-tensor and in Horndeski gravity, and their physical interpretation. The ugly
duckling may be a freak of nature of limited importance but it is not physically impossible.
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I. INTRODUCTION

In general relativity, the right-hand side of the Einstein
field equations

Gab ≔ Rab −
1

2
gabR ¼ Tab; ð1:1Þ

(where Rab and R ≔ Ra
a are the Ricci tensor and the Ricci

scalar of the spacetime metric gab, respectively)
1 contains

the energy-momentum tensor of matter TðmÞ
ab . The possible

forms of TðmÞ
ab expected on physical grounds have been

classified by Segre [2], Plebański [3], and Hawking and
Ellis [4]. The least-known and least-studied type in this
classification is type III, in which the stress-energy tensor
has the form

TðmÞ
ab ¼ ρkakb þ qakb þ qbka; ð1:2Þ

where ka is a null vector field and qa is spacelike. Because
of its unknown nature and unfamiliar properties, the
type-III stress-energy tensor has been named the “ugly
duckling of the Hawking-Ellis classification” [5,6]. It was
believed, although without any firm ground, that type-III
stress-energy tensors are unphysical until Podolský, Švarc

and Maeda [7], Martin-Moruno and Visser [5,6], and
Maeda [8] provided examples in which a gyraton or exotic
Lagrangians realize this particular energy-momentum ten-
sor in Einstein gravity.
One could think of obtaining the null vector field ka of

the type-III stress-energy tensor as the gradient of a scalar
field ϕ satisfying ∇cϕ∇cϕ ¼ 0. It is straightforward to see
that only a null dust can be obtained in this way in general
relativity. However, one can turn to alternative theories of
gravity with a built-in scalar.
In alternative gravity, the field equations are often

rewritten by moving geometric terms, or terms built out
of the extra gravitational degrees of freedom and their
derivatives, to the right-hand side of the field equations to
make them look like effective Einstein equations (1.1),
thus building an effective stress-energy tensor Tab, which is
formally treated as a mass-energy source of curvature,
although it does not describe real matter. These effective
stress-energy tensors may provide incarnations of the type-
III energy-momentum tensor that are difficult to realize
explicitly in Einstein gravity.
The prototype of the alternative theory of gravity is

scalar-tensor gravity [9–12], in which a propagating
gravitational scalar field ϕ is added to the usual massless
spin-two modes of Einstein gravity contained in the metric
tensor. Scalar-tensor gravity is the subject of a vast litera-
ture and was generalized long ago by Horndeski [13]. His
theory went largely unnoticed for many years and was then
rediscovered in the quest for the most general scalar-tensor
theory of gravity with second order equations of motion.
Although this feature was eventually found to be a property
of the more general degenerate higher-order scalar-tensor
(DHOST) theories ([14–20], see [21,22] for reviews),
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Horndeski gravity has become the subject of a vast
literature spanning the last decade (e.g., [23–31]).
Here we analyze “old” scalar-tensor gravity first, and

then Horndeski gravity, and we report a class of possible
implementations of the ugly duckling type-III effective
stress-energy tensor in these theories.
Independent motivation for our study comes from a

completely different direction. Recently, the analogy
between the effective stress-energy tensor of scalar-tensor
and viable Horndeski gravity and a dissipative (Eckart)
fluid has led to introducing an effective “temperature of
gravity” with respect to general relativity and to equations
describing the approach of alternative gravity to general
relativity (or its departures from it) [32–45]. This formal-
ism, dubbed “first-order thermodynamics of scalar-tensor
gravity” is subject to the fundamental limitation that the
gradient of the Brans-Dicke-like scalar field be timelike and
future oriented. We would like to extend this formalism to
situations in which ∇aϕ is lightlike instead. As we will see,
the goal of introducing an effective temperature of gravity
turns out to be impossible but in the process we discover
new implementations of the type-III stress-energy tensor,
only for effective instead of real fluids.
Let us proceed with the definition of this effective

energy-momentum tensor. The (Jordan frame) action of
“first-generation” scalar-tensor gravity is [9–12]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

∇cϕ∇cϕ − VðϕÞ
�
þ SðmÞ;

ð1:3Þ

where R is the Ricci scalar of the spacetime metric gab with
determinant g and covariant derivative ∇a, ϕ is the Brans-
Dicke-like gravitational scalar with potential VðϕÞ, ωðϕÞ is
the “Brans-Dicke coupling”, and SðmÞ is the matter action.
The corresponding field equations are [9–12]

Gab ¼
TðmÞ
ab

ϕ
þ ω

ϕ2

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�

þ 1

ϕ

�∇a∇bϕ − gab□ϕ
�
−

V
2ϕ

gab; ð1:4Þ

ð2ωþ 3Þ□ϕ ¼ 8πTðmÞ þ ϕV 0 − 2V − ω0∇cϕ∇cϕ; ð1:5Þ

where TðmÞ
ab is the matter stress-energy tensor, □≡∇c∇c,

and a prime denotes differentiation with respect to ϕ. In the
next section we restrict ourselves to solutions of these field
equations with the property that the scalar field gradient
is null, ∇cϕ∇cϕ ¼ 0. Examples of such solutions are
reported in Refs. [46–53].

II. NULL SCALAR FIELD GRADIENT IN FIRST-
GENERATION SCALAR-TENSOR GRAVITY

Let ϕ be the Brans-Dicke scalar field and ka ≔ ∇aϕ. We
shall now present a few preliminary results.
Lemma 1. Consider the Brans-Dicke theory (1.3) with

ω ≠ −3=2, V ¼ 0, and in vacuo [TðmÞ
ab ¼ 0]. If ka is a null

vector field (i.e., kaka ¼ 0), then □ϕ ¼ 0.
Proof. The field equation for the Brans-Dicke scalar field

(1.5) for ω ≠ −3=2, V ¼ 0, and in vacuo reduces to

ð2ωþ 3Þ□ϕ ¼ −ω0∇cϕ∇cϕ:

If now the scalar field gradient is null, then
∇cϕ∇cϕ ¼ kckc ¼ 0, that implies ð2ωþ 3Þ□ϕ ¼ 0, or
simply □ϕ ¼ 0. ▪
Proposition 1. Consider the Brans-Dicke theory (1.3)

with ω ≠ −3=2, V ¼ 0, and in vacuo [TðmÞ
ab ¼ 0]. If ka is a

null vector field, then ka is a geodesic vector field and the
corresponding geodesic is affinely parametrized.
Proof. Recalling the definition ka ≔ ∇aϕ one has that

ka∇akb ¼ ka∇a∇bϕ ¼ ka∇b∇aϕ ¼ ka∇bka:

Differentiating kaka ¼ 0 one gets ka∇bka ¼ 0 that,
together with the previous equation, allows one to conclude
that ka∇akb ¼ ka∇bka ¼ 0. In other words, ka is a null
geodesic vector field and the null geodesic curve to which it
is tangent is affinely parametrized. ▪
Remark. This property holds for both minimally and

nonminimally coupled scalar fields ϕ irrespective of
whether ϕ is a test field or a gravitating one.
Consider now the congruence of null geodesics with

tangent field ka ¼ ∇aϕ. Following standard procedure
(see, e.g., [54]) and adapting to the special situation in
which the null field ka is a gradient, we define another
(nonunique) null vector field na normalized so that

kana ¼ −1: ð2:1Þ

The covariant differentiation of this equation leads to the
useful relation

nb∇akb ¼ −kb∇anb: ð2:2Þ

The 2-metric transverse to both ka and nb is defined as

hab ≔ gab þ kanb þ kbna; ð2:3Þ

hab satisfies

habka ¼ habkb ¼ habna ¼ habnb ¼ 0; ð2:4Þ

is 2-dimensional (haa ¼ 2), and
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hachcb ¼ hab: ð2:5Þ

Defining now

Bab ≔ ∇bka; ð2:6Þ

it follows immediately that Bab is symmetric,

Bab ¼ ∇b∇aϕ ¼ ∇a∇bϕ ¼ Bba ¼ BðabÞ ð2:7Þ

which, in conjunction with the fact that ka is geodesic,
implies that Bab is transverse to ka, i.e.,

Babkb ¼ Babka ¼ 0: ð2:8Þ

Next, we project Bab onto the 2-space orthogonal to both
ka and na, obtaining

B̃ab ≔ hachbdBcd: ð2:9Þ

We can write this quantity explicitly in terms of ka and na

using Eq. (2.3), which gives

B̃ab ¼BabþkancBcbþkbncBacþkakbðncndBcdÞ: ð2:10Þ

As with any rank two tensor, B̃ab can be decomposed into
its symmetric and antisymmetric parts,

B̃ab ¼ Θab þ ω̃ab; ð2:11Þ

Θab ≔ B̃ðabÞ ¼
Θ
2
hab þ σ̃ab; ω̃ab ≔ B̃½ab� ¼ 0; ð2:12Þ

whereΘ≡ Θa
a ¼ ∇ckc is the expansion scalar while σ̃ab is

the shear tensor, which is the symmetric, trace-free part of
B̃ab, and the vorticity ω̃ab vanishes identically because ka is
a gradient [34].
From this point on let us restrict our attention to the

following case.
Assumptions ð⋆Þ. Vacuum Brans-Dicke gravity with

V ¼ 0, ω ≠ −3=2, and kc ¼ ∇cϕ a null gradient of the
Brans-Dicke scalar field.
In light of Lemma 1 we have Θ ¼ ∇ckc ¼ □ϕ ¼ 0, then

it holds that

B̃ab ¼ σ̃ab: ð2:13Þ

This particular scenario of Brans-Dicke gravity admits
the possibility that ka is a Killing vector field. In this case,
Bab ¼ 0 and Tab ¼ ω

ϕ2 kakb describes a pressureless null

dust [55]. We do not consider this very special situation
further.
In general, the scalar field effective stress-energy tensor

for our subclass of Brans-Dicke gravity ð⋆Þ reads

Tab ¼
ω

ϕ2
∇aϕ∇bϕþ∇a∇bϕ

ϕ
¼ ω

ϕ2
kakb þ

Bab

ϕ
ð2:14Þ

and, using Eq. (2.10), one can write this Tab in the form

Tab ¼
�
ω

ϕ2
−
�
ncndBcd

ϕ

��
kakb þ

B̃ab

ϕ
þ qakb þ qbka;

ð2:15Þ

where

qa ≔ −
ncBca

ϕ
¼ −

nc∇akc
ϕ

¼ kc∇anc
ϕ

: ð2:16Þ

Note that

qaka ¼ 0 ð2:17Þ

because of the k-tranversality of Bab.
Proposition 2. Let ua be a null vector field and let va be

a vector field orthogonal to ua, i.e., uava ¼ 0. Then va is
either parallel to ua or it is spacelike.
Proof. If va is parallel to ua, namely ∃ α∈R such that

va ¼ αua, then uava ¼ αuaua ¼ 0.
If va is not parallel to ua we have to show that vava > 0.

Consider a local inertial frame at each spacetime point p
where uava ¼ 0 such that uμ ¼ ðu; 0; 0; uÞ, with u∈R
in this chart. In this local inertial frame the components
of va will read, in general, as vμ ¼ ðv0; v1; v2; v3Þ, with
v0;…; v3 ∈R. The orthogonality condition uava ¼ 0 at p
in the local frame reads

0 ¼ ημνuμvν ¼ −uv0 þ uv3;

with ημν denoting the Minkowski metric. Therefore in the
local frame at each spacetime point where uava ¼ 0 one
has that vμ ¼ ðv; v1; v2; vÞ with v∈R. This implies that
vμvμ ¼ ðv1Þ2 þ ðv2Þ2 > 0 at p. In other words, at each
spacetime point pwhere uava ¼ 0 it holds that vava > 0, if
va is not parallel to ua. ▪
Therefore, Eq. (2.17) and Prop. 2 tells us that qa is either

parallel to ka or qa must be spacelike.

A. Case 1: qa parallel to ka

First we observe that:
Lemma 2. Given Assumption ð⋆Þ, if qa ≔ −ncBca=ϕ is

parallel to kb then qa ¼ −ðqcncÞka.
Proof. Let qa be parallel to ka, this means that ∃ α∈R

such that qa ¼ αka. From the definition of na, Eq. (2.1),
one has that naqa¼αnaka¼−α. Hence, qa¼−ðqcncÞka. ▪
The effective stress-energy tensor (2.15) of the scalar

field, given the subclass of Brans-Dicke gravity ð⋆Þ,
becomes
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Tab ¼
�
ω

ϕ2
− ðqcncÞ

�
kakb þ

B̃ab

ϕ
ð2:18Þ

with energy density

ρ ¼ ω

ϕ2
− ðqcncÞ; ð2:19Þ

and

B̃ab

ϕ
¼ σ̃ab

ϕ
: ð2:20Þ

This allows one to introduce an effective, trace-free,
anisotropic stress tensor

π̃ab ≔
σ̃ab
ϕ

¼ −2ησ̃ab; ð2:21Þ

where η ¼ −1=ð2ϕÞ is an effective shear viscosity coef-
ficient. The effective energy-momentum tensor (2.18) of ϕ
then takes the form of a null fluid,

Tab ¼ ρkakb þ π̃ab: ð2:22Þ

One can always diagonalize the anisotropic stress tensor
π̃ab via a rotation of axes since σ̃ab is a symmetric tensor in
a Riemannian 2-dimensional space. There are two space-
like vectors xa and ya in this 2-space orthogonal to both ka

and na (with metric hab) such that

xckc ¼ yckc ¼ xcnc ¼ ycnc ¼ xcyc ¼ 0 ð2:23Þ

and

xcxc ¼ ycyc ¼ 1 ð2:24Þ

for which π̃ab is diagonal. In this coordinate system, the
effective stress-energy tensor has the null fluid form [1]

Tab ¼ ρkakb þ P1ðxaxb − yaybÞ: ð2:25Þ

In this case the effective stress-energy tensor of ϕ describes
a null fluid with anisotropic stresses π̃ab satisfying the
constitutive relation of a Newtonian fluid π̃ab ¼ −2ησ̃ab,
with shear viscosity η ¼ −1=ð2ϕÞ, no heat conduction, and
vanishing trace Ta

a.
We shall now show that the shear can be eliminated,

reducing this null fluid to a null dust (type II in the
Hawking-Ellis classification [4]).
Consider a congruence of null geodesics with tangent

ka ¼ ∇aϕ. The proof of this second statement uses the
Raychauduri equation for null geodesic congruences [1,4]

dΘ
dλ

¼ −
Θ2

2
− σ̃abσ̃

ab þ ω̃abω̃
ab − Rabkakb; ð2:26Þ

where λ is an affine parameter along the null geodesics. In
our case, the null geodesic congruence with tangent field ka

has Θ ¼ 0 and dΘ=dλ ¼ 0 everywhere, hence any pair of
initially parallel geodesics remains parallel. The vorticity
ω̃ab also vanishes identically. Since we are assuming

vacuum, the trace of the matter stress-energy tensor TðmÞ
ab

does not contribute to the Ricci scalar, and ∇cϕ∇cϕ ¼ 0,
V ¼ 0 and also □ϕ ¼ 0 (Lemma 1). Contracting the
vacuum field equation (1.4) yields R ¼ 0 and the effective
Einstein equation (1.4) contracted twice with ka gives

Rabkakb ¼ Tabkakb ¼
�
ρkakb þ

B̃ab

ϕ
þ qakb þ qbka

�
kakb

¼ 0 ð2:27Þ

due to the lightlike nature of kc and the transversality (2.8)
of B̃ab to kc. To conclude, the Raychaudhuri equation (2.26)
yields 2σ̃2 ≔ σ̃abσ̃

ab ¼ 0 everywhere, which implies that,
since σ̃2 is positive definite, all components of the shear σ̃ab
vanish identically [56] and the effective stress-energy
tensor (2.18) of ϕ reduces to

Tab ¼ ρkakb; ð2:28Þ

which is of type II in the Hawking-Ellis classification
system.
These results can therefore be summarized in the

following theorem.
Theorem 1. Given Assumption ð⋆Þ, if qa is parallel to

ka then the effective stress-energy tensor (2.15) of the scalar
field reduces to the stress-energy tensor of a null dust,
which belongs to the type-II family of the Hawking-Ellis
classification.

B. Case 2: qa is spacelike

Let us consider now the second possibility, in which qa is
spacelike. Then, qa lives in the 2-space orthogonal to both
ka and na and qa ¼ habqb. In fact, since qckc ¼ 0, the
vector field qa can only have a component parallel to na
and components in the 2-space orthogonal to both ka

and na,

qa ¼ habqb þ ðqcncÞna
¼ qa þ ðqbnbÞka þ ðqcncÞna
¼ qa þ ðqcncÞðka þ naÞ; ð2:29Þ

where we used the definition of hab. In order for Eq. (2.29)
to be satisfied, either qcnc ¼ 0 (and then qa lies in the
2-space orthogonal to both ka and na, qa ¼ habqb,
qμ ¼ ð0; q1; q2; 0Þ), or else na ¼ −ka, which is impossible
because na is chosen to be independent of ka and to satisfy
kcnc ¼ −1. Therefore, qa is orthogonal to both kb and nb.
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We now have

qcnc ¼−
Bcdncnd

ϕ
¼−

ncnd∇ckd
ϕ

¼ nckd∇cnd
ϕ

¼ 0 ð2:30Þ

and the effective stress-energy tensor (2.15) reduces to

Tab ¼
ω

ϕ2
kakb þ

B̃ab

ϕ
þ qakb þ qbka; ð2:31Þ

where we used the fact that qcnc ¼ −ncndBcd=ϕ ¼ 0. This
energy-momentum tensor can then be written in the form

Tab ¼ ρkakb þ π̃ab þ qakb þ qbka; ð2:32Þ

with ρ ¼ ω=ϕ2. Furthermore, using again the Raychauduri
equation for null geodesic congruences we can eliminate
the contribution of the shear π̃ab, thus reducing the stress-
energy tensor for ϕ to

Tab ¼ ρkakb þ qakb þ qbka; ð2:33Þ

which has vanishing trace (since kaka ¼ kaqa ¼ 0) and
falls into type III of the Hawking-Ellis classification system
[4] (see also [2,3]). This type is the least known of this
classification and it is largely unknown which physical
systems can be described by a type-III tensor. The only
known examples, as previously mentioned, are the gyraton
and the exotic Lagrangians discussed by Podolský, Švarc
and Maeda [7], Martin-Moruno and Visser [5,6,57–59], and
Maeda [8]. The stress-energy tensor (2.31) is further reduced
to the type III0 of [5,6] if the Brans-Dicke coupling assumes
the special value ω ¼ 0.
In other words, we have shown that:
Theorem 2. Given Assumption ð⋆Þ, if qa spacelike then

the effective stress-energy tensor (2.15) of the scalar field
reduces to the stress-energy tensor (2.33), which belongs
to the type-III family of the Hawking-Ellis classification.
Furthermore, if ω ¼ 0 the stress-energy tensor (2.33)
further reduces to the type-III0 class.

III. NULL SCALAR FIELD GRADIENT IN VIABLE
HORNDESKI GRAVITY

Let us nowmove to Horndeski theories of gravity [13], the
subject of intense research in the past decade (e.g., [23–31]
and references therein), which are much more general than
first-generation scalar-tensor theories and contain them as a
special case. We restrict ourselves to the so-called viable
Horndeski theories in which the coupling functions are
constrained by the requirement that gravitational waves
propagate at light speed, as shown by the GW170817/
GRB170817A multimessenger event detected in gravita-
tional waves and in many electromagnetic bands [60,61].

The action of viable Horndeski gravity is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðL2 þ L3 þ L4Þ þ SðmÞ; ð3:1Þ

where SðmÞ is the matter action. The Lagrangian densities
Li (i ¼ 2, 3, 4) are

L2 ¼ G2ðϕ; XÞ; ð3:2Þ

L3 ¼ −G3ðϕ; XÞ□ϕ; ð3:3Þ

L4 ¼ G4ðϕÞR; ð3:4Þ

where the Gi are regular functions of the scalar field ϕ and
of X ≔ − 1

2
∇cϕ∇cϕ (except for G4 that depends only on ϕ

in viable Horndeski theories). The variation of the action
(3.1) with respect to the inverse metric gab yields the
effective field equations (see e.g., [39])

G4Gab −∇a∇bG4 þ
�
□G4 −

G2

2
−
1

2
∇cϕ∇cG3

�
gab

þ
�
G3X

2
□ϕ −

G2X

2

�
∇aϕ∇bϕþ∇ðaϕ∇bÞG3 ¼ TðmÞ

ab ;

ð3:5Þ

and variation with respect to ϕ gives the equation of motion
for the scalar field (see e.g., [39]),

G4ϕRþ G2ϕ þ G2X□ϕþ∇cϕ∇cG2X −G3Xð□ϕÞ2
− ð∇cϕ∇cG3XÞ□ϕ −G3X∇cϕ□∇cϕ

þ G3XRab∇aϕ∇bϕ −□G3 −G3ϕ□ϕ ¼ 0; ð3:6Þ

where TðmÞ
ab is the matter stress-energy tensor and

Giϕ ≔
∂Gi

∂ϕ
; GiX ≔

∂Gi

∂X
ði ¼ 2; 3; 4Þ: ð3:7Þ

The field equations (3.5) can be cast as the effective
Einstein equations

Gab ¼ Tab þ
TðmÞ
ab

G4

; ð3:8Þ

where Tab ¼ Tð2Þ
ab þ Tð3Þ

ab þ Tð4Þ
ab is the scalar field effective

stress-energy tensor capturing all deviations from GR, with

Tð2Þ
ab ¼ 1

2G4

�
G2X∇aϕ∇bϕþG2gab

�
; ð3:9Þ
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Tð3Þ
ab ¼ 1

2G4

�
G3X∇cX∇cϕ− 2XG3ϕ

�
gab

−
1

2G4

�
2G3ϕ þG3X□ϕ

�∇aϕ∇bϕ−
G3X

G4

∇ðaX∇bÞϕ;

ð3:10Þ

Tð4Þ
ab ¼G4ϕ

G4

�∇a∇bϕ− gab□ϕ
�þG4ϕϕ

G4

�∇aϕ∇bϕþ 2Xgab
�
:

ð3:11Þ

When the scalar field gradient is null at every spacetime
point [48,50,53] and □ϕ ¼ 0, the canonical kinetic term X
vanishes with all its derivatives, leading to the much
simpler total effective energy-momentum tensor

Tab ¼
�
G2X

2G4

−
G3ϕ

G4

þ G4ϕϕ

G4

�
∇aϕ∇bϕþ G2

2G4

gab

þG4ϕ

G4

∇a∇bϕ: ð3:12Þ

It is shown in the Appendix that the assumptions of this
section imply a relation between Horndeski coupling
functions at X ¼ 0;□ϕ ¼ 0. It is also possible to show
that the scalar field gradient ∇aϕ is an eigenvector of the
Ricci tensor (the Appendix). For lightlike ka ¼ ∇aϕ, we
rewrite this effective Tab as

Tab ¼
�
G2X

2G4

−
G3ϕ

G4

þ G4ϕϕ

G4

�
kakb þ

G2

2G4

gab þ
G4ϕ

G4

∇bka:

ð3:13Þ

Following the logic of the previous section, we define the
tensor Bab ≡∇bka and the 2-metric hab ≡ gab þ kanb þ
kbna orthogonal to both ka and the auxiliary null vector na,
then B̃ab ¼ hcahdbBcd is again given explicitly by Eq. (2.10).
The effective stress-energy tensor obtained from substitut-
ing these expressions into (3.13) reads

Tab ¼
�
G2X

2G4

−
G3ϕ

G4

þ G4ϕϕ

G4

−
G4ϕncndBcd

G4

�
kakb

þ G2

2G4

hab þ
G4ϕ

G4

σ̃ab þ
�
−
G4ϕ

G4

ncBca −
G2

2G4

na

�
kb

þ
�
−
G4ϕ

G4

ndBdb −
G2

2G4

nb

�
ka: ð3:14Þ

In this form, it is straightforward to identify the relevant
fluid quantities:

ρ ≔
G2X − 2G3ϕ þ 2G4ϕϕ − 2G4ϕncndBcd

2G4

; ð3:15Þ

P ≔
G2

2G4

; ð3:16Þ

π̃ab ≔
G4ϕ

G4

σ̃ab; ð3:17Þ

qa ≔ −
G4ϕ

G4

ncBca −
G2

2G4

na; ð3:18Þ

i.e., energy density, isotropic pressure, anisotropic stress
tensor, and energy current density, respectively. Using the
identifications (3.15)–(3.18) the stress-energy tensor (3.14)
takes the form

Tab ¼ ρkakb þ Phab þ π̃ab þ qakb þ qbka: ð3:19Þ

Note that now there appears the isotropic pressure
P ¼ G2=ð2G4Þ, which was absent in first-generation sca-
lar-tensor gravity because, there, G2ðϕ; XÞ ¼ ωðϕÞX=2
vanishes for X ¼ 0. In viable Horndeski,

qaka ¼
G2

2G4

¼ P ≠ 0 ð3:20Þ

in general and the energy flux density qa no longer lives in
the 2-space with metric hab orthogonal to both ka and na,
but has components along the light cone generated by these
null vectors since qaka ≠ 0, qana ≠ 0. The trace

Ta
a ¼ 4P ð3:21Þ

now does not vanish. What is more, in viable Horndeski
theory qa does not have a definite causal character because

qaqa ¼
G4ϕ

G2
4

ðG4ϕBcaBa
dncnd −G2nancBacÞ ð3:22Þ

has indefinite sign.
Following a similar procedure as in Sec. II A it is easy to

see that:
Proposition 3. Consider the vacuum viable Horndeski

gravity with a null scalar field gradient ka ≔ ∇aϕ and
□ϕ ¼ 0. Then the effective stress-energy tensor (3.19) for
the Horndeski scalar field ϕ is shearless.
Proof. The Raychaudhuri equation for null geodesic

congruences (2.26) reduces to

2σ̃2 ¼ σ̃abσ̃
ab ¼ −Rabkakb: ð3:23Þ

Contracting twice the Horndeski field equation (3.5) for
vacuum viable Horndeski gravity with ka, and with the
assumption □ϕ ¼ 0, one obtains

Rabkakb ¼ Tabkakb:
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Furthermore,

Tabkakb ¼
1

G4

��
−G3ϕ þ G4ϕϕ þ

G2X

2

�
kakb þ G4ϕBab

þ G2

2G4

gab

�
kakb ¼ 0; ð3:24Þ

hence, we can conclude that 2σ̃2 ≔ σ̃abσ̃
ab ¼ −Rabkakb ¼

−Tabkakb ¼ 0. Since σ̃2 is positive-definite, all the com-
ponents of σ̃ab vanish identically, which completes the
proof. ▪
The stress-energy tensor of vacuum viable Horndeski

gravity with a null scalar field gradient ka ≔ ∇aϕ and
□ϕ ¼ 0 at every spacetime point then reads

Tab ¼ ρkakb þ Phab þ qakb þ qbka; ð3:25Þ

which is not of type III because qa is not necessarily
spacelike nor orthogonal to the null vector ka. However, if
G2ðϕ; X ¼ 0Þ ¼ 0 one has that the above stress-energy
tensor reduces to

Tab ¼ ρkakb þ qakb þ qbka; ð3:26Þ

which instead belongs to the type-III family of the
Hawking-Ellis classification.
In other words, we have shown that:
Theorem 3. Given the vacuum viable Horndeski gravity

with a null scalar field gradient ka ≔ ∇aϕ, □ϕ ¼ 0, and
G2ðϕ; X ¼ 0Þ ¼ 0, the stress-energy tensor (3.19) for the
Horndeski scalar field reduces to (3.26), which belongs to
the type-III family of the Hawking-Ellis classification.
The stress-energy tensors (2.33) and (3.26) are not the

most general type-III stress-energy tensors because the null
vector field ka originates from a gradient and is divergence
free, which are not general properties.

IV. DISCUSSION AND CONCLUSIONS

Assuming that the gravitational scalar field ϕ of first-
generation scalar-tensor or Horndeski gravity is null every-
where, it is also geodesic and affinely parametrized, and the
congruence of null geodesics with tangent ka ¼ ∇aϕ is
shear-free, nontwisting, and nonexpanding. We have clas-
sified its effective stress-energy tensor, obtained by writing
the field equations as effective Einstein equations.
In first-generation scalar-tensor gravity this effective Tab

can be of only two types. In the first case, it reduces to the
well-known null dust, or type II in the Segré-Plebański-
Hawking-Ellis classification. In the second case, it contains
an energy flux density qa which is spacelike, and we have a
physical realization of type-III stress-energy tensor (which
can even become the simplified type III0 of [5,6] in ω ¼ 0
Brans-Dicke theory). Therefore, we have an implementa-
tion of the ugly duckling type-III stress-energy tensor. This

avatar of the ugly duckling is derived directly from the
scalar-tensor Lagrangian and not from exotic Lagrangians
constructed ad hoc (which seems to be the only avenue
found as yet in Einstein gravity). Explicit examples are not
easy to find and are likely to be contrived. The most likely
candidates for type-III effective stress-energy tensors in
scalar-tensor gravity are Kundt spacetimes, however the
known exact solutions of this kind in “old” scalar-tensor
[46,47,49,51,52] and in Horndeski [48,50,53] theories
have stress-energy tensors describing pure null dusts
(i.e., of type II).
The situation in viable Horndeski gravity is more

complicated, as an isotropic pressure appears unless
G2ðϕ; X ¼ 0Þ ¼ 0 (in which case the discussion for first-
generation scalar-tensor gravity applies again) and the
energy flux density qa is neither orthogonal to ka nor
spacelike.
We suggest a possible physical interpretation of the type-

III energy-momentum tensor, with the obvious caveat that
the null vector na and, therefore, the 2-metric hab, density ρ,
and vector qa are nonunique. The null dust part ρkakb of the
effective Tab, with ka null and geodesic, describes coherent
propagation of radiation, which is accompanied by a
spacelike (therefore, noncausal) dissipation of energy in
the direction transverse to ka and na, as in heat conduction.
The interpretation of qa is essentially the same provided for
the dissipative stress-energy tensor Tab ¼ ρuaub þ Phab þ
πab þ qaub when the four-velocity ua of a dissipative
fluid is timelike and qa is spacelike [62]. It seems
counterintuitive that the propagation of a beam at light
speed would be compatible with the removal of energy
from the beam, but energy is ill-defined for nonasymptoti-
cally flat geometries and the simpler pp-waves of general
relativity exhibit energy-related features that are difficult to
interpret [63], hence this objection may not be substantial
after all.
The effective stress-energy tensor of the Brans-Dicke-

like scalar field (in the so-called Jordan frame used in the
present work) changes type under a conformal transforma-
tion, which preserves the lightlike nature of∇aϕ. A type-III
energy-momentum tensor in the Jordan frame of first-
generation scalar-tensor gravity will become type II in the
conformally transformed version, the Einstein frame, a
property that makes it possible to generate and study Jordan
frame geometries sourced by type-III stress-energy tensors
using conformal mapping and known Einstein frame
solutions associated with type II Tab’s. The reader might
have noticed the lack of exact solutions providing explicit
examples of type III Tab in the previous section (which,
of course, requires one to fix the coupling functions Gi).
In a future publication we will search for such solutions
using conformal mappings. Incidentally, when the gradient
∇aϕ of the gravitational scalar field of scalar-tensor
(including Horndeski) gravity is lightlike, the effective
“fluid” described by its stress-energy tensor does not lead
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to a concept of effective “temperature of gravity”,2 as it
does when ∇aϕ is timelike. Although not unexpected, this
conclusion dashes the hope of extending the first-order
thermodynamics of scalar-tensor and Horndeski gravity
developed in [32–44] to the null case.
We conclude that the ugly duckling of the Segré-

Plebański-Hawking-Ellis classification of stress-energy
tensors may be a freak of nature of limited importance,
but it is not physically impossible.
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APPENDIX: ∇aϕ AS AN EIGENVECTOR OF THE
RICCI TENSOR AND RELATION BETWEEN

HORNDESKI COUPLING FUNCTIONS

In viable Horndeski gravity, assuming X ≡ 0, □ϕ ¼ 0,
and G4 ¼ G4ðϕÞ, the gradient and the d’Alembertian of X
also vanish identically and Eq. (3.6) reduces to

G4ϕRþ G2ϕ −G3X∇cϕ□∇cϕþ G3XRab∇aϕ∇bϕ ¼ 0

ðA1Þ

at X ¼ 0, □ϕ ¼ 0. By applying the commutation relation

ð∇a∇b −∇b∇cÞωc ¼ Rabc
dωd ðA2Þ

to ωa ¼ ∇aϕ and using □ϕ ¼ 0, one obtains

∇cϕ□∇cϕ ¼ ∇cϕ∇a∇a∇cϕ ¼ ∇cϕ∇a∇c∇aϕ

¼ ∇cϕ
�∇c□ϕþ Ra

cad∇dϕ
�

¼ ∇cϕ
�∇c□ϕþ Rcd∇dϕ

�
¼ Rab∇aϕ∇bϕ ðA3Þ

using the definition of the Ricci tensor Rdc ≡ Rdac
a and the

symmetries of the Riemann tensor.

In vacuo, Eq. (3.6) reduces to

G4

�
Rab −

1

2
gabR

�
−∇a∇bG4

þ
�
□G4 −

G2

2
−
1

2
∇cϕ∇cG3

�
gab −

G2X

2
∇aϕ∇bϕ

þ∇ðaϕ∇bÞG3 ¼ 0; ðA4Þ

taking the trace of which (and using □G4 ¼
G4ϕϕ∇aϕ∇aϕþG4ϕ□ϕ ¼ 0) produces

R ¼ −
2G2ðϕ; X ¼ 0Þ

G4ðϕÞ
: ðA5Þ

Now, the contraction of Eq. (A4) with ∇aϕ∇bϕ yields

Rab∇aϕ∇bϕ ¼ G4ϕ

G4

∇aϕ∇bϕ∇a∇bϕ; ðA6Þ

but

∇aϕ∇bϕ∇a∇bϕ ¼ kakbBab ¼ 0 ðA7Þ

due to the k-transversality of Bab, hence

Rab∇aϕ∇bϕ ¼ 0: ðA8Þ

Using this result, it follows from Eq. (A3) that the
combination

G3X

�
−∇cϕ□∇cϕþ Rab∇aϕ∇bϕ

� ðA9Þ

appearing in Eq. (A1) vanishes when □ϕ ¼ 0 and X ¼ 0,
and Eq. (A1) then gives the relation between coupling
functions

G4ϕRþ G2ϕ ¼ 0 ðA10Þ

at □ϕ ¼ 0; X ¼ 0. Now the comparison of Eqs. (A10) and
(A5) yields

G2ϕ

G2

−
2G4ϕ

G4

¼ 0 ðA11Þ

at X ¼ 0;□ϕ ¼ 0. Furthermore, substituting Eq. (A5) into
Eq. (A4) yields

G4Rab þ
G2

2
gab þ

�
G3ϕ −G4ϕϕ −

G2X

2

�
∇aϕ∇bϕ

−G4ϕ∇a∇bϕ ¼ 0 ðA12Þ

which, contracted with the gradient ∇aϕ, then gives

2This is because qa does not satisfy a known constitutive
relation relating it to a temperature. For timelike ∇aϕ ¼ ua, qa
satisfies the Eckart constitutive relation qa ¼ −Khabð∇bT þ
T u̇bÞ, which allows one to define an effective temperature of
gravity.
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Rab∇aϕ ¼ −
G2

2G4

∇bϕ ¼ R
4
∇bϕ; ðA13Þ

the scalar field gradient ∇aϕ is an eigenvector of the Ricci tensor with eigenvalue R=4.
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