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Using the recently derived higher-spin gravitational Compton amplitude from low-energy analytically
continued (a=Gm ≫ 1) solutions of the Teukolsky equation for the scattering of a gravitational wave off
the Kerr black hole, observables for nonradiating super-extremal Kerr binary systems at second post-
Minkowskian (PM) order and up to sixth order in spin are computed. The relevant 2PM amplitude is
obtained from the triangle-leading singularity in conjunction with a generalization of the holomorphic
classical limit for massive particles with spin oriented in generic directions. Explicit results for the 2PM
eikonal phase written for both covariant and canonical spin supplementary conditions—CovSSC and
CanSSC respectively—as well as the 2PM linear impulses and individual spin kicks in the CanSSC are
presented. The observables reported in this letter are expressed in terms of generic contact deformations of
the gravitational Compton amplitude, which can then be specialized to Teukolsky solutions. In the latter
case, the resulting 2PM observables break the newly proposed spin-shift symmetry of the 2PM amplitude
starting at the fifth order in spin. Aligned spin checks as well as the high-energy behavior of the computed
observables are discussed.
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I. INTRODUCTION

The application of quantum field theory (QFT)-inspired
methods to compute observables in classical gravity has
seen tremendous advances in the last years [1–17] due to
their potential relevance for analyzing measured signals in
gravitational wave (GW) detectors [18]. The use of these
techniques is justified by the separation of scales that
allows to treat physics problems in an effective manner. For
instance, an isolated black hole (BH) seen from far away
can be thought of as a point particle, and its finite size
effects such as spin multipole moments can be modeled
by effective operators in (classical) EFT constructions
[19–28]. These operators are accompanied by free coef-
ficients parametrizing the UV ignorance of the effective
model; they can be fixed by matching computations in the
effective and the full theory. Following this logic, an
astonishingly simple description of an isolated linearized
Kerr BH [29]—effectively a super-extremal (SE) Kerr BH
with spin parameter a⋆ ¼ a

Gm ≫ 1, where m and a are its
mass and ring radius respectively—as an elementary
particle of infinite spin minimally coupled to gravity, has
recently appeared in the literature [25,30–32].

Actual Kerr BHs are however neither isolated objects
in nature nor linearized solutions of the field equations as
they possess spin parameters satisfying a⋆ ≤ 1. A correct
description of these objects requires therefore resummations
of the perturbative computations. Accomplishing these
resummations from a perturbative amplitude approach is
a heroic task not yet addressed along these lines of reason-
ing, and therefore relying on the effective one-body for-
malism [29,33–37], as an alternative way to study these
more realistic Kerr BHs scenarios [38]. Nevertheless,
perturbative approaches are still very useful to gain insights
into the physics of actual Kerr BH systems, and in this work,
we follow these lines to study systems made not of actual
Kerr BHs, but of their close relatives, SE Kerr BHs (fastly
rotating objects).
Although SE Kerr BHs are not real objects in nature,

they share many features of actual Kerr BHs, as the two are
related via analytic continuation of the spin parameter
from the physical region a⋆ ≤ 1, to the SE a⋆ ≫ 1 region.
For observables that cannot probe the nature of the BH
horizon—which we shall refer to as true conservative
observables [40]—this continuation should not possess
any subtlety and their values computed for one kind of
objects or the others should coincide in the overlapping
(continuation) region [41]. In this sense, SE Kerr observ-
ables readily encapsulate part of the dynamic for actual
Kerr BHs [6,12,19,21–23,29,42–68]. Observables that
can probe the nature of the BH horizon—absorptive
observables accounting for fluxes of energy at the BH
horizon—are more subtle since the notion of absorption
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does not exist for objects without a horizon; hence, SE
Kerr BH observables look always conservative. These can
however receive contributions from effective operators
that mimic the physical effects happening at the horizon of
an actual Kerr BH, but whose definite identification
requires comparison to alternative approaches to study
absorptive effects [69–77].
In this work, we compute conservative observables for

the scattering of two SE Kerr BHs at OðG2Þ, but whose
content can potentially encode true conservative as well as
absorptive effects for actual Kerr BHs. For this, we use the
recently extracted higher-spin gravitational Compton
amplitude from low-energy solutions of the Teukolsky
equation in the SE region [26]. The observables of interest
in this work are the linear impulse and the individual spin
kicks, for generic spin orientations. We will use the eikonal
phase as an intermediate object, and compute the observ-
ables using formula (15), proposed by the authors of
references [6,43]. Since contact deformation of the
Compton amplitude enters the 2PM amplitude only
through the triangle diagrams (Fig. 1), we expect this
formula (15) (shown to be valid for orders an≤4 at 2PM
[6,43,44]) to continue to be valid for higher-spin orders.

II. A TREE-LEVEL GRAVITATIONAL
COMPTON AMPLITUDE FROM THE

TEUKOLSKY EQUATION

In [26], an ansatz for the OðGÞ opposite helicity, higher-
spin gravitational Compton amplitude of the form (momen-
tum cons. p4 ¼ p1 þ k2 þ k3)

AðSÞ
4 ¼ A0

4ðeð2wþk3−k2Þ·a þ Pξðk2 · a;−k3 · a; w · aÞÞ2S; ð1Þ

was written invoking physical constraints such as
locality, unitarity, 3-point factorization,and crossing
symmetry, together with a prescription to write contact
deformations—capture by Pξ—that match Teukolsky sol-
utions only in a nontrivial manner [79].
The scalar contribution, A0

4 in (1), encodes the helicity
and physical pole structure of the amplitude, whereas the
terms inside the big parenthesis are only functions of the

kinematic invariants and the spin of the massive legs.
Explicitly, the former reads

A0
4 ¼ 32πGm2

ðϵ2 · uÞ2ðϵ̃3 · uÞ2
ξ

; ξ ¼ ðs −m2Þ2
m2t

; ð2Þ

which we choose to evaluate in the gauge

ϵ2 ¼
ffiffiffi
2

p j3�h2j
½32� ∝ ϵ̃3 ¼

ffiffiffi
2

p j3�h2j
h32i ; wμ ≔

u · k2
u · ϵ2

ϵμ2: ð3Þ

Here we have included the massless vector wμ entering in
(1), which is constructed from the spinors of the massless
legs, and u ¼ p1=m, is the incoming massive leg’s four-
velocity, with m its respective mass.
The function Pξ contains contact deformations of the

BCFWexponential—some of which at the same time cure
the unphysical singularities that appear starting at Oða5Þ
when the exponential function is expanded—was
written as a Laurent expansion in the optical parameter
ξ, having the explicit form given in (B1). This expansion
was further parametrized by three multivariable polyno-

mials pðmÞ
jaj ; q

ðmÞ
jaj ; r

ðmÞ
jaj , functions of ðk2 · a;−k3 · a; w · aÞ,

symmetric in their first two arguments, but also including
a linear correction in ωjaj, with ω ≈ ðs −m2Þ=2m,
the energy of the massless legs. Up to the sixth
order in spin, these polynomials have the explicit form
given by Eqs. (B2) and (B3), and contain two type
of spin operators; regular operators, functions of only
R ¼ fk2 · a; k3 · a; w · ag, and exotic operators, functions
of R ∪ fωjajg. The former will encapsulate the real
contributions (at the level of the phase shift) to the
solution to the Teukolsky equation, whereas the latter
accounts for contributions that are imaginary when the BH
rotation parameter satisfies the inequality a⋆ ≤ 1.

Each effective operator in pðmÞ
jaj ; q

ðmÞ
jaj ; r

ðmÞ
jaj is accompanied

by a free coefficient cðjÞi ; dðjÞi ; fðjÞi respectively; contact
deformations were shown to appear starting at fourth order
in spin as known from the work [25]. These free coef-
ficients were further fixed by requiring that (1) matches the
OðGÞ sector of the low-energy limit (ϵ ¼ Gmω ≪ 1) of the
scattering amplitude for the scattering of a GWoff the Kerr
BH, computed with the tools of black hole perturbation
theory [85,86]. Explicit solutions up to six order in spin can
be found in Table 1 in [26], which we include in Table Vof
Appendix B, for the reader’s convenience. Remarkably, up
to the fourth order in spin, the Teukolsky solution perfectly
matches the classical limit of the undeformed minimal
coupling gravitational Compton amplitude of Arkani-
Hamed, Huang, and Huang [24], given by the expansion
of the exponential in (1), up to Oða4Þ. Up to this order,
Teukolsky solutions are polynomials in a⋆, therefore,
providing a unique answer for the analytically continued
Kerr results to the SE Kerr approximation a⋆ ≫ 1. Starting

FIG. 1. Triangle leading-singularity configuration [78].
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at the fifth order in spin, Teukolsky solutions contain
complex, nonrational functions of a⋆, which are in addition
discontinuous at a⋆ ¼ 1. Therefore, a prescription for
analytic continuation to the SE region was needed. The
two different prescriptions provided in [26] were labeled by
the parameter η, which takes values �1, with the sign
determined by the continuation procedure. Nontrivially,
contributions in the Teukolsky solutions that were real
before the continuation uniquely fix the free coefficients for
regular operators in (1), and are independent of such
continuation prescriptions, whereas the pieces that were
imaginary before the continuation, fix the coefficients of
exotic operators, modulo a sign. The exotic contributions
are believed to encode only physical effects happening at
the BH horizon for actual Kerr (a⋆ ≤ 1) systems, but their
precise physical interpretation in a realistic Kerr context is
beyond the scope of this work. We refer the reader to the
recent work [77] for a related analysis of horizon dis-
sipation for Kerr systems (see also [69–77]).
Some comments from this matching are in order:

1) After analytic continuation, imaginary contributions
become real, therefore providing conservative informa-
tion for the SE Kerr system. This is a consequence of
erasing the BH horizon in the continuation procedure,
therefore, removing any source of dissipation; 2) In the
matching of (1) to the low-energy limit of Teukolsky
solutions, terms of the form ϵnða⋆Þmfða⋆Þ for m ≠ n and
f and function of the rotation parameter, were discarded
as they do not contribute to the tree-level amplitude.
Similarly, terms of the form ϵn log ϵða⋆Þmfða⋆Þ that
do not produce OðGÞ contributions were removed.
These terms might however become important for a
Compton amplitude that matches the actual Kerr (a⋆ ≤ 1)
solutions [87].
For the same helicity sector, the OðGÞ Teukolsky

solutions were shown to match spectacularly the analogous
exponential Ã0e−ðk2þk3Þ·a, with Ã0 the spin-independent
contribution, with checks made up to Oða6Þ in the SE
region. The results were also shown to be independent of
the continuation prescription.

III. LEADING PM EIKONAL PHASE FOR
SUPER-EXTREMAL KERR

In this work we are interested in computing canonical
observables for binary systems at the second PM order.
Binary 2PM observables however will necessarily require
1PM information entering as iteration terms in the operator
formulation [2], the 2PM Hamiltonian [6,44], or equivalent
as quadratic eikonal contributions in the formula (15) for
the computation of canonical observables directly from the
eikonal phase [6,43]. Driven by this, in this section we
revisit the computation of the 1PM eikonal phase for the
scattering of two SE Kerr BHs to all orders in spins. We
start by recalling the tree level, all orders in spin two-body
amplitude is obtained from the unitarity gluing of two SE

Kerr 3-point amplitudes [25,29,30], resulting in the com-
pact expression [21],

Mð1PMÞ
bare ¼−

16πGðm1m2Þ2
q2

cosh

�
2θþ i

E1=m1þE2=m2

m1m2 sinhðθÞ
�
:

ð4Þ

Here we have used the notation Ei ¼ ϵμνρσqμpν
1p

ρ
2s

σ
i , where

pi, si are the respective momenta and spins of the incoming
BHs, and q is the momentum transfer. The Lorentz boost
factor was introduced via the hyperbolic functions
coshðθÞ ¼ σ ¼ p1·p2

m1m2
, sinhðθÞ ¼ σv, with v the two bodies’

relative velocity. The “bare” label in (4) indicates massive
spin polarization tensors have been removed, and the
observables computed with this prescription have the
rotational gauge freedom fixed by the Tulczyjew-Dixon
covariant spin supplementary condition (CovSSC)
pbSab ¼ 0 [88,89]. Hamiltonian observables however are
customarily computed in the canonical Newton-Wigner
SSC (CanSSC) Sabðpb þ

ffiffiffiffiffi
p2

p
δ0bÞ ¼ 0, with fa; bg local

frame indices [19,90,91]. A way to make the previous
amplitude satisfy the latter constraint is provided by
dressing the bare amplitude with the Thomas-Wigner
rotation factors [93],

MðnPMÞ
dressed¼MðnPMÞ

bare U1U2; Ui¼e
iτEi

EmiðEiþmiÞ; n¼1;2; ð5Þ

where E ¼ E1 þ E2, is the sum of the individual bodies’
energies, and τ ¼ 1, is a parameter that keeps track of the
CanSSC prescription. These rotation factors are written in
the center of mass (c.m.) frame, where the momenta of the
BHs are parametrized in the following way (see e.g., [6] for
details):

p1 ¼ −ðE1;pÞ; p2 ¼ −ðE2; pÞ;

q ¼ ð0; qÞ; p · q ¼ q2

2
: ð6Þ

Here, p is the asymptotic incoming three-momentum—
sometimes also referred to as p∞—and q is the three-
momentum transfer in the scattering process. The covariant
spin operators can analogously be mapped to their c.m.
representations via

Ei ¼Esi · ðp×qÞ; q · si¼ q · siþOðq2Þ;
jsij ¼ jsij; pi · sj ¼ ϵij

E
mi

p · si; ϵ12¼−ϵ21¼ 1: ð7Þ

The eikonal phase for this 2 → 2 scattering process is then
obtained from the 2-dimensional Fourier transform of the
two-body amplitude into impact parameter space. For the
generic 1PM and 2PM cases, we have [95–98]
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χðnPMÞ
τ ¼ 1

4m1m2

ffiffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p
Z

d2q
ð2πÞ2 e

−iq·bMðnPMÞ
τ ; n¼ 1;2;

ð8Þ

withMð2PMÞ
τ computed from the triangle leading singularity

(LS) Fig. 1. Here we have left explicit the τ label which for
τ ¼ 0, we input the bare (CovSSC) amplitude into (8),
whereas for τ ¼ 1, the Thomas-Wigner rotation factors
(CanSSC) need to be supplemented.
Going back to the 1PM analysis, the spin operators

entering in (4) and (5) simply become shifts of the impact
parameter when the explicit evaluation of (8) is per-
formed. At the 1PM order, one arrives at the all-spin
eikonal phase

χð1PMÞ
τ ¼−

m1m2G

2
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2−1

p
X
�
ðcoshð2θÞ� sinhð2θÞÞ logðbð�Þ2

τ Þ;

ð9Þ

where bð�Þ
τ ¼ bþP

i¼1;2 ð −τ
Eiþmi

� E
m1m2 sinhðθÞÞ

p×si
mi

, and the

� sum remembers the helicity sum for the exchanged
graviton. Let us stress this formula for the eikonal is valid
for generic spin orientations and recovers previous lower
spin results [6,21,43].

IV. 2PM AMPLITUDE FROM THE TRIANGLE
LEADING SINGULARITY AND THE
NONALIGNED HOLOMORPHIC

CLASSICAL LIMIT

Having the 1PM eikonal at our disposal, the next
ingredient to compute 2PM observables via (15), is the
2PM eikonal phase for compact objects with generic spin
orientations. The relevant one-loop amplitude entering in
(8) is controlled by the LS (see Fig. 1),

1

8m2

ffiffiffiffiffi
−t

p
Z
ΓLS

dy
2πy

Aða1Þ
4 ðAÞAða2Þ

3 ðBÞAða2Þ
3 ðCÞ; ð10Þ

where the contour ΓLS computes the residue at y ¼ 0minus
that at y ¼ ∞ [78]. The momentum labels of the
building tree-level blocks are fAg ¼ fp1;−p̃1; k

þ
2 ; k

−
3 g,

fBg ¼ fp2;−l;−k−2 g, and fCg ¼ f−p̃2; l;−kþ3 g; namely,
only the opposite helicity configuration of the Compton
amplitude will be relevant for super-extremal Kerr observ-
ables [99].
We use the holomorphic classical limit (HCL) para-

metrization for the nonaligned spin scenario discussed in
Appendix A, as an alternative construction of the 2PM
amplitude to the usual—but very related—unitaritymethods
[6,27,44,100,101]. An advantage of the LS construction
however is that the classical limit of the triangle graph can be
taken from the beginning of the computation. For the scalar
contributions, the HCL parametrization is the usual one

[26,30,94]. In the gauge (3), the scalar Compton amplitude

(2) has the HCL form A0
4ðAÞ¼πGm2

1
ð2y−vð1þy2ÞÞ4σ2

v2y2ð1−y2Þ2 , whereas

for the product of the two 3-point amplitudes we have
A0
3ðBÞA0

3ðCÞ ¼ 8πGm4
2. The nonaligned HCL form for the

spin contributions to the 2PM amplitude becomes however
very different from their aligned spin construction. The
massless momenta hitting the spin vectors aμ1 in (1), and a

μ
2

in the 3-point amplitudes e−k2·a2 × ek3·a2 , are now given by

kμ2 ¼
jqj

ffiffiffiffiffiffiffiffiffiffiffi
z2−1

p
ðm2p

μ
1−m1σp

μ
2Þþm1m2σvqμþ izEμ

2m1m2σv
;

k3¼−
jqj

ffiffiffiffiffiffiffiffiffiffiffi
z2−1

p
ðm2p

μ
1−m1σp

μ
2Þ−m1m2σvqμþ izEμ

2m1m2σv
;

wμ ¼−
jqj

ffiffiffiffiffiffiffiffiffiffiffi
z2−1

p
ðm2p

μ
1zþm1σp

μ
2ðv− zÞÞþ iðz2−1ÞEμ

2m1m2ð1−vzÞσ ;

ð11Þ

with z ¼ 1þy2

2y and Eμ ¼ ϵαβγμqαp1βp2γ . These expressions

contain the leading in jqj ¼
ffiffiffiffiffiffiffiffi
−q2

p
contribution to the

classical amplitude, therefore discarding unnecessary quan-
tum information before loop integration. Notice in particu-
lar, the combination kμ2 − kμ3 is independent of the transfer
momentum qμ; this will be relevant when we discuss below
some caveats of the aligned spin constructions of [26,30] for
the computation of the aligned spin-scattering angle for the
higher-spin ðan>4Þ cases.
Having at hand the nonaligned HCL parametrization of

the building blocks entering in (10), together with the HCL

form of the optical parameter ξ → −σ2v2 ð1−y2Þ2
4y , it is now an

easy task to compute the LS (10) using the Compton
amplitude (1), since the problem has been reduced to a
simple residue calculation. We organize the result of the
residue evaluation as follows: Given the set of spin
operators H¼fE1;q·s2;

ffiffiffiffiffiffiffiffi
−q2

p
p1·s2;E2;q·s1;

ffiffiffiffiffiffiffiffi
−q2

p
p2·s1g,

for the regular operators, and the spin-operator basis H →
H̃ ¼ H ∪ fjqjjs1j; jqjjs2jg for the exotic terms appearing
starting at the fifth order in spin, we write the 2PM
contribution of the triangle cut in the form

M2PM
bare ¼ πG2ffiffiffiffiffiffiffiffi

−q2
p X

i;j

ðAi;jH
⊗i

j þ Bi;jH̃
⊗i

j Þ: ð12Þ

Then, the main outputs from the LS evaluation are
the fAi;j; Bi;jg coefficients for a given spin structure in

fH⊗i

j ; H̃⊗i

j g, respectively.
Up to the fourth order in spin, the LS construction easily

recovers the triple cut coefficients reported in [6,43,44] for
SE Kerr BHs with generic spin orientations, upon evalu-
ating to zero the contact deformations present at spin-4 in
(1), as dictated by the Teukolsky solution (Table V). In this
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work, we extend the 2PM computation up to the sixth order
in spin including both, regular and exotic contributions to
(12). We provide LS results for generic coefficients para-
metrizing the Compton ansatz (1), which can then be
specialized (if desired) to Teukolsky solutions (Table V) for
the matching prescription described above.
Let us for brevity include here only the explicit results

for the s51 × s02 sector of the 2PM triangle, leaving the
results for the additional spin sectors, and up to the sixth
order, for the ancillary files for this work [102]. The spin
structures for this sector are summarized in Table I, and the
explicit coefficients for generic contact deformations are

given in Table II. Additionally, we include in Table III a
dictionary that maps between our generic coefficient
amplitude and the one reported in [20], hence providing
a connection of the regular operators in (1) to the
Lagrangian construction in [20].
Before moving to studding the content of these

tables in more detail, and since most of the results
of this work are included as ancillary files [102],
let us here summarize the content of such files.
We present three files named CoefficientsFile.wl,
2PMAmplitudeEikonalScatteringAngle.wl,
and CanonicalObservables.wl. The first of them
contains the list of coefficients for the 1PM and 2PM
amplitude as appearing in (12). In addition, the coefficients
for the 1PM and 2PM eikonal phase for both CovSSC and
CanSSC [see (9) and (13)] are included. Finally, replace-
ment rules for the free coefficients of the Compton
amplitude (1), as coming from Teukolsky, or the spin-
shift-symmetry solutions (see Table V), and the dictionary
included in Table III are provided. The second file contains
an explicit implementation of Eqs. (12) and (13), as well
as the explicit results for the aligned spin scattering angle
(see below) in the CovSSC up to six order in spin. The
remaining file, contains the results for 2PM canonical
impulse and spin-kick [see (15)], up to sixth order in spin,
including contributions from both, regular and exotic spin
operators included in the Compton amplitude. Let us recall
contributions from exotic operators appear only when at
least one of the two spins is beyond the fourth order.

TABLE I. The independent spin structures for the s51 × s02 sector of the 2PM amplitude (12).

j j j

H⊗5
j

E1

1 E4
1

2 −q2ðp2 · s1Þ2E2
1

3 q4ðp2 · s1Þ4
4 ðq · s1Þ2E2

1
5 −q2ðq · s1Þ2ðp2 · s1Þ2 6 ðq · s1Þ4

H̃⊗5
j

ðp2 ·s1ÞE1js1j
1 −q2E2

1
2 q4ðp2 · s1Þ2 3 −q2ðq · s1Þ2

TABLE II. 2PM amplitude coefficients for the s51 × s02 sector of the two-body problem (12).

j j

A5;j

1 iσð7−13σ2Þ
48ð−1þσ2Þ3m7

1
m3

2

− iσð−96−60cð1Þ
2
þ480cð2Þ

2
þ135cð0Þ

3
þ7σ4ð−4þ120cð2Þ

2
þ15cð0Þ

3
−15cð1Þ

3
Þ−90cð1Þ

3
þσ2ð304þ60cð1Þ

2
−1320cð2Þ

2
−240cð0Þ

3
þ195cð1Þ

3
ÞÞ

1920ð−1þσ2Þ3m8
1
m2

2

2 iσð−5þ11σ2Þ
24ð−1þσ2Þ3m5

1
m3

2

− iσð4ð−36þ75cð1Þ
2
þ30cð2Þ

2
−σ2ð82þ180cð1Þ

2
þ240cð2Þ

2
−195cð0Þ

3
Þþ7σ4ð4þ15cð1Þ

2
þ30cð2Þ

2
−15cð0Þ

3
Þ−90cð0Þ

3
Þþ15ð9−16σ2þ7σ4Þcð1Þ

3
Þ

1920ð−1þσ2Þ3m6
1
m2

2

3 iσð−1þ3σ2Þ
48ð−1þσ2Þ3m3

1
m3

2

− iσð3ð−12þ40cð1Þ
2
−40cð2Þ

2
−55cð0Þ

3
þ25cð1Þ

3
Þþσ2ð16þ20ð−13þ7σ2Þcð1Þ

2
þ120cð2Þ

2
þ5ð68−35σ2Þcð0Þ

3
þ5ð−29þ14σ2Þcð1Þ

3
ÞÞ

640ð−1þσ2Þ3m4
1
m2

2

4 − iσð14σ2ð−4þ120cð2Þ
2
þ15cð0Þ

3
−15cð1Þ

3
Þþ3ð16þ20cð1Þ

2
−280cð2Þ

2
−60cð0Þ

3
þ45cð1Þ

3
ÞÞ

1920ð−1þσ2Þm6
1

ið6cð0Þ
4
þ7ð−1þσ2Þcð1Þ

4
þ2ð4−7σ2Þcð2Þ

4
Þ

64ð−1þσ2Þm6
1
m2

1 B5;j

5 30iσð4þ12cð1Þ
2
−15cð0Þ

3
þ6cð1Þ

3
Þ−7iσ3ð16þ60cð1Þ

2
þ120cð2Þ

2
−60cð0Þ

3
þ15cð1Þ

3
Þ

1920ð−1þσ2Þm4
1

ið2ð−4þ7σ2Þcð0Þ
4
−7ð−1þσ2Þcð1Þ

4
−6cð2Þ

4
Þ

64ð−1þσ2Þm4
1
m2

2

6 − iσð−3þ7σ2Þm2
2
ð−4þ120cð2Þ

2
þ15cð0Þ

3
−15cð1Þ

3
Þ

1920m4
1

ið−1þ7σ2Þm2ðcð1Þ4
−2cð2Þ

4
Þ

64m4
1

3

TABLE III. Coefficient dictionary relating the regular terms of
the s51 × s02 sector of the 2PM amplitude in this letter and the
generic 2PM amplitude included in the ancillary files for
Ref. [20]. The fixing Ci; H2 → 1 agrees with the minimal
coupling matching of the 3 pt amplitude to the linearized Kerr
metric, built in the Compton ansatz (1). Spin-shift symmetric
solutions evaluated using the values of the last two columns of
Table V agree with those given in [20].

cð2Þ2 →
374−165E1þ513E3−33E4−330E5−495c

ð0Þ
3
þ495cð1Þ

3

3960
,

cð1Þ2 →
153E3−11ð4þ3E4þ15E5Þþ2475cð0Þ

3
−990cð1Þ

3

1980
,

E7 →
17
30
þ 21E3

22
− E4

2
− E5

2
; E2 → −E1 þ 3

2
ðE3 þ E4Þ; H3 →

3
2
,

Ci → 1; i ¼ 2; 3; 4; 5; H2 → 1; E6 →
1
6
ð−2 − 3E3Þ; H5 →

15E3

11
.
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V. SPIN-SHIFT SYMMETRY VIOLATION
FOR TEUKOLSKY SOLUTIONS AND THE

HIGH-ENERGY LIMIT

It is illustrative to consider explicitly the 2PM LS
coefficients evaluated on the Teukolsky solutions given
in Table V; we include them in Table IV. Inspection of these
results reveals a breaking of the invariance of the amplitude
under the transformation aμi → aμi þ ςiqμ=q2, with ςi arbi-
trary constants, observed for the an≤4i cases [20,27,28]. This
happens not only due to the presence of the exotic operators
but also because of the nonzero contributions of regular
operators of the form q · si in Table I. One can also check
shift-symmetric solutions for the Compton amplitude
(Table V) induce a shift symmetric 2PM amplitude, as
first observed in [28].
Let us now comment on the high-energy behavior of the

2PM amplitude for Teukolsky solutions (Table IV). In the
high-energy limit (σ → ∞), the 1PM amplitude scales as
Oðσ2Þ (here Ei ∼ σ). Having a well-defined 2PM amplitude
in the high-energy limit means it should grow no faster than
the tree amplitude, as σ → ∞ [20]. This is, however, not the
case for Teukolsky solutions of Table IV. For instance, the
term A5;1E5

i in (12) grows as ∼σ4 as σ → ∞, and analo-
gously for the remaining contributions. This singular high-
energy behavior propagates to the 2PM observables as we
will discuss below in the context of the aligned spin-
scattering angle.

VI. EIKONAL PHASE AND THE
ALIGNED SPIN LIMIT

The LS computation provides us with the ingredients
needed to obtain the 2PM eikonal phase (8) for spinning
objects satisfying both CovSSC and CanSSC, the latter
obtained from the former by the shift of the impact
parameter b → bþP

i¼1;2ð −τ
Eiþmi

Þ p×simi
, a consequence of

dressing the amplitude with the rotation factors (5).
Results for the eikonal phase in the CanSSC will be
needed when evaluating canonical observables via (15).
We evaluate explicitly (8) and present the results for the

eikonal phase in the CovSSC and in c.m. coordinates in the
ancillary files [102]. The eikonal phase is organized
schematically as

χð2PMÞ
τ¼0 ¼

X
i;j

πG2

b2jþ1
ðLi;jb · Sj þ Ldi;jb · S̃jÞ; ð13Þ

with fSj; S̃g operators in the c.m. version of fðfbg∪HÞ⊗j;
ðfbg∪H̃Þ⊗jg respectively, bμ ¼ ð0; b; 0Þ, and the coeffi-
cients fLi;j; Ldi;jg are functions of mi; Ei; σ, and linear
combinations of the amplitude coefficients fAi;j; Bi;jg,
respectively. From this, we then specialize the eikonal phase
to the case in which the rotating objects have their spins
aligned in the direction of the angular momentum of the
system, b · si ¼ p · si ¼ 0 (see e.g., [43]) and compute the
2PM aligned spin scattering angle via ∂χτ¼0

∂jbj . In this limit,

the exotic operators do not contribute to the scattering angle
as observed in [26], therefore for Teukolsky solutions, the
angle itself is independent of the analytic continuation
procedure used to match (1) to the GW scattering process.
Results up to the sixth order in spin for the contributing
regular operators are included in the ancillary files for
generic contact deformations in (1) [102].
Let us now comment on the comparison of the aligned

spin scattering angle results in this work to the ones
presented in [26,30] for generic, spin-shift symmetric
[20,27,28], and Teukolsky-Compton coefficients [26].
The HCL prescription of [30] to compute the aligned
spin-scattering angle by fixing β ¼ 1, in turn hiddenly

sets q · sj → i Ej
m1m2σv

as well as jqj → 0 ⇒ jqjpi · sj → 0 in
(11), as can be seen from the last line of (A6). The latter
replacement does not have any problem since in the aligned
spin limit the equality p · si ¼ 0 is satisfied. Similarly, the
former identification does not possess any subtleties for
combinations of spin operators of the form ðk2 − k3Þ · si,
since these combinations themselves are independent of qμ,
as can be checked by direct inspection of Eq. (11).
However, for spin operators where ki · si have individual
appearances—as is the case for some of the contact

TABLE IV. 2PM LS coefficients for the s51 × s02 sector of the 2PM amplitude explicitly evaluated on the Teukolsky solutions Table V
for α ¼ 1.

j j

A5;j

1 iσð14m1−2ð13m1þ8m2Þσ2þ7m2σ
4Þ

96m8
1
m3

2
ðσ2−1Þ3

4 7iσ3

48m6
1
ðσ2−1Þ

2 iσð2m1ð11σ2−5Þþm2ð24−43σ2þ28σ4ÞÞ
48m6

1
m3

2
ðσ2−1Þ3

5 7iσð4σ2−3Þ
48m4

1
ðσ2−1Þ

3 iσðm1ð6σ2−2Þþm2ð51−104σ2þ56σ4ÞÞ
96m4

1
m3

2
ðσ2−1Þ3

6 im2
2
σð7σ2−3Þ
96m4

1

B5;j

1 iηð2þ7σ2Þ
24m6

1
m2ðσ2−1Þ

3 iηm2ð−1þ7σ2Þ
24m4

1
ðσ2−1Þ

2 iηð−5þ14σ2Þ
24m4

1
m2ðσ2−1Þ
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deformations in (1)—the identification q:sj → i Ej
m1m2σv

discards Oðq2Þ terms [see (A6)] that are important for
the aligned spin angle. For quadratic terms, for instance,
this map is equivalent to setting ðq · siÞ2 → ðq · siÞ2 − q2s2i ,
which in two-dimensional impact parameter space
implies 3ðb · siÞ2 − b2s2⊥i → 3ðb · siÞ2 − 2b2s2⊥i,—with s⊥i
the components of the spin along b—therefore removing
some terms that survive in the aligned spin limit (b · si ¼ 0).
An analogous analysis follows for higher-spin contribu-
tions. Interestingly, this identification removes the terms in
the amplitude that did not have a well-defined high-energy
limit. The spin-shift symmetric result of [6,28] has also a
well-defined high-energy limit. Finally, let us note the
angle for the lower-spin cases [30] did not face this
ambiguity since only the combination ð2w−k2−k3Þ·
ai—independent of q · ai terms—appeared in the
Compton amplitude.
Keeping all the contributions to the scattering angle, and

continuing with the theme of the spin-5 sector for briefness,
the aligned spin angle takes the form

θð5Þ ¼ θð5ÞBGKV −
9πEG2

256b7vð1 − v2Þ ½ða
5
1m2 þ a52m1ÞK1

þ ða31m2 þ a32m1Þa1a2K2�; ð14Þ

where K1¼80ð1−v2Þcð1Þ2 þ40ð8þ13v2Þcð2Þ2 þð4−11v2Þ×
ð4−15cð0Þ3 Þ−105v2cð1Þ3 and K2 ¼ −40½2ð1 − v2Þcð1Þ1 þ
ð8þ 13v2Þcð2Þ1 �, and with θð5ÞBGKV the scattering angle
reported in the arXiv v2 of [26]. Teukolsky solutions
(Table V) give K1jTeuk ¼ 20ð12 − 5v2Þ and K2jTeuk ¼ 0,
therefore resulting into a scattering angle divergent as v →
1 as expected from the discussion above. Let us stress this
result is independent of the analytic continuation pro-
cedure for the matching of Eq. (1) to the Teukolsky
solutions. Finally, for a shift-symmetric amplitude (see
the last two columns of Table V), K1 ¼ K2 ¼ 0 recovers
the result of [20,28], and the angle is well-behaved in the
high-energy limit. The sixth order in spin angle can be
obtained analogously, explicit results can be found in the
ancillary files [102]. Up to Oða6Þ, and in the probe limit,
our results are in complete agreement with the ones
reported in [103]; contact deformations of the Compton
amplitude do not contribute to the 2PM angle in this
case. In addition, only the next order in the symmetric
mass ratio is needed to fully obtain our 2PM results,
as expected from the spin version of the mass polyno-
miality rule [104].

VII. 2PM CANONICAL OBSERVABLES

We are finally in ready to compute the conservative 2PM
canonical observables for 2 → 2 scattering of SE Kerr BHs.
For this, we will follow the prescription provided by the

authors of [6,43]. It was noticed in these references that the
conservative observables ΔO∈ fΔp⊥;Δsag at 2PM can be
obtained from the eikonal phase in the CanSSC
χ ≡ χτ¼1 ¼ χ1PMτ¼1 þ χ2PMτ¼1 þ � � �, via

ΔO ¼ −fO; χg − 1

2
fχ; fO; χgg −DSLðχ; fO; χgÞ

þ 1

2
fO;DSLðχ; χÞg; ð15Þ

with the Poisson bracket given by

ff; gg ¼ ∂f

∂pj
⊥

∂g
∂bj

−
∂g

∂pj
⊥

∂f
∂bj

þ
X
a¼1;2

ϵijk
∂f
∂sia

∂g

∂sja
sa;k; ð16Þ

and the spin-derivative operator

DSLðf;gÞ¼
1

p2
X
a;1;2

�
∂f

∂sja

∂g
∂bj

sa ·p−pj ∂f

∂sja
sa ·∇bg

�
: ð17Þ

Using this prescription, and the results for the 1PM and
2PM eikonal phase derived above, we have computed the
2PM observables up to the sixth order in spin for generic
contact deformations in Eq. (1), which can then specialize
to Teukolsky solutions. The expressions are however too
long to be included in this paper and we, therefore, provide
them in the ancillary material for this work [102]. We
include results for the transverse impulse and individual
spin kicks in the CanSSC up to the sixth order in spin for
both regular and exotic contributions to the 2PM amplitude
in the c.m. frame. Up to the fourth order in spin our results
completely agree with those reported in [6,43,44] upon
setting to zero the contact deformations at this order, and
after the authors of [44] fixed some of the reported
observables that had an initial disagreement with the ones
presented in this work.

VIII. CONCLUSIONS

In this work, we have computed the canonical observ-
ables for the conservative SE Kerr two-body problem at
second order in the PM expansion and up to sixth order in
spin, for generic spin orientation. The results in this work
are presented for generic Compton contact deformations,
which can be specialized to Teukolsky solutions. In the
latter case, the 2PM amplitude breaks the conjecture
spin-shift symmetry for Kerr BHs [20,27,28], producing
observables with a nonsmooth high-energy behavior.
This leaves as an open problem understanding if the
unhealthy high-energy behavior is a consequence of the
analytic continuation to the SE Kerr region and observables
for actualKerr solutions (a⋆ ≤ 1) feature awell-defined high-
energy limit [105], perhaps guiding possible realizations of
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the spin-shift symmetry in this scenario. For the generic
coefficient case, we have presented a dictionary that maps the
Compton operators in this letter to the Lagrangian and
Hamiltonian constructions in [20]. Finally, the identification
of regular and exotic contributions with true conservative a
nd absorptive contributions in the Kerr binary problem is a
subject that requires further scrutiny and we leave for
future work.
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APPENDIX A: TRIANGLE LEADING
SINGULARITY AND THE HOLOMORPHIC
CLASSICAL LIMIT FOR GENERIC SPIN

ORIENTATION

In this appendix, we present an extension of the
Holomorphic Classical Limit (HCL) [94] and the triangle
Leading Singularity (LS) [78] constructions for spinning
particles for generic spin directions. This is based on an
unpublished note by Justin Vines to whom we are
grateful.
We start by constructing a suitable local 4-dimensional

reference frame all’a Penrose, Rindler, and Chandrasekhar
[107] as follows: Given a two-dimensional basis of massless
spinors L ¼ fjχi; jψig, together with the co-basis
L̃ ¼ f½χj; ½ψ jg, and whose elements satisfy the normaliza-
tion conditions hχψi ¼ ½χψ � ¼ 1ffiffi

2
p , we can adapt the spinor

bases to the vector tetrad feμðaÞg ¼ ftμ; xμ; yμ; zμg, with t2 ¼
−1 and x2 ¼ y2 ¼ z2 ¼ −1, via the usual vector-spinors
map Vαα̇ ¼ ðσμÞαα̇vμ, as follows:

Tαα̇ ¼ ðσμÞαα̇tμ ¼
ffiffiffi
2

p
ðjχi½ψ j þ jψi½χjÞ;

Zαα̇ ¼ ðσμÞαα̇zμ ¼
ffiffiffi
2

p
ðjχi½ψ j − jψi½χjÞ;

Xαα̇ ¼ ðσμÞαα̇xμ ¼
ffiffiffi
2

p
ðjχi½χj þ jψi½ψ jÞ;

Yαα̇ ¼ ðσμÞαα̇yμ ¼ i
ffiffiffi
2

p
ðjχi½χj − jψi½ψ jÞ: ðA1Þ

Here σμ are the Pauli matrices and shall not be confusedwith
the Lorentz boost factor σ which is a scalar.
This tetrad spans the 4-dimensional flat spacetime

and therefore any vector (including the spin) can be
constructed from a linear combination of vectors in
feμðaÞg. Notice in general the spinors in L are not related

to those in L̃ by complex conjugation and therefore
the tetrad decomposition admits vectors with complex
values. Thus, a generic vector qμ will be given by the
decomposition

Qαα̇ ¼ ðσμÞαα̇qμ
¼ aqjχi½χj þ bqjχi½ψ j þ cqjψi½χj þ dqjψi½ψ j; ðA2Þ

where aq ¼ 1
2
hψ jQjψ �, and analogously for the other

components. Lorentz invariant products are obtained in
the usual form

q2¼ 1

2
trðQ · Q̄Þ¼ 1

2
ðcqbq−aqdqÞ;p ·q

¼ 1

2
trðQ · P̄Þ¼ 1

4
ðbqcpþbpcq−aqdp−apdqÞ: ðA3Þ

2PM Triangle kinematics: The next task is to use this
reference frame to parametrize the momenta of the particles
in the triangle cut Fig. 1. Unlike for the aligned spin
scenario, here we will take the momentum transfer q ¼
k2 þ k3 so that q2 ¼ 2k2 · k3 ≠ 0. We orient the tetrad
feμðaÞg in such a way that the BH 2 is at rest, the BH 1

moves in the z-direction with relative velocity v, and the
component of qμ orthogonal to pμ

1 and pμ
2 lies in the x-

direction. It follows then

pμ
1 ¼ m1σðtμ þ vzμÞ; pμ

2 ¼ m2tμ; q · y ¼ 0: ðA4Þ

The momentum transfer qμ can be parametrized using
the decomposition (A2). With help of the on-shell con-
ditions p1 · q ¼ q2=2; p2 · q ¼ −q2=2 and q · y ¼ 0, and
solving for the coefficients aq; bq; cq; d2 in terms of the

kinematic variables m1; m2; σ; jqj, where jqj ¼
ffiffiffiffiffiffiffiffi
−q2

p
, one

explicitly gets

bq ¼
m2þm1ð1þvÞσffiffiffi

2
p

m1m2σv
jqj2; cq ¼−

m2þm1ð1−vÞσffiffiffi
2

p
m1m2σv

jqj2;

dq ¼ aq ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2qc2qþ2jqj2

q
: ðA5Þ

HCL parametrization: The final task is to find a suitable
parametrization for the internal massless momenta in such a
way the classical limit of the triangle diagram Fig. 1 is
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easily obtained. For that, let us introduce the new spinor
bases fjλ̂i; jη̂ig and f½λ̂j; ½η̂jg for the first massive line,
together with fjλi; jηig and f½λj; ½ηjg for the second
massive line, following Guevara [94]. In these new bases,
the external momenta are parametrized as

P1¼ jη̂�hλ̂jþ jλ̂�hη̂j; P̃1 ¼ β0jη̂�hλ̂jþ 1

β0
jλ̂�hη̂jþ jλ̂�hλ̂j;

P2¼ jη�hλjþ jλ�hηj; P̃2 ¼ βjη�hλjþ1

β
jλ�hηjþ jλ�hλj;

Q¼P1− P̃1 ¼−P2þ P̃2; ⇒ jqj2 ¼m2
2

ðβ−1Þ2
β

; ðA6Þ

where Q is the complex momentum transfer matrix.
Thus, as jqj → 0 (as β → 1) one recovers the usual HCL
result Q → jλ�hλj, but now we keep subleading terms in
(β − 1). The on-shell conditions P2

1 ¼ P̃2
1 ¼ m2

1 and
P2
2 ¼ P̃2

2 ¼ m2
2, impose the normalization for the spinors

hλ̂ η̂i ¼ ½λ̂ η̂� ¼ m1 and hληi ¼ ½λη� ¼ m2. For the internal
gravitons, the spinor helicity variables are analogously
parametrized via

jk2i ¼
1

β þ 1

�
ðβ2 − 1Þjηi − 1þ βy

y
jλi

�
;

jk2� ¼
1

β þ 1
ððβ2 − 1Þyjη� þ ð1þ βyÞjλ�Þ;

jk3i ¼
1

β þ 1

�
β2 − 1

β
jηi þ 1 − y

y
jλi

�
;

jk3� ¼
1

β þ 1
ð−βðβ2 − 1Þyjη� þ ð1 − β2yÞjλ�Þ: ðA7Þ

Here y is the loop integration parameter entering
in (10). Imposing consistency between the HCL (A6)
and the tetrad (A2) (A4) parametrizations, allows us to
solve for fjλi; jηi; ½λj; ½ηjg in terms of fjχi; jψi; ½χj; ½ψ jg,
up to an irrelevant little group scale ω̄ that cancels from
the final result. Using, β ¼ 1þ jqj

2m2
2

ðjqj ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 þ 4m2

2

p
Þ,

as well as the solutions (A5) for the on-shell condi-
tions for the external momenta, to leading order in jqj, we
find [108]

jλi ¼ ω̄
ffiffiffiffiffiffi
jqj

p
ðjχi þ jψiÞ þOðq3=2Þ;

½λj ¼
ffiffiffi
2

p jqj
ω̄

ð½χj − ½ψ jÞ þOðq3=2Þ;

jηi ¼ −
m2ω̄ffiffiffiffiffiffijqjp jχi þOðq1=2Þ;

½ηj ¼ m2ffiffiffiffiffiffiffiffiffijqjω̄p ½χj þOðq1=2Þ: ðA8Þ

These solutions can be replaced into (A7) to obtain
analog expressions for the internal graviton variables.
Explicitly, in the tetrad basis, to leading order in jqj, the
internal graviton momenta take the form

kμ2 ¼
jqj
2σv

½
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
ðuμ − σtμÞ þ σvðxμ þ izyμÞ�;

kμ3 ¼ −
jqj
2σv

½
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
ðuμ − σtμÞ − σvðxμ − izyμÞ�;

wμ ¼ −
jqj

2σð1 − vzÞ ½ðu
μ − σtμÞz

þ σvð
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p
tμ þ iðz2 − 1ÞyμÞ�; ðA9Þ

where the incoming 4-velocity uμ ¼ pμ
1=m1. Here we have

used (3) as a definition for wμ, and the gauge (3), together
with the Lorentz products p1 · k2 ¼ − 1

2
m1jqjσv

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 − 1

p

andp1 · ϵ2 ¼ − 1
2½23�m1jqjσð1þ vzÞ entering in (3).We can

further identify the momentum transfer qμ ¼ jqjxμ,
whereas yα ¼ εδαβγtδxβzγ , since εαβγδtαxβyγzδ ¼ 1, with
εαβγδ the four-dimensional Levi-Civita symbol. In terms
of the external momenta (A4), and with yα ¼ 1

m1m2σvjqj E
α,

where Eα was defined bellow (11), the massless momenta
(A9) recover the main text expressions (11).

APPENDIX B: COMPTON AMPLITUDE FROM
TEUKOLSKY SOLUTIONS

The explicit form of the amplitude (1), contains the
function of contact deformations Pξ [26]:

Pξ ¼
X2
m¼0

ξm−1ðw ·aÞ4−2mðw ·a−k2 ·aÞmðw ·aþk3 ·aÞmrðmÞ
jaj ðk2 ·a;−k3 ·a;w ·aÞ

þ
X∞
m¼0

�ðw ·aÞ2mþ6

ξmþ2
pðmÞ
jaj ðk2 ·a;−k3 ·a;w ·aÞþξmþ2ðw ·a−k2 ·aÞmþ3ðw ·aþk3 ·aÞmþ3qðmÞ

jaj ðk2 ·a;−k3 ·a;w ·aÞ
�
; ðB1Þ

where the multivariable polynomials pðmÞ
jaj ; q

ðmÞ
jaj ; r

ðmÞ
jaj up to order a6 have the explicit form:
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rðmÞ
jaj ¼ cðmÞ

1 þ cðmÞ
2 ðk2 · a − k3 · aÞ þ cðmÞ

3 w · aþ cðmÞ
4 jajωþ cðmÞ

5 ðw · a − k2 · aÞðw · aþ k3 · aÞ
þ cðmÞ

6 ð2w · a − k2 · aþ k3 · aÞw · aþ cðmÞ
7 ð2w · a − k2 · aþ k3 · aÞ2 þ cðmÞ

8 ðw · aÞ2

þ cðmÞ
9 ðk2 · a − k3 · aÞjajωþ cðmÞ

10 w · ajajωþOða3Þ ðB2Þ

pðmÞ
jaj ¼ dðmÞ

1 þOðaÞ; qðmÞ
jaj ¼ fðmÞ

1 þOðaÞ: ðB3Þ

Here cmi ; d
ðmÞ
i and fðmÞ

i are free coefficients that can be fixed either by imposing spin-shift symmetry arguments, or by
matching the explicit BHPT computation. The different choices with their respective explicit values are indicated in Table V.
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