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Black holes can be electromagnetically charged or carry vector charge from new fundamental fields.
Their response to small fluctuations is of paramount importance to study gravitational wave generation.
However, the usual even and odd sectors of gravitoelectromagnetic waves couple if the black hole is
magnetically charged, a fact that complicates significantly the perturbative approach. In this paper,
perturbation theory based on harmonic expansion is extended to have manifest invariance under electric-
magnetic duality. As a result, the equations decouple into two generalized even and odd sectors, each
governed by master wave equations that include the most general coupling to a dyonic source. These can
be used to compute, in a simple manner, the gravitational and electromagnetic radiation emitted in the
interaction of the most general spherically symmetric black holes of the Einstein-Maxwell theory with

electromagnetically charged matter.
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I. INTRODUCTION

According to general relativity (GR), all quiescent black
holes (BHs) in our Universe are uniquely described by
their mass, angular momentum, electric and magnetic
charge [1-4]. The deep implications of this result makes
charged BHs an appealing class of compact objects that, as
a matter of fact, have captured the interest of theoretical
astrophysicists for decades [5—10]. In particular, they are a
well-defined extension of the vacuum Kerr BH within a
realistic theory, and thus constitute an ideal paradigm for
multimessenger astronomy. While assuming that BHs
are neutral is a reasonable and well-motivated simplifica-
tion (because of friction with interstellar medium and
Schwinger pair creation of electric charges [11], and
from the lack of evidence of magnetic charges in labora-
tory experiments and cosmic ray observations), the desir-
able scientific program is to perform an analysis of the
most general BHs allowed in a given theory first, and
then constrain their parameters by contrasting with obser-
vations (in fact, there are well-known astrophysical mech-
anisms through which BHs acquire charge, even though
small [12—14]). This is even more important nowadays
given the current stage of gravitational wave (GW) astro-
nomy, which allows unprecedented tests of the strong field
regime of gravitation.

Charged BHs do also provide a unique opportunity in
searches of new physics from GWs. First conjectured by
Dirac [15], magnetic monopoles could have been produced
in the early Universe, as robustly predicted by grand unified
theories (GUTS) (the so-called primordial monopoles) [16],
and it is not unreasonable that BHs formed at that time
could have accreted some net amount of magnetic charge,
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or that were formed directly from the collapse of the
latter [17]. Since magnetic monopoles are more stable to
Schwinger pair decay, these magnetic BHs would have
Hawking-evaporated until reaching extremality and could
correspond to a fraction of the dark matter content in
the Universe, and are also an interesting alternative solution
to the monopole problem in cosmology [18-22]. In
addition, strong magnetic fields such as those in the vicinity
of an extremal magnetic BH would have remarkable
consequences on Standard Model fields [21]. Finally,
a BH charge could also be due to milicharged dark matter
and hidden vector fields, as invoked by beyond-the-
Standard-Model physics (including some dark matter
models), which can easily circumvent standard discharge
mechanisms [18,22-31].

Deriving GW bounds for charged BHs is thus an
interesting problem that should complement current con-
straints from other perspectives [32,33]. In isolation, it is
possible to constrain the “total charge” of a BH given by the

duality-invariant quantity \/Q? + P?, where Q and P are
respectively the electric and magnetic charge. Thus, by
electric-magnetic duality it suffices that one restricts to
the purely electric case in e.g. ringdown and stability
analysis [5-10,34,35]. However, in interaction with other
charges (e.g. during accretion of matter or in the inspiral
phase of a merger) there are effects via which P and Q can
be constrained separately [36-38]. While there is a large
body of work about electric BHs accreting electrically
charged matter, from extreme mass-ratio mergers to com-
parable-mass BH coalesces [5,6,31,39-42], much less is
known about more general scenarios in which a dyonic BH
(a BH with both electric and magnetic charge) interacts
with charged matter. These events are not related via
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electric-magnetic duality to purely electric ones, and
could lead to interesting novel constraints on the BH
and matter parameters, which should be compatible with
those obtained from tests in isolation.

One natural approach to study these systems is to take
the Newtonian limit, where motion is nonrelativistic and
matter is modeled as dyonic point charges [43—47]. How-
ever, from the perspective of GW astronomy it is imperative
to derive theoretical predictions that include both strong
field and relativistic effects. In mergers with extreme mass
ratios, which are of much relevance for low frequency GW
detectors such as LISA, perturbation theory provides very
accurate results and its input is crucial for the construction
of waveform templates. However, a perturbative treatment
gets complicated by the well-known fact that the usual even
and odd sectors of gravitoelectromagnetic waves couple if a
BH is magnetically charged [8,9,48].

Here, this problem is fixed by devising a harmonic
approach to perturbation theory that is manifestly invariant
under the electric-magnetic duality transformations and
the gauge symmetry of the linear theory. As a result, the
linearized Einstein-Maxwell equations decouple into two
generalized even and odd sectors, and are governed by
master wave equations that include the coupling to the most
general dyonic matter sources.

The paper is organized as follows. In Sec. II we briefly
review electric-magnetic duality and introduce the most
general spherically symmetric BHs of the Einstein-
Maxwell theory. Next, in Sec. III we first introduce a
covariant and gauge-invariant formalism to describe fluctu-
ations of spherically symmetric spacetimes where the
energy-momentum tensor (both the background and the
fluctuations) is completely general (Sec. III A). Then, we
specialize the equations to the Einstein-Maxwell theory in a
way that electric-magnetic self-duality is manifest, and show
that the linearized equations decouple into two generalized
even and odd sectors (Sec. IIIB). Finally, we derive
decoupled master wave equations governing the dynamics
of each sector (Sec. III C). We conclude in Sec. IV discus-
sing our results and future research directions.

II. DYONIC BLACK HOLES AND ELECTRIC-
MAGNETIC DUALITY

The Einstein-Maxwell theory coupled to additional
matter is governed by the equations

1
Gm/ + Agﬂl/ = nyafua - Eg;w‘?:2 + Sﬂw (1)
dF = —471'*](,”), (2)

d*F = —47[*‘](6), (3)

where a cosmological constant A is included for complete-
ness, and throughout this work we use geometric units

G = c = 1. Here, F,, is the Maxwell field strength and

Jl(le)’ ’(‘m) and S, are, respectively, the electric and magnetic
currents and the energy-momentum tensor associated to the
additional matter. Consistency requires on-shell conservation
of the currents and the total energy-momentum tensor [the

right-hand side of (1)], that is,'

dxJ ) =0, (4)
d**](m) =0, (5)
VES,, = =81 (I (% Fua) = I Fua)- (6)

These equations must hold regardless of the kind of matter
considered. The idea now is to cast Egs. (1)-(6) in a form
that electric-magnetic self-duality is manifest. To that end,
we introduce the complex field strength and current

F=F—-ixF, JEJ(m)—iJ(e), (7)
in terms of which the action of an electric-magnetic duality
transformation is

F  ¢'“F, J = e), a€R. (8)
This is nothing but an SO(2) transformation of the field
strength and the current, while the spacetime metric g, and
the matter energy-momentum tensor S, are left invariant
(a paradigmatic example where this symmetry is realized
is the Einstein-Maxwell theory coupled to a dyonic point
particle [49]). Now, Egs. (1)-(3) and the conservation
laws (4)—(6) take the form

Guy + Agyuy = FoF, "+ S, )
dF = %], (10)
F 4 ixF =0, (11)
and
dxJ =0, (12)
VHS,, = —4mi(J*F,, — J°F,,), (13)

where the bar denotes complex conjugation, so they are
manifestly invariant under the transformation (8). It is worth
noticing that, although electric-magnetic duality transforma-
tions may not be defined for certain classes of additional
matter fields (e.g. an Abelian-Higgs model), this does not

' Although not completely immediate, it is a standard exercise
to write V#(S,, 4+ 2F . F,* =19,F*) =0 in the form (6),
assuming the Maxwell equations (2) and (3).
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obstruct by any means the possibility of working in terms
of the variables (7), which in any case must be subject to
Eqgs. (9)—(11), and the conservation laws (12) and (13).
We will focus on the most general electrovacuum
(S, =0 and J = 0) spherically symmetric BH solution
of Egs. (9)—(11). This is the dyonic Reissner-Nordstrom—

(anti-)de Sitter [RN(A)dS] BH [50,51], which in
Schwarzschild coordinates reads
2 2 dr? 20002 1 20042
ds* = —f(r)dt —i—m—l— r*(d0* + sin*0deg*),
r
.C .
F=—i—dt Adr+ Csin0do A de, (14)
r
where
2M A, CC
f(l")—l—T—gr +7 (15)

M is the BH mass and C is a combination of its electric and
magnetic charges, Q and P respectively, defined as

Ei/F_P—iQ, (16)

4 S?

where $? is any sphere that encloses the BH. Finally, we
notice that the action of a duality rotation on the solution
(14) is simply C > e™C.

III. LINEAR FLUCTUATIONS

In this section we consider linear fluctuations of the
spacetime (14). First, in Sec. III A we establish a covariant
and gauge-invariant formalism to treat perturbations on
background spacetimes that are spherically symmetric,
allowing for the most general energy-momentum tensor
both at the background and linear levels (the formalism is
an extension of [8,9,52] to include an arbitrary energy-
momentum tensor, and is inspired in part by the approach
of [53]). In Sec. III B we specialize the previous general
equations to the Einstein-Maxwell case, in such a way that
duality -invariance is manifest and the equations decouple
into two generalized even and odd sectors, which are
defined irrespective of the charge configurations of the
background and the sources. Finally, in Sec. III C we derive
decoupled master wave equations that govern each sector
and include the most general dyonic source terms.

A. Einstein equations with general matter

For the sake of generality, here we consider spacetimes
of dimension N + 2, whose background metric and energy-
momentum tensor have the form

ds? = g, (y)dy*dy® + r*(y)Qup(z)dz"dz®,  (17)

T = Ty (y)dy“dy® + r*(y)T (y)Qupdz*dz®, (18)

which are defined on a manifold with structure M =
NN xS2. g.(y) and r*(y) are a Lorentizan metric and
a positive function in the manifold NV, which is para-
metrized by the coordinates y* (with a=1,...,N).
Similarly, T,,(y) and 7 (y) are a symmetric tensor and a
function in NV, The coordinates z* (with A = 1,2) para-
metrize the unit round 2-sphere S? with metric Q4z(z)
(note that no assumption is made about the choice of
neither y* nor z). There is a large list of important
spacetimes that belong to the class (17), from rotating
BHs in higher dimensions to four-dimensional spacetimes
of the form (14), which are the relevant ones in this work.
We shall fix some conventions at this point. Greek
characters are reserved for spacetime indices of the total
manifold M (e.g. ¢ =1, ..., N 4+ 2), and the total spacetime
metric is denoted by a hat g,,, as well as its associated

covariant derivative and curvature tensor V and R, o
Indices are raised and lowered with the metrics g,, and
Q. 5, whose covariant derivatives and curvature tensors are
denoted V, R}, and D, RA pep, respectively. Finally, it will
be useful to introduce the 1-form r, = V,r, the function
H = rr, — 1, and the metric volume forms ¢,, and €45
associated to g,;, and Q,p, respectively.

In this terminology, Einstein’s equations and the con-
servation law satisfied by the background (17)-(18) read

H 2
Gab + <p + A) Gab — ; (varb - vcrcgab) =T, (19)

a
V,r

R
-SHA=T. (20)

Ve(r*Ty,) —2rTr, = 0. (21)

First order dynamical deviations from the background
(17)—=(18) are described by the metric and energy-
momentum fluctuations h,, and 67,,. These are subject
to the linearized Einstein equations and to the conservation
of energy and momentum,

6G,, + Ahy, = 6T, + S

Hv

(22)

5(V'T,) + 95, =0, (23)

where we are writing the total first order energy-momentum
tensor as 67, + S,,, with 6T, denoting the contribution
associated to the fields whose background value is nonzero,
while S, is the contribution from additional matter fields
that vanish on the background, and so correspond to a first
order source. Next, we expand the fluctuations in spherical
tensor harmonics as
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h=h%,(y)Y dy'dy® + 2[h5(v)Z4 + j4(y) X4 dy*dz!
+ [JY Wi + K () UG + m? (y)Vhs]dztd2?,
(24)

8T = 0%, (y)Y?dy*dy® +2[05(y)Z4 + p&(v) X5 ] dy“dz?
+ [PK(Y)WiB + HK(Y)UQ)B + GK(Y)VQ)B] dz*dz",
(25)

where Y*, Z4, U4 5, V45 and X4, W%, are the even and odd
spherical tensor harmonics, respectively, which are labeled
by the usual quantum numbers £ = (I, m) and summation
over repeated £’s is assumed (although we shall omit
writing this index to alleviate the notation). Our conven-
tions in defining the spherical harmonics are given in
Appendix A. The even and odd sectors of the fluctuations
h,, and 6T, consist of their components relative to the
even and odd spherical harmonics, respectively [e.g.
ey (), h(y). k% (y), m”(y) form the even sector of h,,
while j4 (), j*(y) form the odd one]. These components
are well-defined tensors on NV, and the equations of
motion (22)—(23) reduce to a set of linear Partial
Differential Equations (PDEs) for them. However, the
gauge symmetry

S A (26)

nv
or,, +— o1, —£T1,, (27)

implies that some of the degrees of freedom are unphysical.
One customary approach is to chose a suitable gauge, but
here we shall work with gauge-invariant variables that can
be constructed systematically as follows. Expanding the
gauge parameter £, in harmonics,

E=E,Ydy" + [EZy + xX4)dz, (28)

it is easy to check that the fluctuation-dependent vector
field n[h] = n,[hldy* + (n[h|Z, + v[h]X,)dz", with

r2 m
bl == + 5 %,(%) (29
nlh] = 5 (30)
olh] = — % , (31)
transforms as
Nulh) = n,lh] + &, (32)

Then the variables

h= (hy + 2V n,))dx'dx*, (33)

0= (6T, + £,T,,)dx"dx" (34)

are manifestly gauge invariant, and we shall work in terms
of their harmonic components, denoted

h = hg,Ydy*dy® + 27, X ,dy*dz* + kU spdz?dz®,  (35)

0 =0,Ydy*dy’ + Z[éaZA + ﬁaXA] dy*dz*
+ [ﬁWAB + éUAB + 6VAB] dZAdZB, (36)

whose explicit expression in terms of the original ones (24)
and (25) is given in Appendix A.

Inserting this expansion into the linearized Einstein’s
equations (22) one finds that they decouple into two sets.
The first set contains only the even sector of (35) and (36),
and reads

Eab = éab + Zab’
E=0+% E£=0+S, (37)

where E,,, E,, E, £ are given in Appendix A, and the
source terms are

s = / dQTLS,,. (38)
) __ / dQ7L4s (39)
U+ 1) an>
1 r7LAB
ZEE dQU SAB? (40)
[—2)! )
852(<l+2))‘/dQVLABSAB. (41)

The other set of equations contains only the odd sector of
(35) and (36); it reads
O,=p.+ 7T, O=p+7, (42)

where O,, O are given in Appendix A, and the source
terms are

1 -
Ta El_z/dQXLASaA’ (43)
[-2)! _

Finally, the total energy-momentum tensor is necessarily
conserved on-shell. Thus, Einstein’s equations (37) and
(42) have to be supplemented with the conservation laws
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that result from plugging the expansions (35) and (36)
into (23). Again, even and odd sectors decouple and the
explicit form of the conservation equations is reported in
Appendix A.

B. The Einstein-Maxwell case

In this section we consider fluctuations of the dyonic RN
(A)dS BH (14) in the Einstein-Maxwell theory. These are
governed by Eqs. (9)—(11) linearized on the background
(14), and we shall also include a general dyonic source,
with current J and energy-momentum tensor S, (examples
of such sources are a dyonic point charge [49], a complex,
charged scalar wave [54], etc.), which should satisfy
Egs. (12) and (13) for consistency. Most of the work
concerning the linearization of Einstein’s equations was
done in the previous section for general matter fields
and sources. Specializing those equations to the matter
content of Maxwell’s theory requires, first, defining a
harmonic expansion for the fluctuation of Maxwell’s field,
then linearizing Maxwell’s Egs. (10) and (11) and, finally,
computing the energy-momentum tensor fluctuations (36)
in terms of Maxwell’s field.

Consider first a BH background that is only electrically
charged and sources that are purely electric. Then it is
enough to expand the perturbed Maxwell vector potential
6.,4” in even and odd harmonics, since in that case the even
components of the electromagnetic field couple only to the
even components of the gravitational one, and similarly for
the odd components [5,7,55], so the even and odd sectors
of the gravitoelectromagnetic fluctuation decouple. If the
background BH carries magnetic charge, though, such an
approach does not lead to decoupled equations.2 To see
this, consider electrovacuum fluctuations so all sources are
set to zero. Then, proceeding as above and expanding 5.4,
in harmonics one finds that it is a mixed combination of
even and odd components of the Maxwell field that sources
each gravitational sector, thus spoiling the decoupling
of the Einstein-Maxwell equations.3 For electrovacuum
fluctuations this problem can be avoided since, without loss
of generality, one can always work in the “duality frame”
where the BH only carries electric charge (although the
necessity of making such choice is clearly undesirable).
However, this idea does not work in general if the Einstein-
Maxwell theory is coupled to additional matter, i.e. in the
presence of sources J, S,,. Indeed, in that case electric-
magnetic duality transformations may not even be defined
in the first place, and even if they are, the “duality frame”

*This was noticed in earlier works such as [8,9,48].

The reason why this happens is that now the background
Maxwell field strength contains a term ~Pe, 5, where P is the BH
magnetic charge and €, the volume form in the 2-sphere. Every
time this background piece is contracted with an even (odd)
vector harmonic Z, (X4) one gets back an odd (even) one, since
X, = e45Z8, causing the above-mentioned mixing.

where the BH is purely electric will in general contain
magnetically charged currents, so d6F # 0 and 6.4, does
not exist.

Here we introduce an alternative procedure that yields
decoupled equations in all cases. The key observation is
that one should work with variables that are manifestly
invariant under electric-magnetic duality. Recalling that
under duality transformations (8) the background charge C
behaves as C > ¢®C, it is clear that CSF and CJ are
duality-invariant quantities. Their expansion in harmonics
reads

_ 1 1
CSF = Eiga(y)Yeabdy“ A dy? + EII)(y)YeAdeA A dzB

+ (i0a(0)Za + 1a(y)Xa)dy* A d2, (45)
CJ = T,(0)Ydy" + (T(y)Zs — iV(y)X,)dz",  (46)

where the factors of i and the signs are merely conven-
tional. The monopole mode (I = 0) corresponds to induc-
ing a small change in mass and dyonic charge. Here we
shall focus on the dynamical modes and assume henceforth
[ > 1. The dipole / = 1 needs to be treated separately since
the gravitational degree of freedom becomes nondynam-
ical, so we shall consider first the multipoles [ > 2
where both gravitational and electromagnetic degrees of
freedom fluctuate. Proceeding as we did for the gravita-
tional fluctuation, we expand the gauge-invariant quantity
CoF + £,,(_3F in harmonics,’

_ _ 1
CoF + £,CF = Ei(ﬁ(y)Ysabdy” A dyb
|
+§Cb()’)Y€ABd2A VAN dZB
+ (ipa(Y)Za +7.(y)Xa)dy* Adz*,  (47)

where 77, is given in (29)—(31), and the explicit form of the

various components @, D, ... in terms of the original ones

@, D, ... is given in Appendix A. The linearized Maxwell
Egs. (10) and (11) now read

N 7, =4n7, (48)

eIV g — p = AnV, (49)

V,® - 127, = —4nr*e,, J°, (50)

and

*“We notice that in the covariant language introduced in Sec. IIT A
the background field strength (14) reads F = — ;—ng—;)dya A dyP+
CSedz" A dZP.
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. ® CC(., 2k
_ _ .CC.
Pa + 8ab}/b =1 2 Ja- (52)

Using these equations one immediately finds that the gauge-
invariant components (36) associated to the Maxwell energy-
momentum tensor are

1= _ (- 2 .
Ou, = 2 |:(I)+gab +CC (hab - pkgab)] ,

~ 1 ~
Ou = =235 (Va® +4ar’e, T},
- 1[.  CC,
9 = p |:®+ - 7k:| N
i

~ N . ec.
pa:_W[gath‘D +4ﬂ72~7a+l’127j”]’ >

while p and & vanish in this theory. As we shall see
immediately, the scalars ®* and @~ are the master variables
of the generalized even and odd sectors of the Maxwell field.
They are simply given by

Ot = & + P, (54)

where the superscript * means “complex harmonic con-
jugation,” defined as (A"™)* = (=1)"A(:=") where A"
are the harmonic components of a generic tensor field A
[notice that if A is a real tensor then (A()* = Abm) | a5
follows from the property ¥(-) = (=1)"y:=) of spherical
harmonics, but in general (A""))* # A(™) if A is complex].
From Eq. (53) it follows that the Maxwell field couples to
the even and odd gravitational sectors only via ®* and @™,
respectively. Furthermore, as can be readily verified ®*
satisfy the second order equations

2\ _ 2 5 2 .
(D —%) o+ =2CC (hcc = —2k> — 4z2Vt
T r I

— 47V, (PTY). (55)

2\ - Jb
(D - —2> ® = —2i’CCe®V, (—2> — 4V~
r r

— 47V (PP T5), (56)

where (1= V9V, is the wave operator of g,,, and again
®* and ®~ couple only to the even and odd gravitational
sectors, respectively.

We conclude that the equations decouple in two sets.
One involves the even gravitational variables and ®*, and
is governed by Egs. (37) and (55). Likewise, the other set
involves the odd gravitational variables and @, and is

subject to Eqgs. (42) and (56). The source terms appearing
in these equations are completely general, and it is only
assumed that they satisfy the conservation laws (12) and
(13), which are required by consistency. The same analysis
holds for the dipole modes [ =1 (setting to zero the
appropriate components, see Appendix A), bearing in mind
that now the tilded variables are in general not gauge
invariant (but the equations are, of course). These two sets
of equations generalize the usual even and odd sectors of
the fluctuations of a purely electric BH, coupled to purely
electric sources (see e.g. [5,7,48,55]). We expect that a
similar procedure can be applied to decouple the fluctua-
tions of spherically symmetric BHs in more general
theories that exhibit some notion of self-duality, such as
the BHs in axion-dilation gravity [56,57]. However, includ-
ing BH rotation most likely requires following an approach
based on the Newman-Penrose formalism [58], even
though a complete decoupling is not expected to take
place in that case [59].

Before closing this section it is instructive to write ®*
in terms of the real Maxwell field strength, 6, whose
harmonic expansion can be written as

1 1
6F = 55(y)Y£abdy“ A dyb +53(y)Y€AdeA A dzB
+ (Sa(y)ZA + Ba(y)XA)dya A dzt. (57)

Plugging this into the definition of ®* given in (47),
one finds’

®t =2PB-20Q {r25+ Q<h7—r—kz>] (58)

&~ =2iQB+2iP [r25 +0 (hz“ - r—’é)] . (59)
Taking a background BH which is purely electric (P = 0
and Q # 0), we see that it is only the electric field £ that
couples to the even gravitational sector, while only the
magnetic field B couples to the odd one, a fact that was first
observed in [5]. However, this works the other way around
on a purely magnetic BH (Q = 0 and P # 0), while we find
that in the most general case (Q #0 and P #0) it is
precisely the combinations (58) and (59) that couple to the
even and odd gravitational sectors, respectively.

C. Master wave equations

Having decoupled the Einstein-Maxwell equations into
our generalized even and odd sectors, we are in condi-
tions of deriving master wave equations governing the
dynamics of each sector. Such derivation is straightforward

>Assuming for simplicity that 5 is in the gauge nulh) =0,
which always exists.
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and is inspired by previous works in the literature
(e.g. [5,7,48,52,53,55]), although the approach here is
manifestly covariant. In this section we only report the
final equations and source terms, and leave the details of the
derivation to Appendix B.

Each sector is governed by two decoupled wave equa-
tions, corresponding to the gravitational and electromag-
netic modes. These can be cast in the form

(0= ViL)¥i, = St,, (60)

where +, — refer to the generalized even and odd sectors,
and 1,2 refer to the electromagnetic and the gravitational
modes, respectively. The wave operator [1= V4V, is
associated to the two-dimensional Lorentzian background
metric g,,, and the potentials can be written in the compact
form

d
Vi, = %4, EWI,Z + @ W, AR =2) W,

(61)
!

<le>_ 1 (- 2
W) AT B ke eVt 22 S [(1r py ~ 1V, (R /7)) /U ()]

where A* and o are arbitrary nonzero constants, U(r) =
M) _4€C and pu, = hay — (1/2)Fegay is the
traceless part of the gauge-invariant metric fluctuation 7,,,.

Before discussing the source terms sz, it is worth
stressing here that our Egs. (60) are formally similar
to those obtained in the literature for purely electric RN
BHs, [5,48,55]. In particular, the potentials in (61) are the
same as those obtained in [48] just replacing CC — Q?, as
one would expect form electric-magnetic duality. There are,
however, two important differences. First, our equations
are written for variables which are manifestly gauge and
duality invariant, and are defined irrespective of the charge
configuration of the background BH. Second, and most
importantly, the source terms in our expressions are new
and generalize those in [5,48,55] by including, in a
covariant and duality-invariant guise, the coupling of the
most general dyonic matter sources to a fluctuation of a
dyonic RN(A)dS BH (14). Explicitly, sz are

_ -1 Y
Sl _M—_A<42Sg +ITS0>, (65)

_ 1 _ A _
SZ :m<qlsg +ITSO>, (66)

in terms of the gravitational and electromagnetic “super
potentials,”

1) )

Wia(r) = r(=2)r+4q,)’

where we have introduced the constants g; =3M + A, ¢, =
3M — A, and A = /9M? + 4CC()> —2). Equation (61)
generalizes to dyonic RN(A)dS BHs, the relation found by
Chandrasekar between the even and odd fluctuations of an
electric RN BH [55]. The master variables ‘I’f2 are related
to the field variables introduced in the previous sections by

i(2*=
¥\ o1 (e -5
¥, ) 2047\ @ i2-2)
a 2o
_Leaby (In) 4 i -
x< 7€ v“(rz)ﬂzrq’ ) (63)
&-
t“r’p, — 1V, l~c/r JU(r
(0" pan = 9,8/ /U7 o
-1 2
St = SATA (qu; - /1—25§> (67)
1 2
S; = A Aa” (61153 —FSCT) (68)

where Sig are given by the covariant expressions

Sy = Sél)tcvc(r“rbZab) + ng)rcvc(t“rbZab)
+ 801t E 4+ SV (195,) + SV eV (195,)
+ S8, + SU V(1 TE) + S V(1 T )
+8¢ T8+ 8001,S. (69)

CC
S& =222==55 + s\Vrrz,, + sPrs, + sV 1V, 8
r

+ 55 7 4 SOV [0V (T )]

+ 59y Vv, (70)
_ b 4ri _

Sg =re VaTb—/l—zvajb 5 (71)

Sy = —4n(2V™ + eV, (P T3)). (72)
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with St(ll,)g some functions of r reported in Egs. (B49) and
(B50) of Appendix B.

If the background BH and the currents are purely
electric, our source terms reduce to those in [5,48,55], as
expected. However, for a general charge configuration there
are additional terms that excite new channels of gravita-
tional and electromagnetic radiation. To see this, consider a
typical source term such as 7, [see (69)—(72)], and assume
that the background BH is purely electric, so C = —iQ.
Then [J, reads

Tz =2i0 / dQysi", (73)

(m)

where J,, ’ is the real magnetic current in (2). Thus, if the

currents are purely electric too, i.e. JE,'") =0, the terms

associated to J, drop from the sources (69)—(72) and one
recovers the known results for purely electric BHs and
currents [5,48,55]. In the presence of magnetic currents,

though, J Ef") # 0 and there are additional contributions to
the gravitational and electromagnetic radiation of intensity
~QJ™ (or ~PJ) in the case of a magnetic background
BH with charge P and an electric current J(¢)). As
discussed in [38], these new modes that emerge from an
“electric-magnetic” interaction (as opposed to an “electric-
electric” or “magnetic-magnetic” one) exhibit a rich and
interesting phenomenology that has no counterpart in
purely electric configurations.

To conclude, we remark that the dipolar modes / = 1 are
entirely governed by the electromagnetic degree of freedom
alone, both in the even and the odd sectors. A detailed
treatment of these modes is provided in Appendix B.

IV. DISCUSSION

We extended the usual harmonic description of pertur-
bations of spherically symmetric BHs in the Einstein-
Maxwell theory, and made electric-magnetic self-duality
manifest. This allowed us to deal with the coupling of the
traditional even and odd fluctuations that takes place
whenever the BH is magnetically charged. Our generalized
even and odd sectors, which are manifestly gauge and
duality invariant, satisfy decoupled equations for arbitrary
values of the electric and magnetic charges of both the BH
and the sources. Furthermore, the dynamics of the electro-
magnetic field is encoded in a single, complex scalar ®
whose independent components ®* and ®~ describe the
even and odd fluctuations, respectively. We have also
provided decoupled master wave equations that govern
each sector and include the most general dyonic source
terms in a manifestly covariant and duality-invariant form.

Our results are important in the context of GW physics
because they lead to robust theoretical predictions about
GW generation and electromagnetic radiation by the most

general spherically symmetric BHs of the Einstein-
Maxwell theory. In particular, our wave equations are
not restricted to the Newtonian regime [43—47] and include
both strong field and relativistic effects in the extreme mass
ratio limit, thus being relevant for low frequency GW
detectors such as LISA. In addition, the fact that they are
valid for the most general charge configuration allows
an exploration of regions of parameter space that include
phenomena with no counterpart in purely electric setups
[5,6,31,39-42], such as those exhibited during accretion of
electrically charged matter by magnetic BHs [36—38]. This
could lead to novel ways of constraining the parameters
of dyonic RN BHs from observations. Finally, from the
perspective of beyond-the-Standard-Model physics and
some dark matter models [18,22-31], our results can help
elucidate signatures of new physics.
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APPENDIX A: SPHERICAL HARMONICS AND
LINEARIZED EINSTEIN EQUATIONS
1. Spherical harmonics

The spherical harmonics in the 2-sphere are defined by
the eigenvalue equation

(DADy + 2%)Ytm =0, (A1)

where 2> =1(l+1) and [=0,1,2... with m€Z and
|m| < 1. We choose to normalize them so that the following
orthonormality condition holds:

/ dQV YU = 6116, (A2)

where dQ is the volume element on the 2-sphere. The even
tensor harmonics are [dropping the (I, m) superscript]

ZAEDAY, UABEQABY,
12
VABEDADBY_FEUAB’ (A3)
while the odd tensor harmonics read
XA = €ABZB, WAB = D(AXB) (A4)

The orthogonality properties of tensor harmonics follow
straightforwardly from their definitions. As indicated in the
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main text, the lower order harmonics / = 0, 1 are special.
For [ =0, Y is a constant, so Z, = X, = W,p = 0, while
Vg 1s not defined (or equivalently, it is proportional to
U,p). In particular, this means that only even harmonics
exist for the monopole / = 0. For the dipole [ =1, X is a
Killing vector on the sphere, so W, p = V5 = 0.

2. Gauge-invariant variables

In the basis of harmonics introduced above, the compo-
nents of the gauge-invariant variables associated to the
metric and energy-momentum fluctuation, introduced in
Egs. (35) and (36), read

hub = hah + 2v(u’7b)’ (AS)
k= k+2rrig, — A, (A6)

~ . v
Ja :Ja"i_rzva(ﬁ) (A7)

and
éab = eab + ncchab + chvanc + Tacvbrlcv (AS)
0,=0,+T,n"+rTV, (’72) (A9)
r

0=0-+n'V,(rT) - 2*Pn, (A10)
6=o0+2Tn, (A11)
By = pg+ 12TV, (%) (A12)

r
p=p+27v. (A13)

As mentioned in the main text, these variables are gauge
invariant for the harmonic modes with / > 2. Let us now
comment on the lower multipoles / = 0, 1. For either of
these modes there is no analog of the perturbation-
dependent vector field 7, [4] that can be used to compensate
gauge transformations and construct gauge-invariant var-
iables. The variables we will work with in those cases are
J

defined just as the tilded variables above, but setting to zero
the appropriate components of 7, (17, =0 for /=0 and
y = v =0forl=1). While it is possible to write covariant
equations in terms of those variables, one should bear in
mind they are not gauge invariant in general. One important
exception in the odd sector with / = 1 is the combination

Ta Elba _Tja’ (A14)
as well as the exterior derivatives V|, (jb] /r*) and
Vi (Pi/ 2T ). Finally, we also report here the gauge-invariant
Maxwell variables introduced in Eq. (47), which explicitly
read

@ =¢—-CCVY, <Z—2> (A15)

3 = v o
¢, =, —ICC[V, o —l&'ahp ., (A106)

7u =710 —CCY, (%) (A17)
r
. CC
3. Linearized Einstein equations
The linearized Einstein’s equations are
6G,, + Ahy,, — 6T, = S,,. (A19)

where 6T, is the variation of the energy-momentum tensor
associated to the fields whose background value is nonzero,
and S, is a first order source. We shall denote the left-hand
side of (A19) by

G, =06G,, +Ah,, —oT,,

(A20)

Before considering the four-dimensional case, it is instruc-
tive to write explicit expressions for G,, in the general
spacetime with structure A’V x S? described in Sec. IIT A.
One finds

- k k < [k V) k
gub = {Gilh) [h} - eab - |:vavb <_> -0 <_> gah:| + r_vc <_2> Yap T |:varb - (vcrL + )gab:| 3
r r r r r 2r r

c 2

r A
+ 7 (Kcab - chah) +

W (ﬁah - ;lccgah) + (2

= EabY’

V.r* H ~ rerg 2 ~
" +p+A>hab_< d+;vcrd)thgab}Y

(A21)
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1(1 2 (h, k .
ok, v (Z2) v, (£)-20,\2
gaA 2{2 a 2 u<r2> u(rz) ea} A
2

+ {r‘zvh(r4v[avb]) +

= EaZA =+ OaXA7

2 5 B
Vg +1°Pv,—py 0 X4
(A22)

- Lo,
Va(rPv®) = p)Wap — <§h a Tt 0) Vas

{ DG) + <2’T(r) —V“rra)ic
v

Vab 5
(ZK“)+r<R“”—2 r)hab

r
r2 /12 B 5
+ <D - ﬁ) he, - 26'}UAB

= OWyp + EVyp + EUyp,

gAB:(

+

1
2
1
27

(A23)

where we are implicitly assuming the sum over harmonics
[i.e. we omit writing the harmonic indices (/,m) and the
sums ;. ], and we introduced

Kabc = vbilca + vcilba - vailbc’ <A24)

2

A -
r2VarL,,) - -2 — 2r—§Z = —r2VIr3(0
r r

> 2-A
—ZV 22(1 =
rVa(rE) + r? * 272

while the odd one is

(2-4)
2

VP + 2y -, 20 - pon)
2-4) .
2 7

In the four-dimensional case, where the spacetime has
structure A2 x S?, some remarkable simplifications take
place. First, as is well known from the Gauss-Bonnet
theorem, the Einstein tensor of any two-dimensional
(pseudo)-Riemannian manifold vanishes identically, G, =0

(not to be confused with G ), so in particular GE}h) (W] =0

for any h,,. This removes from Einstein’s equations all
second order derivatives of

Pab = (1/2)

cYab> (A29)

o — 0 aTha)] +

1 - k
[Vl s

0 1 k — 2
8=~V (70 ~ 5+ 5 Tuh® = (hff - —) 5,

Ka EKabb, (A25)

v, =172, (A26)
In addition, R<alb) [4] and G((llb) [1] denote the linear operators
that result by formally expanding the Ricci and Einstein
tensor of g, to first order in a fluctuation h,,, that is,

and the usual Lichnerowicz operator reads A;h,, =
—Ohyy, — 2R 40pah“?. Equations (A21)—(A23) provide the
left-hand sides of Eqgs. (37) and (42) in the main text, for
the general spacetime NV x S?. Before restricting to four
dimensions, it is useful to expand in harmonics the
conservation law of the (total) energy-momentum tensor,

§(V'T,,) + V"S,, = 0. (A28)

The even parts of this equation are

2

|
the traceless part of the gauge-invariant metric fluctuation.
Finally, the background matter and vacuum contributions
to the equations of motion can be neatly separated by using
the background equations

2 R .
=V,r, = <5+T_A)gah_Tah’ (A30)
p

(Te, —R —2T), (A31)

~
o
NS

where T, = T — (1/2)T g, is the traceless part of T,
to cast the even pieces E,, and E of (A21)-(A23) in the
form
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1 k k rr'pa o [k re
Eab = —— |:vavb (—) _D<_>gab:| - |: d__vc <_2>:|gab +_<Kcab _chab)
r r r r r r

2 r?
QNP — (2 42) -

7 d
+ Tcdpc Yab + 47‘2

—1 E _5 ~_1 2 pa
E_Z[D(r>+<T+A 2)k S Va(PK)

y 2 2 -
+ 2T, p™ +% <D -t 2(A - 7)> hff} . (A33)

APPENDIX B: DERIVATION OF MASTER WAVE
EQUATIONS

In this appendix we provide the details of the derivation
of the master wave Eq. (60). We shall treat generalized even
and odd sectors separately.

1. Generalized odd sector

In the setup of Sec. Il A for generic matter, the odd
sector is governed by three equations, two coming from
Einstein’s equations and one from conservation of the
energy-momentum tensor. They read, respectively,

—2\7b (4 (’12_2) 2 ~
rVP(rtV o) + 7 v+ r*Tv,—p, =Y, (Bl)
V. (rPv")-=p=T, (B2)
5 ) (2-22)_ ) (2-2%)
Vi [r(p* = r*Tv") ]+ p==V, (rrr9)——=T.

Now, restricting our discussion to the four-dimensional
setup, so our harmonic components are tensors on a two-
dimensional manifold N2 (see Sec. IIl A), one can effec-
tively reduce the order of the derivatives in the gravitational
equation by one, using that V[avb] must have the form

Vigvp) = 1 Qe (B3)
for some function Q (explicitly, Q = —(r*/2)eV ,v,).
Then, in terms of the matter variable 7, = p, — r*7T v,
(which we notice vanishes in vacuum), the equation
eV ,0, = eV Y, gives

P2 -

r2

r’V, (r?VveQ) — 29 =r’e®(V,1, + V,T,), (B4)

which reduces to a master equation in vacuum. Before
fixing the matter content to be that of Maxwell’s theory, we

1[s R 2=2 k
——[Tab‘f' <5+T_A+—>gab:|

! fY9ab>

k1 . 22
p"f’i R+27T —-2A+T a+ﬁ Pab

(A32)

[

consider the dipole mode / = 1. For this mode only two of
the equations above exist,

A4 (r4v[avb}) =z, + To), (B5)

V. (r(z* + 1)) =0, (B6)
and we recall that 7, and V[,v;) are gauge invariant (even

though j, and j, are not gauge invariant for this mode). The
second equation implies that there must be a function 7
(defined up to the addition of a constant) satisfying

V.t = rley, (0 + T?) (B7)
and the first equation then gives
Q=r, (B8)

where Q is defined as above. That is, the gravitational
degree of freedom becomes nondynamical for this mode,
and is fully given by the matter mode 7, which will be
dynamical in general (an example is Maxwell’s theory,
as we show next). In vacuum, the most general solution is
simply € = constant, which corresponds to inducing a
small rotation into the hole.

Let us now specify the equations above for Maxwell’s
theory. The energy-momentum fluctuation 7, associated to
the Maxwell field follows from the last expression in (53),

, = _# (e VPO~ + 42r277). (B9)

Now, in terms of the gravitational variable ¢~ =
rY(Q+ (i/4*)®~) and renaming a~ = ®~, the Einstein
and Maxwell Egs. (B4) and (56) can be cast in the form

o)+ (5 2)E)-() e

where fq, faq faar and [, are functions of r only (whose
particular form is unimportant), and the source terms are

Sg = re®b <VaTb —%Vuj;>, (B11)

Sz = —4x(PV™ + eV (P T5)). (B12)
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Finally, introducing the parameters

Q1:3M+A, qZ:3M—A,

A= \/9M2+4(:C(,12—2), (B13)

the equations can be decoupled trading (g~, a”) in favor of
two variables (W, ¥;) defined by

q” 1 a” YT
= A~ iz _ o _ (B14)
a o @ E50 )\

where A~,a~ are arbitrary nonzero constants. The final
decoupled master equations are

(O =-Vi)¥, =81, (B15)
where
Vi, =r 2% — go,r +4CC, (B16)
B -1 =2
Sl :M—_A<qzsg +17Sa>, (B17)
_ 1 =2
S2 :W<qlsg +1}LZS°> (Blg)
Alternatively, introducing the function
f(r
Wia(r) = ) (B19)

r(2=2)r+q1)

the potentials can be written as

d
Vis=—42, awu + @ T Wi, + 2R =2) W,

(B20)

as reported in the main text. Regarding the special mode
[ =1, we need to find a 7 satisfying (B7). From the last
expression in (53) we have

Pel(ty + 211 T75) = — % V,o. (B21)
Now, a relation between T, and J, follows from the
conservation laws (12)—(13) that the external current and
the energy-momentum tensor need to satisfy on-shell for
consistency. In particular, we get

*d*J =0—-27 =V(r2T,), (B22)

V¥S,, = —47i(JF,q — J°F,,) = V, (r?T) = 4ziJ~.
(B23)

Combining these two equations, it follows that there must
exist a potential w associated to the sources (and defined up
to the addition of a constant) that satisfies

V.0 = r*e, (T, - 2ziJ5;). (B24)
By combining this with (B21) we get that taking
T=w—(i/2)D” (B25)

the desired equation (B7) is satisfied. Finally, recalling that
Q = 7 (a general fact for the [ = 1 odd mode, as we derived
above), the Maxwell equation (56) becomes

{D - (% + 467?)] o =S5 (B26)

where

Se = 81’%0} — 472V 4 eV (P T3)). (B27)
The dynamics of the odd dipole fluctuations [ =1 is
governed entirely by (B26), which describes an electro-
magnetic mode, while the gravitational mode is fixed as
€ = 7. We notice that the potential is precisely Vi with
A? = 2 [see (B20)], as one would expect. Finally, we point
out that @~ is gauge invariant, since it transforms as
@ — & +2(CC/r?)&, but & is the harmonic compo-
nent of a real vector field, so &~ = 0.

2. Generalized even sector

This sector is governed by Eq. (37), with energy-
momentum fluctuations given by (53), and Maxwell’s
equation (55). Here we shall also make use of the fact
that the background has a timelike Killing vector * = (9,)¢,
which in the covariant language of Sec. III A can be written

as t, = —e,,r”. We choose to work with the equations
Ey= —%h -S=0, (B28)
E =t(E,—0,-%,) =0, (B29)
E, =1V, [rY(E,-0,-%,)] =0, (B30)
Ey=1"r’(Eq, — 04 — Z4p) = 0, (B31)
Ey= 9, [r ' (Ey = By — £4)] = 0. (B32)

and the Maxwell equation (55) [indeed, if (B28)-(B32)
hold, then by the Bianchi identity the rest of Einstein’s
equations hold, too]. E, will be used just to replace the trace
of h,y, in favor of the source term S. Using E,, E,, E;, and
in terms of the variable
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¢t = [t pay — 'V, (k/r)]/U(r),  (B33)

I

equation of the form

M+r(72=2 C . .
where U(r) = $rti=2) _ 4 €€, equation E, gives a wave

(D —|—fgg(r))gJr + foo(r)t*V, @ = S (B34)

where f4, and f o are functions of r whose form is
unimportant, and the source term is given by

S¢ =SV (r P E,,) + S8 V(19702 ) + S 1S,
+ 801V (r92,) + SO eV (192,) + S g,
+ SV eV (0T )+ SOV (T ) + S T
+5y%0v,S (B35)

where the functions Sg) are given below, in (B50). Now, in

terms of the variable

CcC
at =1V, 0t 4212 —g* (B36)
r
and with the help of E; and Ej, all derivatives in the
Maxwell equation (55) are collected in the differential
operators [(Ja™ and [Clg*. Then, using (B34) to eliminate
Og* one finds

(O+ faa(r)a® + fog(r)gt =S5 (B37)

where the source term is

CC
S¢=22==58, + Sty + sSP ez, + 5901V, S
r

+ 85 T 4+ 8OV [V, (P T )] + S 19V v

(B38)
and the functions S((f) are given below, in (B49). Finally,
trading 1*V,,®* in favor of a* and g* in (B34), Egs. (B37)
and (B34) take the form

+ 7 7 + +
o) (o ) G)= () o
a® fag faa a® S;r
where again the form of the functions fgg,fga is unim-
portant. As in the odd case, this system of equations can be
simply decoupled with a very similar linear transformation,
with constant coefficients, trading (g¢*,a') in favor of
(¥, ¥) defined by

()= (s wea) (o)
at) T \Lq atiq)\WS

(B40)

where again A" and at are arbitrary nonzero constants.
One finally has

(O-Vi)¥, =87, (B41)
where
st———1 (o5 -2 B42
172A+A Q2g_/1_2av ( )
+ 1 +_2 o
S = aaraar \ D5 S ) (B9

d
Via=a, EWI.Z + ‘I%,lf_lW%,z + R =2)f W,

(B44)

and W, 5(r) is the same as in (B19). Finally, let us consider
the scalar dipolar mode / = 1. First of all, we notice that
while ¥ is gauge dependent, the electromagnetic mode
¥ is not. Indeed, for / = 1 the latter is given by

1 . cc, .,
‘Pfr = 2AA+ <[ Vaq)+ +4T [(l r pab

-9,/ V0] ) (B45)

and a gauge transformation of each of its pieces reads
a b a,.b a b g
1r" pap > 117 pap + Artr’r Vi, o

+ 221"V, V,, (}%), (B46)

P (B47)

l~<|—>l~<+2§+2r3r"va<§>,

Ot > Pt +2Cr—2cg+ = @+ +4(i—f.»: (B48)

where we used that &t = 2& since £ is the harmonic
component of a real vector field. It is easy to check that
this leaves ‘PT invariant. Now, since for this mode neither S
nor equation Ej, exist, it is consistent to move to a gauge in
which 7%, = 0. Then equations E,, E,, E5, E, are identical
to the [ > 2 case but setting A2 =2, i, = S = 0, and the
very same manipulation applies to get the master equations.
In fact, it is the equation for W] alone that governs the
entire dynamics of this mode (what could be guessed
from the vacuum case, where W5 is pure gauge). We finally
report here the functions Sl(,')g of the source terms (B38)
and (B35),
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(1) 422CC
s — M
ru(r)
5(2) _ 8/12(_1C(3CC — r(6M —3r+ r3A))
o U0 ’
2CCA?
s = =2
m
G4 _ 322CC(3CC - r(6M = 3r + r*A))
o U0 ’
S((IS) = —4r,
SO = —4np2, 349
and
(1) r
st — _ 7
S U
@) r
s@O__r
NG
S(3) _ 2_(5(_:(: + 3r2f(,-) AR - 3)’2)
C T UMEC 3R + A T AP 1)
sW___2
Uy
) %
© _ _PS)(12CC ~ 67 (1) + P (2 + 407 + 4))
a rPU(r)(CC +3r7f(r) + Art = (2 + 1)r?)
_ (CC+ Art = (2 4+ 1)r?)(2CC + r* (22 +2Ar* = 2))
FUMCCH37f () + Af =B+ 1)r)
7) 81
s _°%
S U2
(8) 87
s®___°F
touE

0 _ 4 2CC? + f(r)(r*(2* + 4Ar% + 4) — 12CCr?)
$ T U(N22P(CC + 372 f (r) + (=22 + AP = 1))
CCr (=22 +4Nr2 —4) = 6r' f(r)? 4+ r*(=2* + 22(1 = A?) + 2(Ar* — 1)?)
r 2 3/¢ 2 YRV 2
U(r)A*r’(CC 4+ 3r°f(r) + r*(=2* + Ar- = 1))
§(10) —CC -3 f(r) + *(Z = Ar* +1)

¢ = 0 . (B50)

El
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