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We investigate the tidal forces exerted by a spherically symmetric static parametrized black hole. Our
analysis reveals that the radial and angular components of the tidal forces exerted by the black hole can
exhibit both positive and negative values near the black hole, depending on matters of the spacetime
parameters. Unlike the scenario with the Schwarzschild black hole, where the radial tidal force (angular
tidal force) is always stretching (compressing) and becomes infinite at the center of the spacetime, the
parametrized black hole allows for finite and compressing (stretching) forces within the event horizon.
Additionally, we derive the geodesic deviation equations for a particle in free fall and proceed to solve them
through numerical methods. Our analysis demonstrates that the spacetime parameters ϵ and a1 exhibit
contrasting influences on the magnitudes of the physical quantities associated with tidal effects.
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I. INTRODUCTION

The mysterious and fascinating characteristics of black
holes have consistently captivated both physicists and
astrophysicists. The black holes are characterized by their
strong gravitational attraction and special boundaries that
distort space so much that even light cannot escape from
them. One of the most intriguing aspects of this gravita-
tional dominance is the phenomenon of tidal forces, which
emerge when an external gravitational field acts upon an
extended body, resulting in the deformation and stretching
(shrinking) of its constituent parts. Tidal effects around
black holes have attracted significant attention due to their
profound implications across various astrophysical con-
texts [1–4]. From inspirals of compact objects into black
holes to the interactions within stellar binaries and the
behavior of matter in active galactic nuclei, tidal forces play
a pivotal role in shaping the dynamics and observable
phenomena in these extreme gravitational environments
[5–15]. It is well known that in the Schwarzschild space-
time, a freely falling particle experiences a consistent
stretching in the radial direction and compression in the
angular direction during its trajectory toward the spacetime
center [16]. However, distinctive behaviors of tidal effects
emerge in the context of Reissner-Nordström and dirty

black holes, showcasing a notable transition from radial
stretching to compressing, and from angular compressing
to stretching, occurring between the inner and outer
horizons of the spacetime [16–21]. Furthermore, various
phenomena associated with tidal effects encompassing
diverse spacetimes in the realm of gravity theories have
been explored in previous studies [22–29].
Despite Einstein’s general theory of relativity having

proven highly successful in explaining gravity’s behavior in
many scenarios, there are still some unresolved problems
and observational data that require potential limitations or
modifications to this theory. As a result, researchers have
developed various alternative theories of gravity to address
these discrepancies, to explore unexplained phenomena such
as dark matter and dark energy, and seek a more compre-
hensive understanding of the Universe’s fundamental forces.
Parametrizing black hole spacetimes is crucial for theoretical
exploration, comparative analysis, testing gravity theories,
interpreting gravitational wave signals,modeling astrophysi-
cal phenomena, and facilitating education. It allows scientists
to investigate the effects of different parameters on black hole
geometry, enhancing our understanding of these objects and
their role in the Universe. In recent years a numbers of
parametrically deformed metrics have been proposed, such
as the Johannsen-Psaltis metrics [30,31], their extensions
[32,33], and the Rezzolla-Zhidenko (RZ) metrics [34,35].
Since then, researchers have diligently sought to find con-
straints on the parameters of the parametrized spacetime
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through analysis of various observational data and the
exploration of relevant physical phenomena [36–45].
Our study in this paper focuses on the tidal forces

produced by spherically symmetric static parametrized
black holes proposed by Rezzolla and Zhidenko [34],
encompassing exploration of both radial and angular
components of these forces. In the following sections,
we will discuss our methodology, including the geodesic
deviation equations for particles in free fall and the
numerical techniques employed to analyze their behavior
in the presence of tidal forces. We will also delve into the
intricate relationship between spacetime parameters and the
physical quantities linked to tidal effects, revealing how
variations in these parameters can lead to divergent
behaviors. Hence, in Sec. II, we provide a concise overview
of the parametrized spacetime concept, while in Sec. III we
delve into the investigation of radial geodesics concerning
massive test particles. The equation for geodesic deviation
within the parametrized spacetime framework is introduced
in Sec. IV. Furthermore, Secs. Vand VI are dedicated to the
comprehensive examination of radial and angular tidal
forces, along with the numerical solutions of the geodesic
deviation equations within the parametrized black hole
spacetime, respectively. To conclude, our key findings are
summarized in Sec. VII. Throughout the paper, we adopt
the metric signature (−;þ;þ;þ) and set the speed of light
and the Newtonian gravitational constant equal to the
unity, c ¼ G ¼ 1.

II. BASIC EQUATIONS

As indicated by Rezzolla and Zhidenko in their work
[34], the line element characterizing spherically symmetric
and static black holes can be elegantly expressed in a
parametrized form as

ds2 ¼ −N2ðrÞdt2 þ B2ðrÞ
N2ðrÞ dr

2 þ r2dΩ2; ð1Þ

where the metric function N2ðrÞ depends on the radial
coordinate r only and the term dΩ2 ≡ dθ2 þ sin2 θdϕ2

denotes the solid angle. By introducing a new dimension-
less variable, expressed in terms of the event horizon radius
r0, it becomes feasible to streamline the radial coordinate as
follows:

x≡ 1 −
r0
r
; ð2Þ

in terms of the new coordinate, the event horizon corre-
sponds to the value of x ¼ 0, while spatial infinity is
represented at x ¼ 1, effectively establishing a range of
x∈ ½0; 1�. Furthermore, we assume that the metric function
is given as

N2ðrÞ ¼ xAðxÞ: ð3Þ

The functions A and B in (3) are given in terms of the
bumpy parameters as [34]

AðxÞ ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ ÃðxÞð1 − xÞ3;
BðxÞ ¼ 1þ b0ð1 − xÞ þ B̃ðxÞð1 − xÞ2: ð4Þ

In expressions (4), the parameters ϵ, a0, and b0 serve as new
coefficients, while Ã and B̃ are introduced to characterize
the metric properties at the event horizon and spatial
infinity through the Padé series as [34]

ÃðxÞ ¼ a1
1þ a2x

1þ a3x
1þ���

;

B̃ðxÞ ¼ b1
1þ b2x

1þ b3x
1þ���

;

where a1; a2; a3;… and b1; b2; b3;… are dimensionless
constants. Notably, the dimensionless coefficient ε holds a
direct relationship with the event horizon via

ϵ ¼ −
�
1 −

2M
r0

�
; ð5Þ

where M is the Arnowitt-Deser-Misner mass. ϵ measures
the deviations of event horizon r0 from 2M and it is an
important parameter because one can recast all the other
coefficients in terms of it.
The metric functions N2ðrÞ and BðrÞ can be written

explicitly in terms of the expansion parameters as

N2ðrÞ¼
�
1−

r0
r

��
1−ϵ

r0
r
þða0−ϵÞ

�
r0
r

�
2

þa1

�
r0
r

�
3

���
�
;

BðrÞ¼1þb0
r0
r
þb1

�
r0
r

�
2

þ���: ð6Þ

If ϵ ¼ 0, ai ¼ 0, bi ¼ 0 with i ¼ 0; 1; 2;…, one recovers
the standard spherically symmetric Schwarzschild space-
time. Furthermore, the requirement for consistency with
general relativity at the 1PN order has demonstrated that
a0 ¼ 0 and b0 ¼ 0 [34]. To simplify our subsequent
calculations, we limit our consideration to the third order
of x terms, resulting in the following expressions for the
metric functions:

N2ðrÞ ¼
�
1 −

r0
r

��
1 − ϵ

r0
r

�
1þ r0

r

�
þ a1

�
r0
r

�
3
�
;

BðrÞ ¼ 1þ b1

�
r0
r

�
2

: ð7Þ

With the groundwork established for the background
spacetime, we can now proceed to dive into the study of
the equations of motion for the test particle. To investigate
the motion of both massive and massless particles using the

BOBIR TOSHMATOV and BOBOMURAT AHMEDOV PHYS. REV. D 108, 084035 (2023)

084035-2



same equations of motion, one can achieve this by setting
the mass of the particle to zero in the latter scenario,
effectively reverting to the former case. Notably, the
symmetry of the spacetime metric (1) gives rise to con-
served momenta associated with the time and azimuthal
coordinates, attributed to the spacetime’s stationarity and
spherical symmetry. These conserved momenta are termed
the energy (E) and angular momentum (L) of the particle,
respectively, as

N2ðrÞut ¼ E; ð8Þ

r2uϕ ¼ L: ð9Þ

Henceforth, we adopt the terms specific energy and specific
angular momentum instead of the energy and angular
momentum of the massive particle with mass m, repre-
sented as E → E=m and L → L=m, respectively. These
concepts are defined on a per-unit-mass basis. Furthermore,
to simplify matters, we restrict our analysis to particle
motion confined to the equatorial plane. By applying the
normalization condition uμuμ ¼ −ε, the momentum corre-
sponding to the radial coordinate of the particle can be
derived as

B2ðurÞ2 ¼ E2 − Veff ; Veff ¼ N2ðrÞ
�
εþ L2

r2

�
; ð10Þ

where ε ¼ 0, 1 for the massless and massive particles,
respectively. The effective potential can be separated into
three components with the first being of general relativity
and the second and third being of the additional deviation
terms from the general relativity on account of the
parameters ϵ and a1, respectively, as

Veff ¼ VGR
eff þ ϵδVeff1 þ a1δVeff2; ð11Þ

where

VGR
eff ¼

�
1 −

r0
r

��
εþ L2

r2

�
;

δVeff1 ¼ −
r0
r

�
1 −

r0
r

��
1þ r0

r

��
εþ L2

r2

�
;

δVeff2 ¼
�
r0
r

�
3
�
1 −

r0
r

��
εþ L2

r2

�
: ð12Þ

Thus, the equations of motion of the particle confined at the
equatorial plane of the spherically symmetric parametrized
spacetime is given by the following:

ut ¼ E
N2

;

B2ðurÞ2 ¼ E2 − Veff ;

uϕ ¼ L2

r2
: ð13Þ

It is well known that the particle moving along the circular
orbit around the black hole has zero radial velocity and
acceleration. Therefore, one can see from the above
equations of motion that the radii of the characteristic
circular orbits around parametrized black holes are inde-
pendent from the parameters bi. Despite, further compu-
tations concerning the circular motion of the test particle
around parametrized black hole have been conducted in
[44,46], in Fig. 1 we present the effect of the spacetime
parameters ϵ and a1 on the radii of the circular null
geodesics (photon sphere) and the innermost stable circular
orbit (ISCO). One can see from Fig. 1 that an observable
trend emerges where the radii of circular orbits expand as
the spacetime parameter ϵ increases. Conversely, the
parameter a1 brings about a reduction in the radii of these
orbits. In essence, the parameter ϵ enhances the gravita-
tional attraction, while the parameter a1 weakens it.

III. RADIAL GEODESICS OF MASSIVE PARTICLE

In this section, we consider the motion of the particle
along the radial coordinate only. In radial geodesics, the
particle angular velocities of the particle vanish
(uθ ¼ 0 ¼ uϕ). In Eq. (8) we are already given the explicit
form of the time component of the four-velocity. The only
component of the four-velocity we need to determine is the
radial component. To find it, we use normalization con-
dition uμuμ ¼ −1 for the massive particle and obtain the
following expression:

B2ðurÞ2 ¼ E2 − N2ðrÞ: ð14Þ

FIG. 1. Radii of photon sphere, rps (region between blue
curves), and the innermost stable circular orbits, risco (region
between black curves) as a function of the spacetime parameters.
Here we set a1 ∈ ½0; 1� with 0.01 steps.
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If one considers the radially falling particle from the rest
position at r ¼ b, from (14) one can find that the energy of
the particle equals

E ¼ NðbÞ: ð15Þ

It has been shown in [4,17] that in certain spacetimes the
freely falling particle stops at some point and bounces back.
This point of the spacetime (denoted as r ¼ Rstop) is found
from the conservation of energy given by Eq. (14).
Therefore, we can claim that the radius Rstop does not
depend on the spacetime parameters bi. Since one cannot
find the explicit form of Rstop for the parametrized space-
time with metric functions (7), we express the dependence
of this radius on the spacetime parameters in Fig. 2.
Figure 2 shows that with increasing the value of the
spacetime parameter a1, the radius Rstop decreases. If
the spacetime parameter a1 is neglected, one can find
the analytical expression of Rstop as

Rstop ¼ 2br0
ffiffiffi
ϵ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2ðϵþ 1Þ − 3r20ϵ

p
− r0

ffiffiffi
ϵ

p : ð16Þ

From (16) and Fig. 2, one can see that in the case of the
Schwarzschild black hole (ϵ ¼ 0, a1 ¼ 0), the particle does
not bounce back and travels towards the curvature singu-
larity of the spacetime as Rstop ¼ 0 [4]. If the initial position
of the particle is at spatial infinity (r → ∞), the radius Rstop

is located at

Rstop ¼ r0

ffiffiffiffiffiffiffiffiffiffiffi
ϵ

1þ ϵ

r
; ð17Þ

which is located inside the event horizon of the black hole
(Rstop < r0). If the initial position of the particle is very far
relative to the horizon of the black hole, the radius Rstop is
located at

Rstop ¼ r0

ffiffiffiffiffiffiffiffiffiffiffi
ϵ

1þ ϵ

r
þ
�

ϵ

1þ ϵ

�
r20
2b

þOðb−2Þ: ð18Þ

In this case also the radius Rstop is located inside the event
horizon of the black hole. Since Rstop is always located
inside the event horizon of the black hole and we are
interested in the tidal forces outside the event horizon, we
will not explore the bounce radius in this paper.
Let us write the motion of the particle in terms of

Newton’s second law in which the acceleration of the
particle equals the net force per mass. It is well known that
the radial acceleration of the particle is defined by the
second derivative of radial coordinate (or the first derivative
of radial velocity) with respect to the proper time. Thus, the
“Newtonian radial acceleration” that the parametrized
black hole exerts on the radially freely falling particle is
given by

u̇r ¼ −
r0
2r2

�
1þ ϵ

�
1 −

3r20
r2

�
−
r20
r2

�
3 −

4r0
r

�
a1

�
: ð19Þ

Indeed, in the case of the Schwarzschild black hole, the
Newtonian radial acceleration reduces to the free fall
acceleration in Newtonian gravity [4,47]. However, in

FIG. 2. Dependence of Rstop on the spacetime parameters of the
parametrized spacetime.

FIG. 3. The “Newtonian radial acceleration” of the particle in parametrized spacetime. Here we set a1 ¼ 0 ¼ b1 and ϵ∈ ½0; 1� with
0.01 steps (left panel) and ϵ ¼ 1 and a1 ∈ ½0; 1� with 0.01 steps (right panel).

BOBIR TOSHMATOV and BOBOMURAT AHMEDOV PHYS. REV. D 108, 084035 (2023)

084035-4



the case of the parametrized black hole due to the effect of
the additional parameter ϵ, its behavior changes signifi-
cantly, see Fig. 3 for the details.

IV. GEODESIC DEVIATION IN
PARAMETRIZED SPACETIME

Now let us focus on the tidal force acting on the radially
freely falling particle to the black hole in the parametrized
spacetime. It is well known that the distance between two
freely falling particles is described by the geodesic
deviation vector ημ via the equation

D2ημ

Dτ2
¼ Rμ

σνρvσvνηρ; ð20Þ

where τ is a proper time, vμ is the unit vector tangent to the
geodesics. The geodesic deviation refers to the phenome-
non where initially parallel geodesics (the paths followed
by freely falling particles) start to converge or diverge due
to the curvature of spacetime. For our further calculations,
we turn to the free-fall reference frame via the following
orthonormal tetrads:

êμ
0̂
¼ E

N2ðrÞ δ
ðμÞ
ð0Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − N2ðrÞ

p
BðrÞ δðμÞð1Þ;

êμ
1̂
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − N2ðrÞ

p
B2ðrÞ δðμÞð0Þ þ

E
BðrÞ δ

ðμÞ
ð1Þ;

êμ
2̂
¼ 1

r
δðμÞð2Þ; êμ

3̂
¼ 1

r sin θ
δðμÞð3Þ; ð21Þ

where indices ð0; 1; 2; 3Þ ¼ ðt; r; θ;ϕÞ. These tetrads sat-
isfy the orthonormality condition as

ê α
μ̂ êν̂α ¼ ημ̂ ν̂; ð22Þ

where ημ̂ ν̂ is the metric tensor of the Minkowski metric.
Note that êμ

0̂
¼ uμ. Let us write the geodesic deviation

vector in terms of the free-fall reference frame tetrads as

ημ ¼ êμν̂η
ν̂; ð23Þ

where we set ην̂ ¼ ð0; η1̂; η2̂; η3̂Þ. In terms of the free-fall
reference frame, the radial geodesic deviation equation (20)
takes the following form:

D2η1̂

Dτ2
¼ −

1

2B
d
dr

�
1

B
dN2

dr

�
η1̂; ð24Þ

while the angular geodesic deviation equation is given by

D2ηî

Dτ2
¼ −

1

rB2

�
1

2

dN2

dr
þ E2 − N2

B
dB
dr

�
ηî; ð25Þ

where i ¼ 2, 3. For the exterior spherically symmetric
spacetimes with gttgrr ¼ −1 (or BðrÞ ¼ 1), the geodesic
deviation equations (24) and (25) reduce to the well-known
forms [21,48]

D2η1̂

Dτ2
¼ −

1

2

d2N2

dr2
η1̂; ð26Þ

D2ηî

Dτ2
¼ −

1

2r
dN2

dr
ηî: ð27Þ

In the next sections, we analyze radial and angular tidal
forces of the radially freely falling particle in detail.

V. RADIAL TIDAL FORCE

In this section, we explore the radial tidal force on the
neutral test particle radially falling to a parametrized black
hole with spacetime (1). Let us first consider the radial
profile of the radial tidal force (24) which is given in Fig. 4.
As can be seen in Fig. 4, in the Schwarzschild spacetime the
radial tidal force always increases towards center of the
spacetime. However, in the case of the parametrized
spacetime, close to the center of the spacetime the radial
tidal force is negative and with increasing the radial

FIG. 4. The radial profile of the radial force for different values of the spacetime parameters. Here we set a1 ¼ 0 ¼ b1 and ϵ∈ ½0; 1�
with 0.05 steps (left panel) and ϵ ¼ 1 and a1 ∈ ½0; 1� with 0.05 steps (right panel).
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coordinate, it increases to the positive maximum value and
beyond decreases to zero and finally vanishes. An increase
in the value of ϵ increases the region where the radial tidal
force becomes negative as well as decreases the maximum
value of the radial tidal force. The parameter a1, on the
other hand, does not affect significantly the radius inside of
which the tidal force is negative, while it slightly decreases
the maximum value of the radial tidal force.
As we have seen in Fig. 4, the radial tidal force is

negative close to a center of the parametrized spacetime and
it is positive elsewhere. Between these positive and
negative values of the radial tidal force, at some point in
the radial coordinate, it becomes zero. From (24) one can
determine the radius r ¼ Rrtf

van where the radial tidal force
vanishes by solving the following polynomial equation:

ðϵþ 1ÞðRrtf
vanÞ5 − 6r20ðϵþ a1ÞðRrtf

vanÞ3
þ 10a1r30ðRrtf

vanÞ2 − 3b1r40ðϵþ a1ÞRrtf
van þ 6a1b1r50 ¼ 0:

ð28Þ

The polynomial equation (28) cannot be solved analyti-
cally. Therefore, in order to clarify the effects of the
spacetime parameters on the radius Rrtf

van we solve it
numerically and present results in Fig. 5. Examining
Fig. 5 might lead one to conclude that the radial tidal
force vanishes at the center of the Schwarzschild spacetime.
However, this interpretation contradicts the result depicted
in Fig. 4, which illustrates that in the Schwarzschild black
hole scenario, the tidal force diverges as the particle
approaches the curvature singularity at r ¼ 0. To clarify
this discrepancy, let us analyze the matter further. In Fig. 5,
the black curve corresponding to a1 ¼ 0 denotes the points
at which the radial tidal force vanishes. The expression for
this force is given by

r20η̈
1̂

η1̂
¼ ð1þ ϵÞr0

r3
−
6ϵr30
r5

: ð29Þ

From (29) it is evident that the radial tidal force always
diverges as the particle approaches the spacetime center,
even when ϵ ¼ 0. Nonetheless, with any positive ϵ value,
the second fraction on the right-hand side of (29) prevails
for small r values, leading to the radial tidal force reaching
negative infinity at r ¼ 0. Thus, if the spacetime deviates
from the Schwarzschild one on account of the parameters
ϵ and a1, the radius Rrtf

van becomes nonzero and with
increasing the value of the parameter ϵ, the radius Rrtf

van

increases. On the contrary, the parameter a1 decreases Rrtf
van.

On the other hand, the parameter b1 does not significantly
affect the radius Rrtf

van, however its influence is positive, as
with increasing the value of b1, the radius where the radial
tidal force vanishes increases. As we mentioned above,
once a deviation from general relativity is considered, the
radius Rrtf

van becomes nonzero and depending on the values
of the spacetime, it can be inside or outside the event
horizon. When the spacetime parameters satisfy the follow-
ing condition, the radial tidal force vanishes at the event
horizon of the spacetime:

ϵcr ¼ a1 þ
1 − a1
5þ 3b1

: ð30Þ

Accordingly, the radius Rrtf
van relative to the event horizon

can be classified as follows:
(i) For ϵ < ϵcr, the radius Rrtf

van is located inside the
event horizon, Rrtf

van < r0.
(ii) For ϵ ¼ ϵcr, the radius Rrtf

van is located at the event
horizon, Rrtf

van ¼ r0.
(iii) For ϵ > ϵcr, the radius Rrtf

van is located outside the
event horizon, Rrtf

van > r0.
If the parameter a1 is negligibly small, then the radius Rrtf

van
becomes

Rrtf
van ¼ r0

�
3ϵ

ϵþ 1
þ

ffiffiffiffiffi
3ϵ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1ðϵþ 1Þ þ 3ϵ

p
ϵþ 1

�1=2
: ð31Þ

Now let us turn our focus on the maximum value of the
radial tidal force exerted by the black hole to the radially

FIG. 5. The radius where the radial force vanishes for different values of the spacetime parameters. Here we set b1 ¼ 0 and a1 ∈ ½0; 1�
with 0.01 steps (left panel) and a1 ¼ 0.5 and b1 ∈ ½0; 1� with 0.01 steps (right panel).
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falling free particle. Prior to determining the maximum
value of the radial tidal force, let us find the radius r ¼ Rrtf

max
where the tidal force reaches the maximum value. To find
this radius, one must solve the below given polynomial
equation:

ðϵþ 1ÞðRrtf
maxÞ5 − 10r20ða1 þ ϵÞðRrtf

maxÞ3
þ 20a1r30ðRrtf

maxÞ2 − 7b1r40ða1 þ ϵÞRrtf
max þ 16a1b1r50 ¼ 0:

ð32Þ

Unfortunately, the fifth order polynomial equation (32)
cannot be solved analytically for the radius Rrtf

max. By
solving Eq. (32) numerically, one can easily determine
the effect of the parameters of the spacetime on the radius.
In Fig. 6 we present some special cases of the effects of
parameters ϵ, a1, and b1. Moreover, in order to have more
precise knowledge of the relation of the spacetime param-
eters to Rrtf

max, we found the approximate analytical solution
of Eq. (32) by assuming the higher order parameters a1 and
b1 are very small as

Rrtf
max ¼ r0

� ffiffiffiffiffiffiffiffiffiffi
10ϵ

1þ ϵ

r
−
�
1

ϵ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

2ϵð1þ ϵÞ

s �
a1þ

7

20

ffiffiffiffiffiffiffiffiffiffi
1þ ϵ

10ϵ

r
b1

�

þOða21;b21Þ: ð33Þ

From Fig. 6 and Eq. (33), one can see that with increasing
the value of ϵ, the radius Rrtf

max always increases but on
account of only parameter ϵ, the radius Rrtf

max can be located
outside the event horizon only if ϵ > 1=9. Moreover, the
parameter a1 decreases the radius Rrtf

max while the parameter
b1 increases this radius; however, its contribution is not
very significant.
Now let us turn our attention on the maximum radial tidal

force acting on the radially freely falling particle to the
parametrized black hole. To calculate the maximum value
of the radial tidal force (24), we use Eq. (32) and find the
following function:

�
η̈1̂

η1̂

�
max

¼ 2r30½2ðϵþ a1ÞRrtf
max − 5a1r0�

ðRrtf
maxÞ2½ðRrtf

maxÞ2 þ b1r20�2
: ð34Þ

To calculate exact maximum value of the radial tidal force
given by (34), one must find the value of the radius Rrtf

max in
Eq. (32). By solving Eq. (32) numerically and inserting that
value to the maximum value of the radial tidal force (34),
we obtain the numerical results of some cases presented in
Fig. 7. From Fig. 7, one can see that in the Schwarzschild
black hole spacetime, the maximum value of the radial tidal
force diverges at r ¼ 0. However, in the parametrized
spacetime the tidal force never becomes infinity. If we
consider the effect of a single parameter ε, it decreases the
maximum value of the radial tidal force.
However, an approximate maximum value of the radial

tidal force for the small a1 and b1 parameters can easily be
calculated via (33) as

�
η̈1̂

η1̂

�
max

¼ 1

25

�ðϵþ 1Þ5=2ffiffiffiffiffi
10

p
ϵ3=2

−
3b1ðϵþ 1Þ7=2
8

ffiffiffiffiffi
10

p
ϵ5=2

þa1

�ðϵþ 1Þ3
4ϵ3

−
3ðϵþ 1Þ5=2
2

ffiffiffiffiffi
10

p
ϵ5=2

��
1

r20
þOða21; b21Þ:

ð35Þ

From (35) one can confirm from the results of Fig. 7 that
the parameter a1 increases the maximum value of the radial
tidal force while the parameter b1 decreases it.
Now we solve the equation of geodesic deviation (24) for

the radial geodesic deviation vector η1̂ in the parametrized
spacetime (1) with metric functions (7). First, we write the
differential equation with respect to the radial coordinate
through the following relation:

d2η1̂

dτ2
¼ ðurÞ2 d

2η1̂

dr2
þ 1

2

dðurÞ2
dr

dη1̂

dr
: ð36Þ

FIG. 6. The radius where the radial force becomes maximum as a function of the parameters of the parametrized spacetime. Here we
set b1 ¼ 0 and a1 ∈ ½0; 1� with 0.01 steps (left panel) and a1 ¼ 0.5 and b1 ∈ ½0; 1� with 0.01 steps (right panel).
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By using expressions (14) and (36), we rewrite the differ-
ential equation for the radial geodesic deviation (24) in the
following form:

d2η1̂

dr2
þ
�

NN0

N2 − E2
−
B0

B

�
dη1̂

dr

þ NðBN00 − B0N0Þ þ BðN0Þ2
BðE2 − N2Þ η1̂ ¼ 0: ð37Þ

To solve the ordinary differential equation for the radial
geodesic deviation (37), we adopt the two types of initial
condition for the particle falling from r ¼ b > r0 to the
parametrized black hole [16–19]. The first initial conditions
(IC1) given by

η1̂ðbÞ ¼ 1;
dη1̂

dτ

				
r¼b

¼ 0; ð38Þ

represents the particle with no internal motion at r ¼ b. The
second initial conditions (IC2) represents dust “exploding”
from a point at r ¼ b on the symmetry axis via the
condition

η1̂ðbÞ ¼ 0;
dη1̂

dτ

				
r¼b

¼ 1: ð39Þ

In the next step we numerically solve the ordinary differ-
ential equation (37) in the parametrized spacetime (1) with
metric functions (7) for the initial conditions IC1 and IC2
and present radial dependencies of the radial geodesic
deviation vector in Figs. 8 and 9.
In Fig. 8 we adopt IC1 and set b ¼ 100r0, a1 ¼ 0 ¼ b1

and plot the η1̂ component of the geodesic deviation vectors
for various choices of the parameter ϵ of the parametrized
black hole spacetime. We show that the behavior of η1̂ is
essentially the same for different values of ϵ at large
distances. Besides that, it can be seen that the geodesic
deviation vector η1̂ in the Schwarzschild spacetime tends to
infinity as the particle approaches the center of the
spacetime where the curvature singularity is located.
However, the behavior of η1̂ changes with increasing the
value of ϵ, as it initially increases until its maximum value
(inside the black hole horizon) and it decreases to a
very small value at Rstop near the spacetime singularity.
With increasing the value of ϵ, the maximum value of η1̂

FIG. 7. The maximum radial force as a function of the parameters of the parametrized spacetime. Where we set b1 ¼ 0 and a1 ∈ ½0; 1�
with 0.05 steps (left panel) and a1 ¼ 0.5 and b1 ∈ ½0; 1� with 0.1 steps (right panel).

FIG. 8. The radial profile of the radial component of the geodesic deviation vector η1̂ in the parametrized spacetime. Here we adopted
IC1, b ¼ 100r0 and set a1 ¼ 0 ¼ b1, ϵ∈ ½0; 1� with 0.1 steps (left panel) and ϵ ¼ 1, a1 ∈ ½0; 1� with 0.1 steps (right panel).
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decreases and the radial position where it becomes maxi-
mum increases towards the black hole horizon, r ¼ r0. In
other words, the behavior of the radial tidal force acting on
the particle falling to the black hole is initially stretching
and it changes to compressing inside the event horizon of
the black hole. In order to explore the effect of the
parameter a1, on the right panel of Fig. 8 we set ϵ ¼ 1
and considered the various choices of the parameter a1. In
various values of a1 also, the radial geodesic deviation
vector behaves the same at large distances but at small
distances its effect is significant. In the case of the nonzero
values of ϵ and a1, η1̂ has a local maximum at about the
black hole horizon and a local minimum inside the horizon.
As it can be seen in Fig. 8, the effect of a1 is opposite to ϵ,
as with increasing the value of a1, η1̂ does not tend to zero
at small distances, instead it reaches a local minimum and
tends to positive infinity at small distances. The value of the
local minimum of η1̂ increases with increasing the value of
a1. To be more precise, a radially infalling particle to the
parametrized black hole experiences a radially stretching
tidal force throughout its motion until it is inside the
horizon. However, once it encounters the horizon, it
experiences a radially compressing tidal force. As the
value of the parameter ϵ increases, the particle’s radial
size becomes almost zero just inside the event horizon. On
the other hand, the parameter a1 counteracts the impact of ϵ
by causing the behavior of the radial tidal force to become
stretching within the event horizon.
In the case of the second set of initial conditions (IC2), as

shown in Fig. 9, the overall qualitative evolution of the
radial geodesic vector with respect to radius remains similar
to that of IC1 for various values of parameters ϵ and a1.
However, there is a noticeable quantitative change, as its
value becomes greater than in the case of IC1.

VI. ANGULAR TIDAL FORCE

In this section we repeat the calculations presented in
the previous section, but for the angular geodesic

deviation equation (25). Unlike the radial geodesic equa-
tion (24), the evolution of the angular geodesic deviation
vector ηî depends also on the total energy of the particle E.
Prior to exploring further properties of the angular tidal
force, we need to fix the problem associated with the
energy of the particle. If one considers that the particle is
at rest before radially falling to the black hole, then from
the symmetry of the spacetime we can use the relation (15)
for the energy of the particle. Thus, to study further
properties of the angular geodesic equation (or analo-
gously angular tidal force), let us inspect behavior of the
right-hand side of the Eq. (25) with radial coordinates for
the various values of the spacetime parameters. In Fig. 10,
we present some patterns of this analysis. From Fig. 10,
one can see that if the particle is positioned at a large
distance from the black hole, irrespective of values of the
spacetime parameters, the angular tidal force exerted by
the black hole vanishes as in the case of the radial tidal
force. In Schwarzschild spacetime, the angular tidal force
becomes negative infinity as one approaches the center of
the spacetime. Once the value of ϵ becomes nonzero, it
reaches the minimum finite value inside the horizon of the
spacetime and after it diverges to positive infinity towards
the center of the spacetime. With increasing the value of ϵ,
the minimum value of the angular tidal force decreases
and its position tends to the horizon of the spacetime from
inside. On the other hand, the parameter a1 plays the
opposite role to ϵ. Once we turn on the parameter a1, the
radial profile of the angular tidal force takes a barrierlike
shape and. afterwards, it rapidly decreases and tends to
negative infinity as the radial coordinates approach the
center.
As we have seen in Fig. 10, the angular tidal force

vanishes in some values of the spacetime parameters. In the
next step, we determine the position where the angular tidal
force acting on the radially freely falling particle by the
parametrized spacetime vanishes. To determine it, we need
to solve the following polynomial equation:

FIG. 9. The same as Fig. 8 but for the IC2.
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ðϵþ 1ÞðRatf
vanÞ4 − 4b1ðE2 − 1Þr0ðRatf

vanÞ3
− 3ða1 þ b1ϵþ b1 þ ϵÞr20ðRatf

vanÞ2 þ 4a1r30R
atf
van

þ b1r40ða1 þ ϵÞ ¼ 0: ð40Þ

In the case of the Schwarzschild spacetime, the above
equation results in that, irrespective of the value of the total
energy of the particle, the angular tidal force vanishes at
the center of the spacetime, Ratf

van ¼ 0 [4], as in the case of
the radial tidal force. If we consider the contribution of the
spacetime parameter ϵ, then the angular tidal force becomes
zero where the radial tidal force vanishes, Ratf

van ¼ Rrtf
van, as

Ratf
van ¼ r0

ffiffiffiffiffiffiffiffiffiffiffi
3ϵ

ϵþ 1

r
: ð41Þ

To study behaviors of the remaining spacetime parameters
a1 and b1, we solve the polynomial equation (40) numeri-
cally. In Fig. 11 we present dependence of Ratf

van on the
spacetime parameters. By comparing Figs. 5 and 11, one
can see that there are not many qualitative differences
between the dependencies of locations of vanishing the
radial and angular tidal forces on the spacetime parameters.
However, they differ quantitatively, as the angular tidal
force vanishes at closer distances to the black hole than the

radial tidal force. Moreover, the effect of the parameter b1
on the angular tidal force is more significant in comparison
to the radial case.
Now let us consider the maximum value of the angular

tidal force. One can see from Fig. 10 that in the case of the
Schwarzschild black hole, the angular tidal force tends to
negative infinity as the particle approaches the curvature
singularity (r ¼ 0) and it asymptotically approaches zero as
the radius tends to infinity. Once the spacetime deviates
from the Schwarzschild spacetime on account of the
parameter ϵ, the angular tidal force has an absolute negative

minimum,


η̈î

ηî

�
min

, at rmin which is in linear approximation

of a1 equal to

�
η̈î

ηî

�
min

¼ −
ð1þ ϵÞ5=2
25

ffiffiffi
5

p
r20ϵ

3=2
ð42Þ

−
a1ðϵþ 1Þ2ð4þ 4ϵ − 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ϵðϵþ 1Þp Þ

250r20ϵ
3

;

rmin ¼
� ffiffiffiffiffi

5ϵ
pffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
�
1þ a1

2ϵ

�
−
4a1
5ϵ

�
r0 þOða21Þ; ð43Þ

and afterwards, it diverges to positive infinity at the center
of the spacetime. For ϵ < 1=4, the absolute minimum value

FIG. 10. The same as Fig. 4 but for the angular tidal force. Here we set b ¼ 100r0.

FIG. 11. The same as Fig. 5 but for the angular tidal force. Here we set b ¼ 100r0.
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of the angular tidal force is located inside the event horizon,
rmin < r0. For ϵ ¼ 1=4 and ϵ > 1=4, then rmin ¼ r0 and
rmin > r0, respectively. With increasing the value of ε the
minimum value of the angular tidal force decreases and it
becomes mostly positive inside the event horizon of the
spacetime. However, if we include the effect of the
parameter a1, then, as we have mentioned in previous
sections, its effect is opposite to ϵ. If the parameter ϵ makes
the angular tidal force diverge to positive infinity at the
center, the parameter a1 makes it again diverge to negative
infinity at the center of the spacetime. On account of the
parameter a1, the angular tidal force has an absolute
maximum inside the event horizon of the spacetime.
Thus, if the spacetime parameter a1 is not neglected,
before tending to negative infinity the angular tidal force
has absolute maximum inside the event horizon of the
spacetime in the linear approximation of a1 at

rmax ¼
8a1
5ϵ

r0 þOða21Þ; ð44Þ

�
η̈î

ηî

�
max

¼ 3125ϵ6

131072a51r
2
0

þ 9375ϵ5

65536a41r
2
0

−
125ðϵþ 1Þϵ3
1024a31r

2
0

:

ð45Þ

Let us now focus our attention on the behavior of the
angular component of the deviation vector ηî. To investigate
the behavior of the angular deviation vector, one needs to
solve the second order differential equation (25) with the
initial conditions (38) or (39). To solve this equation, we
first rewrite the differential equation with respect to radial
coordinate by using the relation (36) as

d2ηî

dr2
þ
�

NN0

N2 − E2
−
B0

B

�
dηî

dr

−
1

rB2

�
NN0

N2 − E2
−
B0

B

�
ηî ¼ 0: ð46Þ

If the IC1 (38) is applied to solve the equation of the
angular geodesic deviation (46) in the Schwarzschild
spacetime (ϵ ¼ a1 ¼ b1 ¼ 0), the equation can be solved
analytically that gives the solution

ηî ¼ r
b
: ð47Þ

Todetermine the effect of the spacetime parameters, we solve
the differential equation (46) numerically and demonstrate
the radial dependence of the angular component of the
geodesic deviation vector in Figs. 12 and 13 for the IC1
and IC2, respectively. If we consider the effect of the
spacetime parameter ϵ, one can see from the left panel of
Fig. 12 that the angular geodesic deviation vector always
decreases and outside the horizon of the black hole it behaves
almost the same for any value of spacetime parameters.
Moreover, unlike the case in the Schwarzschild black hole,
the particle falling from r ¼ b to the black hole does not
shrink to zero size at radial coordinate by maintaining the
finite size at Rstop, instead of shrinking to zero size at the
origin of the radial coordinate. With increasing the value of
the parameter ϵ this finite minimum shrinking size increases.
On the other hand, from the right panel of Fig. 12, one can see
that the effect of the parameter a1 is opposite to the one of ϵ,
as with increasing the value of a1, the minimum finite size of
the particle decreases and at some point it even becomes zero.
In the case of the IC2, the angular component of the

geodesic deviation vector behaves differently. One can see
from Fig. 13 that the behavior of ηî is essentially the same
outside the event horizon of the spacetime for various
values of the spacetime parameters. It can be seen in Fig. 13
that during the infall from r ¼ b to the black hole, ηî

initially increases up to its maximum at about r ¼ b=2 and
decreases continuously until it reaches the black hole
horizon. Inside the event horizon, the behavior of the
angular geodesic deviation vector is almost similar to the
case of the IC1.

FIG. 12. The angular profile of the radial component of the geodesic deviation vector ηî in the parametrized spacetime. Here we
adopted IC1, b ¼ 100r0 and set a1 ¼ 0 ¼ b1, ϵ∈ ½0; 1� with 0.01 steps (left panel) and ϵ ¼ 1, b1 ¼ 0, a1 ∈ ½0; 1� with 0.01 steps (right
panel), where red dots correspond to Rstop.
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VII. CONCLUSION

In the current paper, we examined the tidal forces
produced in the curved spacetime of a spherically symmetric
static parametrized black hole. Our calculations reveal that,
unlike the behavior observed in the Schwarzschild black hole
case where the radial tidal force (angular tidal force)
continuously stretches (compresses) and diverges at the
spacetime’s center depending on the specific values of the
spacetime parameters, in the parametrized black hole space-
time the radial and angular components of the tidal forces can
be both positive (stretching) and negative (compressing)
values inside the black hole horizon. Therefore, there is a
point in the spacetime of the parametrized black hole where
the specific component of the tidal forcevanishes and beyond
its behavior changes from stretching (compressing) to
compressing (stretching).
Additionally, we derived the equations governing geo-

desic deviation for particles in radially free fall and
proceeded to solve them through numerical calculations.
Our analysis demonstrated that the spacetime parameters ϵ
and a1 yield significant influences on the magnitudes of the
physical quantities related to tidal effects. It is well known
that in Schwarzschild spacetime, a freely falling particle
experiences consistent stretching in the radial direction and
compression in the angular direction during its trajectory
toward the spacetime center. In the parametrized black hole
spacetime on account of the parameter ϵ, the particle can
only be stretched (compressed) to a finite size in the radial
direction (in angular direction). On the other hand, the
spacetime parameter a1 attempts to counteract the influence
of ϵ by contributing the stretching (compressing) nature of
the radial (angular) tidal forces.
This study advances our knowledge of the complex

interplay between spacetime parameters, tidal forces, and
the behavior of test particles in curved spacetime produced
by a black hole’s gravitational field.

As future prospects, one can develop astrophysical
applications of tidal forces around black holes in order
to get constraints on the parameters of RZ parametrization.
In the comparison of the motion of close S stars precisely
measured by the GRAVITY consortium in the close
environment of a supermassive black hole Sgr A*, one
can get an estimation of tidal forces and get constraints on
additional black hole parameters. Tidal effects, driven by
varying gravitational forces, are pivotal in deciphering the
enigmatic world of black holes. Recent research has
illuminated their paramount importance, showcasing their
influence on binary systems, spinning black holes, and
accretion disks. Tidal forces sculpt the dynamics of these
cosmic entities, inducing precessions, perturbations, and
resonances, ultimately shaping our understanding of black
hole physics and astrophysics. As we delve into this
intricate cosmic interplay, it becomes evident that tidal
effects hold the key to unraveling the mysteries of the
Universe’s most enigmatic celestial objects, enriching our
comprehension of the cosmos [49–61]. The study of tidal
effects around astrophysics black holes provides insights
into the fundamental nature of gravity, the behavior of
matter under extreme conditions, and the astrophysical
processes occurring in the vicinity of the gravitational
compact objects.
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FIG. 13. The same as Fig. 12 but for the IC2.
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