
Regularized black holes from doubled FLRW cosmologies

Marc Geiller,1,* Etera R. Livine ,1,† and Francesco Sartini2,‡
1ENS de Lyon, Laboratoire de Physique, CNRS UMR 5672, Lyon 69007, France

2Esprit des Lieux, Jardin Singulier, Saint Léger du Ventoux 84390, France
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Reduced general relativity for four-dimensional spherically symmetric stationary space-times, more
simply called the black hole minisuperspace, was shown in previous work to admit a symmetry under the
three-dimensional Poincaré group ISOð2; 1Þ. Such a nonsemisimple symmetry group usually signals that
the system is a special case of a more general model admitting a semisimple Lie group symmetry. We
explore here possible modifications of the Hamiltonian constraint of the minisuperspace. We identify in
particular a continuous deformation of the dynamics that lifts the degeneracy of the Poincaré group and
leads to a SOð3; 1Þ or SOð2; 2Þ symmetry. This deformation is not related to the cosmological constant. We
show that the deformed dynamics can be represented as the superposition of two noninteracting
homogeneous Friedmann-Robertson-Walker cosmologies, with flat slices filled with perfect fluid. The
resulting modified black hole metrics are found to be nonsingular.
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Quantum physics and group theories are strongly con-
nected. The representation theory of symmetry groups gives
a powerful handle on quantization. On the road towards a full
comprehension of quantumgravity, it is crucial to understand
the role of symmetries in general relativity.
Recently, there have been increasing hints of nontrivial

symmetries of general relativity, beyond its gauge invariance
under space-time diffeomorphisms; for instance by looking
at boundary conserved charges and asymptotic symmetry
group, e.g., [1–4], or dynamical symmetries of black holes’
quasinormal modes, e.g., [5–8]. In this context, recent works
have uncovered the existence of hidden symmetries for
cosmological and black hole minisuperspaces; that is the
reduction of general relativity to homogeneous space-time or
spherically symmetric metrics. These reduced gravitational
systems can be written as mechanical models with finite
number of degrees of freedom. Systematically investigating
their conserved charges, it was found that these minisuper-
spaces exhibit symmetries beyond the expected residual
diffeomorphism invariance or metric isometries [9–14].
In this short paper, we focus on the case of spherically

symmetric metrics, for which the existence of a group of
symmetries isomorphic to the three-dimensional Poincaré
group ISOð2; 1Þ has been recently uncovered [10–13].
The Noether charges induced by this symmetry allow us
to integrate the dynamics of the system and lead back to the
Schwarzschild metrics with arbitrary mass, as expected. The
presence of a nonsemisimple algebra symmetry suggests

the existence of a hidden parameter that gives back the
Poincaré algebra in a particular limit; in analogy to what
happens when we set the cosmological constant to zero in
the study of asymptotic symmetries of general relativity.
In this paper, we proceed to a systematic investigation of

possible deformations of the Hamiltonian constraint of the
black hole minisuperspace, and we show that it is indeed
possible to identify a deformation parameter λ such that the
symmetry group of the minisuperspace is “regularized” to
SOð3; 1Þ for λ > 0 and SOð2; 2Þ for λ < 0, while leading
back to the Poincaré group ISOð2; 1Þ in the degenerate
limit, λ → 0. It is important to stress that this deformation
parameter λ has no link whatsoever with the cosmological
constant. Indeed, it does not parametrize a deformation of
the space-time metric but of the metric in field space.
The negative deformation parameter case is of particu-

lar interest. The factorization of SOð2; 2Þ as the direct
product of two copies of SOð2; 1Þ allows us to map the
black hole minisuperspace as the superposition of two
independent Friedmann-Robertson-Walker (FRW) cos-
mologies. This surprisingly leads to singularity-free
modified black hole solutions. This might suggest a more
general basis for singularity resolution in general relativity
through symmetry considerations.
We conclude the paper with a discussion of the implica-

tions of the whole family of deformations of the black hole
minisuperspace and outlook for both classical and quantum
gravity.

I. BLACK HOLE MINISUPERSPACE

We consider the class of static spherically symmetric
spacetimes, corresponding to the (rotationless) black hole
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minisuperspace model. One can consider at the same time
the interior and exterior regions of the black hole by
choosing a null gauge regular across the horizon,1

ds2 ¼ 2NðrÞdrduþ V2ðrÞ
2V1ðrÞ

du2 þ l2
sV1ðrÞdΩ2; ð1Þ

with three independent free functions N;V1 and V2. The
length unit ls allows to keep V1 and V2 dimensionless and
sets the scale for the curvature of the spherical sections
dΩ2 ¼ dθ2 þ sin2 θdϕ2.
The black hole minisuperspace is defined by plugging

this metric ansatz in the Einstein-Hilbert action for general
relativity. As we review below, solutions are given up to
symmetries and gauge fixing by the Schwarzschild metric,
as expected, in the Eddington-Finkelstein coordinates,

ds2 ¼ 2dRdU −
�
1 −

2M
R

�
dU2 þ R2dΩ2; ð2Þ

where M denotes the mass of the black hole solution. The
black hole minisuperspace thus describes the phase space
of Schwarzschild black hole metrics with arbitrary mass
and their spherically symmetric fluctuations. In some sense,
one can interpret the metric ansatz (1), with arbitrary
components V1 and V2, as an off shell black hole, i.e.,
before imposing the Einstein equations (or suitably modi-
fied Einstein equations). Below, we review the definition of
the minisuperspace, its action, dynamics and symmetries.
Evaluating the Einstein-Hilbert action on the line-

element ansatz (1) reduces general relativity to a mechani-
cal model and gives the following reduced action, similarly
to [10,11]

S ¼ V0

l2
Pl

Z
dr

�
V 0
1ðV2V 0

1 − 2V1V 0
2Þ

2NV1
2

þ 4N
l2
s

�
; ð3Þ

where the prime denotes the derivative with respect to the
radial coordinate r. Units are chosen such that the Planck
length is lPl ¼

ffiffiffiffi
G

p
, with the Newton constantG. There are

two essential remarks. First, we are considering stationary
space-times; the metric components do not depend on the
time coordinate, the fields only depend on r, so that the
dynamics are entirely along the radial direction. Second,
the metric ansatz is homogeneous, so the Einstein-Hilbert
action has to be evaluated on a finite-time interval in order
to have a well-defined action principle. Here we restrict the
null direction u to a finite range u∈ ½u1; u2�, which gives
the fiducial volume prefactor V0 ¼ l2

s ðu2 − u1Þ=8 in front
of the action.
The radial coordinate plays the role of the evolution

parameter, and we can develop the Hamiltonian formu-
lation describing this evolution. Let us compute the con-
jugate momenta by differentiating the Lagrangian with
respect to the radial derivatives V 0

1 and V 0
2,

P1 ¼
∂L
∂V 0

1

¼ −
V0

l2
PlN

ðV 0
1V2 − V1V 0

2Þ
V1

2
;

P2 ¼
∂L
∂V 0

2

¼ −
V0

l2
PlN

V 0
1

V1

; ð4Þ

with the reverse formulas:

V 0
1 ¼ −

l2
PlN
V0

V1P2; V 0
2 ¼ −

l2
PlN
V0

ðV1P1 þV2P2Þ: ð5Þ

We have a four-dimensional phase space. We perform the
corresponding Legendre transform and write the action in
its Hamiltonian form,

S ¼
Z

dr½V 0
1P1 þ V 0

2P2 −H�; ð6Þ

with H ¼ NH where

H ¼ Hr −
4V0

l2
Pll

2
s
; Hr ¼ −

l2
Pl

2V0

P2ð2V1P1 þ V2P2Þ:

ð7Þ

The metric component N does not have any conjugate
momentum. It plays the role of a Lagrange multiplier
enforcing the constraint, H ¼ 0 or equivalently Hr ¼
4V0=l2

Pll
2
s , generating gauge reparametrizations of the r

coordinate. It indeed corresponds to the expression of the
generator of radial diffeomorphisms in full general relativity,
evaluated on our spherically symmetric ansatz (1), and
Einstein equations require it to vanish on-shell [10,11,13].
We refer to this constraint as the scalar constraint. We can

1In order to compare with other spherically symmetric metric
ansatz for black hole or compact objects in astrophysics, it is
useful to write this line element in terms of ðt; rÞ coordinates, as

ds2 ¼ V2

2V1

dt2 − NðrÞ2 2V1

V2

dr2 þ l2
sV1dΩ2;

where the time and null coordinates are related by u ¼ tþ r� in
terms of the tortoise coordinate defined as

dr� ¼ −2N
V1

V2

dr:

Assuming that V1 ≥ 0, we see that the black hole horizon is
located at V2, with the exterior region for V2 < 0 and the interior
region for V2 > 0. The central singularity is located at the root of
V1. The standard Schwarzschild metric thus corresponds to

N ¼ 1; l2
sV1 ¼ r2;

V2

2V1

¼ −
�
1 −

2M
r

�
:
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describe the evolution in termof a gauge-invariant coordinate
τ, defined by taking into account the NðrÞ factor as
dτ ¼ Ndr. The evolution of a phase space observable O
is then obtained from its bracket with the scalar constraintH,

dτO ¼ ∂τOþ fO;Hg ¼ ∂τOþ fO;Hrg: ð8Þ

In the following, we will use the dot notation to refer to
derivative with respect to this coordinate, Ȯ ¼ dτO.

II. PHASE SPACE POINCARÉ SYMMETRY

As shown in a previous paper [10], the black hole mini-
superspace admits a symmetry under the three-dimensional
Poincaré group R2;1⋊ Spinð2; 1Þ [which is the double
cover of ISOð2; 1Þ], whose Noether charges allow to fully
integrate the dynamics of the model. It is important to keep
in mind two essential features of this construction:

(i) These Poincaré symmetry transformations act on the
field space, spanned by themetric componentsVi¼1;2,
and should not be confused with the isometries of the
metric (1). They are not a priori related to space-time
diffeomorphisms, but can instead be understood as
Killing vectors on the space of metrics.2

(ii) These are physical symmetries and not gauge
symmetries. They act nontrivially on the set of
physical trajectories of the system.

Let us review the Poincaré symmetry transformations in
this section, their action on the metric, their Noether
charges and how they allow us to integrate the equations
of motion for V1 and V2.
The Spinð2; 1Þ ∼ SLð2;RÞ sector of the Poincaré group

consists in conformal transformations, which act on the
coordinate τ by Möbius transformations, while the metric
components Vi are fields conformal with weight one,

¼
���� τ ↦ τ̃ ¼ fðτÞ ¼ aτþb

cτþd ;

ViðτÞ ↦ Ṽiðτ̃Þ ¼ ḟðτÞViðτÞ;
ð9Þ

where a; b; c; d∈R4 with ad − bc ¼ 1. The Abelian sector
R2;1 leaves the τ coordinate invariant, and acts as trans-
lations on the metric component V2,����V1 ↦ V1;

V2 ↦ V2 þ gV̇1 − ġV1;
ð10Þ

for a second-degree polynomial gðτÞ. Since g is at most
quadratic in τ, this indeed defines a linear space of
dimension 3. A direct computation allows to check that
these are indeed symmetries of the reduced action (3).
One can in fact consider arbitrary functional parameters

f and g for these transformations defined above. This
extend the 3D Poincaré group to the 3D BMS group BMS3.
However, these are not symmetries of the theory in general.
In fact, they generate interesting extra potential terms in the
Lagrangian, and provide nontrivial maps between physi-
cally different theories, as explored in [11,15,16].
The six symmetry transformations lead to six conserved

charges, following Noether theorem. The SLð2;RÞ sector
gives a first set of three constants of motion:

L− ¼ −Hr;

L0 ¼ −C − τHr;

Lþ ¼ 2V0

l2
Pl

V2 − 2τC − τ2Hr; ð11Þ

while the Abelian translation sector gives another set of
three constants of motion,

T − ¼ l2
Pl

V0

A;

T 0 ¼ V1P2 þ τ
l2
Pl

V0

A;

T þ ¼ 2V0

l2
Pl

V1 þ 2τV1P2 þ τ2
l2
Pl

V0

A; ð12Þ

where we have written,

C ¼ −P1V1 − P2V2 and A ¼ P2
2V1

2
: ð13Þ

C is (minus) the generator of dilatations on the phase space
ðVi; PiÞ. These six conserved charges form a isoð1; 2Þ
Poincaré algebra, consistently with Noether theorem,

fL0;L�g ¼∓L�; fLþ;L−g ¼ 2L0;

fL0; T �g ¼∓ T �; fLþ; T −g ¼ fT þ;L−g ¼ 2T 0;

ð14Þ

with fT a; T bg and the remaining Poisson brackets all
vanishing. A neat way to repackage those charges is to
write them as

2This comes from a geometrization of the field space. Indeed
the action (3) corresponds to the geodesic Lagrangian for a metric
on the space of (reduced) metrics parametrized by V1 and V2, or
supermetric in short,

ds2field ¼
V0

l2
Pl

�
V2

V1
2
ðdV1Þ2 −

2

V1

dV1dV2

�
:

Symmetries are directly read from the properties of this field
space metric, as shown in [11,12,14]. Indeed, a set of charges
forming a Shrödinger algebra ðslð2;RÞ ⊕ soð1; 1ÞÞ ⊕ h2 can be
built out of the conformal Killing vectors of the space of
(reduced) metrics (or super-space). The Poincaré generators
studied here are part of this algebra; the L’s are the generators
of the slð2;RÞ subalgebra, while the T ’s are obtained as
quadratic combinations of the Heisenberg subgroup h2.
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Ln ¼
V0

l2
Pl

V2η̈ − Cη̇ −Hrη; ð15Þ

T n ¼
V0

l2
Pl

V1η̈þ P2V1η̇þ
l2
Pl

V0

Aη; ð16Þ

in terms of the parameter function η ¼ τnþ1 with n∈Z.
These observables form a closed algebra under the Poisson
bracket,

fLn;Lmg ¼ ðn −mÞLnþm; fT n; T mg ¼ 0;

fT n;Lmg ¼ ðn −mÞT nþm: ð17Þ

The Poincaré charges corresponds to the case n ¼ 0;�1,
which form a closed subalgebra. The other observables
are not constants of motion, but form the BMS3 algebra
uncovered and discussed in [11,15,16].
Having a four-dimensional phase space, the six Poincaré

charges can not be independent and must be redundant. In
fact, the two Poincaré Casimirs vanish,

C1 ¼ T⃗ 2 ¼ T 2
0 − T −T þ ¼ 0;

C2 ¼ 2L⃗ · T⃗ ¼ 2L0T 0 − T þL− − T −Lþ ¼ 0: ð18Þ

The first Casimir corresponds to the mass of the Poincaré
representation, while the second Casimir gives its spin.
This means that the black hole minisuperspace carries a
scalar (i.e., zero spin) and massless representation of the
Poincaré group. Counting constants of motion and degrees
of freedom, we thus have four a priori independent
constants of motion in a four-dimensional phase space,
implying that the Poincaré charges should allow to fully
integrate the equations of motion of the system.
Indeed, the Poincaré conserved charges (11) and (12) are

actually the initial conditions for the two metric compo-
nents V1, V2, their velocities and their accelerations. One
can actually inverse the definition of those charges and get
the explicit trajectories for V1 and V2 with the Poincaré
charges playing the role of integration constants:

V1 ¼
l2
Pl

2V0

ðT þ − 2τT 0 þ τ2T −Þ;

V2 ¼
l2
Pl

2V0

ðLþ − 2τL0 þ τ2L−Þ; ð19Þ

where the L’s and T ’s are constants of motion. A direct
computation allows us to check that these are indeed
solutions of the equations of motion and amount to
exponentiating the flow of the Hamiltonian expf·; τHrg
on the phase space.
The fact that the first Poincaré Casimir vanishes,

C1 ¼ T 2
0 − T −T þ ¼ 0, means that the discriminant of

the quadratic ðT þ − 2τT 0 þ τ2T −Þ vanishes and that it

admits a double root. Then, keeping in mind that the scalar
constraint fixes the value of the Hamiltonian Hr ¼ −L− ¼
4V0=l2

Pll
2
s , the trajectories can be written as in [10] as

V1ðτÞ ¼
Al4

Plðτ − τ0Þ2
2V2

0

;

V2ðτÞ ¼
Bl2

Plðτ − τ0Þ
V0

− 2
ðτ − τ0Þ2

l2
s

: ð20Þ

The constant of integration A ¼ V0T −=l2
Pl was already

introduced earlier in (13). The second constant of integra-
tion B ¼ V1P1 gives the Casimir operator of the slð2;RÞ
subalgebra spanned by the L’s, explicitly B2 ¼ Csl ¼
L2
0 − LþL−. Finally, the shift τ0 ¼ T 0=T − gives the

location of the singularity. Indeed, at τ ¼ τ0, the metric
component guu ∝ V2=V1 diverges. Remember that τ is the
proper coordinate in the radial direction.
Actually, a change of variables allows to put the

singularity back to its usual location at vanishing radius,

τ − τ0 ¼
ffiffiffi
2

p
V0ffiffiffiffi

A
p

lsl2
Pl

R; u ¼
ffiffiffiffi
A

p
lsl2

Plsffiffiffi
2

p
V0

U; ð21Þ

and recover the Schwarzschild metric in the Eddington-
Finkelstein coordinates,

ds2 ¼ 2dRdU −
�
1 −

2M
R

�
dU2 þ R2dΩ2; ð22Þ

where the mass is now expressed in terms of the Poincaré
charges and reads,

M ¼
ffiffiffiffi
A

p
l3
sl4

PlB

4
ffiffiffi
2

p
V2
0

¼ l3
sl3

Pl

4
ffiffiffi
2

p
V3=2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T −Csl

p
: ð23Þ

Out of the four constants of motion, the value of the
Hamiltonian Hr is fixed in terms of the fiducial scales ls
and V0, while A and τ0 appear to be gauged out by
reparametrization of the coordinates r and u. Finally, only
the mass M seems to be physical and remains in the final
solution metric.
What is important to remember, for the physical inter-

pretation of the minisuperspace, is that the V1 field remains
always positive but its zero V1 ¼ 0 is a singularity, thus
located at τ − τ0 ¼ 0. On the other hand, the V2 field can
change sign and its zero V2 ¼ 0 signals the horizon, located
at R ¼ 2M, or equivalently τ − τ0 ¼ Bl2

sl2
Pl=2V0, as illus-

trated in Fig. 1. To make notations easier to read, we call γ
the proportionality factor between R and ðτ − τ0Þ, It is
equal to 1=

ffiffiffiffi
A

p
up to dimension factors (depending on ls,

lPl and V0). Then the two metric components read more
simply,
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V1ðτÞ ¼
ðτ − τ0Þ2
γ2l2

s
;

V2ðτÞ ¼
−2ðτ − τ0Þ

l2
s

½ðτ − τ0Þ − 2γM�; ð24Þ

keeping in mind that both V1 and V2 are dimensionless
fields.
Avoiding the singularity means finding a way to shift V1

to strictly positive values. A direct way to do so is to shift

the first Poincaré Casimir C1 ¼ T⃗ 2, from its 0 value to a
negative value, i.e., use a Poincaré representation with
negative squared mass. It is actually possible to add suitable
potential terms of the Hamiltonian in order to shift the two
Poincaré Casimirs, as we show in Sec. VI. Although this
should definitely be investigated, we could like to focus
here on another route, by deforming the Poincaré algebra
while keeping vanishing Casimirs.

III. λ-DEFORMATION

We have shown that the black hole minisuperspace
admits a Poincaré symmetry under R2;1⋊ Spinð2; 1Þ trans-
formations, generated by conserved charges forming a
isoð2; 1Þ Lie algebra. This symmetry algebra is not semi-
simple. This usually happens when the considered system
is a (degenerate) limit case of a more general model
admitting a semisimple symmetry algebra. For instance,
in the context of general relativity, the typical example is
the de Sitter isometry group SOðd; 1Þ or anti–de Sitter

isometry group SO (d − 1, 2) leading to the “degenerate”
Poincaré isometry group ISO (d − 1, 1) in the limit of a
vanishing cosmological constantΛ → 0. Following the same
logic, we naturally investigate if the present Poincaré
symmetry algebra isoð2; 1Þ could get “regularized” to a
soð3; 1Þ or soð2; 2Þ symmetry algebra, which would drive a
generalized (or deformed) black hole minisuperspace.
We will see that it is indeed possible and we will

introduce below a λ-deformation of the phase space of
the black hole minisuperspace. The deformation parameter
λ has a priori no relation whatsoever with the cosmological
constant Λ. The interested reader can actually find details
on the minisuperspace of dS or AdS Schwarszchild black
holes in [12,13,17]. Here we will show that, on the one
hand, the λ-deformed black hole phase space can be
intriguingly written as a superposition of two copies of
the Friedmann-Lemaître-Robertson-Walker (FLRW) cos-
mology phase space, and on the other hand, it leads to
regularized black hole metrics with the central singularity
replaced by a bounce, similarly to big bounce scenarios
for regularized FLRW cosmologies (e.g., in loop-quantum
cosmology [18–20] and related approaches [21]). Then, at
λ ¼ 0, one is back to the standard Schwarzschild black hole
minisuperspace with its Poincaré phase space symmetry
and its solutions with singular metrics.
So we would like to understand whether it is possible or

not to deform the isoð2; 1Þ algebra of conserved charges
(14) by introducing a parameter λ such that the translation
charges T ’s seek to be Abelian and satisfy the following
Poisson brackets,

fLλ
n;Lλ

mg ¼ ðn −mÞLλ
nþm;

fT λ
n; T λ

mg ¼ λðm − nÞLλ
nþm;

fT λ
n;Lλ

mg ¼ ðn −mÞT λ
nþm; ð25Þ

giving the Lie algebra soð3; 1Þ ∼ slð2;CÞ when λ > 0, or
the Lie algebra soð2; 2Þ ∼ slð2;RÞ × slð2;RÞwhen λ < 0.
More precisely, we are looking for a set of charges,

forming a closed algebra, such that the highest-order
charges Lλþ and T λþ are still proportional to the fields
Vi. The dynamics will still be generated by the charge Lλ

−,
so that the trajectories will still be quadratic in the evolution
coordinate τ.
Searching systematically for possible Hamiltonians leads

to a multiparameter family, which we discuss in details in
Sec. VI. Out of those, Hamiltonians leading to a deformed
symmetry group are parametrized by a single parameter λ.
They are simply given by adding a single correction term,

Hλ
r ¼ −Lλ

− ¼ Hr þ λ
l2
Pl

V0

P1
2V2

2

¼ −
l2
Pl

V0

P2ð2P1V1 þ P2V2Þ − λP1
2V2

2
; ð26Þ

FIG. 1. Plots of the metric components V1 (in red) and V2 (in
blue) in terms of the proper radial coordinate ðτ − τ0Þ for initial
coordinate τ0 ¼ 0, fiducial length ls ¼ 1, radial expansion rate
γ ¼ 1, and mass 2γM ¼ 3. The field V1 gives the area of the
2-spheres. It is always positive, and its single root τ ¼ τ0 is the
singularity. The standard black hole space-time is usually chosen
as covering τ > τ0. The field V2 also vanishes at the singularity,
but admits a second root at τ ¼ τ0 þ 2γM, which gives the mass
of the black hole. The region with V2 > 0 is the interior of the
black hole where the radial coordinate is timelike, while V2 < 0
is the exterior of the black hole where the radial coordinate is
spacelike.
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with the corresponding Lagrangian given by

Sλ ¼ V0

l2
Pl

Z
dr

�
V2V 02

1 − 2V1V 0
1V

0
2 − λV2V 02

2

2NðV2
1 þ λV2

2Þ
þ 4N

l2
s

�
;

where the last term in N fixes the value of the Hamiltonian
to a nonvanishing constant, Hλ

r ¼ 4V0=l2
Pll

2
s .

Iteratively computing the Poisson brackets between the
Hamiltonian and the fields Vi, we obtain the full set of
charges:

Lλ
n ¼

V0

l2
Pl

V2η̈ − Cη̇ −Hλ
rη;

T λ
n ¼

V0

l2
Pl

V1η̈þ ðP2V1 − λP1V2Þη̇þ
l2
Pl

V0

Aλη; ð27Þ

where ηðτÞ ¼ η− þ η0τ þ ηþτ2 is a second-degree polyno-
mial in the evolution coordinate as in the undeformed case.
C is unmodified while the charge A acquires λ-corrections:

Cλ ≔ C ¼ −V1P1 − V2P2;

Aλ ≔
P2

2V1

2
−
λ

2
P1

2V1 − λP1P2V2: ð28Þ

These charges L⃗λ
n and T⃗ λ

n are conserved by construction
along the Hamiltonian flow generated by Hλ

r. Setting the
deformation parameter to zero, λ ¼ 0, gives back the
Poincaré algebra isoð2; 1Þ of the black hole minisuperspace
reviewed in the previous section. For a nonvanishing
deformation parameter λ, we now have a modified black
hole minisuperspace, driven by a soð3; 1Þ Lie algebra for a
positive deformation parameter λ > 0 or a soð2; 2Þ Lie
algebra for λ < 0.
The deformed algebra (25) still has two Casimirs. The

translation sector is not abelian anymore, so that T 2 is not a
Casimir anymore, but needs to be modified,

Cλ
1 ¼ ðT⃗ λÞ2 − λðL⃗λÞ2; Cλ

2 ¼ 2L⃗λ · T⃗ λ: ð29Þ

These Casimirs have vanishing Poisson brackets with the
charges T λ’s and Lλ’s. Computing the norms and scalar
product,

ðL⃗λÞ2 ¼ V2
1 þ λV2

2; ðT⃗ λÞ2 ¼ λðL⃗λÞ2; L⃗λ · T⃗ λ ¼ 0;

we find that both Casimirs vanish as in the undeformed
case,

Cλ
1 ¼ Cλ

2 ¼ 0; ð30Þ

meaning that the system carries a spinless and massless
representations of the Lorentz algebra soð2; 2Þ or soð3; 1Þ
depending on the sign of the deformation parameter λ.

When λ > 0, we get the Lorentz algebra soð3; 1Þ, which
can be repackaged in terms of 3d rotations and 3d boosts.
When λ < 0, the algebra soð2; 2Þ can be decomposed into
two commuting copies of slð2;RÞ,

K�
n ≔

Lλ
n � T λ

n=
ffiffiffiffiffiffi
−λ

p

2
;

fK�
n ;K−

mg ¼ ðn −mÞK�
nþm; fKþ

n ;K−
mg ¼ 0: ð31Þ

In this case, the two Casimirs Cλ
1 and Cλ

2 are linear
combinations of the two sl2 Casimirs,

C�
sl ¼ ðK�

0 Þ2 −K�
−K�þ;

�����
Cλ

1 ¼ −2λðCþ
sl þ C−

slÞ;
Cλ

2 ¼ 2
ffiffiffiffiffiffi
−λ

p ðCþ
sl − C−

slÞ;
ð32Þ

implying that the sl2 Casimirs must both vanish, C�
sl ¼ 0.

As we will explain in the next section, each slð2;RÞ
sector can be mapped onto a FLRW cosmology, so that
the deformed black hole minisuperspace for λ < 0 can
surprisingly be understood as a superposition of two FLRW
cosmologies.

IV. DOUBLED COSMOLOGY

Let us focus on the case of a negative deformation
parameter λ, when the symmetry Lie algebra soð2; 2Þ splits
as the direct sum of two copies of the slð2;RÞ ∼ soð2; 1Þ
Lie algebra. Such a slð2;RÞ symmetry has already been
encountered in the context of gravitational minisuperspaces
for FRW cosmologies, as originally shown in a series of
works [9,22–25]. Indeed, let us consider homogeneous
isotropic geometries with flat spatial slices, described by
the metric ansatz,

ds2FRW ¼ −NðtÞ2dt2 þ aðtÞ2δijdxidxj: ð33Þ

Then the reduced Einstein-Hilbert action for a matter fluid
coupled to such geometry reads,

SðwÞ
FRW ¼ −V0

Z
dt

� ðdtvÞ2
2l2

PlNv
þ 12πNϱ0

vw

�
; ð34Þ

where v ¼ a3 is the spatial volume, V0 is the fiducial
volume of a 3d spatial cell over which we integrate the
Einstein-Hilbert action, ϱ0 is the fluid energy density (at
a ¼ 1), and w is the standard parameter encoding the
equation of state for the matter.3 For instance, a perfect fluid

3Using the standard normalization in cosmology, for which at
present day the scale factor is a ¼ 1, then ϱ represents the energy
density of the fluid today. From the continuity equation, i.e., the
conservation of energy, and the state equation we get the
evolution of the density, ϱðtÞ ¼ ϱ0=vðtÞ1þw.
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is given by w ¼ 0 while a free massless scalar field
corresponds to w ¼ 1. We focus here on the case of the
perfect fluid, thus setting the equation of state parameter to
w ¼ 0,

SFRW ¼ −V0

Z
dt

� ðdtvÞ2
2l2

PlNv
þ 12πNϱ0

�
: ð35Þ

Performing the canonical analysis, we compute the
conjugate momentum to the space volume v and the
Hamiltonian:

p¼−
V0

l2
Pl

dtv
Nv

; Hcosmo¼NðHFRWþ12πV0ϱ0Þ; ð36Þ

where the scalar constraint now reads,

HFRW ¼ −
l2
Pl

2V0

vp2: ð37Þ

This constraints generate the evolution of the cosmological
system in the proper time τ defined as dτ ¼ Ndt,

dτO ¼ N−1dtO ¼ fO;HFRWg: ð38Þ

Writing CFRW ¼ −vp, we identify conserved charges,
which mimic the slð2;RÞ sector of our black hole
minisuperspace given in Eq. (11):

K− ¼ −HFRW;

K0 ¼ −CFRW − τHFRW;

Kþ ¼ 2V0

l2
Pl

v − 2τCFRW − τ2HFRW; ð39Þ

which indeed form a slð2;RÞ Lie algebra,

fK0;K�g ¼ ∓ K�; fKþ;K−g ¼ 2K0: ð40Þ

Moreover, one can check that the sl2 Casimir vanishes,

Csl ¼ ðK0Þ2 −K−Kþ ¼ 0: ð41Þ

These charges are the initial conditions for the volume,
its velocity and acceleration, giving the trajectories in
proper time,

v ¼ l2
Pl

2V0

ðKþ − 2τK0 þ τ2K−Þ; ð42Þ

where the charge K− ¼ −HFRW ∝ vp2 is fixed to 12πV0ϱ0
by the Hamiltonian constraint (36). Moreover, the fact that
the Casimir vanishes means that K2

0 ¼ K−Kþ, which
implies that the quadratic polynomial in τ above has a
double root,

v ¼ K−ðτ − τ0Þ2 with

����K− ¼ 12πV0ϱ0;

τ0 ¼ K0=K−:
ð43Þ

In particular, a positive matter density ϱ0 > 0 leads to a
positive volume v > 0, as physically expected.
In light of this symmetry analysis, it seems natural to

try to reformulate the black hole minisuperspace with
negative deformation parameter λ < 0 as two copies of
FRW cosmologies. In fact, the mapping is rather natural.
Let us define the following linear combinations of the two
black hole metric components V1 and V2:

v�ðτÞ¼
V1�V2

ffiffiffiffiffiffi
−λ

p

2
ffiffiffiffiffiffi
−λ

p ;

����V1¼
ffiffiffiffiffiffi
−λ

p ðvþþv−Þ;
V2¼ðvþ−v−Þ:

ð44Þ

Using these variables, one can recast the deformed black
hole minisuperspace action (26) as

Sλ ¼ V0

Z
dr

� ðdrv−Þ2
2Nl2

Plv−
−

ðdrvþÞ2
2Nl2

Plvþ
þ 4N
l2
Pll

2
s

�

¼ SFRW½vþ� − SFRW½v−�; ð45Þ

with the matter energy densities related to the fiducial
scales of the black hole minisuperspace by

3πðϱ−0 − ϱþ0 Þ ¼
1

l2
Pll

2
s
: ð46Þ

These relations further hold for positive deformation
parameter λ > 0. Then the 3d volume v� are no longer
real, they are complex numbers, conjugate to one another.
The idea of working complex metrics might feel awkward,
but has recently been revived in the context of path integrals
over cosmological metrics and the study of their complex
saddle points, see e.g., [26–28].
So we have mapped the λ-modified black hole minis-

uperspace for spherically symmetric metric onto a double
copy of FRW cosmologies for homogeneous isotropic
space-time filled with a perfect fluid. We would like to
make two important remarks:

(i) We have a superposition of two FRW cosmologies,
but coming with a different sign in the action, which
can be interpreted as a flipped direction for the
evolution in time.

(ii) One should keep in mind that we are studying the
evolution of the black hole metric components along
the radial direction, which we have thus mapped
onto the evolution of the FRW cosmological metric
along the time direction. Let us not forget nonethe-
less that the radial coordinate becomes timelike
inside the black hole, so that the black hole interior
region can truly be considered as a superposition of
two FRW cosmologies.
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Keeping these points in mind, one automatically gets the
trajectories, V1ðτÞ and V2ðτÞ, for the black hole metric in
the deformed model from the cosmological evolution v�ðτÞ
given above in (42),

v�ðτÞ ¼ 12πV0ϱ�0 ðτ − τ�0 Þ2; ð47Þ

with positive matter densities ϱ−0 > ϱþ0 > 0. Since the
cosmological volumes v� both remain positive, the metric
component V1 ¼

ffiffiffiffiffiffi
−λ

p ðvþ þ v−Þ always remains positive
and can never vanish, as illustrated in Fig. 2. This means
that there is no singularity; the λ-deformation of the black
hole minisuperspace regularizes the black hole metric and
totally avoids the singularity, at least in the case of a
negative deformation parameter λ < 0. On the other hand,
V2 ¼ ðvþ − v−Þ can still vanish and change sign, which
allows to identify the interior and exterior regions of the
modified black hole space-time.
The original black hole mini-superspace, with vanishing

λ → 0−, is recovered by taking the infinite matter densities
limit, with bothϱ− and ϱþ scaling in 1=

ffiffiffiffiffiffi
−λ

p
while respecting

the fixed difference equation (46), andmerging the two initial
cosmological times, τ−0 ¼ τþ0 þ γM

ffiffiffiffiffiffi
−λ

p
→ τþ0 , where M is

the black holemass. A quick computation of this limit allows
to recover the undeformed expected trajectories (24).
To conclude this section, we stress that the singularity

avoidance property is a direct consequence of having
regularized the symmetry of the black hole mini-superspace

from the Poincaré algebra isoð2; 1Þ to the Lorentz algebra
soð2; 2Þ. Let us have a closer look at this important feature
in the next section.

V. SINGULARITY REGULARIZATION

Another method to solve the dynamics of the deformed
mini-superspace is to realize that it is merely a nonlinear
redefinition of the original minisuperspace. Indeed, let us
define the variables,

v1 ¼
V1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1

2 þ λV2
2

p
2

; v2 ¼ V2; ð48Þ

or reversely,

V1 ¼ v1 − λ
v22
4v1

; V2 ¼ v2: ð49Þ

This trivializes the kinetic term of the deformed action,

V2V 02
1 − 2V1V 0

1V
0
2 − λV2V 02

2

2ðV2
1 þ λV2

2Þ
¼ v2v021 − 2v1v01v

0
2

2v21
: ð50Þ

This means that we have mapped the deformed black hole
minisuperspace back onto the original undeformed minis-
uperspace; in particular, the variables v1 and v2 will follow
the undeformed equations of motion.
This is similar to the approach introduced in [21] to

generate polymerized FRW cosmology (as in loop-
quantum cosmology) from standard FRW cosmology
through nonlinear canonical transformations. However, a
canonical transformation does not affect the symmetry of
the theory, while here our nonlinear field redefinition lifts
the degeneracy of the Poincaré symmetry isoð2; 1Þ and
changes it to a Lorentz symmetry soð2; 2Þ or soð3; 1Þ.
Thus, although the trivializing change of variable (48)
given above looks simple, it is not an innocent field
redefinition and deeply affects the physics of the system.
Solving the evolution for the new variables v1;2 using the

results (20) for the undeformed black hole minisuperspa-
ces, we have the following trajectories in proper time:

v1ðτÞ ¼
al4

Plðτ − τ0Þ2
2V2

0

;

v2ðτÞ ¼
bl2

Plðτ − τ0Þ
V0

− 2
ðτ − τ0Þ2

l2
s

; ð51Þ

where we have written a, b for the two conserved charges.
Remember that the root of v1, at τ ¼ τ0, is the black hole
singularity, while the other root of v2 is the horizon. On the
one hand, since V2 ¼ v2, the horizon is not affected by the
λ-deformation. On the other hand, the V1 field differs from
v1 and acquires a λ-term,

FIG. 2. Plots of the metric components V1 (in red) and V2 (in
blue) in terms of the proper radial coordinate ðτ − τ0Þ constructed
from the cosmological volumes v� ¼ 12πV0ϱ�0 ðτ − τ�0 Þ2, for
matter densities 12πV0ϱ

þ
0 ¼ 1 and 12πV0ϱ−0 ¼ 2, and initial

cosmological times τþ0 ¼ 0 and τ−0 ¼ 1, and deformation param-
eter

ffiffiffiffiffiffi
−λ

p ¼ 1=3. The field V1 remains strictly positive and never
vanishes. There is no singularity and the black hole metric
bounces back from its minimal area configuration. The phenom-
enology of the field V2 remains unchanged: positive V2 is the
black hole interior, while negative V2 is the black hole exterior.
But, since there is no singularity, the black hole metric extends to
the whole real line τ∈R and we have two exterior regions for the
black holes, on both side of the minimal area configuration.
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V1ðτÞ ¼
aðτ − τ0Þ2l4

Pl

2V2
0

−
λðbl2

Pll
2
s − 2ðτ − τ0ÞV0Þ2
2al4

Pll
4
s

: ð52Þ

As illustrated on Fig. 3, the most interesting feature is that,
for a negative deformation parameter λ < 0, the metric
component V1 ¼ v1 − λv22=4v1 clearly never vanishes and
always remains strictly positive. Intuitively, V2

1 gives the
area of spatial two-spheres at constant radial distance. Thus
the two-spheres never shrink to a point. This means that the
singularity is avoided, and replaced by a bounce in the
interior region as in a black hole to white hole transition
(see e.g., [29–32]).
This can also be verified by direct computation of the

Kretschmann scalar. Performing the same change (21). of
variables from ðτ; uÞ to ðR;UÞ, the on shell line element
reads

ds2 ¼ 2dRdU −
RðR − 2MÞ

FðRÞ dU2 þ FðRÞdΩ2; ð53Þ

with FðRÞ ¼ R2 − λ
4V4

0

A2l8
Pll

4
s
ðR − 2MÞ2: ð54Þ

The Kretschmann scalar blows up if and only if FðRÞ
vanishes and this never happens when λ is negative, so this
is indeed a nonsingular space-time metric. One further
checks that the Kretschmann scalar goes to 0 at spatial
infinity R → ∞, so the solution is asymptotically flat.
It is crucial to compare this metric to modified

Schwarzschild metrics derived in modified gravity theories
or in quantum-gravity phenomenology, in order to

understand if the scenario considered here has already
been realized in the existing literature from another point of
view or if it is a brand new mechanism for regular modified
black hole metric based on symmetry deformation.
A look through other quantum gravity scenarios avoiding

the singularity, such as in polymerized black holes with
bounce black-to-white transitions e.g., [10,29–41], reveals
that the metric above (53) derived for the λ-deformation is
apparently new.Moreover, although some approaches derive
regularized black hole metrics from bouncing cosmology
solutions for the black hole interior and/or as superposition of
black hole andwhite holemetrics, none implement a scenario
similar to the superposition of expanding and contracting
cosmology explicitly derived here. The “regularization by
symmetry deformation” scenario developed here can thus be
considered as a legitimately new mechanism in quantum
gravity phenomenology.
Let us give a few examples. Keeping in mind how

to write spherically symmetric ansatz in Eddington-
Finkelstein coordinates,

ds2 ¼ −βðrÞdt2 þ αðrÞ−1dr2 þ γðrÞdΩ2

¼ 2Ndudrþ V2

2V1

du2 þ l2
sV1dΩ2; ð55Þ

where the coordinate u ¼ tþ r� is defined in terms of the
tortoise coordinate dr� ¼ ðαβÞ−1=2dr and the correspon-
dence between metric components is given by

V1 ¼ l−2
s γ; V2 ¼ −2l−2

s βγ; N ¼
ffiffiffiffiffiffiffiffi
β=α

p
; ð56Þ

then the standard polymerized black hole metric ansatz [34]
is given by

β ¼ ðr − rþÞðr − r−Þðrþ ffiffiffiffiffiffiffiffiffiffi
rþr−

p Þ2
r4 þ a20

; ð57Þ

α ¼ ðr − rþÞðr − r−Þr4
ðrþ ffiffiffiffiffiffiffiffiffiffi

rþr−
p Þ2ðr4 þ a20Þ

; γ ¼ r2 þ a20
r2

; ð58Þ

with two roots r� (like a charged black hole) and a
regularization area a0 (usually of Planck size), while the
more recent black hole-white hole solutions [31,32,42] is
given by

α ¼ β ¼ 1 −
2M
r

þ a0M2

r4
; γ ¼ r2; ð59Þ

which both do not read the same as (53). The most similar
approach in spirit is the derivation of polymerizedlike black
holes in [10] from a nonlinear canonical transformation of
the standard Schwarzschild phase space, which leads to
(with readjusted prefactors)

FIG. 3. Plots of the metric components v1 (in red), V1 (in green)
and V2 ¼ v2 (in blue) in terms of the proper radial coordinate
ðτ − τ0Þ, for a deformation parameter λ ¼ −1=3 < 0 and the
same constants of motion as the undeformed case in Fig. 1. While
the original v1 field vanishes at τ ¼ τ0, signaling the singularity
of the classical black hole geometry, the modified trajectory
V1 ¼ v1 − λv22=4v1 remains strictly positive and never vanishes.
The black hole metric bounces back from its minimal area
configuration and we have a modified black hole solution with no
singularity.
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V1ðτÞ ¼
al4

Plτ
2

2V2
0

þ μ21
b2

2aτ2
;

V2ðτÞ ¼
bl2

Pl

V0

�
τ þ μ22

τ

�
−

2

l2
s

�
τ þ μ22

τ

�
2

; ð60Þ

in terms of two Planck-size regularization length scales μ1;2.
This can be directly compared to ourmetric coefficients, (51)
for standard Schwarzschild and (52) for its λ-deformation.
However, this construction based on a canonical trans-
formation is designed to preserve all the symmetries
of the system, thus to keep the isoð2; 1Þ symmetry. The
λ-deformation is specifically designed to go beyond this
restriction, by deforming the isoð2; 1Þ symmetry into a
soð2; 2Þ symmetry (in the negative λ case).
It would be enlightening to further compare our modified

black holes to other scenarios from quantum gravity, e.g.,
[43,44] and semiclassical general relativity, e.g., [45–48].
This would involve checking the conserved charge algebra
and symmetry of the dynamics of those modified black hole
minisuperspace. We postpone such a broad and systematic
study to future investigation.

VI. GENERAL DEFORMATION

In this section, we would like to come back to determin-
ing the most deformation of the Hamiltonian for the black
hole minisuperspace. We are looking for Hamiltonians for
which the two fields V1 and V2 evolve at most quadratically
in the proper coordinate τ, meaning that their third iterative
bracket with the Hamiltonian should vanish. Then we can

systematically construct conserved charges, L⃗ and T⃗ , out
of the first and second derivatives of V1 and V2, as in (19).
They automatically form a closed Lie algebra.
We find that themost general deformation of the dynamics

is achieved by the following family of Hamiltonian, up to a
constant shift,

H ¼ −
P2

2
ð2P1V1 þ P2V2Þ þ

λ

2
P1

2V2 þ c3P2 − fðxÞP1

þ 1

V1

�
c1 þ xc2 þ c3fðxÞ þ 1

2
xfðxÞ2

1þ x2λ

�
; ð61Þ

where we have defined x ≔ V2=V1 to make the expression
more readable. Corrections to the original black hole
minisuperspace Hamiltonian are thus parametrized by
three real constants λ; ci¼1..3 ∈R and an free arbitrary
function fðxÞ.
The parameter λ is the only one deforming the resulting

symmetry algebra, from isoð2; 1Þ to either soð2; 2Þ or
soð3; 1Þ depending on its sign. The other parameters
deforms the dynamics and trajectories without affecting
the Poincaré symmetry structure. More precisely, c1 and c2
control potential terms, respectively in 1=V1 and in V2=V2

1,
which give nontrivial values to the two Casimirs. The two

other terms, controlled by the parameters c3 and fðxÞ, are
generated by canonical transformations along respectively
x and P2. As such, they do not affect the symmetry group of
the system.
The λ-deformation has been the focus of the previous

sections. Now, in order to understand the effect of c1 and c2,
let us switch off all the other deformation parameters,
λ ¼ c3 ¼ fðxÞ ¼ 0, and consider the Hamiltonian with
only the two extra terms controlled by c1 and c2,

Hðc1;c2Þ ¼ Hð0Þ þ c1
V1

þ c2V2

V2
1

: ð62Þ

We are thus adding two potential terms to the Hamiltonian.
These terms play the same role as the scalar matter field
term in FRW cosmology [9,21]. By computing the iterative
Poisson brackets of the metric components V1 and V2 with
this Hamiltonian, we find that the conserved charges, (11)
and (12), do not change, except for L− which is now minus
the deformed Hamiltonian and the constant of motion A,
which acquires an extra term,

Aðc1;c2Þ ¼ Að0Þ þ c2
V1

: ð63Þ

A quick calculation shows that the algebra of those charges
does not change. It is actually surprising that the addition of
potential terms does not break the symmetry of the system.
It is still the Poincaré isoð2; 1Þ Lie algebra, but the two
Casimirs do not vanish anymore. Their values are directly
given by the two deformation parameters:

C1 ¼ T⃗ 2 ¼ 2c2;

C2 ¼ 2L⃗ · T⃗ ¼ 2c1: ð64Þ

This leads to Poincaré representations with both non-
vanishing spin and mass.
The role of c3 and fðxÞ are pretty different from the one

of c1 and c2. They are both generated by canonical trans-
formations. The c3-deformation is generated by the Poisson
flow along P2,

fP2;Hð0Þg ¼ P2 ⇒ ec3fP2;·gHð0Þ ¼ Hð0Þ þ c3P2: ð65Þ

The fðxÞ deformation is generated by the Poisson flow
along x ¼ V2=V1. Indeed, we compute the iterative Poisson
brackets,

fx;Hð0Þg ¼ −P1; fx; P1g ¼ −
V2

V2
1

; ð66Þ

with the next Poisson bracket vanishing. We can thus
compute the general flow generated by x on the original
Hamiltonian,
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efφðxÞ;·gHð0Þ ¼ Hð0Þ − ∂xφðxÞP1 þ
1

2
xð∂xφÞ2

1

V1

; ð67Þ

which gives the expected fðxÞ correction terms with
fðxÞ ¼ ∂xφðxÞ. Finally, the c3fðxÞ term in the full
Hamiltonian is due to the nonvanishing Poisson of P2

and x, which leads to a 1=V1 term,

fx; P2g ¼ 1

V1

: ð68Þ

These canonical transformations affect the trajectories in a
clear way and do not alter significantly the dynamics. At an
intuitive level, the constant c3 and the function f couple
linearly with the momenta P1 and P2, they thus merely
represent a shift of the canonical map between velocities
V̇1;2 and momenta P1;2, similar to Galilean boosts. We
postpone the phenomenological analysis of such shifts to
future investigation.

VII. CONCLUSION AND OUTLOOK

The starting point of this paper was the study of the black
hole minisuperspace, defined as the reduction of general
relativity to spherically symmetric metrics, here given by

ds2 ¼ 2NðrÞdrduþ V2ðrÞ
2V1ðrÞ

du2 þ l2
sV1ðrÞdΩ2;

where the metric components NðrÞ, V1ðrÞ and V2ðrÞ
depend only on the radial coordinate r. Performing a
canonical analysis for the evolution of those fields along
r, the system admits a Hamiltonian formulation. The gru
component NðrÞ is a Lagrange multiplier enforcing that the
Hamiltonian vanishes and consists in a Hamiltonian con-
straint H, as usual in general relativity. The flow generated
by this Hamiltonian constraint gives the reparametrization-
invariant evolution along the proper radial coordinate τ,
defined as dτ ¼ NðrÞdr.
Previous work [10] identified a complete set of constants

of motion, which were shown to generate a symmetry of
the black hole minisuperspace, under the Poincaré group
ISOð2; 1Þ. This Poincaré group is not the metric isometry
group and is not the group of asymptotic symmetry, but
corresponds to nontrivial symmetry transformations in the
field phase space, defined as Möbius transformations in the
proper radial coordinate τ and their coadjoint action [15].
These conserved charges allow to fully integrate the motion
of the system and play the role of the integration constants
for the trajectories of the fields V1ðτÞ and V2ðτÞ. The two
Poincaré Casimirs vanish, so that the system correspond to a
massless and spinless representation of the Poincaré group.
We embarked here on a systematic study of possible

deformations of the dynamics of the system, compatible
with the previously uncovered integrability structure.
We identified a five-parameter family of continuous

deformations of the Hamiltonian constraint. Two parame-
ters add terms proportional to the conjugate momenta of V1

and V2 and lead to shifts in their velocities. Two other
parameters add potential terms in 1=V1 and V2=V2

1, which
directly source the Poincaré Casimirs and give their non-
zero values. The final parameter surprisingly leads to a
deformation of the symmetry algebra, regularizing the
nonsemisimple Poincaré group to the semisimple sym-
metry groups SOð3; 1Þ or SOð2; 2Þ. We call this deforma-
tion parameter λ, for its similarity to the algebraic role of the
cosmological constant in space-time isometries. We never-
theless underline that the λ-deformation of the Hamiltonian
constraint has nothing to do with the cosmological constant
volume term in the action of general relativity.
We focussed on the negative deformation parameter

case, with λ < 0, with its SOð2; 2Þ symmetry group. We
showed that the deformed dynamics of the black hole
minisuperspace can be represented as a superposition of
two FRW cosmologies (for general relativity coupled to a
homogeneous isotropic perfect fluid), and that the resulting
modified black holes are nonsingular space-times with a
bouncing induced metric on the celestial sphere. These are
very similar to singularity-avoidance scenarios for black
holes and black-to-white hole transitions in quantum gravity,
see e.g., [29,30,33–41,49,50]. Our analysis suggests to
revisit these various proposals in terms of symmetry and
look for a universal symmetry-based argument for the
resolution of the Schwarzschild black hole singularity.
Beside this main prospect, the present results open other

doors. First, now that the algebraic structure of the
deformations of the black hole mini-superspace is settled,
one could push further the study of this general model. At
the classical level, one should perform a thorough analysis
of the phenomenology of the resulting modified black
hole geometries with λ-deformation, nonvanishing
Casimirs and canonical shifts. Then, at the quantum level,
one should perform a group quantization of the black hole
phase space in terms of Poincaré and Lorentz representa-
tions and understand the coherence of semiclassical wave
packets of geometry can travel through the singularity-
resolving bounce.
Second, the realization of the black hole dynamics as the

superposition of two FRW cosmologies begs the question
of superposing metrics and geometries in general relativity,
a question that should then become essential in the
perspective of writing a consistent quantum gravity theory.
Superposition of states is a delicate issue in nonlinear
theories and it would be enlightening to understand if the
present superposition mechanism can be generalized
beyond spherically symmetric or homogeneous metrics.
This seems to echo the nonlinear method of metric super-
position used for cylindrically symmetric space-time, e.g.,
to build black hole geometry with surrounding matter [51],
but more work is definitely needed to understand if there is
a link between the present approach and those methods.
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Finally, deforming the Hamiltonian constraint for the
black hole minisuperspace is actually equivalent to modi-
fying the Einstein equation for spherically symmetric
metrics. Here, the modifications are justified by preserving
or regularizing the symmetry group. Focusing on symmetry
and the algebra of conserved charges usually allow to keep
a tight control over anomalies when quantizing the theory.
One should definitely investigate if this fits with other
symmetry-based works on modified black hole, e.g., using

a modified Dirac algebra [52], and if our method can
possibly be generalized beyond the reduction of general
relativity to spherically symmetric space-times.
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