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We present a new effective-one-body (EOB) waveform for eccentric, nonspinning binaries in the
extreme mass ratio limit, with initial eccentricities up to 0.95. The EOB analytical waveform, that includes
noncircular corrections up to second post-Newtonian order, is completed by a phenomenological ringdown
model that is informed by Regge-Wheeler-Zerilli (RWZ) type waveforms generated by a point-particle
source. This model notably includes the beating between positive and negative frequency quasinormal
modes (QNMs). We analyze various prescriptions to faithfully complete the analytical EOB waveform in
the transition from plunge to merger. In particular, we systematically explore the effect of: (i) the generic
Newtonian prefactor; (ii) next-to-quasicircular (NQC) corrections to amplitude and phase; (iii) the point
where NQC corrections are determined; (iv) the ringdown attachment point. This yields EOB/RWZ
quadrupolar phase differences through merger and ringdown ≲0.01 rad for the quasicircular case and
≲0.05 rad for the eccentric case. Higher modes are also modeled up to the l ¼ m ¼ 5 multipole. We
finally discuss the excitation of the QNMs and present a heuristic model to motivate it in correlation with
the presence of a point-particle source.
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I. INTRODUCTION

The gravitational waves (GWs) that have been detected
by the interferometers of the LIGO-Virgo-KAGRA col-
laboration [1–4] were generated by the coalescence of
comparable mass binaries, mainly black hole binaries.
Since accurate waveform models are required to analyze
these signals without biases, many efforts have been
devoted to build accurate and fast semianalytical models
using different approaches. However, there are no analyti-
cal solutions of the Einstein field equations for the merger
of the two objects, even if one considers only vacuum-
solutions. Therefore, all the currently available semiana-
lytical models that are able to provide waveforms for the
inspiral, plunge merger and ringdown of the binaries are
informed/calibrated using numerical results.
One of the semianalytical approaches that has been

proved to be accurate and fast enough to perform parameter
estimations [2–6] is the effective-one-body (EOB) model
[7–11]. While the pure analytical EOB approach can be
used to faithfully describe only the inspiral of compact
binaries, it is possible to use numerical data to extend the
model and describe also the merger and ringdown of the
system [12,13]. Notably, EOBmodels can be improved and

completed using both numerical results from comparable
mass binaries and from the extreme-mass-ratio regime.
This is linked to the fact that, given a system of two
compact objects with massesm1 andm2, the EOB metric is
a ν-deformation of a black hole solution, being ν ¼ μ=M
the symmetric mass ratio and μ ¼ m1m2=ðm1 þm2Þ and
M ¼ m1 þm2 the reduced and total mass of the binary,
respectively. Consequently, the test-mass limit is smoothly
connected to the comparable mass case. The dawn of
what is nowadays the established gravitational waveform
modeling via the EOB approach informed by numerical
simulations can be traced back to two seminal papers, one
by Buonanno, Cook and Pretorius [12], and the other by
Damour and Nagar [13]. The former used the pioneering
numerical relativity (NR) simulation of equal mass,
nonspinning black hole binary [14], while the latter
considered the quasicircular inspiral and plunge of a
nonspinning test particle in a Schwarzschild black hole
[15]. Since the test-mass limit is a controlled theoretical
laboratory to test prescriptions to use also in the compa-
rable mass case, it has been explored in many EOB works,
see e.g. Refs. [13,15–20] Moreover, this limit is also
interesting by itself, since the space-based mission
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LISA [21] will be able to detect extreme-mass-ratio-
inspirals (EMRIs) [22,23]. However, to model these astro-
physical systems, an accurate description of the dynamics
is needed. The gravitational self-force (GSF) community
has devoted many efforts in tackling this problem [24–27],
with techniques and results that are beyond the scope of this
work. We just mention that the EOB approach was recently
shown to accurately describe the dynamics of GSF-evolved
EMRIs in the quasicircular case [28,29] once informed by
GSF-results [30–35]. In this work we focus instead on the
EOB prescription to compute the waveform at infinity for a
nonspinning test particle plunging in a Schwarzschild black
hole after an eccentric inspiral. The numerical data used
to build the ringdown model, and thus complete the EOB
waveform, are obtained solving numerically the Regge-
Wheeler and Zerilli (RWZ) equations [36–39] using the
time domain code RWZhyp [16,40,41]. We argue that a
description based exclusively on quasinormal modes
(QNMs) cannot be used to describe the ringdown wave-
form starting from the peak of the amplitude. We rather
use a modified version of the phenomenologically agnostic
ringdown model presented in Ref. [42]. We model the (2,2)
multipole and also all them > 0 higher modes up to l ¼ 4,
plus the (5,5) mode. The complete waveform obtained is,
to our knowledge, the most accurate EOB waveform for a
nonspinning test particle on quasicircular inspirals in
Schwarzschild spacetime, and also generalize well to
highly eccentric dynamics. To conclude, we also discuss
how the QNMs build-up during the last stages of the
evolution of the binary. Among other phenomenological
results, we find that the overtones are excited before the
fundamental QNM, confirming the qualitative arguments
presented in Ref. [13].
The paper is structured as follows. In Sec. II we discuss

how we compute the approximate dynamics of the particle,
the numerical RWZ waveform and the modeling of the
ringdown. In Sec. III we discuss the inspiral waveform and
how we match it to the ringdown model using the NQC
corrections. The complete EOB waveform obtained is then
compared to the original numerical results in Sec. IV.
In Sec. V we further analyze the QNMs contributions in
the postpeak waveform and we revisit the matching of the
ringdown model using an extended time interval. The build
up of the QNMs excitation is discussed in Sec. VI. The
rescaled phase-space variables that we use in this work are
related to the physical ones by t ¼ T=ðGMÞ, r ¼ R=ðGMÞ,
pr ¼ PR=μ, and pφ ¼ Pφ=ðμGMÞ. We will also use geo-
metric units G ¼ c ¼ 1.

II. FROM ECCENTRIC INSPIRAL TO PLUNGE,
MERGER, AND RINGDOWN

The radiation-reaction-driven transition from eccentric
inspiral to plunge, merger, and ringdown in the large
mass ratio limit and the emitted gravitational waveform
(computed using black-hole perturbation theory) were first

discussed in Ref. [43] and then more in extenso in Sec. V B
of Ref. [20] (notably also allowing the central black hole
to spin). In the same Sec. V B of Ref. [20] we also pre-
sented a (preliminary) complete effective-one-body-based
waveform model including merger and ringdown for the
l ¼ m ¼ 2 mode. In this section we build upon Ref. [20]
and complement the description of the dynamics and
waveform phenomenology described there. In particular,
we: (i) present a precise description of the transition from
inspiral to plunge and its dependence on the eccentricity;
(ii) explicitly present an analytical description of the
postpeak waveform, that improves the one presented in
Ref. [20] and that is crucial (as we will see) to construct a
complete EOB waveform, that is the main goal of Sec. III
below. Here we focus on the nonspinning case only,
while the spinning case will be discussed elsewhere. The
radiation-reaction-driven relative dynamics is obtained
solving Hamilton’s equations in the presence of driving
forces, that read

ṙ ¼ A

Ĥ
pr� ; ð1aÞ

φ̇ ¼ A

Ĥ

pφ

r2
≡Ω; ð1bÞ

ṗr� ¼ AF̂ r −
A

r2Ĥ

�
p2
φ

�
3

r2
−
1

r

�
þ 1

�
; ð1cÞ

ṗφ ¼ F̂φ; ð1dÞ

where A ¼ 1–2=r is the metric Schwarzschild potential,
pr� is the conjugate momentum of the tortoise coordinate
r� ¼ rþ 2 log ðr=2 − 1Þ, and Ĥ is the μ-normalized
Hamiltonian of a test particle on Schwarzschild,

Ĥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞ

�
1þ p2

φ

r2

�
þ p2

r�

s
: ð2Þ

The explicit form of F̂φ and F̂ r can be found in
Refs. [20,43].
Let us also remind that, as in Ref. [20], we define the

eccentricity e and the semilatus rectum p in terms of
the two radial turning points, the periastron r− and the
apastron rþ,

e ¼ rþ − r−
rþ þ r−

ð3Þ

p ¼ 2rþr−
rþ þ r−

: ð4Þ

Note that this definition yields r� ¼ p=ð1 ∓ eÞ. The link
between ðe; pÞ and the energy and angular momentum,
ðÊ; pφÞ, is simply obtained by solving the energy condition
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Ê ¼ Ĥjpr�¼0 evaluated at the two radial turning points. In
order to have stable orbits, the semilatus rectum must
satisfy the condition p ≥ ps ¼ 6þ 2e, where ps is known
as the separatrix and reduces to the last stable orbit (LSO) in
the quasicircular case. In this work we will consider
configurations with initial eccentricities up to e0 ¼ 0.95
and semilatera recta such that the particle undergoes at least
a few radial orbits before plunging in the black hole. The
simulations considered in this work are listed in Table I.
The dynamics is always started at the apastron, so that the
initial radial momentum is zero. Note that we chose
ðe0; p0Þ in order to have a clear geometrical intuition of
the orbit, but we immediately convert ðe0; p0Þ in energy
and angular momentum so that we have all the needed
initial values to compute the dynamics from Hamilton’s
equations. Note that since the dynamics is not conservative,
e and p are not constants of motion and are not defined
through the whole evolution of the binary. Indeed, after
the separatrix-crossing time tsep, i.e., the time at which the
condition pðtÞ ¼ psðtÞ is met, the periastron is no longer
defined and thus neither the eccentricity and the semilatus
rectum. Since in the next sections we will focus on the last
part of the dynamics, we will often use esep ¼ eðtsepÞ to
refer to a certain simulation, rather than e0. Note however

that this is only for labeling purposes, the eccentricity eðtÞ
is not actually used anywhere during the evolution.
In our conventions, the strain waveform is decomposed

in multipoles as

hþ − ih× ¼ D−1
L

X∞
l¼2

Xl
m¼−l

hlm−2YlmðΘ;ΦÞ; ð5Þ

where DL is the luminosity distance and −2YlmðΘ;ΦÞ are
the spin-weighted spherical harmonics with weight s ¼ −2.
The numerical waveform at linear order in ν is obtained
solving the Regge-Wheeler and Zerilli [36,37] equations

∂
2
tΨ

ðo=eÞ
lm − ∂

2
r�Ψ

ðo=eÞ
lm þ Vðo=eÞ

l Ψðo=eÞ
lm ¼ Sðo=eÞlm ; ð6Þ

where the superscripts (e) and (o) distinguish respectively
even parity (lþm even) and odd parity (lþm odd)

solutions and the corresponding potentials Vðo=eÞ
l and

sources Sðo=eÞlm . The Ψðo=eÞ
lm ðtÞ, are related to the wave-

form multipoles of Eq. (5) as Ψðo=eÞ
lm ðtÞ ¼ hlmðtÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðlþ 1Þlðl − 1Þp

. We solve the RWZ equations
using the time domain code RWZhyp [16,40,41].

A. Transition from eccentric inspiral to plunge

Let us discuss the main qualitative features of the
transition from an eccentric inspiral to plunge and merger.
To do so pedagogically, let us first remind the reader
how this transition occurs in the quasicircular case. The
(quasi)circular inspiral is approximately representable as a
sequence of circular orbits. The radius rc of each circular
orbit (with r > rLSO) corresponds to the local minimum of
the radial potential

W ¼
�
1 −

2

r

��
1þ p2

φ

r2

�
; ð7Þ

i.e., defined by the condition ∂rðWÞjr¼rc ¼ 0, and its energy

is Ê ¼ ffiffiffiffiffiffiffiffiffiffi
Wmin

p
, where WðrcÞ ¼ Wmin Since radiation reac-

tion eliminates angular momentum from the system,
the potential W is modified during the evolution, until
the local maximum and minimum fuse together in an
inflection point at the last stable orbit (LSO), r ¼ rLSO ¼ 6,
where ∂rW ¼ ∂

2
rW ¼ 0 and pLSO

φ ¼ 2
ffiffiffi
3

p
. The evolution of

the potential and the energy for the quasicircular case up to
tLSO are shown in the first panel of Fig. 1. We highlight in
blue the potential at tLSO, after which the particle plunges
into the black hole.
Eccentric orbits occur when

ffiffiffiffiffiffiffiffiffiffi
Wmin

p
< Ê ≤

ffiffiffiffiffiffiffiffiffiffiffi
Wmax

p
, and

the radial motion is confined between the two turning
points, apastron and periastron. Since angular momentum
is not conserved due to gravitational wave emission,
the potential changes in time until a moment when

TABLE I. Configurations considered and relevant quantities at
merger time, defined as the peak of the orbital frequency. From
left to right: initial semilatus rectum, initial eccentricity, eccen-
tricity at the separatrix-crossing time, time difference between the
peak of the orbital frequency and the peak of the quadrupolar
amplitude, energy, angular momentum and quadrupolar ampli-
tude at the peak of the orbital frequency (that corresponds to the
light-ring crossing).

Number p0 e0 esep tpeakΩorb
− tpeakA22

ÊLR pLR
φ ALR

22

1 7.0 0.00 0.000 2.559 0.9422 3.4574 0.2928
2 7.3 0.05 0.061 2.585 0.9424 3.4598 0.2932
3 7.0 0.10 0.113 2.657 0.9429 3.4668 0.2942
4 8.0 0.15 0.141 2.708 0.9433 3.4717 0.2950
5 7.5 0.20 0.201 2.856 0.9444 3.4855 0.2970
6 8.0 0.25 0.229 2.925 0.9450 3.4932 0.2981
7 8.0 0.30 0.276 3.080 0.9462 3.5081 0.3003
8 8.0 0.35 0.321 3.240 0.9476 3.5243 0.3027
9 7.5 0.40 0.393 3.538 0.9503 3.5544 0.3070
10 8.0 0.45 0.415 3.651 0.9513 3.5644 0.3085
11 7.7 0.50 0.482 4.004 0.9545 3.5984 0.3133
12 8.0 0.55 0.514 4.189 0.9563 3.6159 0.3158
13 8.0 0.60 0.563 4.479 0.9592 3.6447 0.3199
14 8.0 0.65 0.615 4.839 0.9625 3.6768 0.3245
15 8.0 0.70 0.670 5.298 0.9665 3.7142 0.3298
16 8.0 0.75 0.728 5.877 0.9710 3.7554 0.3359
17 8.0 0.80 0.778 6.284 0.9751 3.7912 0.3408
18 8.2 0.85 0.818 6.628 0.9784 3.8202 0.3451
19 8.3 0.90 0.869 7.497 0.9839 3.8684 0.3523
20 8.5 0.95 0.904 8.160 0.9878 3.9004 0.3566
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Ê ¼ ffiffiffiffiffiffiffiffiffiffiffi
Wmax

p
. After this, the periastron no longer exists

(and thus e and p are no longer defined). As the energy
of the particle approaches the maximum of the potential,
the radial velocity eventually reaches a local minimum
jṙjmin ≠ 0 and the radial acceleration ̈r changes sign,
forcing the particle to plunge into the black hole. We
identify this time, ẗr¼0, as the beginning of the plunge. The
evolution of the potential for a configuration with initial
eccentricity e0 ¼ 0.6 is shown in the right panel of Fig. 1.
In this example the particle undergoes many eccentric
orbits, then it crosses the separatrix while moving away
from the central black hole (blue marker). The particle
then reaches the apastron, inverts the motion and eventually
crosses the potential barrier at approximately ẗr¼0 (red
marker), where the plunge starts. We also show the
corresponding trajectory, the radial evolution and the
corresponding waveform in Fig. 2. Looking at rðtÞ, it is
clear that t ̈r¼0 can be though as a missed periastron. In
the same figure, we also show the quasicircular configu-
ration and another eccentric case with higher initial
eccentricity, e0 ¼ 0.9. Note that in this highly eccentric
case there is a long-lasting circular whirl around the
plunge, while in the previous case the whirl around ẗr¼0

was much shorter. This phenomenology is linked to when
tsep occurs. In the e ¼ 0.9 case, the particle crosses the
separatrix slightly before the plunge and thus the energy
at ẗr¼0 is quite close to the maximum of the radial
potential. As a consequence, the particle undergoes a

long-lasting quasicircular whirl.1 In the case with e0 ¼ 0.6,
the separatrix crossing occurs slightly after the last
periastron passage and thus the effect of the radiation
reaction during the last radial orbit increases the difference
between the energy and the maximum of the radial potential
at the beginning of the plunge (in this case we have
Ê −

ffiffiffiffiffiffiffiffiffiffiffi
Wmax

p
≃ 5 × 10−5, while in the more eccentric one

we had 2 × 10−6). Therefore, in our e0 ¼ 0.6 case the
particle has a shorter quasicircular whirl before the plunge
with respect to our e0 ¼ 0.9 case. For similar reasons, the
configuration with e0 ¼ 0.5 has a longer whirl at ẗr¼0 than
the configuration with e0 ¼ 0.8. We thus confirm that the
length of the quasicircular behavior occurring before the
plunge does not simply depend on the value of eccentricity.
Since the beginning of the plunge is a missed periastron

and the eccentricity is a slowly varying quantity, the radius
that marks the beginning of the plunge can be approximated
as rplunge ≃ ð6þ 2esepÞ=ð1þ esepÞ and it is always smaller
than r ¼ 6. The net result of this, together with the
considerations above, is that the plunge is more adiabatic
in the presence of eccentricity than in the quasicircular
case. This is made quantitative in Fig. 3, that depicts the
adiabatic estimator Ω̇=Ω2 as function of Ω for some

FIG. 1. Left panel: the evolution of radial effective potential W, Eq. (7), along the transition from quasicircular inspiral up to the
last stable orbit. The LSO potential is highlighted, while the minima (identified by visible markers) indicate the radius and energy
of the particle. Right panel: eccentric case with initial eccentricity e0 ¼ 0.6 (esep ¼ 0.563). We show a sequence of potentials W
(that change due to radiation reaction) and corresponding energies of the particle at the periastron (horizontal line, gray) during
the bound motion of the inspiral. The quantities at the separatrix crossing are shown in blue, while the red lines correspond to the
beginning of the plunge. Note that in this case one has Vmax ≲ E. The horizontal arrows mark the radial location (and energy) of
the particle along the orbit at t ¼ tsep and at t ¼ ẗr¼0. Note that the arrows point toward the corrisponding direction of the radial
motion, outgoing for t ¼ tsep and ingoing for t ¼ ẗr¼0. This latter point can be considered a missed periastron and practically
marks the beginning of the plunge.

1We recall that if the energy is close to the peak of the radial
potential, the orbits show a zoom-whirl behavior, see, e.g.,
Ref. [44].
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relevant configurations. For each dataset, the horizontal
axis is restricted between Ω ̈r¼0 and Ωpk, that corresponds
respectively to the orbital frequency at the start of the
plunge and at the light-ring crossing.

B. Waveform phenomenology

The features of the dynamics that we have just discussed
clearly reflect on the waveform phenomenology, as shown
by the Zerilli (2,2) waveforms reported in the bottom row of

Fig. 2; the amplitude is shown in black, the frequency in
blue. The latter is also compared with the orbital frequency,
Ω, shown in dashed orange. While in the circular case 2Ω is
a remarkably good approximation of the waveform fre-
quency ω22, in the two eccentric cases the noncircular
effects increase the differences between these two quan-
tities during the inspiral. However, note that ω22 ≃ 2Ω
holds also during the plunge for the two eccentric cases,
up to the time of the quadrupolar amplitude peak,

FIG. 2. Top row: trajectories for the three configurations with initial eccentricity e0 ¼ f0; 0.6; 0.9g. We highlight in orange the
portions that correspond to the parts shown in the lower panels. In all the cases we mark the separatrix crossing with a blue diamond
(LSO in the quasicircular case), the peak of the quadrupolar amplitude tpeakA22

with a green circle, and the light-ring crossing time tLR with a
purple triangle. In the eccentric case we also highlight the inflection point of the radius that marks the end of the last radial orbit, t ̈r¼0,
with a red star. Middle row: radius versus time, same markers as above. Bottom row: corresponding amplitude (black) and frequency
(blue) of the quadrupolar waveforms. We also show the orbital frequency (dashed orange).
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tpeakA22
(marked with a green circle), i.e., shortly before the

light-ring crossing tLR (marked with a purple triangle). This
can be easily understood considering that the eccentric
plunge is rather adiabatic.
In order to better highlight the properties of the wave-

form for different eccentricities, in Fig. 4 we plot the (2,2)
mode of the waveforms for e0 ∈ ½0; 0.9�. As a consequence
of the fact that in highly eccentric configurations the plunge
starts at smaller radii, the amplitude grows as the eccen-
tricity increases and the peaks becomewider. Moreover, the
peaks occur at earlier times with respect to the light-ring

crossing, as shown by the markers in the left panel. In the
right panel of Fig. 4 we show the corresponding frequen-
cies. After the light-ring crossing all the frequencies reach
the fundamental positive quasinormal frequency of the
Schwarzschild black hole. Notably, also the beating
between the positive and negative fundamental quasinor-
mal frequencies is not influenced by the nature of the
perturbation. However, at later time the oscillations in the
frequencies tend to grow for high eccentricity, but this is
only an effect of the power-law tail that begins to dominate
on the quasinormal-mode (QNM) contribution. We post-
pone the discussion of the tail to Sec. V D. We also
highlight the inflection point of the frequencies using
diamond markers. The location of this point is not strongly
influenced by the eccentricity, but it is only slightly delayed
with respect to the light-ring crossing. On the contrary, the
location of the amplitude peak is strongly influenced by
the eccentricity. This is a qualitative explanation of why the
quasicircular ringdown model used in TEOBResumS is
able to correctly reproduce the frequency of highly eccen-
tric comparable mass configurations, but not their ampli-
tudes (see the supplemental material of Ref. [5]).

C. Ringdown (postpeak) modeling

During the ringdown, a relevant contribution to the
waveform is given by the QNMs. If this is the only
contribution, then each multipole can be written as

Ψðo=eÞ
lm ¼

X∞
n¼1

ðCþ
lmne

−σþlnτ þ C−
lmne

−σ−lnτÞ; ð8Þ

FIG. 3. Measure of adiabaticity, Ω̇=Ω2, for the quasicircular
case and different eccentric configurations. The horizontal axis is
restricted between Ω ̈r¼0 and Ωpk.

FIG. 4. Left panel: quadrupolar Zerilli amplitudes for different eccentricities, aligned with respect to the light-ring crossing. The dots
mark the maxima of the amplitudes. Right panel: Zerilli frequencies for different eccentricities, always aligned using the light-ring
crossing. The diamonds mark the inflection points of the frequencies.
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where σ�ln ¼ αln � iωln are the complex QNM frequen-
cies, and the C�

lmn are complex constant coefficients.2

While the latter depend on the type of the perturbation,
the frequencies depend only on the mass of the
Schwarzschild black hole. However, it has been shown
that for comparable mass binaries the pure QNM descrip-
tion can be used only at later times [45]. In Sec. V we will
argue that this is the case also for the postpeak waveform
generated by a particle falling into a Schwarzschild black
hole. Therefore, we comply to the phenomenological ideas
introduced in Ref. [42], based on the idea of factorizing
away the contribution of the fundamental quasinormal
mode. We thus introduce the QNM-rescaled waveform

h̄lmðτÞ ¼ eσ
þ
l1τþiϕpeak

lm hrnglmðτÞ; ð9Þ

where τ ¼ t − tpeakAlm
, ϕpeak

lm is the value of the phase at
the amplitude peak, and hrnglm is the ringdown waveform.
The QNM-rescaled waveform h̄lmðτÞ is then written
using two templates for the amplitude and the phase,
h̄ðτÞ ¼ Ah̄ðτÞeiϕh̄ðτÞ. In Ref. [20], we pointed out that the
original waveform template for the amplitude can become
incorrect when the mass ratio is large. For this reason
we introduced a different fitting function. Our templates
thus read

Ah̄ðτÞ ¼
�

cA1
1þ e−c

A
2
τþcA

3

þ cA4

� 1

cA
5 ; ð10Þ

ϕh̄ðτÞ ¼ −cϕ1 ln

 
1þ cϕ3e

−cϕ
2
τ þ cϕ4e

−2cϕ
2
τ

1þ cϕ3 þ cϕ4

!
; ð11Þ

where we have dropped the lm-indices for notation
simplicity. The sets of parameters cA and cϕ are constrained
by requiring the continuity of the waveform at τ ¼ 0 with
the inspiral waveform. Requiring the continuity of the
amplitude, its first two time derivatives, and the frequency,
we get

cA1 ¼ cA5α1
cA2

ðApeakÞcA5 e−cA3 ð1þ ec
A
3 Þ2; ð12Þ

cA4 ¼ ðApeakÞcA5 −
cA1

1þ ec
A
3

; ð13Þ

cA5 ¼ −
Äpeak

Apeakα
2
1

þ cA2
α1

ec
A
3 − 1

1þ ec
A
3

; ð14Þ

cϕ1 ¼ 1þ cϕ3 þ cϕ4
cϕ2 ðcϕ3 þ 2cϕ4 Þ

Δωpeak; ð15Þ

where Äpeak is the second time derivative of the amplitude
evaluated at the peak, and Δωpeak ≡ ω1 − ωpeak. Note that

in previous works also the condition cϕ2 ¼ Δα21 ≡ α2 − α1
was imposed, here instead we leave cϕ2 as a free parameter.
The phase difference obtained with the constrained cϕ2
using the damping times is shown in blue in the bottom-
right panels of Fig. 5. The free cϕ2 improves the phase,
especially for l ¼ m modes.
With these templates we are able to fit the numerical

postpeak waveform for each multipole and every eccen-
tricity considered in this work. In the first row of Fig. 5 we
show the primary fits for the (2,2), (2,1) and (3,3) modes for
the quasicircular inspiral. The rescaled amplitude Ah̄ and
the rescaled phase ϕh̄ reach a plateau after ≃2τl1, where
τl1 ≡ 1=αl1 is the QNM-damping time of the fundamental
mode. This means that, at this stage of the evolution,
the only relevant contribution to the waveform is given by
the fundamental QNMs. Note that leaving cϕ2 as a free
parameter strongly improves the phase agreement for
the (2,2) and (3,3) modes (cfr. red and blue lines in the
phase difference of each plot), while it is not relevant for the
(2,1) mode. Similar considerations hold for the configura-
tion with e0 ¼ 0.9, that is shown in the bottom row of
Fig. 5, and all the other eccentric configurations considered
in this work.

D. Modeling the mode-mixing

The templates discussed above catch all the main
features of the numerical waveform, except the mode-
mixing generated by the negative-frequency QNMs.
This effect can be already seen in the (2,2) mode, but
become particularly relevant in the m ¼ 1 modes, as
shown for the (2,1) mode in Fig. 5. We will discuss this
effect in more detail in Sec. V B, here we just mention
that it can be simply included in the ringdown model
doing the substitution

hrnglmðτÞ → hrnglmðτÞð1þ âlm1e2iωl;1τσðτ; τmm
0 ÞÞ; ð16Þ

where âlm1 ¼ C−
lm1=C

þ
lm1 ≡ Âlm1eiθlm1 and σðt; τmm

0 Þ ¼
1=ð1þ e−ðτ−τmm

0
ÞÞ is a sigmoid that activates the mode-

mixing correction. The âlm1 coefficients can be extracted
fitting the late ringdown frequency with a fundamental-
QNM ansatz as outlined in Ref. [16]; in this work we will
follow a more refined procedure that we will discuss in
Sec. V B. Note that, despite the fact that C�

lm1 depend on
the nature of the perturbation, the modulus of their ratio,
Âlm1, does not seem to change with the eccentricity, as
shown for example for the (2,2) mode in Fig. 4. The values
of Âlm1 can be found in Table III, while the value of τmm

0 is

2Note that we denote the fundamental QNM mode with the
index n ¼ 1 so that the first overtone has index n ¼ 2, while in
other recent works the fundamental mode is denoted with 0.
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chosen in order to introduce the oscillations in the
analytical waveform only when they are also present in
the numerical wave. For all the eccentricities, we use
τmm
0 ¼ 25 for the (2,2) multipole, τmm

0 ¼ 20 for the l ¼ m
higher modes, τmm

0 ¼ 8 for (2,1), (3,2), (4,3), (4,2) and
t0 ¼ 3 for (3,1) and (4,1).

E. Global fits

In Sec. II C and Sec. II D we have discussed a phenom-
enological model that can be used to faithfully describe the
postpeak waveform. This model depends on different free
parameters that are found fitting RWZ postpeak wave-
forms. However, in order to describe any eccentric case, we
need to provide global fits of these parameters as function
of some system-characterizing quantity. While the eccentri-
city would be an intuitive choice,3 it is not a gauge invariant
quantity and it is not defined through the whole evolution of
the system. We thus use the quantity b≡ pφ=Ê evaluated at

the peak of the orbital frequency (i.e., at the light-ring
crossing) and shifted with the corresponding quasicircular
value,

b̂Ωpk
¼ bΩpk

− bQCΩpk
; ð17Þ

where bQCΩpk
¼ 3.6693. Note that this parameter is gauge

invariant since it is a combination of energy and angular
momentum, and it vanishes in the quasicircular case. The
latter feature is useful because we impose that the fits
reduces to the exact values in the quasicircular case.
We thus proceed to perform the global fits for each

multipole. Note that in our global fits we only use the
simulations in Table I with odd identification number (#)
(i.e. the simulations with “round” initial eccentricity),
so that the eccentric simulations with even identification
number can be though as a test set for the analytical model.
We need to fit the free parameters of amplitude and phase
templates, fcA2 ; cA3 ; cϕ2 ; cϕ3 ; cϕ4g, the quantities fApeak; Äpeak;
ωpeakg that are needed to compute the constrained para-
meters, and the phase θ1 of the mode-mixing complex

FIG. 5. Numerical waveform (black) and postpeak primary fits (red) for the (2,2), (2,1), and (3,3) modes for the quasicircular
configuration (top row) and the configuration with e0 ¼ 0.9 (bottom row). We show the waveform hlm and its amplitude together with
the QNM-rescaled amplitude Ah̄ and phase ϕh̄. In the two small bottom panels we show the fit/numerical relative difference for the
rescaled amplitude and the difference for the rescaled phase (red). Here ϕ0

h̄
is the phase of h̄ at τ ¼ 0, and τl1 ¼ 1=αl1 is the QNM-

damping time of the fundamental mode. We also show the RWZ/primary phase difference obtained imposing the condition cϕ2 ¼ Δα21 in
the primary fit (dashed blue).

3The eccentricity at the separatrix-crossing was used in the
global fits performed in Ref. [20].
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factor âlm1 (the modulus does not depends on the eccen-
tricity). The primary fits are reported in Appendix C, and in
particular in Tables Vand VI. The fits for the mode-mixing
are instead reported in Table IV.

III. EFFECTIVE-ONE-BODY WAVEFORM

A. Inspiral EOB waveform

The quasicircular EOB inspiral waveform for is obtained
factorizing and resumming the post-Newtonian (PN)
expanded multipoles [46],

hlm ¼ hðN;ϵÞc
lm ĥðϵÞclm ¼ hðN;ϵÞc

lm ŜðϵÞĥtaillmðρlmÞl; ð18Þ

where ϵ denotes the parity of the multipole, hðN;ϵÞc
lm is the

Newtonian circular contribution and ĥðϵÞclm is the circular PN
correction. The term ŜðϵÞ is the effective-source term, i.e.,
the energy if ϵ ¼ 0 or the Newtonian-normalized angular
momentum if ϵ ¼ 1, ĥtaillm ¼ Tlmeiδlm is the tail factor and
the ρlm are the residual amplitude corrections.
The waveform (18) can be generalized to noncircular

dynamics including corrections that are known up to
2PN [43,47–49]. In particular, Ref. [43] proposed to
generalize the waveform of Eq. (18) generic orbits by
simply replacing the Newtonian quasicircular prefactor
with its general expression, i.e.,

hðN;ϵÞc
lm → ĥðN;ϵÞc

lm ĥðN;ϵÞnc
lm : ð19Þ

For the (2,2) mode, the noncircular correction reads

ĥðN;0Þnc
22 ¼ 1 −

̈r
2rΩ2

−
ṙ2

2r2Ω2
þ 2iṙ

rΩ
þ iΩ̇
2Ω2

; ð20Þ

where r is the radius and Ω is the orbital frequency. The
time derivatives in the generic Newtonian prefactor are
computed using a 4th order centred stencil scheme, i.e., no
PN-expanded equations of motion are used to compute
them. While this correction is clearly crucial for eccentric
inspirals, we will see that it is needed to improve the
analytical/numerical agreement during the plunge also in
the quasicircular case. The 2PN noncircular corrections to
the Newtonian-factorized waveform provide a better ana-
lytical/numerical agreement for the phase during the
inspiral [48,49], even if the main correction is given by
the Newtonian term (19). In this work we will consider the
noncircular hereditary term ĥtailnc22 written in terms of ṗr�
(see Eq. C1 of Ref. [48]) and the instantaneous corrections
ĥinstnc22 introduced in Ref. [49], so that the quadrupolar
waveform reads

h22 ¼ ĥðN;ϵÞc
22 ĥðN;ϵÞnc

22 ĥðϵÞc22 ĥinstnc22 ĥtailnc22 : ð21Þ

The 2PN noncircular corrections are switched-off at the
beginning of the plunge using a sigmoid function, σðtÞ ¼
1=½1þ e−αðt−tplungeÞ� with α ¼ 0.2, both for the eccentric and
quasicircular cases. We do not consider 2PN noncircular
corrections for the higher-modes. The relevance of these
corrections in the quasicircular inspiral will be discussed
in Sec. IV.

B. Next-to-quasicircular corrections

Even if the generic Newtonian prefactor of Eq. (20) is
useful to improve the waveform during the plunge, we still
need to correct the plunge waveform using numerical-
informed correction known as next-to-quasicircular (NQC)
corrections [13], especially for the higher modes. The
complete EOB waveform is thus given by

hlm ¼ θðtmatch
lm − tÞhinspllm ĥNQClm þ θðt − tmatch

lm Þhrnglm; ð22Þ

where hinspllm is the inspiral EOB waveform discussed in
Sec. III A, hrnglm is the ringdown discussed in Sec. II C, ĥNQClm
is the NQC waveform correction, θðxÞ is the Heaviside
step function, and tmatch

lm is the matching time. The NQC
correction is written as

ĥNQClm ¼
 
1þ

X3
i¼1

almi ni

!
exp

 
i
X3
j¼1

blmj njþ3

!
; ð23Þ

where ni are functions that are combinations of quantities
negligible during the quasicircular inspiral but relevant
during the plunge. To satisfy this requirement, it is natural
to write them in terms of time derivatives of the radius or in
terms of pr� . For all the higher modes we use the basis

n1 ¼
p2
r�

r2Ω2
; ð24aÞ

n2 ¼
̈r

rΩ2
; ð24bÞ

n3 ¼ n1p2
r� ; ð24cÞ

n4 ¼
pr�
rΩ

; ð24dÞ

n5 ¼ n4Ω; ð24eÞ

n6 ¼ n5p2
r� : ð24fÞ

For the (2,2) mode, we use use the same ni with i ≤ 4, but
we change n5 ¼ n4r2Ω2 and, consequently, n6 ¼ n5p2

r� .
Note that in TEOBResumS only the first derivatives of A
and ω are considered, so that n3 and n6 are not used.
Moreover, in TEOBResumS the n5 function for the
higher modes is different than the one considered here.
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The coefficients ai and bi are determined at a specific time
tNQClm . If we consider tNQClm > tpeakAlm

, then they are determined
solving the linear system

AEOB
lm ðtNQClm Þ ¼ Arng

lmðtNQClm Þ; ð25aÞ

ȦEOB
lm ðtNQClm Þ ¼ Ȧrng

lmðtNQClm Þ; ð25bÞ

ÄEOB
lm ðtNQClm Þ ¼ Ärng

lmðtNQClm Þ; ð25cÞ

ωEOB
lm ðtNQClm Þ ¼ ωrng

lmðtNQClm Þ; ð25dÞ

ω̇EOB
lm ðtNQClm Þ ¼ ω̇rng

lmðtNQClm Þ; ð25eÞ

ω̈EOB
lm ðtNQClm Þ ¼ ω̈rng

lmðtNQClm Þ; ð25fÞ

where on the left-hand side (lhs) the amplitude, frequency
and corresponding time derivatives are computed from
hinspllm ĥNQClm , while on the right-hand side (rhs) they are
computed from the ringdown model. If we want to use
tNQClm < tpeakAlm

, on the rhs we have to consider quantities

extracted from numerical data at tNQClm . Due to this reason,
the choice tNQClm > tpeakAlm

is, in principle, preferable since it
reduces the number of numerical-informed parameters in
the model. However, as we will see in more detail later,
choosing tNQClm < tpeakAlm

works better for the higher modes.
While the NQC correction is negligible during the

quasicircular inspiral by construction, they are not negli-
gible in eccentric inspirals since pr� is not small. For this
reason we switch-off the NQC corrections during the
eccentric inspiral using a sigmoid,

ĥNQClm → ĥNQClm
1

1þ e−α
sðt−ẗr¼0Þ : ð26Þ

Given the discussion in Sec. II B, it is natural to center the
sigmoid in ẗr¼0 so that the NQC corrections are switched-
on in a region where the motion is indeed quasicircular.
Due to this choice, the relevance of the precise value of αs is
not crucial; in this work we will use αs ¼ 0.2.
Finally, consider that to correctly evaluate the lhs of

Eq. (25), an interpolation on a refined time grid is needed,
see Appendix A for more details.

C. Matching point

The match of the plunge and ringdown waveform is
performed at tNQClm if tNQClm > tpeakAlm

, while it is performed at

tpeakAlm
if tNQClm ≤ tpeakAlm

. The former prescription will be used
for the (2,2) mode, while the latter will be used for the
higher modes. In any case, in order to know the locations
of tpeakAlm

, we need to link them to dynamical quantities. In the
TEOBResumS model [50,51] and also in Ref. [20],

the heuristic used to find the peak of the quadrupolar
amplitude was

tpeakA22
¼ tpeakΩorb

− ΔtNQC − 2; ð27Þ

where tpeakΩorb
is the peak of the orbital frequency4 and

ΔtNQC ¼ 1. We keep ΔtNQC in the notation for continuity
with previous works. The heuristic (27) gives satisfactory
results in the quasicircular, since the exact value of tpeakA22

extracted from the Zerilli waveform is ΔtexactNQC ≃ 0.559.
Most importably, Eq. (27) has been shown to be reliable
also for quasicircular binaries of comparable mass.
However, when dealing with highly eccentric binaries,
the approximation ΔtNQC ¼ 1 is no longer valid and we
thus perform a global fit as discussed in Sec. II E, finding

tpeakA22
¼ tpeakΩorb

−
2.559þ 7.574b̂Ωpk

− 18.830b̂2Ωpk

1 − 2.160b̂Ωpk

: ð28Þ

The peak amplitude of the other multipoles are delayed
with respect to the quadrupolar one as

tpeakAlm
¼ tpeakA22

þ Δtlm; ð29Þ

with Δtlm > 0 for all the higher modes. The values of Δtlm
the quasicircular case, together with their global fits, are
listed in Table II. The fact that Δtlm increases with m at
fixed l can be understood heuristically considering that all
the m-modes have to reach the same final QNM frequency
ωl;1 (modulo mode-mixing), but the waveform frequency

during the inspiral is given by ωinspl
lm ¼ mΩ at leading order.

TABLE II. Time delays of the amplitude peaks Δtlm for the
higher modes with respect to the peak of the (2,2) amplitude, see
definition in Eq. (29). The global fitting template is Δtlm ¼
ðClm

QC þ Clm
1 b̂Ωpk

þ Clm
2 b̂2Ωpk

Þ=ð1þDlm
1 b̂Ωpk

Þ, where Clm
QC is the

quasicircular value; see also discussion in Sec. II E.

ðl; mÞ Clm
QC Clm

1 Clm
2 Dlm

1

(2,1) 11.960 51.831 … 2.704
(3,3) 3.563 5.507 21.215 …
(3,2) 9.396 11.549 28.933 …
(3,1) 13.100 15.132 28.765 …
(4,4) 5.384 7.032 23.973 …
(4,3) 9.766 11.101 27.870 …
(4,2) 12.090 13.150 28.396 …
(4,1) 13.280 15.033 28.667 …
(5,5) 6.679 7.803 24.818 …

4Consider that for spinning binaries, tpeakΩorb
is the peak of the

pure orbital frequency, that is computed without considering the
spin-orbit terms.
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Therefore, the modes with small m will need more time to
reach the final frequency ωl;1.
We also point out that the mode-mixing becomes more

relevant in low-m higher modes (see, e.g., Sec. V B), so that
the position of the amplitude peak for the higher modes
can be contaminated by the mode-mixing. Once that the
location of the amplitude peak is known, we can proceed to
match, mode by mode, the inspiral waveform to the
ringdown model. From a computational point of view,
the matching is performed on a time grid that is finer
than the one used to solve the dynamics, see Appendix A
for details.

IV. PROBING THE EFFECTIVE ONE BODY
ANALYTICAL WAVEFORM

A. Quasicircular case

We start by analyzing in detail the quasicircular case,
testing the different prescriptions for the implementation of
the NQC correction and discussing the accuracy of each
waveform mode. Focusing first on the l ¼ m ¼ 2 mode,
we have to discuss three aspects:

(i) the impact of the precise location of the amplitude
peak on the EOB temporal axis, tpeakA22

, as described
by Eq. (28);

(ii) the impact of the NQC correction determined impos-
ing also continuity between the EOB and RWZ
second-time derivatives ẌNQC ¼ fÄNQC

22 ; ω̈NQC
22 g;

(iii) the impact due to the generic Newtonian prefactor,
Eq. (20).

Note that here we are analyzing the plunge, therefore at this
stage we do not consider the 2PN noncircular corrections
introduced in Eq. (21). Figure 6 illustrates the analytical/
numerical relative amplitude difference (dashed orange)
and phase differences in radians (light blue) for all possible
combinations. In the top row of the figure, the amplitude
peak location is obtained according to Eq. (27), i.e., the
prescription that is adopted, for simplicity, in the compa-
rable mass case within the TEOBResumS model.5 In the
bottom row of the figure we consider instead its exact
location according to Eq. (28). Then, moving from left to
right, we add the second-time derivatives of amplitude and
frequency in the NQC-corrections, the analytical generic
Newtonian prefactor, and finally both effects together. In all
the cases, the NQC corrections are obtained solving the
system given by Eq. (25) using tNQC22 ¼ tpeakA22

þ 2.
For the ΔtNQC ¼ 1 case, we see that, as expected, the

inclusion of both the improved NQC corrections and of the
generic Newtonian prefactor brings a considerable reduc-
tion of the phase difference up to merger. Moreover, the
phase difference now grows monotonically, to saturate at
ΔϕEOBRWZ

22 ≃ 0.08. As recently pointed out in Ref. [51], if
such a behavior is reproduced for comparable-mass wave-
forms, generally indicates that one will end up with
excellent mismatches using actual detector power spectral

density. This suggests that the use of ĥðN;0Þnc22 and of ẌNQC

FIG. 6. Analytical/numerical differences for the amplitude and the phase (in radians) of the quadrupolar waveform for the
quasicircular inspiral plunge in Schwarzschild. We consider different inspiral plunge and ringdown matching procedures. The
differences are shown from the LSO crossing to tpeakAnum

22
þ 70. In the upper panels we consider the matching time according to Eq. (27),

while in the lower panels we use Eq. (28). Then, from left to right, we progressively improve the model considering the second time

derivatives in the NQC base, Ä22 and ω̈22, and then the Newtonian noncircular correction, ĥ
ðN;0Þnc
lm . The rightmost lower panel shows the

differences for the state-of-the-art model.

5See however Ref. [52] for an early attempt to go beyond this
simplifying choice.
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also for compable mass binaries may result in a further
reduction of the current EOB/NR disagreement (∼0.2 rad)
through merger and ringdown. By contrast, it is interesting
to note that the amplitude difference during the ringdown is
nonegligible and remains substantially unchanged what-
ever choice is made. When ΔtexactNQC is used we are thus not
surprised to find a consistent reduction of the amplitude
difference during the ringdown (though evidently it
remains unchanged up to merger). By contrast, the
progressive inclusion of additional physical elements (i.e.

ĥðN;0Þnc22 and ẌNQC) brings phase differences below 0.01 rad
through the full inspiral, merger and ringdown. The
complete EOB/RWZ comparison for the final quadrupolar
waveform, that incorporates also 2PN noncircular correc-
tions, is shown in Fig. 7 and complements the rightmost
bottom panel of Fig. 6 also showing the EOB frequency.
One appreciates that the phase difference reaches the
∼4 × 10−4 rad at LSO crossing, and remains always below
the 0.01 rad even at merger time. The relative amplitude
difference is ∼1 × 10−3 at LSO crossing to reach at most
∼7 × 10−3 around merger time. Finally, we quantify the
contribution of the 2PN noncircular corrections of
Eq. (21) in Fig. 8, where we show the EOB/RWZ phase
differences of the (2,2) mode for a quasicircular inspiral
starting from r0 ¼ 9. The waveforms have been computed
(i) considering the complete waveform, as discussed
above and shown in Fig. 7, (ii) considering only
Newtonian noncircular corrections. As can be seen, the
2PN noncircular corrections improve the phase agree-
ment through the whole inspiral of the binary, but they are
not relevant for the amplitude.

Modeling higher modes correctly using NQC corrections
determined using the standard paradigm implemented in
TEOBResumS might be tricky. The main issue is that the
amplitude peak of each mode is always delayed than the
(2,2) one [16], as reminded in Table II. In the discussion
above we have seen that the inclusion of the generic
noncircular prefactor of Eq. (19) improves the EOB/RWZ
agreement for the (2,2) mode. We now proceed to evaluate
the relevance of this term also for the other multipoles
considering an illustrative higher mode, like the (4,4).
Figure 9 shows that the waveform with only the simple
quasicircular factor (dash-dotted blue line) underestimates
the waveform amplitude toward merger. Starting from this,
it is not possible for the waveform NQC correction to
improve the waveform behavior and assure a reliable
matching to the ringdown, especially for the amplitude,
as shown by the NQC-corrected quasicircular waveform
(dotted purple) in Fig. 9. By contrast, one sees that when
the noncircular factor of Eq. (19) is used, the waveform
visibly overestimates the waveform amplitude toward
merger. This situation is preferable and can be easily
corrected by the NQC correction, as shown by the wave-
form obtained computing the NQC correction at tNQC44 ¼
tpeakA44

þ 2 (yellow solid line). We also find that, in order to
considerably improve the NQC corrections, the system of
Eq. (25) has to be evaluated at tNQClm < tpeakAlm

. For all higher
modes, we chose

FIG. 7. Quasicircular case, l ¼ m ¼ 2mode: RWZ waveform
(black) compared to the complete EOB one (red, dashed). The
vertical lines mark the LSO crossing and the peak of A22.
The bottom panel shows the relative amplitude difference
(dashed orange) and the phase difference in radians (solid
light blue). Non-circular corrections to the waveform up to 2PN
are included.

FIG. 8. EOB/RWZ phase differences (radians) and relative
amplitude differences for the (2,2) mode of a quasicircular
inspiral starting from r0 ¼ 9. In the upper panel we show the
differences obtained with the waveform with noncircular correc-
tions up to 2PN (solid, light blue for the phase and orange for the
amplitude), and the ones obtained considering only the generic
Newtonian prefactor (dashed, blue for the phase and red for the
amplitude). In the bottom panel we show the ratios of these
differences.
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tNQClm ¼ tpeakAlm
− 2: ð30Þ

Therefore, to compute the right-hand side of Eq. (25), we
need to fit fANQC

lm ; ȦNQC
lm ; ÄNQC

lm ;ωNQC
lm ; ω̇NQC

lm ; ω̈NQC
lm g from

RWZ data. The global fits are discussed in Appendix C and
reported in Tables VII and VIII. The (4,4) multipole with
the generic Newtonian prefactor and the NQC evaluated
according to Eq. (30) is shown with a red dashed line in
Fig. 9. As can be seen, both the amplitude and the
frequency improves near the matching time with respect
to the waveforms with NQC computed at tNQC44 ¼ tpeakA44

þ 2.
For l ¼ m modes, we use the same prescriptions of the

(2,2) mode, except for the fact that the NQC corrections are
computed before the peak amplitude, according to Eq. (30).
The results for the (3,3), (4,4), and (5,5) modes are shown
in the top row of Fig. 10, where we use the color black for
the numerical waveform and frequency and red dashed
lines for the complete EOB waveform. The absolute value
of phase difference, is always below 0.07, 0.035 and
0.05 radians for the (3,3), (4,4), and (5,5) modes, respec-
tively. The relative amplitude difference, instead, is around
at most of the 1% before the matching point for all the three
cases. However, the amplitude difference in the late ring-
down is around the 10−3 for the (3,3) and (4,4) modes and
even smaller (8 × 10−4) for the (5,5) mode.
The m < l modes are shown in the middle and bottom

rows of Fig. 10. In this case we do not consider the second-
time derivative of the frequency in the NQC corrections. As
for the higher modes with l ¼ m, the NQC are computed
at tNQClm ¼ tpeakAlm

− 2. However, for the m < l we also apply
a downsampling and spline procedure in the interval

t∈ ½tNQClm ; tpeakAlm
� to improve the continuity of the waveform.

Indeed, since the NQC corrections are determined at tNQClm ,

the waveform could be discontinuous at tpeakAlm
, where the

NQC-corrected plunge waveform is matched to the ring-
down. The downsampling and subsequent spline-patching
solves this issue. While these higher modes are less
accurate than the l ¼ m ones, the phase agreement is still
good and generally below the 0.2 rad, with the exception
of the (4,2) and (4,1) modes that are more de-phased.
The degradation of the accuracy is strictly linked to the
higher delay of the matching point (i.e. tpeakAlm

); see Table II.
However, these modes are not relevant as the others in the
complete strain, that can be computed using Eq. (5). In the
first panel of Fig. 13 we show the strain for the observa-
tional direction ðΘ;ΦÞ ¼ ðπ=4; 0Þ computed considering
all the modes shown so far, both in the numerical and
analytical strain. During the inspiral, the relative amplitude
difference reaches at most the 2 × 10−3, while the absolute
value of the phase difference never exceeds the 2 × 10−3

radians. The differences oscillate more in the ringdown; the
amplitude difference reaches at most the 8% in the early
ringdown, while the phase difference reaches at most
0.06 radians. Note however that, on average, during the
ringdown both the amplitude and the phase difference are
much smaller.

B. The eccentric case

Let us move now to discussing the eccentric case. The
same procedures considered optimal in the quasicircular
case are retained also in the presence of eccentricity so to
provide comparisons with the eccentric configurations

FIG. 9. Quasicircular case, mode l ¼ m ¼ 4: comparing various choices of analytical EOB waveform and different ways of
determining the NQC corrections. Amplitude (left panel) and frequency (right panel) The best EOB/RWZ agreement is obtained by:
(i) using the general, noncircular, Newtonian prefactor and (ii) when the NQC corrections are computed at tNQC44 ¼ tpeakA44

− 2. We also

show, as gray line, 4 times the orbital frequency. From left to right, the two vertical line mark tpeakA22
and tpeakA44

.
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listed in Table I. As an explicit example that efficiently
summarizes the performance of the model all over the
parameter space, Fig. 11 shows the EOB/RWZ perfor-
mance for configuration #20 of Table I, that corresponds to
initial eccentricity e0 ¼ 0.95. Note that this configuration is
not used in the global fits, as discussed in Sec. II E. The
figure includes modes (2,2), (2,1), and (3,3). The perfor-
mance of the model all over the RWZ-covered points of the
parameter space is assessed, for the same waveform multi-
poles, in Fig. 12, that only reports relative amplitude
differences (top row plots) and phase differences (bottom
row plots). Note that three specific configurations are
highlighted in color, so to point out that the performance
of the model degrades (slightly) as eccentricity is increased.
The simplest route to have a handle on the accuracy of all
multipoles is simply to compare the strain for EOB and
RWZ. This is done in Fig. 13 for the quasicircular case, for
e0 ¼ 0.55 and for e0 ¼ 0.95. It is interesting to note that,

despite the EOB performance during the (eccentric) inspiral
degrades with eccentricity, as expected, due to the lack
of high-order corrections (see Refs. [48,49]), the behavior
during merger and ringdown is practically comparable
among the three cases.

C. Improved description of ringdown
for m ≠ l modes

So far, we have seen that the EOB waveform model gives
more than satisfactory results also for the higher modes.
However, if one carefully inspects the m ¼ 1 EOB modes
in the quasicircular case (see Fig. 10), one sees the
ubiquitous presence of a bump before the actual amplitude
peak. Interestingly, this feature occurs in all modes and it is
related to the NQC amplitude correction. In general, this is
also true for other modes with m ≠ l, though the effect
is less visible. To overcome this difficulty, we decided to
explore a different way to model the ringdown for higher

FIG. 10. Quasicircular configuration, higher modes, EOB/RWZ comparisons. The vertical solid black lines mark tpeakA22
, while the dash-

dotted ones mark tpeakAlm
. Bottom panels: relative amplitude difference (orange, dashed) and phase difference (light blue). For each mode,

the NQC corrections are determined according to the best prescription selected in Fig. 9.
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modes. The procedure is substantially the same used in
the EOB models of the SEOBNR-family, in particular
SEOBNRv4PHM [53,54] and SEOBNRv5PHM [55,56],
although the fitting template is different from the one used
there. This approach is crucial to obtain very reliable
waveforms when tpeakAlm

is far from tpeakA22
, i.e., situations

where the NQC corrections cannot guarantee a reliable
match of the plunge waveform to the merger ringdown one
modeled after tpeakAlm

. The main idea is to have the RWZ-

informed part of the waveform starting directly from tpeakA22

(and not from tpeakAlm
) for all modes with l ≠ m. To do so, we

consider the QNM-rescaled waveform similar to the one of
Eq. (9), but where the time is shifted using tpeakA22

for each
ðl; mÞ mode. It thus reads

h̄lmðτ̄Þ ¼ eσ
þ
lm1

τ̄þiϕ0
lmhrnglmðτ̄Þ; ð31Þ

where τ̄≡ t − tpeakA22
and ϕ0

lm is the phase of the ðl; mÞ
multipole at tpeakA22

. This rescaled waveform is then written as
h̄mod
lm ðτ̄Þ ¼ Ah̄e

iϕh̄ , where the templates for Ah̄ and ϕh̄ are
given in Eqs. (10) and (11). We impose continuity con-
ditions constraining cA1 , c

A
2 , c

A
4 , and cϕ1 :

FIG. 12. Analytical/numerical relative difference for the amplitude (upper panels) and phase difference (bottom panels) for the plunge-
ringdown of all the configurations considered in this work. Modes (2,2), (2,1), and (3,3). We highlight the quasicircular configuration
(blue) and the ones with e0 ¼ f0.55; 0.95g (green and orange, respectively).

FIG. 11. Analytical/numerical comparisons for the (2,2), (2,1), and (3,3) multipoles for the configuration with initial eccentricity
e0 ¼ 0.95. We show the real part and the frequency of the RWZ waveform (black) and the complete EOB waveform (red, dashed). In the
bottom panels we show the relative amplitude difference (orange dashed) and the phase difference in radians (light blue). The vertical
solid lines mark the peak of A22, while the dash-dotted ones mark tpeakAlm

.
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cA1 ¼ e−c
A
3 ðe2cA3 − 1ÞcA5

�
AtpeakA22

�
cA
5

�
α1AtpeakA22

þ ȦtpeakA22

�
2

×
h
α21

�
AtpeakA22

�
2
cA5 þ AtpeakA22

�
2α1cA5 ȦtpeakA22

þ ÄtpeakA22

�
þðcA5 − 1Þ

�
ȦtpeakA22

�
2
i
−1
; ð32Þ

cA2 ¼
cA5
cA1

e−c
A
3 ðecA3 þ1Þ2

�
AtpeakA22

�
cA
5
−1
h
α1AtpeakA22

þ ȦtpeakA22

i
; ð33Þ

cA4 ¼ ðAtpeakA22

ÞcA5 − cA1
ec

A
3 þ 1

; ð34Þ

cϕ1 ¼ 1þ cϕ3 þ cϕ4
cϕ2 ðcϕ3 þ 2cϕ4 Þ

�
ω1 − ωtpeakA22

�
; ð35Þ

where AtpeakA22

, ȦtpeakA22

, ÄtpeakA22

, and ωtpeakA22

are, respectively, the

amplitude of hlm, its first and second time derivative
and the frequency evaluated at tpeakA22

; α1 þ iω1 is the
l-fundamental QNM frequency. The coefficients
fcA3 ; cA5 ; cϕ2 ; cϕ3 ; cϕ4g are determined performing the primary

fits of Ah̄ and ϕh̄ starting from tpeakA22
. Finally, this fitted

waveform is used to determine the NQC corrections at tpeakA22

and then is matched to the inspiral wave, always at tpeakA22
.

Concerning the structure of the NQC correction to ampli-
tude and phase, there is an additional subtlety. We realized
that the standard NQC basis we used so far is not efficient
when the NQC corrections are determined at tpeakA22

for
m ≠ l, and it is thus better to resort to the NQC basis used
by SEOBNRv5PHM that reads

n1 ¼
p2
r�

ðrΩÞ2 ; ð36Þ

n2 ¼
n1
r
; ð37Þ

n3 ¼ n1r−3=2; ð38Þ

n4 ¼
pr�
rΩ

; ð39Þ

n5 ¼ n4p2
r� : ð40Þ

The real part, amplitude and frequency of the final result
for the (2,1) and (4,1) modes are shown in Fig. 14. It is
remarkable how the different NQC approach can visibly
improve the EOB/RWZ agreement. The only visible
remaining differences between the two curves (mostly
around the waveform peak) are related to the fact that
the mode mixing only includes the fundamental mode and
not the overtones.
Although the improvement discussed in the nonspinning

case may be considered relatively marginal, it becomes
absolutely essential when the central black hole is spinning
and the spin is large and antialigned with the orbital angular
momentum. In this case, the orbital frequency has a zero and
thus theNQCbasis becomesmeaningless. This is clarified in
Fig. 15, that refers to the (2,1)mode for a particle inspiralling
and plunging on a Kerr black hole with dimensionless spin
â ¼ −0.9, where the numerical (black) waveform has been
obtained with the time-domain code [57]. As the orbital
frequency (gray online) passes through zero, the NQC
correctedwaveformdetermined using the standard approach
oscillates unphysically. By contrast, the NQC correction

FIG. 13. EOB (red dashed) versus RWZ (black, solid) strain comparison for e0 ¼ f0; 0.55; 0.95g. The direction is ðΘ;ΦÞ ¼ ðπ=4; 0Þ
and all modes withm > 0 are summed up to l ¼ 4, plus the (5,5) one. Bottom panels: relative amplitude difference and phase difference
(in radians). The vertical lines mark the peak of the quadrupolar amplitude.
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determined at tpeakA22
, using the basis of Eqs. (36)–(40) allows

one to smoothly and reliably connect the inspiral waveform
to the ringdown one. In this preliminary study, we are

evidently not considering the mode mixing during the Kerr
ringdown [58], so the EOB frequency and amplitude do not
present any modulation.

V. PHENOMENOLOGY OF
QUASINORMAL-MODES EXCITATION

In the previous section we have provided an accurate and
complete EOB waveform where the ringdown model was
based on a phenomenological description. In doing so, we
assumed that the fundamental QNM was excited, but we
did not attempt any qualitative (nor quantitative) inves-
tigation to understand the origin of this excitation. In this
section we attempt to do this, still in a somehow phenom-
enological and heuristic way. Our main aim is to correlate
the QNMs excitation with the behavior of the source of
the RWZ equations that is driven by the dynamics. The
material presented here is inspired by and extends the
(qualitative) discussion of Sec. III B of Ref. [13] (see also
Fig. 4 therein).

A. The RWZ source term during ringdown

We start by analyzing the source terms of the RWZ
equations, Eq. (6). Their functional form is [15]

Sðo=eÞlm ¼ Ḡðo=eÞ
lm ðr̃; tÞδðr̃� − r�ðtÞÞ

þ F̄ðo=eÞ
lm ðr̃; tÞ∂r̃�δðr̃� − r�ðtÞÞ; ð41Þ

FIG. 14. Nonspinning case. New ringdown (red dashed) contrasted with the standard one discussed above (orange, dashed) for the
(2,1) and (4,1) modes. The RWZ ringdown waveform is fitted from tpeakA22

(solid vertical lines) rather than from tpeakAlm
(dash-dotted vertical

lines). This ensures a more accurate waveform description around tpeakAlm
.

FIG. 15. Spinning case with Kerr parameter â ¼ −0.9. The
NQC and ringdown determined from tpeakA22

instead of tpeakAlm
allow

for an excellent EOB/Teukode agreement. Note that the mode
mixing in this case is not implemented in the EOB waveform.
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where the tilde denotes the field tortoise coordinate, while
r�ðtÞ is the tortoise coordinate of the particle. In order to
understand the relevance of the source terms during
the ringdown, we evaluate it on the particle dynamics.
More precisely, we neglect the term proportional to

∂r̃�δðr̃� − r�ðtÞÞ in Eq. (41) and just evaluate Ḡðo=eÞ
lm . This

yields the expressions

FðeÞ
lmðtÞ≡ 16πμY�

lm

rĤλ½rðλ − 2Þ þ 6�

	
2imApr�pφ

− A

�
3

�
1þ 4Ĥ2r

rðλ − 2Þ þ 6

�
−
rλ
2

þ p2
φ

r2ðλ − 2Þ ðrðλ − 2Þðm2 − λ − 1Þ

þ 2ð3m2 − λ − 5ÞÞ þ 2

r2
ðp2

φ þ r2Þ
�


; ð42aÞ

FðoÞ
lmðtÞ≡ 16πμ∂ΘY�

lm

rλðλ − 2Þ
�
d
dt

�
pr�pφ

Ĥ

�

− 2
pφA

r
− im

Apr�p
2
φ

r2Ĥ2

�
; ð42bÞ

where λ≡ lðlþ 1Þ. After having set Θ ¼ π=2, we show

jFðo=eÞ
lm ðtÞj for the (2,2) mode in Fig. 16. Interestingly,

jFðeÞ
22 ðtÞj reaches its maximum after the peak of A22 and

remains quite relevant also later on. For example, at

t ¼ tpeakA22
þ 10 we have F̂ðeÞ

22 ≡ jFðeÞ
22 j=maxðjFðeÞ

22 jÞ ≃ 0.38,

and F̂ðeÞ
22 < 10−2 only from t ¼ tpeakA22

þ 18.2. For the odd
modes we have that the maximum of the source is delayed
with respect to the even ones. Since the source term is quite
relevant during the ringdown, we do not expect a priori that
a pure QNMs description (i.e., part of the solution of the
homogeneous RWZ equations) can be used for the whole
postpeak waveform. However, from a sufficient late time
t > tpeakAlm

, the ðl; mÞ-mode can be fully described in terms
of QNMs using the ansatz of Eq. (8) since the source term
becomes negligible.

B. Iterative time-domain fit of the postpeak frequency

We thus proceed to fit the late ringdown waveform
assuming that is given by a linear superposition of QNMs
with constant coefficients, see Eq. (8), using τ ¼ t − tpeakAlm

.
The total QNM frequency of each multipole is obtained as

ωðo=eÞ
lm ¼−ℑ

 
Ψ̇ðo=eÞ

lm

Ψðo=eÞ
lm

!

¼−ℑ

2
64
P∞

n¼1 b̄lmn
σþln
σþl1

eðσ
þ
l1−σ

þ
lnÞτð1þ âlmn

σ−ln
σþln

e2iωlnτÞP∞
n¼1 b̄lmne

ðσþl1−σþlnÞτð1þ âlmne2iωlnτÞ

3
75;

ð43Þ

where âlmn ¼ C−
lmn=C

þ
lmn and b̄lmn ¼ Cþ

lmn=C
þ
lm1. Since

these are complex quantities, we define âlmn ≡ Âlmneiθ̂lmn

and b̄lmn ≡ B̄lmneiϕ̄lmn . Recalling the hierarchy of the
inverse damping times αln, the contributions in the fre-
quency of the n ≥ 1 overtones are exponentially damped
with exponents αþl1 − αþln. However, the contribution of
the isolated fundamental frequencies is never damped
and reads

ωðo=eÞ
lm1 ¼ ð1 − Â2

lm1Þωl1

1þ Â2
lm1 þ 2Â2

lm1 cosð2ωl1τ þ θ̂lm1Þ
: ð44Þ

The coefficients Âlm1 and θlm1 were already extracted from
the late ringdown frequency in previous works [16,58].
Here we extend this procedure to earlier times using
Eq. (43). Since the overtones have higher damping coef-
ficients, we proceed to iteratively fit the late ringdown
frequency on different time intervals considering only the
relevant QNMs. To establish where a certain n mode
becomes negligible, we set a small threshold, typically
ϵ ¼ 10−5, and we say that the nth-mode can be neglected if
the condition eðα

þ
l1−α

þ
lnÞτ < ϵ is satisfied. Applying this

method to the (2,2) mode we can find fÂ22n; θ̂22n;
B̄22n; ϕ̄22ng up to n ¼ 4. The results are shown in
Fig. 17. It is interesting to note that for the (2,2) mode

FIG. 16. Upper panel: Zerilli source term evaluated along
dynamics with different eccentricities for the (2,2) mode. Log-
arithmic vertical scale. Bottom panel: plot of F̂ðeÞ

22 ¼ jFðeÞ
22 j=

maxðjFðeÞ
22 jÞ. The retarded time is shifted using the peak time

of the quadrupolar amplitude, tpeakA22
. In both panels, the dots mark

the light-ring crossing, tLR.
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we are not able to go beyond n ¼ 4 and thus at earlier
times. This can be justified by the discussion on the source
term above. Indeed, with n ¼ 4 and ϵ ¼ 10−5 we are able
to fit from t ¼ 13.43, but at that time we still have

jFðeÞ
22 j=maxðjFðeÞ

22 jÞ ≃ 0.097 and thus the source term is
not completely negligible. Also for this reason, the values
of â22n and b̄22n found for the overtones are not robust and
are in disagreement with the results found using the
different fitting procedures (see Appendix B). The pro-
cedure can be applied also to the higher modes, where the
number of overtones that we are able to fit depends on the
specific multipole considered. Generally, we have that
for the modes with higher Δtlm (i.e., the for the ones that
are more delayed), we are able to fit more overtones,
consistently with the fact that at later times the source
terms become negligible. For example, for the (4,1) multi-
pole we can fit up to n ¼ 7 overtones (and thus from
t ≃ tpeak41 þ 5.94) keeping the relative error of the frequency
fit around 10−4.
From a practical point of view, we are particularly

interested in the values related to the fundamental frequen-
cies, âlm1, since we can use them to improve the phenom-
enological ringdown description as discussed in Sec. III,
see in particular Eq. (16). The values found in this work are
in agreement with previous work [16] and their modulus is
reported in Table III. Note that the order of magnitude
of Âlm1 is strictly linked to the number m and does not
strongly depended on the eccentricity (see, e.g., the right

panel of Fig. 4). Therefore, we need to perform the global
fits only on the phases θlm1, that we report in Table IV for
all the multipoles considered in this work. The relevance of
these fits can be particularly appreciated looking at the
analytical/numerical comparisons of the late-ringdown
waveform frequencies shown in Figs. 7, 11, and 14.
Finally, we mention that since the iterative fit of the

frequency did not provide satisfactory results for the whole
quadrupolar postpeak waveform, we also attempted the
same fit without the iterative procedure, focusing only on
the (2,2) multipole. However, also this procedure did not
lead to robust results for the whole postpeak waveform, as
detailed in Appendix B.

C. EOB ringdown as superposition of QNMs

In the previous sections we have accumulated results
which indicate that the ringdown description as linear
superposition of QNMs with constants coefficients,
Eq. (8) cannot be consistently used for the whole postpeak
waveform. However, in seminal EOB works [13,59] the
ringdown was modeled precisely in this way, although it
was matched with the inspiral part of the waveform on an
extended interval centered around the peak of the orbital

FIG. 17. Iterative QNM-fit of the frequency considering the
first 4 QNMs. In the upper panel we show the RWZ frequency
(black) and the results obtained with the fits. Each color
represents an iteration (and thus a QNM) of the fit. In the bottom
panel we show the relative difference between the fit and the
corresponding n fit. See Sec. V B for more detail on the fitting
procedure.

TABLE III. Coefficients Âlm1 ¼ jâlm1j describing the beating
between positive and negative frequencies fundamental QNMs
for all multipoles up to l ¼ 6. See Table IV for the eccentric fits
of the âlm1 phase.

Âlm1

m ¼ 1

½×10−2�
m ¼ 2

½×10−3�
m ¼ 3

½×10−4�
m ¼ 4

½×10−5�
m ¼ 5

½×10−6�
m ¼ 6

½×10−7�
l ¼ 2 7.30 4.89
l ¼ 3 9.34 7.96 5.53
l ¼ 4 9.14 9.11 8.90 6.28
l ¼ 5 9.41 8.97 9.27 9.96 7.02
l ¼ 6 9.46 9.12 9.11 9.67 11.15 8.33

TABLE IV. Global fits for the beating coefficients âlm1 ¼
Âlm1eiθlm1 . The template used for the phase is θlm1 ¼ ðCθ

QCþ
Cθ
1b̂Ωpk

þ Cθ
2b̂

2
Ωpk

Þ=ð1þDθ
1b̂Ωpk

Þ, while the modulus does not
depend on the nature of the perturbation.

ðl; mÞ Âlm1 Cθ
QC Cθ

1 Cθ
2 Dθ

1

(2,2) 4.89 × 10−3 5.369 −9.444 −37.992 …
(2,1) 7.30 × 10−2 2.893 −6.074 −15.134 −2.105
(3,3) 5.53 × 10−4 2.636 −11.635 −9.555 …
(3,2) 7.96 × 10−3 4.649 −3.890 −0.1176 …
(3,1) 9.34 × 10−2 3.810 0.3296 −0.03943 …
(4,4) 6.28 × 10−5 6.503 −13.096 −8.815 …
(4,3) 8.90 × 10−4 2.453 −6.041 −1.309 …
(4,2) 9.11 × 10−3 1.186 −2.772 −0.4334 …
(4,1) 9.14 × 10−2 3.714 0.3582 0.1166 …
(5,5) 7.02 × 10−6 4.509 −15.344 −4.330 …
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frequency. We will now revisit this procedure, often
referred to as “matching comb” [13]. The basic idea of
this procedure is that the match is performed on a set of
points rather than at only one point. To determine the
complex coefficients C�

lmn, we solve the linear system
hlmðtiÞ ¼

P
C�
lmne

−σ�lnti , where ti are the points of the
time array used for the match, and hlm ¼ hinsplĥNQClm is the
NQC-corrected inspiral waveform. If we considerN QNMs

(distinguished between positive and negative frequency),
we then need N points. Note that this ringdown model does
not require any tuned numerical parameters, it only needs
the QNMs frequencies since the coefficients of the ring-
down are determined using the analytical waveform.
Similarly to what discussed in Sec. IV for the (2,2)
waveform multipole, we use fANQC

22 ; ȦNQC
22 ; ÄNQC

22 ;ωNQC
22 ;

ω̇NQC
22 ; ω̈NQC

22 g, but here we directly extract them from the
Zerilli waveform at tNQC22 ¼ tpeakA22

þ 2. We chose as match-

ing points the adjacent points to tpeakA22
in the time grid used

to solve numerically the Hamilton’s equations (1). The
results of this procedure are shown from n ¼ 2 up to n ¼ 8
in Fig. 18. The configuration that reproduces the numerical
waveform with the highest accuracy is the one with n ¼ 8
positive-frequency modes. For this configuration, in the late
ringdown we have a 18% relative amplitude difference
and a phase difference that oscillates around the 0.04 radi-
ans. We also show the relative amplitude difference and the
phase difference obtained with the state-of-the-art wave-
form discussed in Sec. IV (dashed gray). While the wave-
form obtained with the latter model is clearly more accurate
(see also Fig. 7 for comparison), the results obtained in this
section are still qualitatively good for the amplitude and
quite accurate for the phase.

D. Tail contribution

Having considered only the first part of the waveform,
we have so far neglected the power-tail effects in the
waveform [60,61]. However, since the QNMs are expo-
nentially damped, there is a time where the tail effects
become dominant. As can be seen from the frequency of
the Zerilli (2,2) quasicircular waveform shown in black in
the left panel of Fig. 19, the effect of the tail starts to
be visible at t ∼ tpeakA22

þ 170, and becomes dominant
shortly afterward. In order to reproduce the numerical
waveform, we have to include a term of the form Ctail

22 τ
−2−l,

where the complex coefficient Ctail
22 is determined with a fit

FIG. 18. EOB waveform where the ringdown has been modeled
with the matching comb procedure. In the bigger panels above we
show the real part of the waveform and its frequency, black for the
RWZ results and online colors for the analytical results. In the
two small bottom panels we show the relative amplitude differ-
ence and the phase difference with the same color scheme of the
upper panels. We also show the relative amplitude difference and
the phase difference obtained with the waveform model discussed
in Sec. IV (dashed gray).

FIG. 19. Leftmost panel: Amplitude and frequency of the Zerilli (2,2) of the quasicircular waveform (black) compared with the results
obtained considering only the QNMs contribution (gray) and the QNMs plus tail (dashed red). Middle and rightmost: RWZ amplitudes
and frequencies for different eccentricities, aligned with respect to the light-ring crossing.
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and −2 − l is the asymptotic behavior of the tail term at
future null infinity [62]. Using the (fundamental) QNMs
and the power-law tail we can fully catch the behavior of
the numerical amplitude and frequency, as shown in the left
panel of Fig. 19. When eccentricity is taken into account,
the tail contribution becomes more significant and starts to
dominate over the QNM decay earlier, as shown in the
middle and right panels of Fig. 19. Moreover, the tail
cannot be described as before using the ansatz Ctail

22 τ
−2−l

since the tail has not reached yet the asymptotic behavior.
For example, for the configuration with e0 ¼ 0.5 the
decay-rate is roughly −1.3 instead of −2 − l. Similar
numbers are obtained for the other eccentric configurations
with e≳ 0.3.

VI. HEURISTIC MODELING
OF QNMs EXCITATION

Let us now introduce a toy model to grasp some insights
on how the excitation of QNMs is driven by the dynamics
and the related presence of a source term in the right hand
side of the RWZ equations. Following Ref. [13], and in
particular Sec. III B, we base our analysis on the under-
standing that a Schwarzschild black hole can be seen as a
resonating object. We start by generalizing Eq. (8), assum-
ing that the constant coefficients C�

lmn are instead time-
dependent functions, C�

lmnðtÞ. The ringdown waveform
reads then

Ψðo=eÞ
lm ¼

X
n

Ψðo=eÞ
lmn ; ð45Þ

Ψðo=eÞ
lmn ðtÞ≡ Cþ

lmnðtÞe−σ
þ
lnt þ C−

lmnðtÞe−σ
−
lnt: ð46Þ

Here the origin of time, t ¼ 0, is assumed to be the light-
ring crossing, tLR. The final goal of our investigation is to
determine an approximate semianalytical expression for the
coefficients C�

lmnðtÞ so to understand when the associated
QNMs are excited. Since we know that the solution of the
homogeneous RWZ equations is a superposition of QNMs
with constant coefficients C�

lmn, each spherical mode is
thought as as the solution of the homogeneous second order
differential equation

Ψ̈ðo=eÞ
lmn þ 2αlnΨ̇

ðo=eÞ
lmn þ ðα2ln þ ω2

lnÞΨðo=eÞ
lmn ¼ 0; ð47Þ

under the ansatz ΨlmnðtÞ ∝ e−σ
�
lnt, with σ�ln ¼ αln � iωln.

This is indeed the equation of an underdamped oscillator
with damping coefficient αln and undamped angular
frequency �ωln. An external force FðtÞ in the right-hand
side of Eq. (47) yields an inhomogeneous differential
equation corresponding to a driven harmonic oscillator.
Our model is thus defined by assuming that the forcing

term is given by Eq. (42), that is FðtÞ≡ Fðo=eÞ
lm ðtÞ. The

solution of this inhomogeneous equation can be obtained

starting from the one of the homogeneous problem by
promoting the numerical coefficients therein to time-
dependent functions. This is referred to as the method
of variation of parameters (or method of osculating
elements) [63–65]. With this approach we know a priori
that the differential equation

Ψ̈ðo=eÞ
lmn þ2αlnΨ̇

ðo=eÞ
lmn þðα2lnþω2

lnÞΨðo=eÞ
lmn ¼Fðo=eÞ

lm ðtÞ ð48Þ

admits a solution with the precise QNM structure of
Eq. (46). We start by writing the time derivative of our
particular solution as if the coefficients C�

lmnðtÞ were not
time-dependent. This is equivalent to impose

Ψ̇ðo=eÞ
lmn ðtÞ ¼ −σþlnC

þ
lmnðtÞe−σ

þ
lnt − σ−lnC

−
lmnðtÞe−σ

−
lnt; ð49Þ

which is true only if the time dependence of C�
lmnðtÞ gives

no contribution to the time derivative, namely if the
condition

Ċþ
lmnðtÞe−σ

þ
lnt þ Ċ−

lmnðtÞe−σ
−
lnt ¼ 0 ð50Þ

is satisfied. We can then take another time derivative on

Eq. (49) in order to obtain Ψ̈ðo=eÞ
lm . We then insert Ψ̇ðo=eÞ

lm and

Ψ̈ðo=eÞ
lm in Eq. (48) and, considering that the sum of all the

terms without the time derivatives Ċ�
lmnðtÞ separately

solves the associated homogeneous equation (47), we
get the second condition

−σþlnĊ
þ
lmnðtÞe−σ

þ
lnt − σ−lnĊ

−
lmnðtÞe−σ

−
lnt ¼ Fðe=oÞ

lm ðtÞ; ð51Þ

which together with Eq. (50) builds up a system of two
equations that can be solved for Ċ�

lmnðtÞ. A straightforward
computation yields

Ċ�
lmnðtÞ ¼ �i

eσ
�
lntFðe=oÞ

lm ðtÞ
2ωln

; ð52Þ

and an ensuing time integral gives us the final expressions

C�
lmnðtÞ ¼ C�

lmnðt0Þ �
i

2ωln

Z
t

t0

dt0Fðe=oÞ
lm ðt0Þeσ�lnt0 ; ð53Þ

where t0 is an arbitrary initial time. Considering that

Fðe=oÞ
lm ðt0Þ does not diverge during the inspiral and that in

the integrand we have eσ
�
lnt

0
, we have that the computation

of C�
lmnðtÞ is not influenced by the choice of t0 as long as t0

is not too close to tLR. In practice, we start to integrate from
the beginning of our simulation.

A. Results

Some results for the (2,2) and (2,1) multipoles are shown
in Fig. 20. In the leftmost panel we show the absolute value
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of the positive and negative parts of the solution,
jC�

lmnðtÞe−σ
�
lnðt−tLRÞj, for n ≤ 4. We see that the negative-

frequency contributions are smaller than the corresponding
positive ones. The model thus predicts the negative-
frequency modes to be less excited than the positive ones.
The same feature can be seen in the third plot of the same
figure, where we show the absolute value of the ratios of
negative and positive solutions. In addition (see the right-
most panel of the figure) the negative-frequency modes
become more and more relevant as n grows. This behavior
is consistent with the qualitative discussion of Ref. [13], see
in particular Fig. 4. In that case, the authors argued that the
positive QNMs are excited during the plunge since the
Newtonian frequency of the waveform mΩ gets “closer” to
the positive QNM frequencies. Note in addition that what is
found here is consistent with the structure of the actual
solution of the RWZ equation. The second interesting
finding, illustrated by the middle panel of Fig. 20, is that
jC�

lm1ðtÞj is reminiscent of an activation function and
becomes constant after t ∼ tLR þ 15, showing that from
that time onward the n ¼ 1 solution can be written as a
superposition of QNMs with constant coefficients. For the
first overtone, we have that C�

lm2ðtÞ has a similar behavior.
However, for the n ≥ 3 overtones, the behavior of C�

lmnðtÞ
is less reminiscent of an activation function. In particular,
for n ¼ 3we see some oscillations in the solution, as can be
seen, e.g., from the third panel of Fig. 20. We are prone to
exclude that these are physical features that can be found
also in the full-RWZ case, and we rather interpret them as
expressions of the limitation of our toy model. The third
consideration regards the values of the jC−

lmnðtÞ=Cþ
lmnðtÞj

ratios for different multipoles. We show these ratios for the
(2,2) and (2,1) multipoles in the third panel of Fig. 20 with
solid and dotted lines, respectively. As can be seen, the
ratios of the (2,1) multipole are higher than the ones of the

(2,2) multipole for the same n. This means that, according
to our toy model, the mode mixing in the (2,1) multipole
should be more evident than in the (2,2). This is precisely
what happens in the numerical solutions of the full RWZ
equations, as shown in Table III. The driven harmonic
oscillator correctly predict also the qualitative relevance of
the mode-mixing in the (3,3) multipole, since the predicted
ratio jC−

331ðtÞ=Cþ
331ðtÞj is smaller than the one of the (2,2)

mode and, as can be seen from the numerical data, the
mode-mixing is more relevant in the (2,2) multipole rather
than in the (3,3). The final interesting feature that we
discuss is that the positive and negative solutions reach
their peaks at different times. This is shown for the (2,2)
multipole in the first plot, where we mark the peak-times
with vertical lines (solid for positive-frequency modes and
dashed for negative ones). As can be seen, the negative
modes with same n are excited before the corresponding
positive modes, and the overtones are excited before the
fundamental QNMs.
To conclude, with this toy model we have reproduced

some features that are observed when solving the actual
RWZ equations and we have also argued that the overtones
are excited before the fundamental frequency. However,
since these results are only qualitative, we cannot exploit
them to improve the description of the postpeak waveform.

VII. CONCLUSIONS

The results of this paper are twofold: (i) on the one hand,
it is studied the transition from eccentric inspiral to plunge,
merger and ringdown of a binary black hole coalescence
in the large mass ratio limit (or particle limit) and its
gravitational wave emission; (ii) on the other hand, it is
introduced and tested an EOB waveform valid in this limit.
This improves previous results [13] and generalizes them
to the eccentric case, that was not studied systematically

FIG. 20. Time-dependent QNM-excitation coefficients C�
lmnðtÞ for the quasicircular case, see Eq. (53). The positive-frequency modes

are more relevant and are excited later than the negative ones, as shown by the location of the amplitude maxima (vertical lines in the
leftmost plot). In the middle panel we plot the activationlike excitation coefficients for the fundamental frequency. The rightmost panel
highlights the hierarchy of the ratios jC−

lmn=C
þ
lmnj for the overtones of the (2,2) and (2,1) multipoles. Note that the beating is more

relevant for the (2,1) mode (dotted line) than for the quadrupole (solid lines).
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so far. Since the large mass ratio limit can be seen as a well-
controlled theoretical laboratory to learn and explore new
ideas, this work should be seen as part of the currently
ongoing effort of building accurate waveform templates for
eccentric (comparable-mass) binaries within the EOB
formalism [6,43,66–70]. More in detail, our results can
be summarized as follows:

(i) We performed a systematic survey of eccentric non-
spinning binaries in the test particle limit, focusing in
particular on the transition from inspiral to plunge and
on the phenomenology of the corresponding wave-
form, computed solving numerically the RWZ equa-
tions, Eq. (6), with the RWZhyp code [16,40,41].

(ii) We discussed a new ringdown model for eccentric
binaries in the test particle limit,modifying the primary
fitting templates used in previous works [20,42].
Notably, the ringdown model includes the mode-
mixing between positive and negative frequency
fundamental QNMs. The global fits on the parameter
space are performed using as fitting parameter the
gauge-invariant quantity b̂Ωpk

[Eq. (17)], that is defined
as the ratio between the angular momentum and
energy at the peak of the orbital frequency (i.e., at
the light-ring crossing). This moment can be consid-
ered a good definition of the merger time within
our context.

(iii) We then built a complete test-mass EOB model
for eccentric nonspinning binaries, including also
higher modes and 2PN noncircular corrections in the
l ¼ m ¼ 2 waveform mode. We analyzed in details
the impact of several analytical building blocks, in
particular we tested: (i) the relevance of the generic
Newtonian prefactor, also in the quasicircular case,
(ii) the contribution of the 2PN noncircular correc-
tions introduced in Refs. [47–49], (iii) different
prescriptions for the NQC corrections, and in par-
ticular the point at which they are computed; (iv) the
ringdown attachment point. All these ingredients
together provide an accurate complete EOB wave-
form, yielding Δϕ22 ≲ 0.01 rad in the quasicircular
case, and Δϕ22 ≲ 0.05 rad during the merger-
ringdown for all the eccentric configurations con-
sidered. Building upon methods introduced in the
SEOBNR-family [53,55,56], we also explored the
performance of a different ringdown model for
the higher modes that starts from tpeakA22

rather than

from tpeakAlm
.

(iv) We analyzed the build-up of QNMs excitation,
revisiting also the matching comb procedure that
was used in former EOB models [13,52,59,71,72].
Within this context, we also introduced a heuristic
model to compute the excitation coefficients of
the QNMs in the presence of a driving source.
The results of this model are in qualitatively and

semiquantitative agreement with the actual structure
of the waveform. We also discussed how the power-
law tail contribution presents at the end of the
ringdown changes in the presence of eccentricity.
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APPENDIX A: REGRIDDING USED FOR
NQC CORRECTIONS

DETERMINATION AND MATCHING

As anticipated in Sec. III B and Sec. III C, the fact that
the dynamics is obtained solving the Hamilton’s equa-
tions (1) numerically with an ODE solver implies that we
have a discrete time array. All the dynamical quantities
and the waveform are thus computed on this array. This
discretization can lead to issues when matching the inspiral
waveform to the ringdown.
The first issue of this kind is related to the NQC

corrections determination. Indeed, in order to determine
the coefficients ai and bi of Eq. (23), we have to solve the
linear system (25). However, the rhs is computed exactly
at tNQClm (since if tNQClm > tpeakAlm

we compute it from the
analytical ringdown waveform discussed in Sec. II C, while
if tNQClm < tpeakAlm

we extract it at tNQClm using a cubic spline
procedure on the numerical data), but the lhs is not. The
latter is indeed evaluated using the inspiral waveform hinspllm ,
that is in turn computed from the EOB dynamics, which is
found solving the Hamilton’s equation with a discrete-step
ODE-solver. Therefore, tNQClm is not guaranteed to be a point
of the time array on which the inspiral waveform is
computed. This implies that the lhs and the rhs might be
computed at slightly different times and this can introduce a
systematic error in the computation of the NQC coefficients
ai and bi, and thus in the complete EOB waveform. The
second issue is related to the matching procedure. Indeed,
in order to match the NQC-corrected inspiral-plunge wave-
form to the ringdown model we need to compute ϕpeak

lm , i.e.,
the phase of the inspiral-plunge waveform at the matching-
point, see Eq. (9). However, it is not guaranteed that the
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matching time tpeakAlm
is an element of the time array used to

compute the dynamics. If we operate without performing a
regrid, the phase ϕpeak

lm found can be flawed.
In order to solve the aforementioned issues, we apply for

each multipole a regridding procedure in the vicinity of
tNQClm and tpeakAlm

, so that these two points are enforced to be
elements of the time grid. We then interpolate the chunks
of the waveform that we need on the refined time arrays
using a cubic spline algorithm. We then compute the NQC
coefficients, ai and bi, and we perform the match between
the inspiral-plunge waveform and the ringdown model on
the refined time grid where tpeakAlm

is a grid-point. We prefer to
reinterpolate the obtained waveform back on the original
time array used to solve the Hamilton’s equations in order
to have a uniform time step, but note that this step is not
necessary. The results for different regridding configura-
tions are shown in Fig. 21 We consider the analytical
waveform without regridding (solid yellow), the one with
regridding only for the NQC corrections (dash-dotted blue),
the one with regridding only for the matching procedure
(dashed green) and the one with regridding in both the
NQC corrections and matching (dotted red). The latter is
the default option and it is also the one shown in Fig. 7.
As can be seen from the middle panel, for the amplitude
the most relevant regridding is the one associated to the
matching, while the one associated to the NQC does not

seem important. The regridding in the matching zone drives
the relative amplitude difference in the late ringdown
from the 2.3% to be below the 0.1%. For the phase, which
analytical/numerical difference is shown in the third panel,
we have that both regriddings are important. Indeed, if we
do not consider any regridding, the analytical/numerical
phase difference during the ringdown is about −0.05
radians, while with the full regridding procedure the phase
difference drops of one order of magnitude, reaching
−0.006 radians.

APPENDIX B: TIME-DOMAIN FITS OF THE
POSTPEAK WAVEFORM USING QNMs

In this appendix we attempt to fit the complete postpeak
waveform using the pure QNMs ansatz of Eq. (8) on a time
interval τ≡ t − tpeakA22

∈ ½tQNM0 ; 100�. We start by performing
the fit of the real and imaginary parts of the waveform
using the fundamental QNMs and 7 overtones starting from
the peak of the amplitude, i.e., considering n ¼ 8 and
tQNM0 ¼ 0; the results of this procedure are shown in Fig. 22
(dash-dotted green lines). The QNMs waveform overlaps
quite well with the numerical RWZ waveform (black), and
the corresponding residual is around 10−3 shortly after the
amplitude peak. However, it is easy to see that (i) the
beating between positive and negative frequency QNMs in
the late ringdown is not well reproduced, as shown by the
waveform frequency in the second panel, (ii) the fre-
quency of the fitted wave shows spurious oscillations in
the early ringdown. In order to ensure the correct late-
ringdown behavior, we refine this procedure by prefitting
only the fundamental QNMs on τ∈ ½62; 100�, so that we
can easily find C�

221 since the overtones are negligible in
the late ringdown, and then performing the fit of Eq. (8) on
the whole time interval τ∈ ½0; 100�, so that we can find the
remaining C�

lmn coefficients. The result of this procedure
is shown with dashed red lines in Fig. 22. While the
beating in the late ringdown frequency is now well
reproduced, the spurious oscillations in the early ring-
down frequency are still present. Note that in this case the
residual is a little bit higher in the early ringdown, but way
lower in the late evolution. We thus concluded that, while
the residual of the waveforms in quite low in both fits, the
waveform frequency shows that there are some inaccur-
acies in the early ringdown.
In an attempt to solve the issue of the spurious frequency

oscillations, we also explore the possibility to find the C�
lmn

coefficients fitting directly the frequency using Eq. (43).
Note that if we proceed this way, we cannot find Cþ

221 since
the frequency is invariant under global normalizations
and phase shifts of the waveform. We thus find Cþ

221 as
done before, i.e., fitting Eq (8) with n ¼ 1 in the late time
interval τ∈ ½62; 100�. In the left panel of Fig. 23 we show
this frequency fit compared with the waveform fit discussed
above. To evaluate the goodness of the fits, we show in this

FIG. 21. Analytical/numerical comparison for the (2,2) wave-
form multipole considering different regridding configurations.
In the top panel we show the RWZ numerical waveform (black,
almost indistinguishable) and the analytical ones using different
colors. See legend and text for more details. Note that the red
analytical (2,2) waveform is the standard one, i.e., the one shown
in Fig. 7. In the middle and bottom panels we show the relative
amplitude difference and the phase difference in radians, with
same color scheme. The vertical black line marks the peak of A22.
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case the relative differences of amplitude and frequency,
that we consider more informative than the residual. As can
be seen, while the frequency fit solves the issue of the early
spurious oscillations, produce a waveform that is way less
accurate than the one found with the waveform fit.
Finally, in the right panels of Fig. 23 we show the

comparison between the frequency and waveform fits

performed considering n ¼ 4 and tQNM0 ¼ 15. In this case
the waveform fit is accurate and the recovered frequency
is consistent with the numerical result, leading to relative
amplitude and frequency errors around 10−4. However, the
amplitude of the waveform recovered from the frequency fit
reaches a 10% error at τ ∼ 15, and thus the frequency fit
seems less robust than the waveform fit, even if we do not
fit the early ringdown.
We thus conclude that (i) it is a good practice to check

the waveform frequency in order to evaluate the goodness
of the QNMs fits of the ringdown waveform, (ii) the
waveform can be consistently fitted, but only starting from
later times. This is again consistent with the discussion of
Sec. VA on the RWZ source terms and with the iterative
frequency fit of Sec. V B.

APPENDIX C: GLOBAL FITS

In this appendix we report all the global fits that we use
in our model, see Sec. II E for a general discussion on
how we perform the global fits. We start by reporting the
global fits of the quantities needed to reconstruct the
postpeak waveform for all the modes in Tables V and VI,
see definitions in Sec. II C. We then proceed to show the
global fits for fANQC

22 ; ȦNQC
22 ; ÄNQC

22 ;ωNQC
22 ; ω̇NQC

22 ; ω̈NQC
22 g

evaluated at tNQClm ¼ tpeakAlm
− 2 in Tables VII and VIII.

Note that we report the fits also for l ¼ m ¼ 2, but for
the quadrupolar waveform we do not use them since we use
tNQC22 ¼ tpeakA22

þ 2, see Sec. III B for discussion. Note that in
all the cases we use a parabolic global template.

FIG. 22. Upper panels: RWZ waveform and frequency (black)
compared with the results from the waveform fits performed
(1) considering all the QNMs together (dash-dotted green), and
(2) prefitting the fundamental QNMs (dashed red) and then fitting
all the overtones. In the bottom panel we show the residuals with
same color scheme. See discussion in Appendix B.

FIG. 23. Upper panels: RWZ waveform and frequency (black) compared with the results from the wave fit (red) and frequency fit
(blue). In the bottom panels we show the relative differences of the amplitude and frequency (hot colors for the waveform fit, cold colors
for the frequency fit). On the left, we fit the whole postpeak waveform using 8 QNMs, while on the right we fit from t ≥ 15þ tpeakA22

using
4 QNMs. See discussion in Appendix B.
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TABLE V. Global fits of the coefficients entering the ringdown template. For each quantity y, the fitting function
is: y ¼ CQC þ C1b̂Ωpk

þ C2b̂
2
Ωpk

, where QC indicates the quasicircular value. The amplitude considered in this table
is the amplitude of the strain, Alm ¼ jhlmj, rather than the amplitude of the RWZ-normalized waveform.

ðl; mÞ Coefficient CQC C1 C2

(2,2) cϕ2 1.561 × 10−1 −5.067 × 10−2 −5.493 × 10−2

cϕ3 3.272 5.021 6.554

cϕ4 2.592 8.305 1.108 × 102

cA2 2.161 × 10−1 −1.999 × 10−2 7.199 × 10−3

cA3 2.334 3.030 5.583
Apeak 1.444 9.914 × 10−1 9.177 × 10−1

Äpeak −2.359 × 10−3 6.830 × 10−3 −3.238 × 10−3

Δωpeak 1.015 × 10−1 −1.061 × 10−2 4.131 × 10−3

(2,1) cϕ2 1.539 × 10−1 4.563 × 10−2 1.250 × 10−1

cϕ3 1.185 1.721 10.167

cϕ4 3.866 7.989 80.460

cA2 3.656 × 10−1 2.191 × 10−1 −2.017
cA3 −1.535 × 10−1 −3.204 31.896

Apeak 5.238 × 10−1 2.332 × 10−1 2.119 × 10−1

Äpeak −2.624 × 10−3 5.624 × 10−3 2.423 × 10−2

Δωpeak 8.302 × 10−2 −8.936 × 10−2 5.023 × 10−1

(3,3) cϕ2 1.783 × 10−1 −1.361 × 10−2 −1.330 × 10−3

cϕ3 2.818 4.107 9.523

cϕ4 1.536 4.592 28.099

cA2 2.192 × 10−1 −1.750 × 10−2 3.036 × 10−2

cA3 1.585 1.715 2.634
Apeak 5.635 × 10−1 4.299 × 10−1 3.883 × 10−1

Äpeak −1.823 × 10−3 2.287 × 10−3 1.026 × 10−3

Δωpeak 1.462 × 10−1 −1.916 × 10−2 1.800 × 10−2

(3,2) cϕ2 1.851 × 10−1 −8.128 × 10−3 9.774 × 10−3

cϕ3 1.308 3.395 × 10−1 7.985 × 10−1

cϕ4 2.172 × 10−1 1.135 × 10−1 2.334 × 10−1

cA2 2.425 × 10−1 6.597 × 10−4 −7.605 × 10−3

cA3 9.188 × 10−1 8.761 × 10−1 −4.018 × 10−1

Apeak 1.991 × 10−1 1.289 × 10−1 1.017 × 10−1

Äpeak −1.561 × 10−3 −5.955 × 10−4 6.250 × 10−4

Δωpeak 1.476 × 10−1 1.704 × 10−4 9.627 × 10−3

(3,1) cϕ2 1.483 × 10−1 −7.316 × 10−3 2.289 × 10−2

cϕ3 1.406 × 10−4 −2.424 × 10−4 6.491 × 10−4

cϕ4 6.005 × 10−5 −4.839 × 10−5 1.522 × 10−4

cA2 2.917 × 10−1 −1.330 × 10−1 2.315 × 10−1

cA3 2.068 −1.589 2.079
Apeak 6.230 × 10−2 2.460 × 10−2 1.575 × 10−2

Äpeak −2.678 × 10−3 −1.660 × 10−3 5.739 × 10−4

Δωpeak 1.881 × 10−1 −3.904 × 10−2 1.385 × 10−2
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TABLE VI. Global fits of the coefficients entering the ringdown template. For each quantity y, the fitting function
is: y ¼ CQC þ C1b̂Ωpk

þ C2b̂
2
Ωpk

, where QC indicates the quasicircular value. The amplitude considered in this table
is the amplitude of the strain, Alm ¼ jhlmj, rather than the amplitude of the RWZ-normalized waveform.

ðl; mÞ Coefficient CQC C1 C2

(4,4) cϕ2 1.845 × 10−1 −6.271 × 10−3 −2.849 × 10−3

cϕ3 2.249 2.991 5.909

cϕ4 1.025 2.617 12.471

cA2 2.178 × 10−1 −1.276 × 10−2 2.823 × 10−2

cA3 1.145 1.476 2.040
Apeak 2.754 × 10−1 2.374 × 10−1 2.296 × 10−1

Äpeak −1.258 × 10−3 8.999 × 10−4 8.471 × 10−4

Δωpeak 1.751 × 10−1 −1.720 × 10−2 1.743 × 10−2

(4,3) cϕ2 1.876 × 10−1 −2.091 × 10−3 2.781 × 10−4

cϕ3 1.320 1.129 −7.914 × 10−4

cϕ4 3.513 × 10−1 6.880 × 10−1 3.418 × 10−1

cA2 2.252 × 10−1 4.376 × 10−3 −6.836 × 10−2

cA3 3.600 × 10−1 1.192 −3.611
Apeak 9.418 × 10−2 7.365 × 10−2 6.538 × 10−2

Äpeak −7.851 × 10−4 −4.334 × 10−5 −1.645 × 10−4

Δωpeak 1.722 × 10−1 8.015 × 10−3 −2.205 × 10−2

(4,2) cϕ2 1.848 × 10−1 −1.045 × 10−2 2.014 × 10−2

cϕ3 1.316 4.910 × 10−1 −3.244 × 10−1

cϕ4 8.103 × 10−1 1.244 −1.645
cA2 2.589 × 10−1 4.823 × 10−2 −1.436 × 10−1

cA3 −7.454 × 10−1 1.157 −1.954
Apeak 3.138 × 10−2 1.544 × 10−2 1.181 × 10−2

Äpeak −2.743 × 10−4 1.623 × 10−4 −3.799 × 10−4

Δωpeak 1.836 × 10−1 −2.595 × 10−2 2.780 × 10−2

(4,1) cϕ2 1.428 × 10−1 −1.797 × 10−2 3.577 × 10−2

cϕ3 −7.583 × 10−1 −3.777 × 10−1 6.408 × 10−1

cϕ4 1.155 × 10−1 1.294 × 10−1 −2.141 × 10−1

cA2 1.067 −4.888 × 10−1 8.161 × 10−1

cA3 10.890 −4.684 8.425
Apeak 9.263 × 10−3 3.514 × 10−3 2.333 × 10−3

Äpeak −7.568 × 10−4 −4.506 × 10−4 −3.366 × 10−5

Δωpeak 2.572 × 10−1 −5.064 × 10−2 6.728 × 10−2

(5,5) cϕ2 1.872 × 10−1 −3.773 × 10−3 −1.675 × 10−3

cϕ3 1.844 2.360 3.290

cϕ4 7.272 × 10−1 1.786 5.737
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