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We present two solution-generating techniques, which are direct generalizations of certain Ehlers-
Harrison transformations in the Ernst formalism, while adapted to work in presence of an anisotropic fluid
source with axial symmetry. Based on these procedures, we were able to construct the electrically charged
and the magnetized solution for any static axially symmetric geometry, which is sourced in general by an
anisotropic fluid described by a nondiagonal anisotropic stress-energy tensor. As our main examples we
derived and analyzed two new exact solutions with axial symmetry that describe the electrically charged
Zipoy-Vorhees interior solution as well as the magnetized Zipoy-Vorhees interior solution, and presented
some of their properties. As further examples of our solution-generating techniques we show how to derive
two new solutions describing the electrically charged version of the Bowers and Liang solution, as well as a
magnetized version of an exact solution with axial symmetry.
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I. INTRODUCTION

The search for exact and physically relevant solutions of
the Einstein equations has been a topic of renewed interest
ever since the beginning of general relativity (GR) in 1915.
While solving Einstein’s equations in their general form
presents itself as a formidable task, being a nonlinear
system of second order partial derivatives of the metric,
during the last century there has been developed an equally
impressive arsenal of methods and special techniques to
solve them. There is by now an exhaustive collection of
exact solutions of Einstein’s equations in four dimensions,
as collected in [1].
Moreover, on the experimental side, with the advent of

gravitational-wave astronomy [2,3] and of the very long
baseline interferometry [4] one is now able to glimpse into
a new physics of the compact objects and black holes that
was until now beyond our experimental reach (see for
instance [5] and the references within). Undoubtedly, the
black holes play a central role in this field and their
properties have been studied extensively (albeit theoreti-
cally at first). One of their characteristic features is their
uniqueness, as it was best enunciated in Wheeler’s famous
“black holes have no hair” statement. Basically this means
that all (four-dimensional) electrovacuum black-hole
spacetimes are characterized by their mass, angular

momentum and electric charge, or, in other words, they
belong to the class of Kerr-Newman black holes (for a
recent review of the no-hair theorems see [6] and references
therein).
On the other hand, the physics of the compact objects in

GR is equally important to understand the nature of other
compact objects which are present in our Universe, such as
nuclear stars, white dwarfs, exotic stars, etc. Since the
pioneering work of Schwarzschild [7] and Tolman [8],
compact objects were usually modeled in GR by using
spherically symmetric perfect fluid solutions of the Einstein
field equations. This was the natural starting point since
static perfect fluid configurations seem to lead to spheri-
cally symmetric configurations as well [9]. As such, in the
last century there has been a lot of interest in generating
new exact solutions describing spherically symmetric
relativistic stars sourced by perfect fluids. There are known
by now various procedures to generate new spherically
symmetric exact solutions, which are sourced by perfect
fluids [10–12]. However, there is a caveat which comes
with this plethora of new solutions: as shown in [13], not all
the perfect fluid interior solutions generated this way are
physical. Most of the known solutions fail some physical
tests hence only some of them seem appropriate to describe
isotropic compact objects in GR. This basically means that
not every solution generated by these algorithms satisfies
the physical requirements and that one should check every
generated solution on a case by case basis.
On the other hand, in modeling realistic compact objects

in GR one should consider more sophisticated models,
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involving deviations either from the spherical symmetry
and/or the perfect fluid distribution of the source. Dropping
the perfect fluid requirement, while still preserving the
requirement of spherical symmetry, one can consider
anisotropic fluids as sources (see for instance [14–24]
and references therein). For such fluids the radial pressure
component pr is not equal to the components in the
transverse directions, pt. There are strong theoretical
reasons to believe that in realistic stellar models in the
high density regimes the pressures inside the star are
anisotropic [25]. Such anisotropies in the fluid distributions
can arise from various reasons: they can be due to a mixture
of two fluid components [26], elasticity of the compact
objects [27,28], the existence of a superfluid phase, the
presence of a magnetic field, etc. (for a review see [29]
and references there). For example, anisotropic fluid
models of neutron stars could be used to model the so-
called magnetars [30], which denote a class of neutron stars
whose emissions are powered by the decay of their huge
magnetic field. For a magnetar the magnetic field strength
can reach values as high as 1011T, while being even more
intense inside the star. There are over 30 magnetars
catalogued by now [31]1(for recent reviews of their proper-
ties see [32], also [33]). This class of objects includes the
soft gamma repeaters (SGRs) and the anomalous x-ray
pulsars (AXPs). Analytic nonperturbative solutions in GR
describing anisotropic models of magnetars have been
constructed in [34] and [35] starting from spherically
symmetric solutions. In those works it was shown that
in presence of very strong magnetic fields one is forced to
consider an axially symmetric treatment of the source (see
also [36]). Moreover, since the astrophysical formation
processes of nuclear stars are actually asymmetric in nature,
the spherical symmetry is in fact an idealization and one
should start from the beginning with axially symmetric
interior models of nuclear stars [37].
One can reach the same conclusion about the necessity

of an axially symmetric ansatz to model a realistic
compact object if one takes into account its rotation: the
angular momentum of the compact object will define a
preferred direction and, for stationary configurations, one
can assume that the direction of the angular momentum
defines the symmetry axis. This is what happens in the
celebrated Kerr solution of the vacuum Einstein field
equations (see for instance [38]). However, even in
absence of rotation, the most general line element describ-
ing such relativistic systems with axial symmetry has the
form [39]:

ds2 ¼ −Aðr; θÞ2dt2 þ Bðr; θÞ2dr2 þ Cðr; θÞ2dθ2
þDðr; θÞ2dφ2: ð1Þ

In general, this line element can be considered as a solution
of Einstein’s field equations2 Gμν ¼ 8πTμν sourced by an
anisotropic fluid, which is described by a nondiagonal
stress-energy tensor of the form [40]:

Tμν ¼ ρuμuν þ prχμχν þ pθξμξν þ pφζμζν þ 2prθχðμξνÞ;

ð2Þ
where ρ is the fluid energy density, pr is the radial pressure,
while pθ, pφ, and prθ are transverse components of the
fluid pressure. Also uμ ¼ ð−A; 0; 0; 0Þ is the 4-velocity of
the fluid, while χμ ¼ ð0; B; 0; 0Þ, ξμ ¼ ð0; 0; C; 0Þ and ζμ ¼
ð0; 0; 0; DÞ are spacelike unit vectors in the radial and
transverse directions.
Of course, not every geometry (1) leads to physical

compact objects describing physically reasonable fluid
source configurations. At a bare minimum the energy
conditions have to be satisfied by this fluid (see for instance
[41–43] and references therein). There is also the problem
of matching these interior fluid configurations to exterior
vacuum geometries, which are vacuum solutions of
Einstein’s field equations [39]. In absence of rotation,
for a spherically symmetric compact object, the Birkhoff
theorem assures us that the only vacuum solution is (at least
part of) the Schwarzschild solution. Moreover, any spheri-
cally symmetric and asymptotically flat solution of the
Einstein-Maxwell field equations must be static, so that the
exterior geometry of a spherically symmetric charged star
must be given by the Reissner–Nordström black hole
solution. However, the situation becomes more compli-
cated for axisymmetric sources. For instance, the vacuum
region outside a spinning compact object is not generically
described by the Kerr geometry [44]. One can understand
this in light of the black hole uniqueness and the no-hair
theorems: for the Kerr black hole the Geroch-Hansen
multipole moments [45,46] take a very specific form,
being determined by the mass and the angular momentum
values. One would expect then that the multipole moments
of a general spinning compact object might have a more
general configuration than that of a Kerr black hole [47].
Therefore, the exterior geometry of a stationary axisym-
metric fluid configuration should correspond to a vacuum
stationary and axisymmetric solution of the Einstein field
equations, generically different from the Kerr geometry.
For static configurations the exterior geometry must then

belong to the so-called Weyl-Papapetrou class of axisym-
metric metrics [48]:

ds24 ¼ −e−ψdt2 þ eψ
�
e2μðdρ2 þ dz2Þ þ ρ2dφ2

�
: ð3Þ

The metric is specified by the values of two functions ψ and
μ, which are functions of the canonical Weyl variables ρ

1See also the website http://www.physics.mcgill.ca/ pulsar/
magnetar/main.html.

2Note that we work using the natural units for which
G ¼ c ¼ 1.
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and z. For a vacuum solution ψ is a harmonic function in
the usual 3-dimensional Euclidean space with metric
dρ2 þ dz2 þ ρ2dφ2. Once one knows ψ then the remaining
function μðρ; zÞ is found by performing a simple line-
integral using the relations:

∂zμ ¼ ρ

2
∂ρψ∂zψ ; ∂ρμ ¼ ρ

4

�ð∂ρψÞ2 − ð∂zψÞ2
�
: ð4Þ

The Einstein field equations in four dimensions for a static
axisymmetric background are now essentially reduced to
finding a solution of Laplace’s equation on flat space. Then,
every static axisymmetric interior solution (1) and (2)
should be matched to a static vacuum solution belonging
to the Weyl class (3). As an example, one interesting
vacuum solution with a generic quadrupole moment is
given by the so-called Zipoy-Vorhees solution [49]:

ds2 ¼ e−ψdt2 þ eψ
�
e2μðdρ2 þ dz2Þ þ ρ2dφ2

�
;

e−ψ ¼
�
1 −

2m
r

�
γ

; e2μ ¼
�

rðr − 2mÞ
ðr −mÞ2 −m2 cos2 θ

�
γ2

; ð5Þ

where ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2mÞp

sin θ and z ¼ ðr −mÞ cos θ are the
canonical Weyl coordinates. For integer values of γ this
metric describes the superposition of γ black holes. A
peculiarity of this solution is the appearance of a naked
curvature singularity at r ¼ 2m for some values of the
parameter γ (see for instance [50,51]). The Zipoy-Vorhees
metric, being a spheroidal deformation of a static spheri-
cally symmetric geometry can then represent a more
realistic model for the exterior geometry of a static compact
object.
If one considers the presence of the electromagnetic

fields in the vicinity or inside these compact objects
then the situation is even more complicated, as expected.
For the Weyl-Papapetrou ansatz, it has been long known
that a transformation already exists that brings a static,
axisymmetric vacuum solution to a nontrivial class of static
solutions in Einstein-Maxwell theory [52]. In particular, the
Schwarzschild solution can be transformed into the
Reissner-Nordström solution. This transformation is a
special case of the Ehlers-Harrison transformations for
the Ernst formalism [46,53–55] which map static vacuum
solutions into static electrically charged Einstein-Maxwell
solutions [48,56,57] (see also [58] in higher dimensions)
and also transformations that map vacuum solutions into
Einstein-Maxwell solutions with magnetic fields (see
[59,60] and references there).
One should note at this point that some of the solution-

generating techniques based on the Ernst formalism
have been adapted to work for various other matter fields.
Of particular interest is a technique introduced by Stephani
in [61] to generate perfect fluid solutions from vacuum
solutions with various Killing symmetries. However, it
turns out that not all equations of state are suitable for this

sort of solution generating technique. Only two equations
of state are compatible with this technique: ρ ¼ p for a
spacelike Killing field and ρþ 3p ¼ 0 for a timelike
Killing field [62]. In [63] this technique was generalized
to anisotropic fluids (see also [64]). A similar technique
was previously used in cosmological contexts in [65].
The main purpose of this paper is to show that some of

these Ehlers-Harrison transformations can also be extended
in presence of a fluid configuration. More specifically,
starting from any interior solution (1) sourced by the stress-
energy tensor (2) one can easily generate by purely
algebraic means the corresponding solutions in Einstein-
Maxwell theory that correspond either to an electrically
charged or to a magnetized interior solution. Just as the
Ehlers-Harrison transformation will apply to every vacuum
solution of the Einstein field equations, regardless of its
physical significance, the transformations introduced in this
paper will map any fluid solution (1) sourced by a stress-
energy tensor of the form (2) into a new exact solution of
the Einstein-Maxwell-hydrodynamics solution. The gen-
erated solutions, being electrically charged or magnetized,
can then be checked to satisfy the physical requirements for
a viable physical model of a compact object if the original
seed described by (1) and (2) satisfies similar physical
requirements.
The structure of this paper is as follows: in the next

section we present the general equations of motion for the
Einstein-Maxwell-hydrodynamics system. In Sec. III we
introduce the map that generates the general electrically
charged version of the metric (1), solution of the above
system. As an example of this procedure, we show how to
straightforwardly obtain the electrically charged version of
the Bowers and Liang solution [66] and present some of its
properties. We also show how to obtain the electrically
charged interior solution of the electrically charged Zipoy-
Vorhees solution. In Sec. IV we construct the general
magnetized version of the metric (1) and construct the
magnetized version of the interior Zipoy-Vorhees solution,
which should correspond to an exterior magnetized Zipoy-
Vorhees solution. In Sec. V we comment on the junction
conditions and the energy conditions for the solutions
generated by our procedure. The final section contains a
summary of our work and avenues for further work.

II. THE FIELD EQUATIONS IN THE EINSTEIN-
MAXWELL-FLUID SYSTEM

In GR the electromagnetic field is usually described by
using the antisymmetric Faraday tensor Fμν¼∇μAν−∇νAμ,
where Aμ is the vector potential of the electromagnetic field.
The Maxwell equations are then written as:

∇νð⋆FÞμν ¼ 0; ∇νFμν ¼ 4πJμ; ð6Þ

where ⋆Fμν ¼ 1
2
ϵμνγδFγδ is the Hodge-dual tensor, while

ϵμνγδ is the Levi-Civita tensor. Also, Jμ is the 4-current that
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sources the electromagnetic field. The 4-current Jμ can be
further decomposed with respect to the fluid 4-velocity uμ as:

Jμ ¼ σeuμ þ jμ; ð7Þ

where σeuμ is the convection current, while jμ is the
conduction current, such that σe ¼ −Jμuμ is the proper
charge density.
One can also define the electric 4-vector Eμ and the

magnetic 4-vector Bμ by using the relations:

Eμ ¼ Fμνuν; Bμ ¼ −ð⋆FμνÞuν: ð8Þ

The conduction current jμ is related to the components of
the electric field Eμ by means of Ohm’s law. Our solution
generating technique for the Einstein-magnetohydrodynamic
(EMH) system will simply require a finite value for the
conduction current jμ and a vanishing electric field, therefore
wewill beworking in the so-called idealMHDapproximation
(see, for instance, [67]).
The electromagnetic stress-energy tensor, which enters

the Einstein field equations is defined as:

Tem
μν ¼ 1

4π

�
FμγFν

γ −
1

4
FγδFγδgμν

�
: ð9Þ

Then Einstein’s field equations of the Einstein-Maxwell-
fluid system can be written as:

Gμν ¼ 8πTem
μν þ 8πTfluid

μν ; ð10Þ

where Gμν is the Einstein tensor for the geometry (1), while
Tfluid
μν is the stress-energy tensor (2). In absence of the fluid

component these equations lead to the usual Einstein-
Maxwell equations. The stress-energy conservation equa-
tions Tμν

;ν ¼ 0 lead to the equations of motion for the fluid
and they are a consequence of the Einstein equations, so we
will not concern ourselves with them at this point.
For an electrically charged solution, in absence of a

magnetic field, the only nonzero component of the electro-
magnetic potential is At, if the solution is static. On the
other hand, the magnetic field of a magnetized star can
have both toroidal and poloidal components. However,
when one takes into account the toroidal components of the
magnetic field then the spacetime geometry (1) has to be
modified and it must include other nonvanishing metric
components [68]. Therefore, in our work we shall assume
that the toroidal components are null and the magnetic field
is purely poloidal. In this case the only nonzero component
of the electromagnetic potential is Aφ.

III. THE ELECTRICALLY CHARGED MODEL

As is it well known by now, in absence of the fluid
components, the Einstein-Maxwell equations can be simply

solved starting with a static vacuum solution of the Einstein
equations. This procedure is similar to some of the Ehlers-
Harrison transformations in theErnst formalism.For instance,
starting with any static vacuum solution of Einstein’s field
equations one can generate the corresponding electrically
charged solution as well as a solution involving a magnetic
field (see for instance [57–60] and references there).3

For example, let us start with the vacuum Zipoy-
Vorhees solution given in (5). Let us define the quantity
Λ ¼ 1 − E2

0e
−ψ , where E0 is a constant parameter, which

can be related to the charge parameter in the final solution.
Then the charged version of the Zipoy-Vorhees

metric (5) takes the following form [57,69–73]:

ds2 ¼ −
e−ψ

Λ2
dt2 þ Λ2eψ

�
e2μðdρ2 þ dz2Þ þ ρ2dφ2

�
; ð11Þ

while the electromagnetic potential takes the simple form:

At ¼
E0e−ψ

Λ
: ð12Þ

As it can be easily checked, this is an exact solution of the
Einstein-Maxwell field equations (10) and (6) with Jμ ¼ 0.
This is an expected result, since using the Ehlers-Harrison
transformation any vacuum solution of the form (3) will
lead to a solution of the Einstein-Maxwell equations using
(11) and (12), as in [52].
Our goal in this section is to generalize this Harrison

transformation to more general axisymmetric solutions,
which are sourced by fluids. However, one should expect
that in absence of the fluid components the new solution
generated by the solution generating technique presented
here should simply reduce to the Einstein-Maxwell solution
above. That is, for vacuum solutions, the generated
Einstein-Maxwell fields take the form (11) and (12): the
geometry is modified by the electric field generated by (12)
by means of the Λ factors multiplying the metric compo-
nents. However, simply by modifying the geometry as in
(11) to accommodate the presence of the electric field (12)
one has to rescale accordingly the 4-velocity of the fluid
and the spacelike unit vectors in the radial and transverse
directions by powers of Λ to make them unit vectors in the
new geometry (11) with the electric field (12). This means
that in the new geometry the original fluid quantities (such
as the energy density and the radial and transverse
pressures) should be modified by powers of Λ as well.
Also, there is another modification that one should expect
for an electrically charged fluid: its energy density should
receive a contribution ρel due to electromagnetic energy of
the fluid being charged in presence of an electric field.
Finally, the Maxwell equations should also be modified

3In the magnetic case the initial vacuum seed can be time-
dependent, as long as ∂

∂φ is still a Killing vector in the seed
geometry.

STELEA, DARIESCU, and DARIESCU PHYS. REV. D 108, 084034 (2023)

084034-4



since they are sourced now by a charged fluid as in (6). In
conclusion, in presence of an electric field the original
fluid quantities should be rescaled by powers of Λ and
the energy density ρ should receive a contribution ρel, while
the 4-current contribution Jμ should be expressed using the
proper charge density σe in terms of the original uncharged
fluid quantities.
To see how this works in practice, let us consider the

initial general geometry (1). According to Einstein’s field
equations this geometry can be sourced in general by an
anisotropic fluid having the stress-energy of the form (2)4:

T0
μν ¼ ρ0u0μu0ν þ p0

rχ
0
μχ

0
ν þ p0

θξ
0
μξ

0
ν þ p0

φζ
0
μζ

0
ν þ 2p0

rθχ
0
ðμξ

0
νÞ;

ð13Þ

where ρ0 is the fluid’s energy density, p0
r is the radial

pressure, while p0
θ, p

0
φ, and p0

rθ are transverse components
of the fluid pressure. Also u0μ ¼ ð−A; 0; 0; 0Þ is the
4-velocity of the fluid, while χ0μ ¼ ð0; B; 0; 0Þ, ξ0μ ¼
ð0; 0; C; 0Þ and ζ0μ ¼ ð0; 0; 0; DÞ are spacelike unit vectors
in the radial and transverse directions.
Similar to the Harrison transformation one can construct

now the following metric:

ds2 ¼ −
Aðr; θÞ2

Λ2
dt2 þ Λ2

�
Bðr; θÞ2dr2 þ Cðr; θÞ2dθ2

þDðr; θÞ2dφ2
�
; ð14Þ

where we defined Λ ¼ 1 − E2
0Aðr; θÞ2, with E0 being a

constant. This will be a solution of the Einstein-Maxwell-
fluid equations (10) together with the Maxwell equa-
tions (6) if the electromagnetic 4-vector potential is Aμ ¼
ðAt; 0; 0; 0Þ with

At ¼
E0Aðr; θÞ2

Λ
; ð15Þ

while the fluid stress-energy tensor has the form:

Tfluid
μν ¼ ρuμuν þ prχμχν þ pθξμξν þ pφζμζν þ 2prθχðμξνÞ:

ð16Þ

Here we defined

ρ ¼ ρ0

Λ2
þ ρel; pr ¼

p0
r

Λ2
; pθ ¼

p0
θ

Λ2
;

pφ ¼ p0
φ

Λ2
; prθ ¼

p0
rθ

Λ2
: ð17Þ

Note that uμ ¼ ð− A
Λ ; 0; 0; 0Þ is the 4-velocity of the

charged fluid, while χμ ¼ ð0; BΛ; 0; 0Þ, ξμ ¼ ð0; 0; CΛ; 0Þ

and ζμ ¼ ð0; 0; 0; DΛÞ are respectively spacelike unit vectors
in the radial and the transverse angular directions computed in
the final geometry (14). Finally, the contribution to the fluid
energy density of the charge energy density is

ρel ¼ 2ðρ0 þ p0
r þ p0

θ þ p0
φÞ

E2
0Aðr; θÞ2
Λ3

ð18Þ

and the electric current is Jμ ¼ ðjt; 0; 0; 0Þ where:

jt ¼ −2ðρ0 þ p0
r þ p0

θ þ p0
φÞ

E0Aðr; θÞ2
Λ4

; ð19Þ

from which one can easily read the proper charge density σe.
It can be checked by brute force (for instance using

Maple [74]) that the fields given in (14), (15), (16) provide
an exact solution of the coupled Einstein-Maxwell-fluid
system if (1) and (13) is an exact solution of the Einstein-
fluid equations of motion. This will provide us with the
generalization of the electric Harrison transformation in
presence of an anisotropic fluid.
Note that even if the electric potential can potentially be a

function of the θ coordinate, if one computes the electric
field using (8) one obtains purely electric fields and no
magnetic fields, as expected. One should also note that the
above transformations are direct generalizations of the
transformations previously found and used in [75] and [76]
for metrics with spherical symmetry.

A. The electrically charged version
of the Bowers-Liang solution

As an example of this solution-generating technique, let
us consider first the charged version of the anisotropic
Bowers-Liang solution. This solution, which was found by
Bowers and Liang [66] corresponds to a anisotropic fluid
with a homogeneous density distribution ρ0 ¼ constant. In
their work they considered a spherically symmetric rela-
tivistic matter distribution and studied the behavior of such
systems by incorporating the pressure anisotropy effects in
the equation of the hydrostatic equilibrium. Their solution
is given by (1) where:

Aðr; θÞ2 ¼
"
3ð1 − 2M

R Þh2 − ð1 − 2mðrÞ
r Þh2

2

#2
h

;

Bðr; θÞ2 ¼ 1

1 − 2mðrÞ
r

; Cðr; θÞ ¼ r; ð20Þ

Dðr; θÞ ¼ r sin θ; ρ0 ¼ 3M
4πR3

;

p0
r ¼ ρ0

ð1 − 2mðrÞ
r Þh2 − ð1 − 2M

R Þh2
3ð1 − 2M

R Þh2 − ð1 − 2mðrÞ
r Þh2

;

Δ0 ¼ p0
t − p0

r ¼
4π

3
Cr2

ðρ0 þ p0
rÞðρ0 þ 3p0

rÞ
1 − 2mðrÞ

r

;4At this point we do not have to assume any physical
requirements on the fluid source.
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where h ¼ 1–2C, mðrÞ ¼ M r3

R3, and C is the anisotropy
parameter. Note that for this solution p0

θ ¼ p0
φ ≡ p0

t , while
p0
rθ ¼ 0 in (13).
Then, using the results from the previous section, the

electrically charged Bowers-Liang solution will simply be
given by (14) supplemented by (15) and (16). The final
geometry is still spherically symmetric. For C ¼ 0 one
obtains the electrically charged interior Schwarzschild
solution discussed in [75] in a slightly different form, in
absence of the dilaton field.
Note that the anisotropy factor becomes in our case:

Δ ¼ pt − pr ¼
Δ0

Λ2
¼ 4π

3

Cr2

Λ2

ðρ0 þ p0
rÞðρ0 þ 3p0

rÞ
1 − 2mðrÞ

r

ð21Þ

Since in origin r ¼ 0 then Δ ¼ 0 as expected. Also,
since

Λ0 ¼ 1 − E2
0

�
3ð1 − 2M

R Þh2 − 1

2

�2
h

; ð22Þ

then in the electrically charged Bowers-Liang solution the
radial pressure in origin becomes:

prð0Þ ¼
ρ0

Λ2
0

1 − ð1 − 2M
R Þh2

3ð1 − 2M
R Þh2 − 1

; ð23Þ

and the critical value of the quantity 2M
R for which the

central pressure becomes infinite is5:

2M
R

����
cr
¼ 1 −

�
1

3

�2
h

: ð24Þ

The critical value of the ratio 2M
R is the same as the critical

value of the original Bowers and Liang uncharged solution.
In this particular case, as it is well known, the original

Bowers-Liang solution can be smoothly matched to
the exterior Schwarzschild vacuum solution at the surface
r ¼ R where the radial pressure vanishes prðRÞ ¼ 0.
Correspondingly, the charged version of the Bowers-
Liang solution should be smoothly matched to the corre-
sponding electrically charged exterior solution, which
should correspond to the Reissner-Nordström solution.
Indeed, in our coordinates the charged exterior geometry
corresponds to:

ds2 ¼ −
1 − 2M

r

Λ2
þ Λ2

1 − 2M
r

dr2 þ Λ2r2ðdθ2 þ sin2 θdφ2Þ;

ð25Þ

where Λ ¼ 1 − E2
0ð1 − 2M

r Þ, while the electromagnetic
potential has the only nonzero component:

At ¼
E0ð1 − 2M

r Þ
Λ

: ð26Þ

This is the solution obtained by applying our solution-
generating technique directly on the vaccum exterior
Schwarzschild geometry. By performing the coordinate
transformation r̃ ¼ Λr and rescaling the time coordinate
such that t̃ ¼ t

1−E2
0

then this exterior geometry reduces to the

usual Reissner-Nordström geometry with mass MRN ¼
Mð1þ E2

0Þ and charge QRN ¼ 2ME0, as expected.
It should be clear by now that all the junction conditions

are smoothly satisfied at r ¼ R and that the charged interior
Bowers-Liang solution is smoothly connected to the
exterior geometry. To see how this works in practice, let
us recast the electrically charged Bowers-Liang solution in
the more familiar form:

ds2 ¼ −
fðrÞ
ΛðrÞ2 dt

2 þ ΛðrÞ2
�
dr2

gðrÞ þ r2ðdθ2 þ sin2θdφ2Þ
	
;

ð27Þ

where ΛðrÞ ¼ 1 − E2
0fðrÞ, with

fðrÞ¼
�
3ð1−2M

R Þh2−ð1−2mðrÞ
r Þh2

2

	2
h

; gðrÞ¼1−
2Mr2

R3
: ð28Þ

Note that when r ¼ R one has fðRÞ ¼ gðRÞ ¼ 1 − 2M
R . In

this case, if the exterior geometry is the Schwarzschild
solution then the smooth matching of the charged interior
Bowers-Liang to the exterior charged geometry require that
the first and the second fundamental forms are continuous

on the junction surface r ¼ R. If χa ¼ ð0;
ffiffiffiffiffiffi
gðrÞ

p
ΛðrÞ ; 0; 0Þ is the

unit vector in the radial direction in the electrically charged
metric (27) then the induced metric on the surface r ¼ R is
found to be

habdxadxb ¼ −
1 − 2M

R

Λ2
þ Λ2R2ðdθ2 þ sin2 θdφ2Þ; ð29Þ

which is the same with the one induced from the charged
exterior geometry in (25) on the same surface r ¼ R.
Now, the second fundamental form corresponds to the
extrinsic curvature Kcd ¼ hachbdχa;b and it has the nonzero
components:

Kt
t ¼

ffiffiffiffiffiffiffiffiffi
gðrÞp

2ΛðrÞ2fðrÞ


ΛðrÞf0ðrÞ − 2fðrÞΛ0ðrÞ�;

Kθ
θ ¼ Kφ

φ ¼
ffiffiffiffiffiffiffiffiffi
gðrÞp

rΛðrÞ2


rΛ0ðrÞ − Λ

�
; ð30Þ5For this value Λ0 → 1, there is no physical critical value of 2MR

for which Λ0 ¼ 0.
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where ’ denotes here the differentiation with respect to r and
Λ ¼ 1 − E2

0fðrÞ. Since on the surface r ¼ Rone hasfðRÞ ¼
1 − 2M

R and its derivative f0ðr ¼ RÞ ¼ 2M
R2 , it is now clear that

the second fundamental form is also continuous on the
hypersurface r ¼ R and therefore the electrically charged
Bowers-Liang solution will smoothly match the electrically
charged exterior solution (25) on the surface r ¼ R.
Finally, if one takes h ¼ 0 in the electrically charged

Bowers-Liang solution one obtains the charged version of
the so-called Florides solution [77]. It corresponds to an
anisotropic object with zero radial pressure pr ¼ 0, which
is sustained only by tangential stresses.

B. The charged Zipoy-Vorhees interior solution

It is well known that the exterior geometry of a compact
spinning object is not generically described by the Kerr
geometry since one expects that the multipole moments
structure of a compact object can bemore general than that of
a Kerr black hole. Recently, in [44] it was developed a
general-relativistic framework to construct vacuum geom-
etries that are perturbative deviations from the spherically
symmetric Schwarzschild geometry. That class of perturba-
tive solutions was obtained by solving the vacuum Einstein
field equations order by order in a small multipole moment
expansion and this perturbative solution is expected to be
useful to parameterize the exterior axisymmetric geometry
of a compact object. While the analysis of [44] was

concerned only with the exterior vacuum geometry, this
approach was further extended in [37] to include matter
fields, in particular, the authors in [37] considered the effects
of a perfect fluid in the interior of the compact object. To this
end, the interior geometry was found numerically and the
matching with the exterior geometry from [44] was done by
taking into account the junction conditions at the boundary
with the external solution.
In this work we focus on a somewhat different approach,

as we will consider static axisymmetric fluid geometries
from the beginning. As such, if one considers the quadru-
pole deviation from the Schwarzschild geometry, then
taking the Zipoy-Vorhees geometry as the static exterior
solution is the natural step. The search for the full interior
solution of the Zipoy-Vorhees has a long history and it is
still an active area of research [78–82]. For our purposes we
shall make use of one of the solutions found in [81]. More
specifically, we shall use the second interior solution
in [81], which was based on the modified Adler interior
solution. The interior geometry takes then the form:

ds2 ¼ −fðrÞ2γdt2 þ fðrÞ2ð1−γÞΔðrÞγ2−2Σðr; θÞ1−γ2dr2
þ r2fðrÞ2γðγ−1ÞΦðr; θÞ1−γ2dθ2
þ r2fðrÞ2ð1−γÞ sin2 θdφ2; ð31Þ

where one defined:

fðrÞ ¼ Aþ Br2; Σðr; θÞ ¼ 1þ Cr2

ðAþ 3Br2Þ23 þ
1

4

C2r4

ðAþ 3Br2Þ43 sin
2θ;

ΔðrÞ ¼ 1þ Cr2

ðAþ 3Br2Þ23 ; Φðr; θÞ ¼ ðAþ Br2Þ2 þ C2r4VðrÞ
4ðAþ 3Br2Þ43 sin

2θ; ð32Þ

while

VðrÞ ¼ 1þ 6

a

1 − 5m
2a

1 − m
a

ða − rÞ; A ¼ 1 − 5m
2a

ð1 − 2m
a Þ

1
2

; B ¼ m

2a3ð1 − 2m
a Þ

1
2

; C ¼ 2mð1 − m
aÞ

2
3

a3ð1 − 2m
a Þ

1
3

:

The interior solution matches the exterior Zipoy-Vorhees
geometry on the boundary surface r ¼ a and all the
regularity conditions are satisfied there [81]. One can
compute the expressions of the fluid quantities (the energy
density ρ0 and the corresponding pressures p0

r , p0
θ, p

0
φ,

and p0
rθ) however, they are lengthy and not particularly

illuminating. To extract some physical intuition one has to
make a few approximations: if one defines γ ¼ 1þ ϵ and
δ ¼ m

a , then, up to the order ϵδ; δ2 one obtains6:

ρ0¼ 1

8π

�
6δð1þϵÞ

a2
−
20r2δ2

a4

	
; p0

r ¼
1

8π

�
6δ2

a2
−
2r2δ2

a4

	
;

p0
θ¼p0

φ¼
1

8π

�
6δ2

a2
−
r2δ2

a4

	
; ð33Þ

while to this order one has p0
rθ ¼ 0. Note that one has

p0
rðr ¼ 0Þ ¼ p0

θðr ¼ 0Þ ¼ p0
φðr ¼ 0Þ ¼ 6δ2

a2 , while the en-
ergy density ρ0 and the radial pressure p0

r decrease
monotonically with r:

dρ0

dr
¼ −

40δ2r
8πa4

< 0;
dp0

r

dr
¼ −

4δ2r
8πa4

< 0: ð34Þ6Note that there are some typos in the corresponding
expressions in [81].
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One is now ready to present the electrically charged interior
Zipoy-Vorhees solution. Let us define the quantity Λ ¼
1 − E2

0fðrÞ2γ , where E0 is a constant that will be related
lately to the total charge of the solution. Then the metric of
the interior charged fluid becomes:

ds2 ¼ −
fðrÞ2γ
Λ2

dt2 þ Λ2
�
fðrÞ2ð1−γÞΔðrÞγ2−2Σðr; θÞ1−γ2dr2

þ r2fðrÞ2γðγ−1ÞΦðr; θÞ1−γ2dθ2
þ r2fðrÞ2ð1−γÞsin2θdφ2�; ð35Þ

while the electric potential is given by At ¼ E0fðrÞ2γ
Λ . This

geometry and electric potential will provide us with an electr-
ically charged solution of the Einstein-Maxwell-fluid equa-
tions (10) and (6) if the fluid stress-energy tensor has the form
given in (16), while the electric current takes the form (19).
Note that as shown in Sec. V this interior solution will

smoothly match the exterior charged Zipoy-Vorhees solution
given in (11). After a rescaling of the time coordinate one can
compute the totalmassM ¼ γmð1þ E2

0Þ and the total charge
Q ¼ 2γmE0 of the charged Zipoy-Vorhees geometry.
Furthermore, one can check that up to the order ϵδ; δ2

one obtains:

ρ ¼ 27

πa4ð1 − E2
0Þ4

�ð1þ ϵÞa2δ
36

−
5δ2r2

54
−
�
a2δ
6

ð3δþ 2ð1þ ϵÞÞ − 11r2δ2

9

�
E2
0

3

þ
�
2δ2

3
þ δa2ð1þ ϵÞ

12
−
13r2δ2

27

�
E4
0

	
; pr ¼

1

8π

�
6δ2

ð1 − E2
0Þ2a2

−
2r2δ2

ð1 − E2
0Þ2a4

	
;

pθ ¼ pφ ¼ 1

8π

�
6δ2

ð1 − E2
0Þ2a2

−
r2δ2

ð1 − E2
0Þ2a4

	
; prθ ¼ 0: ð36Þ

For E0 ¼ 0 these expressions reduce to those correspond-
ing in the uncharged case (33). Note that the value E0 ¼ 1
corresponds to the extremal charged solution for which
M ¼ Q and one should restrict the values of the parameter
E0 to never reach this value.
One can check that up to this order of approximation the

density is once again decreasing with the radius, as well as
the radial pressure:

dρ
dr

¼ −
rδ2ð26E4

0 − 22E2
0 þ 5Þ

πa4ð1 − E2
0Þ4

< 0;

dpr

dr
¼ −

δ2r
πa4ð1 − E0Þ2

< 0: ð37Þ

Finally, all the pressures have the same value in origin
r ¼ 0 as expected:

prð0Þ ¼ pθð0Þ ¼ pφð0Þ ¼
3δ2

4πa2ð1 − E2
0Þ2

: ð38Þ

This completes the derivation of the charged Zipoy-Vorhees
interior solution.

IV. THE MAGNETIZED SOLUTION

As it was previously shown in [69–73], starting with the
original Zipoy-Vorhees solution it is also possible to obtain
its magnetized version by using a magnetizing Harrison
transformation:

ds2 ¼ Λ2
�
−e−ψdt2 þ eψ ½e2μðdρ2 þ dz2Þ��þ ρ2e−ψ

Λ2
dφ2;

ð39Þ

where now we denote Λ ¼ 1þ B2
0ρ

2e−ψ and the electro-
magnetic potential has the only nonzero component

Aφ ¼ B0ρ
2e−ψ

Λ . Here B0 is a constant. This geometry and
electromagnetic potential provide us with a solution of the
Einstein-Maxwell equations. As it turns out, one can general-
ize this magnetizing Harrison transformation in presence of
more general fluid interior solutions with axial symmetry.
Similarly to the electrically charged case, given a general

solution (1) sourced by the stress-energy tensor (13) of the
Einstein-fluid field equations, one can write down directly
the corresponding magnetized solution in the following
form:

ds2 ¼ Λ2
�
−Aðr; θÞ2dt2 þ Bðr; θÞ2dr2 þ Cðr; θÞ2dθ2�

þDðr; θÞ2
Λ2

dφ2;

Aφ ¼ B0Dðr; θÞ2
Λ

; Λ ¼ 1þ B2
0Dðr; θÞ2; ð40Þ

where the stress-energy tensor of the anisotropic fluid is
given by:

Tfluid
μν ¼ ρuμuν þ prχμχν þ pθξμξν þ pφζμζν þ 2prθχðμξνÞ;

ð41Þ
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with

ρ ¼ ρ0

Λ2
; pr ¼

p0
r

Λ2
; pθ ¼

p0
θ

Λ2
;

pφ ¼ p0
φ

Λ2
þ σm; prθ ¼

p0
rθ

Λ2
; ð42Þ

while:

σm ¼ −2ðρ0 − p0
r − p0

θ þ p0
φÞ

B2
0Dðr; θÞ2
Λ3

ð43Þ

and the only nonvanishing component of the 4-current Jμ is

Jφ ¼ 2ðρ0 − p0
r − p0

θ þ p0
φÞ

B0Dðr; θÞ2
Λ4

: ð44Þ

Note that in this case the electric field is null Eμ ¼ 0 and
our results apply within the ideal MHD approximation.
Furthermore, the components of the magnetic field can be
easily computed in the form:

Br ¼ −
2B0∂θDðr; θÞ

Λr
; Bφ ¼ 2B0r∂rDðr; θÞ

Λ
; ð45Þ

confirming that the magnetic field is poloidal in nature.
Finally, in the above geometry we used uμ ¼ ð−AΛ; 0;

0; 0Þ as the 4-velocity of the fluid, while χμ ¼ ð0; BΛ; 0; 0Þ,
ξμ ¼ ð0; 0; CΛ; 0Þ and ζμ ¼ ð0; 0; 0; DΛÞ are respectively
spacelike unit vectors in the radial and the transverse
angular directions.
This solution is a direct generalization of the correspond-

ing transformations considered previously in [34] and [35]
for solutions with spherical symmetry to a more general
class of interior solutions with axial symmetry.

A. A magnetized interior axially symmetric solution

Using a particular case of the above magnetizing
technique, we already discussed the magnetized version
of the Bowers-Liang solution in a previous work [35].
There it was found that in the magnetized version of the
Bowers-Liang solution the central pressure becomes infin-
ite for the same critical mass (24) as in the original Bowers-
Liang solution. Moreover, the magnetized interior solution
matches smoothly the exterior Schwarzschild-Melvin
solution.
As another simple example, we shall consider here

the solution found in Sec. V in [39]. This solution describes
an incompressible isotropic spheroid, whose metric is
given by:

ds2 ¼ −
�
αr2 þ βþ ar cosθ
γr2 þ δþ brcosθ

�
2

dt2

þ 1

ðγr2 þ δþ br cosθÞ2
�
dr2 þ r2ðdθ2 þ sin2θdφ2Þ�;

which is sourced by a fluid with isotropic pressures and a
homogenous energy density:

ρ0 ¼ 12γδ − 3b2

8π
;

p0
r ¼ p0

θ ¼ p0
φ ¼ 3b2 − 12γδ

8π

×

�
1 −

2ð2αδþ 2βγ − abÞ
12γδ − 3b2

γr2 þ δþ br cos θ
αr2 þ β þ ar cos θ

	
;

p0
rθ ¼ 0: ð46Þ

If one defines:

Λ ¼ 1þ B2
0r

2 sin2 θ
ðγr2 þ δþ br cos θÞ2 ; ð47Þ

then the magnetized version of the incompressible isotropic
spheroid becomes:

ds2 ¼ Λ2

�
−
�
αr2 þ β þ ar cos θ
γr2 þ δþ br cos θ

�
2

dt2

þ 1

ðγr2 þ δþ br cos θÞ2 ðdr
2 þ r2dθ2Þ

	

þ r2sin2θ
Λ2ðγr2 þ δþ br cos θÞ2 dφ

2; ð48Þ

while the magnetic potential is

Aφ ¼ B0r2 sin2 θ
Λ

ð49Þ

and the magnetized components of the fluid energy density
and pressures can be computed easily from (42). One
should note that the effective transverse pressure along the

transverse φ direction becomes pφ ¼ p0
φ

Λ2 þ σm, where σm is
in our case:

σm ¼ −2ðρ0 − p0
r − p0

θ þ p0
φÞ

B2
0r

2 sin2 θ
Λ3

: ð50Þ

We should mention that we have checked in Maple that this
is indeed an exact solution of the Einstein-Maxwell-fluid
equations. As expected, there is now manifest an anisotropy
in the pressure distribution, due to the presence of the
magnetic field. Unfortunately, there is no known exterior
solution in the Weyl class that could be matched to this
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interior solution [39], so its physical relevance is lacking at
this point.

B. The magnetized interior Zipoy-Vorhees solution

Let us consider now the magnetized version of the
Zipoy-Vorhees interior solution (31). Starting with the
modified Adler interior solution (31) one can write down
directly the magnetized geometry as:

ds2 ¼ Λ2
�
−fðrÞ2γdt2 þ fðrÞ2ð1−γÞΔðrÞγ2−2Σðr; θÞ1−γ2dr2

þ r2fðrÞ2γðγ−1ÞΦðr; θÞ1−γ2dθ2�
þ r2fðrÞ2ð1−γÞ sin2 θ

Λ2
dφ2; ð51Þ

where we defined Λ ¼ 1þ B2
0r

2fðrÞ2ð1−γÞ sin2 θ. The only
nonzero component of the electromagnetic potential is

Aφ ¼ B0r2fðrÞ2ð1−γÞ sin2 θ
Λ

: ð52Þ

If the original interior Zipoy-Vorhees solution is sourced
by an anisotropic fluid with the stress-energy of the form
(13), then the magnetized version of the fluid components
has the stress-energy described by (41), with components
given by (42) and (43). Finally, the 4-current which
sources the Maxwell equations has the only nonzero
component (44).
This interior solution will smoothly match the exterior

solution, which in our case is represented by the magnet-
ized Zipoy-Vorhees given in (39), as discussed in Sec. V.
The components of the poloidal magnetic field can be
easily computed using (45).
Let us define again γ ¼ 1þ ϵ and δ ¼ m

a . Then, up to the
orders ϵδ, δ one obtains:

ρ ¼ 1

8πð1þ B2
0r

2sin2θÞ2
�
6δð1þ ϵÞ

a2
−
20δ2r2

a4

	
; pr ¼

1

8πð1þ B2
0r

2sin2θÞ2
�
6δ2

a2
−
2δ2r2

a4

	
;

pθ ¼
1

8πð1þ B2
0r

2sin2θÞ2
�
6δ2

a2
−
δ2r2

a4

	
;

pφ ¼ 1

8πð1þ B2
0r

2sin2θÞ2
�
6δ2

a4
−
δ2r2

a4
þ 2B2

0r
2sin2θ

�
17δ2r2

a4
þ 6δð2δ − ð1þ ϵÞÞ

a2

�

þ B4
0r

4sin4θ

�
35δ2r2

a4
þ 6δð3δ − 2ð1þ ϵÞÞ

a4

�	
; prθ ¼ 0: ð53Þ

The anisotropy induced by the magnetic field is now manifest, as pφ is clearly modified away by σm and it is different now
from the other tangential pressure pθ. Note that for B0 ¼ 0 one reobtains the values corresponding to the original interior
Zipoy-Vorhees (33).
One can also show that up to this order the density and the radial pressure decrease monotonically with r:

dρ
dr

¼ −
4B2

0rsin
2θ

ð1þ B2
0r

2sin2θÞ3
�
6δð1þ ϵÞ

a2
−
20δ2r2

a4

	
−

40δ2r
a4ð1þ B2

0r
2sin2θÞ2 < 0;

dpr

dr
¼ −

8δ2

a4ð1þ B2
0r

2sin2θÞ2 ð2þ B2
0r

2sin2θ þ 3a2B2
0sin

2θÞ < 0; ð54Þ

as expected.

V. A NOTE ON THE JUNCTION AND ENERGY
CONDITIONS

Consider a static interior solution with axial symmetry in
GR. Let us suppose that its metric is given by (1) and that it
can be smoothly matched to a vacuum exterior solution in
the Weyl-Papapetrou class on a surface r ¼ R, so that it
represents a valid interior solution. The boundary junction
conditions that require that the first and the second funda-
mental forms be continuous at the boundary are equivalent to
requiring that the functions Aðr; θÞ2, Cðr; θÞ2 and Dðr; θÞ2
are all continuous and have continuous first derivatives at

r ¼ R. Moreover the functions Bðr; θÞ2 and its derivative
ðBðr; θÞ2Þ;θ must be continuous as well.
Indeed, for a geometry of the form (1), since the

matching to an exterior geometry is done on the hyper-
surface r ¼ R then one has to compute the induced metric
on this surface as well as the components of the extrinsic
curvature. Defining the unit vector in the radial direction by
χa ¼ ð0; 1

Bðr;θÞ ; 0; 0Þ then the induced metric on a surface of

constant radius is hab ¼ gab − χaχb, that is

habdxadxb ¼ −Aðr; θÞ2dt2 þ Cðr; θÞ2dθ2 þDðr; θÞ2dφ2:

ð55Þ
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If the first fundamental form is to be continuous with the
one induced from the exterior geometry on a surface of
constant radius r ¼ R then the metric components Aðr; θÞ,
Cðr; θÞ andDðr; θÞ have to be continuous at r ¼ R with the
corresponding values from the exterior geometry.
To see how this is working in practice, let us consider a

general exterior vacuum geometry (while we are still
matching it to the interior geometry on a surface of constant
radius r ¼ R). Let us describe the vacuum exterior geom-
etry using the general static metric of the form:

ds2ext ¼ −Ãðr; θÞ2dt2 þ B̃ðr; θÞ2dr2 þ C̃ðr; θÞ2dθ2
þ D̃ðr; θÞ2dφ2: ð56Þ

The exterior geometry induced on the same hypersurface
r ¼ R will then be

h̃abdxadxb ¼ −Ãðr; θÞ2dt2 þ C̃ðr; θÞ2dθ2 þ D̃ðr; θÞ2dφ2:

ð57Þ

Therefore, the continuity of the metric components
induced by the two geometries on the hypersurface
r ¼ R implies AðR; θÞ ¼ ÃðR; θÞ, CðR; θÞ ¼ C̃ðR; θÞ and
DðR; θÞ ¼ D̃ðR; θÞ, as expected.
Turning now our attention to the components of the

second fundamental form, aka the extrinsic curvature
tensor Kab ¼ hcahdbχd;c then one obtains for the interior
metric (1):

Kt
t ¼

A;r

AB
; Kθ

θ ¼
C;r

CB
; Kφ

φ ¼ D;r

DB
: ð58Þ

Correspondingly, for the extrinsic components of the
exterior vacuum geometry one has:

K̃t
t ¼

Ã;r

Ã B̃
; K̃θ

θ ¼
C̃;r

C̃ B̃
; K̃φ

φ ¼ D̃;r

D̃ B̃
; ð59Þ

where K̃ab ¼ h̃cah̃
d
bχ̃d;c is the extrinsic curvature of the

hypersurface r ¼ R in the exterior geometry, with χ̃a ¼
ð0; 1

B̃ðr;θÞ ; 0; 0Þ being the unit radial vector in the exterior

vacuum geometry.
If the second fundamental form is to be continuous on

the matching surface r ¼ R then it should be obvious that
one must require the functions Bðr; θÞ, Cðr; θÞ, andDðr; θÞ
to be continuous at r ¼ R, as well as the values of the
partial derivatives A;r, C;r, and D;r to be equal to the
corresponding tilded values obtained from the exterior
geometry. This means that we have to require
AðR; θÞ ¼ ÃðR; θÞ, BðR; θÞ ¼ B̃ðR; θÞ, CðR; θÞ ¼ C̃ðR; θÞ
and DðR; θÞ ¼ D̃ðR; θÞ, as well as A;rðR; θÞ ¼ Ã;rðR; θÞ,
C;rðR; θÞ ¼ C̃;rðR; θÞ, and D;rðR; θÞ ¼ D̃;rðR; θÞ.

However, if the matching to the exterior geometry is not
smooth on the junction surface r ¼ R then this will mean
that some components of the extrinsic curvature will not
equal the corresponding components of the extrinsic
curvature of the exterior geometry when evaluated on
the same surface. In this case, using the Israel-Lanczos
junction formalism [83,84] if one defines the quantity
kab ¼ Kab − K̃ab, then the Lanczos stress-energy tensor on
the surface r ¼ R is defined as:

Sab ¼ −
1

8π
ðkab − δabk

c
cÞ: ð60Þ

Discontinuities in the components of the extrinsic curvature
on the junction surface r ¼ R will lead to nonzero
components of the tensor kab and correspondingly nonzero
components of the superficial stress-energy tensor (60) on
that surface.
As it was originally shown in [81], these conditions for

smooth matching are satisfied for the interior Zipoy-
Vorhees solutions based on the modified Adler solution,
while the exterior vacuum solution is in this case the
vacuum Zipoy-Vorhees solution (5). Indeed, in this case the
matching is done on the surface r ¼ a. One can easily
check that on this surface one has:

Aða;θÞ¼−ða−2mÞγa−γ;
Bða;θÞ¼aγ

2þγ−1ða−2mÞγ2−γ−1ðm2 sin2θþa2−2maÞ1−γ2 ;
Cða;θÞ¼aγ

2þγða−2mÞγ2−γðm2 sin2θþa2−2maÞ1−γ2 ;
Dða;θÞ¼a1þγða−2mÞ1−γ sin2θ; ð61Þ

using the interior modified Adler solution from (31) and
they do agree with the metric components induced by the
exterior Zipoy-Vorhees metric on a surface of constant
radius r ¼ a.
To check that the interior solution (31) will smoothly

match the exterior Zipoy-Vorhees solution one has to check
the continuity of the components of the extrinsic curvature
on the junction surface r ¼ a. As we have previously seen,
this amounts to check the continuity of the radial deriv-
atives of the metric components Aðr; θÞ, Cðr; θÞ and
Dðr; θÞ on r ¼ a. After some tedious computations, one
explicitly obtains for the interior solution:

A;rða; θÞ ¼ −2mγa−1−γða − 2mÞγ−1;
C;rða; θÞ ¼ 2aγ

2þγ−1ðm2 sin2 θ þ a2 − 2maÞ−γ2

× ða − 2mÞγ2−γ−1�m2γðaγ −mð1þ γÞ sin2 θ
þ aða − 2mÞða −mð1 − γÞÞ�;

D;rða; θÞ ¼ 2 sin2 θaγða −mð1þ γÞÞða − 2mÞ−γ: ð62Þ

It is now easy to check that these values for the radial
derivatives of the metric functions do agree with the
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corresponding values computed using the exterior vacuum
Zipoy-Vorhees geometry. In conclusion, the second funda-
mental form is also continue on the junction surface r ¼ a
and this means that the interior solution (31) will smoothly
match the exterior Zipoy-Vorhees solution.
Now, let us turn our attention to the charged interior

solutions described in the previous sections. As a general
rule, after applying the Ehlers-Harrison transformations
(electric or magnetic) then these metric functions will be
transformed by multiplication by the factors Λ�2. Since Λ
is a smooth function of the coordinates r and θ [as it is
constructed algebraically from the metric component
Aðr; θÞ or Dðr; θÞ] then it should be clear that the above
boundary conditions will be satisfied as well in the case of
the charged interior solution. For example, in the electric
case one has Λ ¼ 1 − E2

0Aðr; θÞ2 and in the electrically
charged solution the tt-component of the metric becomes

− Aðr;θÞ2
Λ2 . This will be continuous and its first derivatives are

continuous at the boundary r ¼ R as long as the seed
function Aðr; θÞ2 is continuous and its first derivatives are
continuous there. The remaining components will be
multiplied by the factor Λ2 and they will smoothly match
the exterior geometry as well, since the corresponding
metric components in the exterior geometry are multiplied
by similar factors and they all agree on the matching
hypersurface.
To see how this works in practice, let us consider first the

electric solution generated by our method. The interior
charged fluid solution is described by the new metric (14).
The normal radial direction for a surface of constant radius
will be given by χa ¼ ð0;ΛB; 0; 0Þ, where Λ ¼ 1 − E2

0A
2.

The metric induced on a surface of constant radius will
correspond to:

habdxadxb ¼ −
A2

Λ2
dt2 þ Λ2½C2dθ2 þD2dφ2� ð63Þ

After one applies the same Harrison transformation on
the external vacuum geometry one obtains a charged
exterior geometry of the form:

ds2ext ¼ −
Ã2

Λ̃2
dt2 þ Λ̃2

�
B̃2dr2 þ C̃2dθ2 þ D̃2dφ2

�
: ð64Þ

In the exterior charged geometry the metric induced on
the same hypersurface r ¼ R is now

h̃abdxadxb ¼ −
Ã2

Λ̃2
dt2 þ Λ̃2

�
C̃2dθ2 þ D̃2dφ2

� ð65Þ

Here Λ̃ ¼ 1 − E2
0Ã

2.
Continuity of the first fundamental form on the

matching surface r ¼ R will require continuity of the
metric components A2

Λ2, Λ2C2 and Λ2D2 on this surface.
Since A is continuous at this radius then also the factor

Λ is continuous there since Λ ¼ 1 − E2
0Aðr; θÞ and

Λ̃ ¼ 1 − E2
0Ãðr; θÞ. This means that when AðR; θÞ ¼

ÃðR; θÞ then also Λ ¼ Λ̃ for r ¼ R.
Turning now our attention to the second fundamental

form of the hypersurface r ¼ R, let us notice that the
components of the extrinsic curvature in the interior
geometry take the simple form:

Kt
t ¼

ΛA;r − AΛ;r

Λ2AB
; Kθ

θ ¼
ΛC;r − CΛ;r

Λ2CB
;

Kφ
φ ¼ ΛD;r −DΛ;r

Λ2DB
; ð66Þ

with similar tilded quantities for the components of the
extrinsic curvature in the exterior geometry. Continuity of
the second fundamental form requires then continuity
of the functions AðR; θÞ ¼ ÃðR; θÞ, BðR; θÞ ¼ B̃ðR; θÞ,
CðR; θÞ ¼ C̃ðR; θÞ, and DðR; θÞ ¼ D̃ðR; θÞ as well
as the continuity of their partial derivatives in the radial
direction A;rðR; θÞ ¼ Ã;rðR; θÞ, C;rðR; θÞ ¼ C̃;rðR; θÞ and
D;rðR; θÞ ¼ D̃;rðR; θÞ. Note that the equality Λ;r ¼ Λ̃;r is
assured by the continuity of the function A and its first
radial derivative A;r.
As one can now easily notice, the smooth matching of

the charged interior exterior geometries (14) and (64) are
assured by the smooth matching of the original interior
geometry (1) with the vacuum geometry (56) as claimed. In
particular, since the interior Zipoy-Vorhees solutions will
smoothly match the exterior Zipoy-Vorhees solution on a
surface of constant radius r ¼ a, then by applying our
charging technique on the interior as well as on the exterior
geometry one should obtain a charged interior Zipoy-
Vorhees solution which will smoothly match the exterior
charged Zipoy-Vorhees geometry on the surface r ¼ a. The
same conclusions will apply to the magnetic case as well.
Another interesting issue is related to the electromag-

netic potential since one has now one potential in the
interior geometry as well as a potential in the exterior
charged geometry. In the charged interior geometry one has
an expression of the form (15). In the exterior charged
geometry the electromagnetic potential will have the
expression:

Ae ¼
E0Ãðr; θÞ2

Λ̃
: ð67Þ

If the charged interior solution (14) and the charged
exterior (64) are smoothly matched, these conditions will
assure the continuity of the electromagnetic potential as
well as its radial derivatives across the surface r ¼ R and
there will be no charged shell on the junction surface
r ¼ R.
One might wonder what happens if the interior geometry

does not smoothly match the exterior geometry. In this case
one has to use the Israel-Lanczos junction conditions to
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compute the thin-shell stress-energy tensor (60) on the
boundary surface. For example, based on the results in [35],
where the anisotropy induced by the magnetic field
manifested itself in the superficial stress-energy tensor,
we expect this to be the generic case, that is, the electrically
charging/magnetizing effects manifest themselves in the
boundary stress-energy tensor and their explicit forms
should be computed on a case by case basis.
Finally, regarding the energy conditions one should

mention that if they are satisfied in the initial seed solution
then they should be generally preserved in the final charged
solution as well. For example, consider a geometry with
spherical symmetry for convenience. If the initial fluid seed
satisfies say the dominant energy condition (DEC) then:

ρ0 − p0
r ≥ 0; ρ0 − p0

t ≥ 0: ð68Þ

Consider now, for instance, the effect of the electrically
charging transformation from Sec. III. The final energy

density becomes ρ ¼ ρ0

Λ2 þ ρel, while pr ¼ p0
r

Λ2 and pt ¼ p0
t

Λ2,
where ρel is given by (18) and it is manifestly positive. The
net result is that DEC is satisfied by the electrically charged
solution. A similar situation happens in the magnetic case
as well.

VI. CONCLUSIONS

In this work we presented two solution-generating
techniques, which are direct generalizations of some of
the Ehlers-Harrison transformations in the Ernst formalism,
while adapted to work in presence of an anisotropic fluid
source with axial symmetry. Based on these procedures we
were able to construct the electrically charged and the
magnetized solution for every static axially symmetric
geometry (1), sourced by a anisotropic fluid described
by a nondiagonal anisotropic stress-energy tensor (13).
While one might object that this is not usually the tradi-
tional way in finding solutions of the Einstein equations,
one can also understand our solution-generating methods in
the sense that for instance, if one uses the special metric
ansatz as in (14), an ansatz for the electric field (15) and an
ansatz for the fluid quantities (16) then the problem of
solving the Einstein-Maxwell-fluid equations is essentially
reduced to find a solution of the Einstein-fluid equations for
the metric (1) and fluid quantities (13). Conversely, from
every fluid solution one can find its electrically charged
version or the magnetized version.
As simple enough examples, we showed how to derive

two new solutions describing the electrically charged
version of the Bowers and Liang solution, as well as a

magnetized version of an exact solution with axial sym-
metry presented in [39]. This last solution describes an
incompressible spheroid with homogeneous energy density
and isotropic pressures, however its exterior geometry is
unknown since it cannot belong to the Weyl-Papapetrou
class. As such, its physical relevance is lacking at this point.
As the most important results of our solution-generating

technique we also derived and analyzed two new solutions
with axial symmetry that describe the electrically charged
Zipoy-Vorhees interior solution as well as the magnetized
Zipoy-Vorhees interior solution. Note that using our
method one should be able to construct the electrically
charged or the magnetized version of every static axially
symmetric fluid solution. As shown in Sec. V if this
solution can be smoothly matched to an exterior vacuum
geometry in the Weyl class, then our transformations will
produce the electrically charged or the magnetized versions
of both the interior fluid solution as well as of the exterior
geometries while still maintaining the smooth matching on
the matching hypersurface. This method was previously
used in [76], where based on the charging technique of
interior fluid solutions with spherical symmetry we were
able to obtain a new bound of the mass-to-radius ratio for
electrically charged stars in GR. However, we stress again,
our solution-generating technique can be successfully
applied to more general interior solutions with axial
symmetry as found for instance in [39,40].
Note that the matching is done here on a spheroid surface

with constant radius r ¼ R. In more general cases the
matching can be done a surface fðr; θÞ ¼ 0 and the analysis
performed in this paper should be generalized accordingly.
As avenues for further work, the magnetized solutions

presented in our paper should be suitable to construct more
realistic models of magnetars, by adding the slow-rotation
in a perturbative way, along the lines of [85,86]. Another
interesting extension of the present work would involve a
study of the star’s anisotropy effect on the propagation of
various fields in this background, on the lines of the study
presented in [87–89]. Finally, it should be intersecting
to study the extension of these results in spaces with higher
dimensions using a solution generation procedure as
in [90].
Work on these matters is in progress and it will be

presented elsewhere.
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