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Massive objects located between Earth and a compact binary merger can act as gravitational lenses
magnifying signals and improving the sensitivity of gravitational wave detectors to distant events.
Depending on the parameters of the system, a point-mass lens between the detector and the source can
either lead to a smooth frequency-dependent amplification of the gravitational wave signal, or
magnification combined with the appearance of a second image that interferes with the first creating a
regular, predictable pattern. We map the increase in the signal to noise ratio for upcoming LIGO-Virgo-
KAGRA (LVK) observations as a function of the mass of the lensML and a dimensionless source position
y for any point-mass lens between the detector and the binary source. To quantify detectability, we compute
the optimal match between the lensed waveform and the waveforms in the unlensed template bank and
provide a map of the match. The higher the mismatch with unlensed templates, the more detectable lensing
is. Furthermore, we estimate the probability of lensing, and find that the redshift to which binary mergers
are visible with the LVK increases from z ≈ 1 to z ≈ 3.2 for a total detected mass Mdet ¼ 120M⊙. The
overall probability of lensing is<20% of all detectable events above the threshold SNR forMdet ¼ 120M⊙
and <5% for more common events withMdet ¼ 60M⊙. We find that there is a selection bias for detectable
lensing that favors events that are close to the line of sight y≲ 0.5. Black hole binary searches could thus
improve their sensitivity by taking this bias into account. Moreover, the match, the signal-to-noise ratio
increase due to lensing, and the probability of lensing are only weakly dependent on the noise curve of the
detector with very similar results for both the O3 and predicted O4 noise power spectral densities. These
results are upper limits that assume all dark matter is composed of 300M⊙ point-mass lenses.
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I. INTRODUCTION

Gravitational wave detectors register oscillations in the
fabric of spacetime, which propagate at the speed of light.
These waves are not absorbed by intervening matter
providing a unique insight into the dynamics of the
Universe. Since the spacetime is very stiff, gravitational
waves are very weak, and can only be detected on Earth if
they come from the inspiral and merging of very dense
compact objects like binary black holes or neutron stars.
Black holes (BHs) have the strongest gravitational wave
emission and can be detected further away than other
compact objects. This makes them more likely candidates

for gravitational lensing, where an object close to the line of
sight interposes between the source and the detector
amplifying the gravitational wave emission. While black
holes are fully characterized by mass, spin, and charge, the
emitted gravitational waves from a binary merger represent
the last act in a million or billion year chain of events.
Reconstructing the characteristics of the binary in the
source frame where the collision happened is the primary
challenge after the identification of the signal.
The first merging black holes detected from the emitted

gravitational radiation were unlike any black holes seen in
the Milky Way before. They are quite massive, substan-
tially more than black holes found in x-ray studies, and
appear not to have much spin. Since the first detection in
2015 [1], the LIGO-Virgo-Kagra (LVK) Collaboration has
registered about 90 gravitational wave events [2–4]. The
average total mass for detected gravitational wave binaries
has been observed to be ≈60M⊙, which is unexpectedly
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high. One proposed explanation for such high masses is
gravitational lensing [5,6].
While gravitational wave signals provide information that

is complementary to telescope observations, they are chal-
lenging to interpret correctly. Massive objects within an
Einstein cone of the detected compact object collision alter
the signal causing gravitational lensing [7,8]. It can result in
magnified signals, duplicate events, or conspire to create a
beating pattern in thewaveformwhich occurs when the time
delay between the paths is comparablewith the period of the
wave. Repeated events separated by minutes to months
occur when the lens is a galaxy [9–13]. The separation can
increase up to years for galaxy clusters [14–16]. Here we
focus on microlensing by stars or other compact objects
(duplicate events separated by milliseconds to seconds).
Microlensing in the context of gravitational waves has been
the focus of a plethora of studies [5,6,17–38].
Careful modeling can turn gravitational lensing from a

hindrance in waveform recovery to a new instrument in
gravitational wave astrophysics. Some gravitational lenses
could be objects that do not emit light or neutrinos and
cannot be observed through other channels. Lensing could
then constrain populations of unknown or poorly under-
stood objects like intermediate mass black holes [22,39],
dark matter haloes [40–42] or topological defects [43–45]
and even prove the existence of new objects. When we
compute the number of lenses we take the amount of dark
matter in the universe split into microlenses as an upper
limit. A first detection of gravitational lensing could
provide the first direct evidence of compact dark matter
objects [40,41,46–53].
The lensing amplification causes the source’s distance

from the detector to be underestimated. Not only does it
appear to be closer, but it also appearsmoremassive because
the redshift is underestimated. It is thus crucial to determine
whether a detected gravitational wave signal is lensed or
not, because misidentification results in wrong parameter
estimation, e.g., if the signal ismagnified due to the presence
ofmassive objects in between the binary inspiral and Earth it
will appear further than it actually is. A binary at z ¼ 3
will appear four times more massive when detected
in the detector frame than in the source frame with
Mdet ¼ ð1þ zÞMsrc. A population of objects with suspi-
cious distances or masses could provide indirect evidence of
lensing. In this paper we ask the questions of when micro-
lensing of an individual source can be clearly detected, and
how would such a detection appear. Characteristics of
lensing include: (1) the appearance of a second image;
(2) a regular pattern of minima and maxima that is
predictable or simply; (3) an amplification of the signal
that increases with frequency and is maximum at merger.
While the LVK Collaboration analyzed O2 and O3

observation runs [54–56], they did not find confident
evidence for gravitational wave lensing. The detection rate
is expected to increase from one gravitational wave per

week in O3 to a possible one per day in O4 [57,58].
The higher number of sources elevate the probability of
detecting a detectably lensed event. Furthermore, plans for
new, advanced detector facilities are crystalizing in both
Europe via the Einstein Telescope and the USA via the
Cosmic Explorer [59–62].
Here we investigate scenarios for detection of micro-

lensing of binary black hole (BBH) coalescences. We make
three key contributions. We provide simple but accurate
approximations for the signal-to-noise ratio (SNR) and the
maximum mismatch between microlensed waveforms and
an unlensed template bank which determines when lensing
is detectable rather than silent. We show the SNR increase
and mismatch are largely independent of the BBH masses
or the detector’s sensitivity curve for current-generation
detectors. Moreover, we provide the first derivation of an
important selection bias which affects parameter estimation.
Section II begins by reviewing the effect of a point-mass

lens (PML) on the gravitational wave signal. The point-
mass lens is the simplest most illustrative model for a
microlensing object. The lensing effects depend only on the
lens mass ML and y, which gives the position of the lens
relative to the line of sight between the source and the
detector. We compute the relative increase in the SNR
caused by the lensing amplification of the signal, which
induces detectability to larger distances and show that it is
similar for O3 and O4 noise curves. The parameter space in
divided in three regions: the amplification region (the SNR
increase depends only onML, see Appendix A), a transition
region (the SNR increase depends on both y and ML), and
the geometrical optics region (the oscillations in the trans-
mission factor average out, and the SNR increase depends
only on y, see Appendix A).
In Sec. IV the mismatch of the lensed signal versus

unlensed signals is calculated. We quantify the detectability
by the mismatch of the lensed signal versus any unlensed
templates. This is the fundamental ingredient in model
comparisons since without sufficient mismatch the signal
intrinsically does not contain information to indicate that it
is lensed. As we were submitting this manuscript, Ali et al.
[63] published the mismatch for strong lensing in the PML
and the single isothermal sphere cases. They propose
model-independent lensing parameters. Their analysis
suggests detectable values at y ≈ 0.7 for ML ¼ 103M⊙
for the PML, which is consistent with ours. However, the
paper does not go beyond the mismatch calculation to
estimate the probability of lensing.
Crucially, Sec. Vevaluates not just the rate of lensing, but

the rate of detectable lensing. Otherwise, lensing is silent.
In silent lensing, the distance to the binary and the mass of
the binary could be affected without creating a detectable
mismatch with unlensed templates. Selecting only for
lensed waveforms that carry enough of a lensing imprint
to be measured limits parameter space improving prior
distribution of lens parameters for detecting microlensing.
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Simulating microlensing, or doing Bayesian parameter
estimation of possibly lensed events, requires prior dis-
tributions for the lens mass ML and the dimensionless lens
angle y. The obvious choice for priors is to model the
distribution of lenses expected to exist in the Universe. For
the angle this is simple because randomly distributed lenses
will follow a scale-free distribution pðyÞ ∝ ydy regardless
of lens mass. However, this puts the most weight on lenses
farthest from the line of sight, which have a negligible
effect on the signal. Even when an artificial limit is put on
y, the prior most heavily weights lenses at the boundary,
which for y > 1 are systems that are not meaningfully
lensed.
We demonstrate the existence of a selection bias, which

reshapes the distribution of the lensing parameters when
conditioning on detectability. A source must be detected
above a given SNR threshold in order to be analyzed.
Lenses closer to the line of sight cause more amplification,
increasing the sensitive volume and greatly enhancing their
relative rate of detections. Hence the distribution of
observable lensed systems is peaked toward smaller lens
angle. The distance to the furthest source is also much
higher than typical for unlensed systems. These effects
must be accounted for in simulations, and they also shape
our expectations for what lensed systems are most likely to
be detected.
We note that the effect of lensing depends on the

redshifted lens mass, while the most natural prior gives
our belief about the mass of the lens in its own frame.
Hence there is an extra variable, the lens distance, which
must be tracked. Our approach naturally incorporates this
as well. However, in this first paper, we do not include a
specific model that predicts the number and masses of
lenses since they are so uncertain. We leave that to future
work. Instead we show the priors when they are condi-
tioned as well on the lensed waveform having a sufficient
mismatch that it leaves a measurable imprint on the signal.
Conclusions and future directions are presented in Sec. VI.
Appendix A discusses the transmission factor in the
amplification and geometrical optics (GO) regions, while
Appendix B contains the simplified formulas for SNR
increase due to lensing in these regions. Appendix C
presents the imprint of the factor on the waveform itself
in the time and frequency domain including typical spectro-
grams of lensed waveforms.

II. POINT-MASS LENS

All massive astrophysical objects are potential lenses that
can be encountered by a passing gravitational wave. For
gravitational lensing the point-mass lensmodel is valid when
the dimension of the lens is much smaller than the Einstein
radius, e.g., for black holes, dense dark matter clumps, etc.
Due to its simplicity, the PML model has been used in the
literature for interpreting both electromagnetic [7,8,64,65]
and gravitational wave lensing [17–26,29–41,46,48–52].

Generally, lensing effects become significant when the
source, the lens and the observer are all aligned within
the Einstein angle θE ¼ RE=dL, i.e., the lens is located near
the line of sight—defined as the line joining the observer
and the center of the lens. The Einstein radius is given by

RE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RSdLSdL=dS

p
; ð1Þ

which is much smaller than the angular diameter distances
dL, dS, and dLS from the lens to the observer, from the
source to the observer, and between the lens and the source,
respectively. HereRS ¼ 2GML=c2 is Schwarzschild radius
of the lens, which is directly proportional to the mass of the
lens ML.

A. Transmission factor

Since lensing occurs in a relatively narrow region
compared to the cosmological distances traveled by the
wave (dL, dS and dLS), the transmission factor can be
computed in the thin lens approximation. The lens mass can
then be projected onto a lens plane. In this approximation,
the gravitational waves propagate freely outside the lens
and interact only with a two-dimensional gravitational
potential at the lens plane, where their trajectory is
suddenly modified via the transmission factor F. For the
PML it is given by [7,64]

F ¼ e
1
2
π2νeiπν lnðπνÞΓð1 − iπνÞ1F1ðiπν; 1; iπνy2Þ; ð2Þ

where ν≡ ftM is the frequency of the gravitational wave f
scaled by the characteristic time tM, ΓðzÞ is the gamma
function, and 1F1ða; b; zÞ is the confluent hypergeometric
function. The transmission factor represents the ratio
between the lensed wave field received by the observer,
and the unlensed one (what would be observed when no
lens was present). Our transmission factor is the complex
conjugate of that in some other works, but is appropriate to
the sign convention that we use for Fourier transforms.
As seen from Eq. (2), the transmission factor, which is a

function of frequency, depends on two parameters:
(i) the mass of the lens ML through the time

tM ¼ 2RS=c ≈ 2 × 10−5 sðML=M⊙Þ; ð3Þ

(ii) the scaled offset of the source

y ¼ θS=θE; ð4Þ

where θS is the angular position of the source with
respect to the line of sight.

Throughout, we will measure the mass of the lens in the
observer’s frame. This is related to the intrinsic mass ML;0
by ML ¼ ð1þ zLÞML;0, where zL is the cosmological
redshift of the lens. In Sec. V, we will revert to using
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the intrinsic mass and including the redshift factor
explicitly.
The strain of the gravitationally lensed signal h̃ðfÞ (that

would finally be detected) is the product of the unlensed
strain h̃ULðfÞ and the transmission factor FðfÞ in the
frequency domain,

h̃ðfÞ ¼ h̃ULðfÞ · FðfÞ: ð5Þ

We are interested in the behavior of the transmission factor
F, shown in Fig. 1 and detailed in Appendix A, for the
frequency region the LVK is sensitive to, which begins at
about 15 Hz and ends at merger for the BH binaries
considered here.
For a given choice of parameters ML and y, the lensing

effect on GWs in the LVK range (shown by vertical dashed
lines in Fig. 1) will be different depending on the
parameters’ values, as explained in Appendixes A and B.
The frequency range can fall into the GO oscillating region
(higher masses and/or y), the amplification region (lower
masses and/or y), or into the intermediate part, as seen in
Fig. 1. If the mass is very low (e.g.ML ¼ 30M⊙), the effect
will be mainly amplification. If the mass is higher, then
oscillations will appear (see Appendix C for the effects on
the waveform). The spacing of the oscillations will depen-
dent on the product yML [Eq. (A6)], while the amplifica-
tion of the maxima and minima will be only dependent on
y [Eq. (A7)].
For calculations that are numerically expensive we use a

hybrid transmission factor function that takes the value of
the full-wave F from Eq. (2) at low frequencies and its GO
limit given by Eq. (A4) at high frequencies. The simplicity

of the GO formula makes the computation much faster.
As a matching point between these solutions, we take the
frequency of the third oscillation maximum to ensure a
smooth transition.

B. SNR increase

The detectability of a GW signal may be characterized
by the signal-to-noise ratio. We first define a noise-
weighted inner product between frequency-domain wave-
forms [66,67],

ha; bi ¼ 2

Z
fmax

fmin

ã�ðfÞb̃ðfÞ þ ãðfÞb̃�ðfÞ
SnðfÞ

df; ð6Þ

where SnðfÞ in the one-sided noise power spectral density,
and the minimum and maximum frequencies of the detector
fmin and fmax are chosen to contain all the practically
detectable power in the waveform.
We also define moments of the noise spectral density in a

manner similar to [68]

Kα ¼
�Z

fαjhðfÞj2
SnðfÞ

df

���Z jhðfÞj2
SnðfÞ

df

�
: ð7Þ

These moments characterize the sensitivity of a given
detector to changes in the waveform. For instance, the
sensitivity to time offsets is governed by K1 and K2,
because a time derivative is equivalent to multiplication by
f in the frequency domain. We will use these moments in
predicting the SNR and match in the amplification region.
The SNR is then defined by

ρ2 ¼ hh; hi ¼ 4

Z
fmax

fmin

jh̃ðfÞj2
SnðfÞ

df: ð8Þ

The relative SNR increase due to lensing can then be
written as the ratio between the lensed and unlensed SNRs,

ρ2rel ¼
hh; hi

hhUL; hULi
: ð9Þ

We will primarily consider gravitational waves from binary
black hole coalescence since they are the most massive and
the furthest away from the detector, and thus the most likely
to be lensed.
We consider gravitational wave strain amplitudes

obtained with LVK’s IMRPhenomD waveform [69,70]
that go through the standard inspiral, merger, and ring-
down phases. The effect of lensing on the SNR increase
is demonstrated in Fig. 2. We take the usual Mdet ¼
M1 þM2 ¼ 60M⊙ binary and represent the results in
terms of two lensing parameters, ML and y. Since it is a
ratio, ρrel is roughly independent of the LVK noise curve

FIG. 1. Transmission factor as a function of frequency for
different values of ML at two fixed values of y; y ¼ 0.25 (solid
curves) and y ¼ 0.5 (dashed curves). The black vertical dashed
lines correspond to f ¼ 15 Hz, given by the sensitivity of the
detector, and f ¼ 300 Hz, the merger frequency for a Mdet ¼
M1 þM2 ¼ 60M⊙ BH binary.
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used showing very similar results for O3 and O4 [71].
The characteristic behavior in different regions can be
understood by comparing with the transmission factor
represented in Fig. 3. The boundary between the amplifi-
cation and transition region is chosen when the amplifica-
tion approximations starts to diverge at ftMy ≈ 0.055 [36],
and the boundary with the GO average region is taken to be
at the eighth maximum. However, these can be varied
depending on the accuracy needed.

III. DETECTED SNR

While in this paper we are most interested in first
detections, which are likely to happen in O4 or O5 for
close-to-threshold events with ρ ¼ 8–10, for sufficiently
high SNR systems even small mismatches would lead to
observable effects.
In searches, gravitational wave signals are penalized for

mismatching. Pipelines use statistics to downweight signals
that do not look like templates in their bank to favor real
candidates over transient non-Gaussian noise sources
known as glitches.
The detected SNR is reweighted when χ2r > 1 to

ρ̂ ¼ ρ=½1þ ðχ2rÞ3=2�1=6; ð10Þ

where χ2r ¼ χ=ð2p−2Þ2, χ ≤ χmax¼ 2ðp−1Þþ2ρ2ð1−MÞ,
M is the match and p is the number of bins [72–74].
The mismatch makes the search less sensitive by

decreasing the detected SNR and by increasing the χ2.
In our case, for a mismatch of 1 −M ¼ 10% at
Mdet ¼ 60M⊙, a gravitational wave signal with ρ ¼ 10
will be detected as ρ̂ ≈ 8.5. The SNR will be reduced
further for higher Mdet since the detectable part of the
waveform shortens, which reduces the number of frequency
bins and increases the penalty on the waveform.
The χ2-statistics is performed as part of the lensing

search, and is beyond the scope of this work where we only
provide upper limits for lensing detection.

IV. WAVEFORM MISMATCH: MATCHING
LENSED EVENTS TO EXISTENT TEMPLATES

Microlensing is not just an overall amplification of the
signal, but a frequency-dependent change to the amplitude
and phase of the gravitational wave. This intrinsic dis-
tortion of the signal is what will provide our evidence of
lensing. The degree of similarity between two waveforms is
quantified by the match, which ranges from zero to one.
The match is the overlap defined below maximized over
phase and time, as this is what the detection process will do.
The detectability of a given lens is computed by finding the
optimal match between the lensed waveform and unlensed
waveforms in the LVK’s template bank. The SNR of a
detection made with the unlensed template bank will be
reduced proportionally to the match. In what follows, we
will also use the mismatch, defined as one minus the match.
The overlap between twowaveforms a and b is defined as

Oða; bÞ ¼ ha; biffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiha; aihb; bip : ð11Þ

Phase and time are incorporated into a waveform as
hðf; t;φÞ ¼ hðfÞe−ið2πftþφÞ. The match is the overlap maxi-
mized over time and phase offsets between two waveforms

FIG. 2. Relative increase in signal-to-noise ratio ρrel as a
function of y and ML for the same black hole binary of Mdet ¼
M1 þM2 ¼ 60M⊙ for the O3 and O4 LIGO power spectra
densities. The oblique black lines delimit the regions where the
amplification and the GO approximations are valid, and the
transition between them.

FIG. 3. Transmission factor jFj as a function of frequency f, for
fixed values of ML ¼ 3000M⊙ and y ¼ 0.25. The LVK detect-
ability lies between the black dashed lines with a maximum
f ¼ 500 Hz for illustrative purposes. There are two colored
regions of interest related to the SNR increase ρrel shown in
Fig. 2: (i) the amplification region [Eq. (A2)] and (ii) the GO
average region [Eq. (B3)].
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Mða; bÞ ¼ max
φ;t

haðfÞ; bðf; t;φÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiha; aihb; bip : ð12Þ

The match is the appropriate quantity for comparing
the similarity of two waveforms, as the detection process
will always search over (maximize) the unknown time
and phase.
In the amplification region, we can use Eq. (B2) to

simplify the match to

Mðh; hULÞ ¼
hf1=2hUL; hULiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hhUL; hULih
ffiffiffi
f

p
hUL;

ffiffiffi
f

p
hULi

p
¼ K1=2ffiffiffiffiffiffi

K1

p ; ð13Þ

where K1=2 and K1 are defined in Eq. (7). The integral is
maximized when the time and phase offsets are zero
because the integrand is real-valued. The factors of tM in
the lensed waveform cancel, thus in this regime the
overlap is independent of both y and ML. Figure 5(c)
displays the match as a function ofMdet. ForMdet¼60M⊙,
the match is 0.943 for O3 and 0.934 for O4; the wave-
forms are more distinguishable since the noise curve is
wider and flatter. This approximation agrees with our
numerical calculations for the match in the amplification
region.
In the GO average region, two images hGO ¼ h1 þ h2

begin to appear, separated by a time delay. Because of
the time delay, the unlensed template can only align with
one of the two images, so the match is determined by the
magnitude of the first (stronger) image relative to the sum
of the magnitude of both images

MðhGO; hULÞ ¼ max
φ;t

hh1; hULiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhUL; hULihhGO; hGOi
p

¼
ffiffiffiffiffi
μ1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1 þ μ2

p ; ð14Þ

with the magnification of each of the images being

μ1;2 ¼
1

4

�
yffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
y

� 2

�
: ð15Þ

We have used the fact that hh1; h2i ≈ 0 because the two
images are not aligned in time, and h1;2 ∝

ffiffiffiffiffiffiffi
μ1;2

p
hUL plus

the time shift (and phase shift due to the Morse factor).
Figure 4 shows the match between an unlensed and a

lensed equal massMdet ¼ 60M⊙ black hole binary. We use
the LVK’s standard IMRPhenomD templates with no spin,
precession or eccentricity included. Preliminary results that
included optimization over mass and spin showed a differ-
ence of under 1%. We so far find that the optimal match
occurs between the lensed h and unlensed waveform hUL of
the same binary mass. However, a more exhaustive param-
eter study is needed. In Fig. 4(a) we place the increase in
SNR and the match on the same plot in y −ML space. The
two regions, amplification (left corner) and GO (right
corner), can clearly be distinguished.
If the source has ρ ≈ 10, a mismatch higher than 20% can

bring it just under the detectability threshold ρ ¼ 8,
rendering it undetectable. As we will see in the next
section, sources with lower ‘actual’ ρ are more likely to
be lensed because they are expected to be further away. As
per the figure, a distant source of ρUL ¼ 1 could increase its
SNR by a factor of 10 and appear detectable at ρ ¼ 8with a
match of 84%.

FIG. 4. Match between a lensed and unlensed waveform from a Mdet ¼ 60M⊙ black hole binary (a) superimposed on the SNR
increase computed for O4 (b) for O3 and O4 power spectra densities. It can be seen that the highest mismatch occurs for high SNR
increase. The solid blue lines are the match computed in the GO limit from Eq. (14). They are equally spaced contours between 0.72
(lowest blue line) and 0.93 (highest blue line). The agreement is poor for low y andML. Moreover, the change from O4 to O3 has minor
effects.
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Figure 4(b) compares the optimal match computed for
the same Mdet ¼ 60M⊙ binary for O3 and predicted O4
noise curves. As shown mathematically, both the match and
SNR increase are largely insensitive to the noise curve
used. In the GO region, they only depend on y, as shown in
Appendix B. In the silent amplification region, where the
match is generally over 90%, some difference is observed
due to variations in the first SNRmomentK1 [see Figs. 5(a)
and 5(b) for K1=ρUL and ρrel]. Minor variations in the
match are also observed in the region where the full
transmission factor is required for the calculation. As
ML increases, the oblique lines become denser and the
binary moves from the amplification into the GO region.
The horizontal blue lines show when the analytic formula
given by Eq. (14) from the GO estimate matches the full
expression. Since we are plotting a ratio, there is no need to
choose ρUL for this figure.

V. PROBABILITY OF DETECTION:
AN UPPER LIMIT

In this section, we derive the relative probability of
detecting a lensed vs an unlensed source assuming a
constant number of sources per comoving volume.
Detection here means that the SNR is above a set threshold.
This gives us the relative fraction of events that will be

lensed. We will relate this to the ratio of prior probabilities
that is used to convert the Bayes factor into a posterior
probability ratio.
The distribution of lenses in angle is scale free for lenses

sufficiently near the line of sight, i.e., independent of ML.
The lensing angles are distributed uniformly in area, as ydy.
But there is a strong selection bias for smaller values of y
because they lead to substantial magnification. The mag-
nification increases the volume containing sources, as well
as the probability of encountering a lens due to the greater
distance. This leads to the distribution of detected lens
parameters to strongly favor smaller y. This effect must be
considered when simulating lensing and interpreting the
results. Our derivation will follow the lines of [75] (and see
Ref. [50] for an application to gravitational waves), but
adding the effect of selection bias due to detectability above
an SNR threshold.
The probability of lensing depends on the relative

proportion of lensed to unlensed detections,

FlensingðML; nLÞ ¼
NLS

NS
; ð16Þ

where NLS is the number of lensed sources above the
threshold SNR ρt, and likewise NS is the number of

FIG. 5. (a) the first SNR moment K1, (b) ρrel and (c) match in the amplification region for O3 and O4 power spectra densities as a
function of total mass Mdet ¼ M1 þM2.
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unlensed detectable sources. We will consider below a few
different criteria for a source to be meaningfully lensed.
We treat the GW sources as uniformly distributed in
comoving volume with number density nS. We observe
that the relative probability of detection is independent of
any overall scaling of nS. Flensing scales directly with the
lens density nL. The probability that a given detection is
lensed is Plensing ¼ FlensingðML;nLÞ=ð1þFlensingðML;nLÞÞ,
which is almost equal to FlensingðML; nLÞ for NLS ≪ NS.
To incorporate cosmology, we will write our integrals in

terms of the radial comoving distance

χ ¼
Z

dz0

Hðz0Þ ; ð17Þ

where HðzÞ is the Hubble parameter. We assume standard
cosmology

HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩMð1þ zÞ3 þ ΩΛ

q
; ð18Þ

with H0 ¼ 69.6 km s−1 Mpc−1, ΩM ¼ 0.286, ΩΛ ¼ 0.714.
As the universe is spatially flat, the transverse and radial
comoving distances are identical. The volume integrand is
simply dV ¼ χ2dχdΩ. In this section, we use ML to mean
the intrinsic mass of the lens, and the redshift into the
observer frame is written explicitly as ð1þ zLÞML.
The total number of sources with SNR above a detection

threshold ρt can be written as

NS ¼ 4π

Z
χt

0

nSχ2SdχS ¼
4π

3
χ3t nS: ð19Þ

Above, χt is the comoving distance at which the unlensed
source would have SNR above a threshold, which in this
manuscript is ρt ¼ 10. For simplicity, we are assuming that
the comoving number density of lenses nS is independent
of redshift, and also of source mass when we are consid-
ering detections where the observed mass (in the detector
frame) is fixed. These effects can be included, though we
note that the scenarios we consider do not extend past
zS ≈ 4, where the density would be expected to drop. In
general, constant comoving density for both sources and
lenses is appropriate for e.g., primordial black holes in the
absence of mergers.
We next compute the number of lensed objects NLS

above a threshold ρt as a function of source redshift zS and
lens parameters y and ML. This involves an integral over
both the lens and source location

NLS ¼
Z

nS

Z
nLdVLdVS: ð20Þ

Here nL is the number density of lenses in a comoving
volume, and we have

nLdVL ¼ 2πnLχ2L sin θLdθLdχL: ð21Þ

The angle θL will be very small, so that sin θL ≈ θL. This is
related to the Einstein angle by θL ¼ θEy (see Sec. II).
The angular diameter distances can be expressed in

terms of χ as dS ¼ χS=ð1þ zSÞ and dL ¼ χL=ð1þ zLÞ.
The distance from lens to source is [50]

dLS ¼ dS −
1þ zL
1þ zS

dL ¼ χS − χL
1þ zS

: ð22Þ

We now change variables from θL to y to obtain the
number of lenses closer than the source

NL ¼ 8π

Z
nLML

dLS
dLdS

ydyχ2LdχL ð23Þ

¼ 8π

Z
nLML

ð1þ zLÞðχS − χLÞχL
χS

ydydχL: ð24Þ

The integrand can be seen as a differential form of the
standard lensing cross section.
Integrating over all detectable sources yields the total

number of lensed sources

NLS ¼ 4π

Z
nSNLχ

2
SdχS ð25Þ

¼
Z

ymax

0

dy
Z

χtðyÞ

0

dχS

Z
χS

0

dχLpðy; χL; χSÞ; ð26Þ

where

pðy;χL;χSÞ¼ 32π2nSnLMLð1þ zLÞχLðχS−χLÞχSy ð27Þ

and NL is the number of lenses.
The constraint χL < χS appears because the lens must

not be beyond the source.
Importantly, the amount of lensing changes the distance

to which we can observe a source. The relative SNR
increase is a function of y and the redshifted lens mass
ð1þ zLÞML. In addition to the value of this integral, we
will also examine the integrand of Eq. (26) as a function of
y to determine the distribution of y among systems with
detectable lensing. Regions of parameter space with more
lensing amplification will give larger contributions to the
integral. The integrand can be used to determine the
distribution of detectable sources as a function of y.
We perform our integrals by grid integration over χS, χL,

and log y; a Monte Carlo approach would be required if
we considered more variables. We take ymax ¼ 2, which
goes beyond the point where the lensing contribution is
significant.
We consider the density of lenses to be the same as that

of the dark matter in the Universe nLML ¼ ρDMcr , which
provides a strict upper limit for the lenses of a given mass.
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Since we cannot have more lenses than dark matter, this
means that the probability that a certain detected black hole
binary system is lensed can be lower than the numbers in
this manuscript, but it cannot be higher unless the model
changes e.g., the point mass lens is embedded into a larger
object that can increase the lensing. The probability is
independent of nS unless it evolves significantly in the
relevant redshift range.
The gravitational waves the LVK measures are at the

location of the detector. In the detector frame,

h ∝
ðMdetÞ5=6

Dlum
¼ ðMdetÞ5=6

ð1þ zSÞχS
; ð28Þ

whereMdet is the measured (detector frame) chirp mass of
the binary. The source-frame (intrinsic) chirp mass is
related by Mdet ¼ ð1þ zSÞMsrc.
We then visualize the distribution of lensed sources as a

function of y, which is Eq. (27) marginalized over the lens
and source positions,

pðyÞ ¼ 1

NLS

Z
χtðyÞ

0

dχS

Z
χS

0

dχLpðy; χL; χSÞ: ð29Þ

The lenses themselves are distributed like pðyÞ ∝ y, but
the prior is modified by some lensing configurations being
more detectable than others. This causes the distribution to
peak well below y ¼ 1, and is further restricted if we
require the lensing to be detectable, i.e., to have enough
mismatch with the unlensed waveform. We note that small
mismatch can be significant at high SNR.
Figure 6 displays the probability density pðyÞ as a

function of lens mass ML normalized by the density of
unlensed sources NS, integrated over the lens position χL.
As expected, more massive binaries have a higher prob-
ability of being lensed. Figures 6(a)–6(c) show the
probability density for black hole binary systems of total
detected mass Mdet ¼ M1 þM2 ¼ 30M⊙, Mdet ¼ 60M⊙,
and Mdet ¼ 120M⊙. The second column of each figure
shows the same probability density restricted to when the
mismatch is 5% or higher, while the third column restricts
the mismatch to 10% or higher. The higher the mismatch
with an unlensed source, the more likely it is to identify a
source as being lensed; otherwise, lensing is silent. In the
second column of Figs. 6(a) and 6(b), the probability
density clearly separates in two regions. The higher y
region occurs when geometrical optics is valid, and the
lower y region corresponds to the amplification only
scenario. As the total mass of the binary increases to
Mdet ¼ 120M⊙ [Fig. 6(c)], only the GO region is discern-
ible reducing the y −ML range of identifiable lensed
systems to a small area in the upper-right corner of the
plane.
Figure 7 plots the probability density from Eq. (27) for a

given lens massML ¼ 300M⊙ as a function of y and source

redshift zS, integrated over the lens position χL. Like
before, Figs. 7(b) and 7(c) (second plot on each line)
shows the two separate regions for a mismatch of 5% or
higher; higher Mdet reaches higher source redshift. For
Mdet ¼ 120M⊙ [Fig. 7(c)], potential lensed sources go up
to zS ≈ 3.2. Unfortunately, the higher redshift systems have
low mismatch and cannot be identified as lensed. For the
standard Mdet ¼ 60M⊙ [Fig. 7(b)], the highest zS ≈ 2
corresponds to the amplification only region. At this
redshift Mdet ¼ 60M⊙ results in a total mass of Msrc ¼
20M⊙ or M1 ¼ M2 ¼ 10M⊙ in the source frame, which is
closer in mass to the black holes observed in our galaxy
with electromagnetic observations. The probability of
lensing for such an event would be around 3% if all dark
matter was composed of black holes of ML ¼ 300M⊙.
After the integrals over y, χS, and χL are performed,

Fig. 8 shows the probability of lensing as a function of ML
for Mdet ¼ 30M⊙ to Mdet ¼ 240M⊙ with ρ ≥ 10. Like
before, it is normalized by the total number of sources with
an ρ ≥ 10. Figure 8(a) shows the probability for all lensed
sources. We can see it peaks at low lens mass, and that the
peak shifts to slightly higher masses as Mdet increases
reachingML ≈ 40M⊙ forMdet ¼ 240M⊙, and then flattens
out as the lens mass continues to increase. In Figs. 8(b)
and 8(c) we limit the detected black hole binaries to those
whose waveform has a mismatch of ≥5% and ≥10%,
respectively. This decreases the probability of lensing to a
value that is well below its peak. It can be seen that
detectable lensing starts at larger values of ML > 100M⊙
and flatten out as ML increases. For a detectable mismatch
of ≥10%, increasing the detected mass fromMdet ¼ 30M⊙
to Mdet ¼ 60M⊙ increases the probability of detectable
lensing by about a factor of 2. However, as the detectable
mass increases further, the increase in probability is less
significant. Already for Mdet ¼ 240M⊙ contains lower
probability events than Mdet ¼ 120M⊙.
We now consider the Bayesian comparison of the

hypothesis that an observed signal is lensed versus
unlensed. For two hypotheses H1 and H2, the ratio of
posterior probabilities is

pðH2jdÞ
pðH1jdÞ

¼ pðH2Þ
pðH1Þ

×
pðdjH2Þ
pðdjH1Þ

: ð30Þ

The second term, the Bayes factor, is commonly com-
puted by nested sampling which yields the evidences

pðdjHiÞ ¼
Z

pðdjθi;HiÞpðθjHiÞdθi: ð31Þ

The first term is the prior probability ratio of the two
hypotheses as derived above. This is required for mean-
ingful interpretation of the Bayes factor. In our case, we
need to assume a certain density of lenses to find the prior
probability, and this changes the interpretation of the Bayes
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factor. For a fixed Bayes factor, the posterior probability of
lensing increases proportional to the assumed density of
lenses.
The method typically used [54,55] is for the prior used in

the evidence calculation to be over a fixed volume, rather
than conditioned on detectable systems. Then the ratio of
prior probabilities should make the same choice. The result
will be nearly the same as with the conditioned prior
because the evidence only accumulates contributions where
the likelihood is high [76].

We note some important points when computing the
evidences. First, as seen in Fig. 7, lenses can be detected to
a much larger distance than unlensed systems, and the
distance prior used must support this. Next is the prior on y.
We see in Fig. 7 that lensing detections are common at
small y and so the prior must not be artificially cutoff there.
On the other hand, at large y the waveform becomes

indistinguishable from the unlensed one. In this case, the
likelihood of lensing ΛlðyÞ is effectively the same as
the unlensed likelihood Λul. If this occurs at a value y�, the

FIG. 6. Probability density as a function of y and ML for black hole binaries of total detected mass (a) Mdet ¼ 30M⊙,
(b) Mdet ¼ 60M⊙, and (c) Mdet ¼ 120M⊙ for all sources of ρ ≥ 10. The first column plots all lensed sources, the second the lensed
sources with a mismatch of 5% or greater, and the third the lensed sources with a mismatch of 10% or greater. All are scaled by the total
number of sources. The GO average and amplification only regions separate for intermediate mismatch ≥5%. It can be seen that the most
lensed sources occur for Mdet ¼ 120M⊙. While many sources may be lensed only the fraction of them that have detectable mismatch
with unlensed templates can be identified as lensed by LVK searches.
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evidence integral breaks into a piece below y� and a piece
above. Suppressing the other variables the evidence is

El¼
�Z

y�

ymin

ΛlðyÞydyþ
Z

ymax

y�
Λulydy

��Z
ymax

ymin

ydy: ð32Þ

Because of the normalization, the values of y which are
effectively unlensed dilute the evidence with the second
term, which is the same as the unlensed evidence. Hence

restricting the focus only to significantly lensed systems
makes this test more sensitive.
In this manuscript we prioritized first detections from

O4 and O5, which are likely to be events close to the
detectability threshold ρ ¼ 8–10. For these modest SNRs,
mismatches of ≳5% are likely necessary to support the
detection of lenses. However, for sufficiently high SNR
even small mismatches can lead to observable effects. This
is different from the case of other subtle effects like
precession, because it is possible to have a closer and

FIG. 7. Probability density ofML ¼ 300M⊙ as a function of y and zS for black hole binaries of total detected mass (a)Mdet ¼ 30M⊙,
(b) Mdet ¼ 60M⊙, and (c) Mdet ¼ 120M⊙ for all sources of ρ ≥ 10. The first column shows all lensed sources, the second the lensed
sources with a mismatch of 5% or greater, and the third the lensed sources with a mismatch of 10% or greater. All are scaled by the total
number of sources. Like before it can be seen that the most lensed sources occur forMdet ¼ 120M⊙ which can be seen up to z ≈ 3.2, and
that only a small number of sources have a mismatch of 5% or more (zS < 2). When the mismatch increases to 10% or more, the
amplification only region disappears.
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louder precessing event where we could discern it, but
lensing is less likely for closer events.
Other works [46,50,51] that study lensing signatures to

investigate if primordial black holes make up a fraction of
all the dark matter in the Universe use a cross section for

lensing that is of the order of the Einstein radius. They
compute the rates of being within this impact parameter as a
function of source redshift, and integrate out to a horizon
set by the SNR threshold for unlensed events (in the case of
Basak et al. [51], this is a feature of the simulation they lay
out in their Appendix). However, when considering the
rates of detected events, which we take to be SNR > 10,
they do not take into account that horizon is “pushed out”
as a function of impact parameter y. This effect is taken into
account in our probability distribution.
A complete search that considers a network of detectors

as well as the inclination of the source and the response of
each detector is beyond the purpose of this first paper. The
effects from the source orientation and response of the
detector can be significant. We do not take into account
the sky position or the inclination of the source [10], which
change the response of the detector. This will be done in
subsequent work.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

To date, the LVK Collaboration has detected over 90
compact binary systems. The detectors’ sensitivity can be
expected to improve over the coming years. So far it
appears that the black hole population seen by the LVK is
an order of magnitude heavier than black holes found by
x-ray surveys of the Milky Way. It is known that a
population could appear more massive and less distant if
redshift is underestimated. Such a binary black hole
population could then provide first indirect evidence of
gravitational lensing.
Many sources will be lensed, which complicates param-

eter estimation. However, if the lens mass is low, it will not
affect the waveform in a visible manner. Similarly, if the
lens is far from the line of sight it will not affect the signal.
We find that events that are likely to produce detectable
evidence of lensing will be in the transition region reaching
moderate values for y and high enough values for ML.
We use the point-mass lens model to estimate the

detectability of lensed binary black hole events by a
gravitational wave detector. In this simplest model for
microlensing, the lensed waveform in the frequency
domain is obtained by multiplying the unlensed waveform
by a transmission factor. In general, the transmission factor
depends on the mass of the lens ML and on the distance
from the line-of-sight y between the source and the
observer. Lensing induces (1) frequency dependent ampli-
fication and (2) distortion of the waveform arising from
constructive and destructive interference between two
virtual images of the source. If diffraction dominates, only
the frequency dependent amplification occurs, which solely
depends on ML. Conversely, when two virtual images of
the source interfere, the geometrical optics limit assures that
the transmission factor depends only on y. Gravitational
lensing then introduces a regular beating pattern (areas of

FIG. 8. Proportion of lensed detections Flensing [Eq. (16)]
shown as a function of ML for (a) all lensed sources, (b) lensed
sources with a mismatch ≥5%, (c) lensed sources with a
mismatch ≥10% for black hole binaries of total detected
mass Mdet ¼ 30M⊙, Mdet ¼ 60M⊙, Mdet ¼ 120M⊙, and Mdet ¼
240M⊙ computed for ρ ≥ 10. In these plots, the number of lenses
is scaled so that they comprise all of the dark matter density of the
Universe. It can be seen lensing becomes discernible with the
LVK only for ML ≳ 300M⊙ with less than 10% of lensed events
identifiable as lensed.
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constructive and destructive interference) that is predicted
analytically.
We map the SNR increase as a function of lens

parameters y andML. To estimate detectability, we produce
a map of the optimal match between the lensed waveform
and its unlensed counterparts, while optimizing over the
amplitude and phase of the gravitational wave. A mismatch
of 10% is assumed to be confidently detectable. While a
mismatch of 5% results is considered to be mild evidence
for lensing. Lower mismatch can be relevant for high
SNR cases.
Most importantly, we show that the mismatch causes a

selection bias that enhances smaller values of the lensing
angle y. This modifies our expectation of the likely
parameters of a first detection of lensing. This effect must
be accounted for in simulations of lensing. We also show
that the Bayesian evidence is diluted by including large
values of y in the prior, and suggest restricting to those with
significant lensing.
This paper incorporates the requirement that the lensing

not only amplify the signal, but also leave a detectable
imprint that confirms the existence of the microlens. This is
only a fraction of the parameter space; otherwise we have
‘silent’ lensing. In that case the distance to the binary and
the mass of the binary could be affected by lensing without
creating a detectable mismatch with unlensed templates.
Because the lensing does not affect these waveforms, the
likelihood of the lensed and unlensed signals will be
identical, and the Bayesian evidence ratio would only
reflect the relative volume of the priors. In this first study
we do not include a specific model that predicts the number
and masses of lenses since they are so uncertain. We leave
that to future work. Instead we show the priors when they
are conditioned as well on the lensed waveform having a
sufficient mismatch that it leaves a measurable imprint on
the signal.
Ultimately, we find that lensing can bias the redshift

distribution and thatmost lensed sources have lowmismatch
(mismatch <5%) that cannot be detected. Furthermore,
when including all lensed sources, we do not reach a redshift
beyond 4 with LVK detectors. Mild evidence for lensing
(mismatch of 5% or higher) can be obtained up z ¼ 2
for more massive detections Mdet ¼ 120, which in the
source frame would be consistent with a total binary mass
Msrc ¼ M1 þM2 ¼ 40M⊙.
We find that compact lenses (e.g., primordial black

holes) of ML ¼ 30M⊙ in the LVK band provide only
slight amplification of the gravitational signal of about 20%
without distortion. We conclude that in the point mass lens
approximation, lenses of 20 − 30M⊙ have a minimal effect
on the detected mass of binary black holes unless they can
be embedded in heavier dark matter structures. More work
is needed to go beyond the point mass lens model.
In this paper we have taken the critical density of dark

matter as a reference and upper limit for the number density

of lenses nLmL < ρDMcr . We note that this manuscript takes
the comoving density to be constant for both the sources
and the lenses, which is a simplified assumption that is
valid only when the number of mergers is negligible. We
will relax this assumption and consider more realistic
distributions in future work.

Supporting research data are available on reasonable
request from A. L.
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APPENDIX A: THE TRANSMISSION FACTOR
IN THE AMPLIFICATION AND GO REGION

WITH MINIMA AND MAXIMA

The transmission factor F has a different behavior
depending on its arguments:ML, y, and f. Since F impacts
the waveform as given by Eq. (5), it is important to
understand the extent of each of these behaviors depending
on the different parameters.
Here we briefly explain the transmission factor limits and

their ranges of validity. We also analyze the predictions for
its amplification, as well as the frequencies where the
interference pattern has maxima and minima, which can
have implications in lifting the degeneracy, e.g., between
lensed and precessing sources.
The absolute value of the transmission factor is obtained

from Eq. (2) as follows [64]:

jFj ¼
�

2π2ν

1 − e−2π
2ν

�
1=2

j1F1ðiπν; 1; iπνy2Þj: ðA1Þ

Its behavior has already been described in the literature
[19,20,64] (in the current notations, see also Ref. [36]).
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Here, we briefly review the main features which will be
necessary for further analysis.
The transmission factor starts from jFj ≈ 1 at small ν.

Then, for a fixed source position y, it grows monotonically
as a function of frequency before reaching its first maxi-
mum (see Fig. 1). This is the amplification region for which
wave optics dominates. In this region, the transmission
factor is independent of y, as can be seen from Fig. 1, and it
matches an asymptotic formula [64],

jFjamp ¼
�

2π2ν

1 − e−2π
2ν

�
1=2

: ðA2Þ

A further approximation can be made for frequencies
ν≳ 0.3, but still before the first maximum of jFj. In
this case

jFjamp ≈ ð2π2νÞ1=2: ðA3Þ

We will use the simplicity of this expression to derive a
scaling law for the SNR in the amplification region. This
approximation is valid because ground-based detectors
are not sensitive to low frequencies and so this form is
effectively equivalent to the one above.
The extent of the amplification region depends on the

lens mass: the lowerML, the higher the frequency when the
signal starts to be magnified due to lensing. On the other
hand, the level of magnification is determined by the lens
alignment y.
For higher frequencies, the transmission factor starts to

oscillate (see Fig. 1) approaching the GO region, where
the dominant contribution comes from two well-defined
images of the source. In this limit, the transmission factor is
given by

jFjGO ¼
�
y2 þ 4 cos2 α

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p �
1=2

; ðA4Þ

where α ¼ πfΔt21 − π=4. It oscillates between regular,
predictable maxima and minima that correspond to con-
structive and destructive interference caused by the time
delay Δt21 between the two images and an additional
Morse (topological) phase shift. For the “close alignment”
condition (y≲ 0.5), Δt21 ≈ 2ytM and the position of each
oscillation occurs at known frequencies [36]

fn ¼ Δf ·

� ðnþ 1
4
Þ; atmaxima;

ðnþ 3
4
Þ; atminima;

ðA5Þ

with n ¼ 0; 1; 2… and the frequency spacing

Δf ¼ 1

2tMy
≃ 2.5 × 104 Hz

�
M⊙

ML

��
1

y

�
: ðA6Þ

The onset of the GO oscillations can be assigned to a
threshold frequency fG between the first maximum and the
first minimum, that gives fGΔt21 ≈ 1=2 [36].
We emphasize that:
(i) the lensing oscillations occur at predictable frequen-

cies and are equally spaced in frequency with Δf
corresponding to the inverse of the time delay Δt21
between the two images [Eqs. (A5) and (A6)];

(ii) the amplitude of maxima and minima stays constant
when y is fixed, which can be seen in Fig. 1 as dotted
horizontal lines,

jFjmax
GO ¼

� ffiffiffiffiffiffiffiffiffiffiffiffi
y2þ4

p
y

�1=2

; jFjmin
GO ¼

�
yffiffiffiffiffiffiffiffiffiffiffiffi
y2þ4

p �
1=2

:

ðA7Þ

Note, the closer the source to the line of sight (i.e.,
the smaller y), the higher the maximum amplifica-
tion, jFjmax

GO ;
(iii) in the “close alignment” regime, y≲ 0.5, the spacing

of the oscillations will be given by the inverse of the
product 2ytM, while the amplification of the maxima
and minima will be given by jFjmax

GO ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=yþ y=4

p
and jFjmin

GO ≈
ffiffiffiffiffiffiffiffi
y=2

p
[36].

These remarks are important, since the effect of the
oscillations on the waveform h̃ULðfÞ can be commonly
mistaken by other “mimickers” like precession [78,79] or
eccentricity [80]. For these, thewaveform ismodulated at the
source, while the lens modulates the waveform on its way to
the observer. The regular spacing of the oscillations is
characteristic to the lensing effect and is related to the phase
difference between the two GO paths, which includes a
Morse phase shift. The Morse shift was also shown to be
important for the case of strong lensing where the images are
widely separated and do not interfere [81–83]. Knowing that
the oscillations are equally spaced could be one way to
distinguish the lensing case from the “mimickers” when
enough of the signal is detected.As a comparison, precession
does not induce regularly spaced oscillations—there the
oscillations are more pronounced at low frequencies [78,79].

APPENDIX B: SNR INCREASE IN THE
AMPLIFICATION AND GO REGION

In this Appendix we derive the SNR increase at the
different regions: (i) amplification-only and (ii) well inside
GO, which we will call “GO average”, as seen below.
At low frequency there is only amplification, following

the asymptote [Eq. (A2)], the dashed blue line. In the
amplification-only region, for ν≳ 0.3when Eq. (A3) holds,
the lensed waveform is approximately

h ¼
ffiffiffiffiffiffiffiffiffiffi
2π2ν

p
hUL: ðB1Þ
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If we plug this in Eq. (9) we obtain

ρ2rel ¼ 2π2tMK1 ∝ ML; ðB2Þ

where K1 is defined by Eq. (7) with α ¼ 1. Thus we have
shown that in the amplification region ρrel depends only on
ML. The numerical values for K1 and ρrel are displayed in
Figs. 5(a) and 5(b) as a function of Mdet. Figure 5(b)
provides the maximum value for ρrel in the amplification
region for the point mass lens approximation.
For higher frequencies, oscillations appear due to inter-

ference between two images of the source, in the GO limit.
Since the SNR integrates over the frequencies, the

oscillations in Eq. (A4) tend to cancel out. When the
number of oscillations is sufficient (approximately from
the eighth maximum, the green region in Fig. 3), well
beyond the onset of the oscillations, they asymptotically
average out to

hjFjGOi ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 2

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
s

ðB3Þ

which is independent on f and ML. Thus, in this “GO
average” region, the SNR increase depends only on y, as
seen in Fig. 2,

ρ2rel ¼
y2 þ 2

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p ≈
1

y
; ðB4Þ

where the last approximation is valid for the “close align-
ment” condition.

APPENDIX C: IMPRINT OF THE LENS
ON THE WAVEFORM IN THE FREQUENCY

AND TIME DOMAIN

It can be helpful to visualize the gravitational lensing
effect in both the time-domain hðtÞ and frequency-domain
h̃ðfÞ waveforms. Here we will describe the imprint for the
different lens masses considered in the text, see how it
differs from the unlensed signal, and visualize the maxima
and minima predicted in Appendix A.
The transmission factor imprints the gravitational lensing

effect on the original waveform h̃ULðfÞ, as h̃ðfÞ ¼
h̃ULðfÞFðfÞ. It is pedagogical to visualize this imprint to
understand the effect the lens has on the waveform in both
in the frequency domain h̃ðfÞ and in its Fourier transform
hðtÞ, the strain in time domain. We consider the Mdet ¼
60M⊙ gravitational waveform used in Sec. II.
Figure 9 compares the lensed jh̃ðfÞj with the unlensed

jh̃ULðfÞj waveforms, when the position of the lens is fixed
at y ¼ 0.25. The mass of the lens changes between ML ¼
30M⊙ and ML ¼ 30000M⊙. The two behaviors of the
transmission factor can also be seen here in the imprint:

(i) When ML is small [i.e., for y ¼ 0.25, ML ¼ 30M⊙
in Figs. 1 and 9(a)], the transmission factor jFj is a
monotonic function; the amplification of the signal
is gradually increasing with frequency. The highest
magnification occurrs at merger (the frequency is
highest there).

(ii) For a higher lens mass, jFj has oscillations at high
frequencies (from the first maximum at fþ1 ¼
1=ð8tMyÞ ≈ 2.5 · 104M⊙=ML). The positions of
constructive and destructive interference can be
deduced using Eq. (A5). These are imprinted on
the strain as seen in Figs. 9(b)–9(d), and are depicted

FIG. 9. Frequency domain strain of a lensed gravitational wave
(in orange) compared to the unlensed one (in blue), as a function
of frequency for y ¼ 0.25. The effects of lensing are seen as
amplification and modulation (beating pattern, due to the inter-
ference between images). The predicted locations of the maxima
and minima are shown with vertical lines. It can be seen they
correspond to maxima and minima of the waveform (dashed and
solid lines, respectively).
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with vertical solid and dashed lines respectively. As
seen in Sec. II, the fringe spacing Δf is dependent
on the product yML, while the amplitude of the
oscillations only depends on y.

The time evolution of the lensed gravitational wave
strain, hðtÞ, is obtained by taking the Fourier transform of
h̃ðfÞ. The results are shown in Fig. 10 again at fixed
y ¼ 0.25, while ML varies. For small mass like
ML ¼ 30M⊙, the lensed waveform is just amplified relative
to the unlensed one. The amplification is monotonic for jFj
and thus largest for the frequencies close to the merger. For

higher ML, a “beating pattern” (amplitude modulation)
appears, caused by the interference between the two
images. The beating frequency increases with frequency
[28]. In Fig. 10(d) we can see two separate images
appearing, each one coming with a different time delay
with respect to the unlensed case. The earliest signal is the
interference between the two images (containing the beat-
ing pattern), followed by the first image of the merger.

FIG. 10. Time domain strain of a lensed gravitational wave (in
orange) compared to the unlensed one (in blue), as a function of
time for y ¼ 0.25. The lensing effects are seen as amplification
and modulation (beating pattern). When two images appear (d),
both the first and the second lensed images can be seen arriving
later than the unlensed one. Unlike other processes that can cause
beating patterns, the presence of two separate images is a unique
feature of gravitational lensing.

FIG. 11. Spectrograms of the lensed signal for y ¼ 0.25, and
increasing ML, in white noise. In (a), the signal is amplified by
the monotonic beginning of jFj. For lower ML the interference
pattern appears at higher frequencies [subplots (b) and (c)], while
for higher ML it appears at lower frequencies [subplots (d) and
(e)]. The frequencies for constructive interference (maxima) and
destructive interference (minima) predicted by Eq. (A5) are
marked in white solid and dashed lines respectively in subplots
(b), (c), (d). The two images of the merger (1 and 2) are marked
with white vertical lines. Their separation Δt21 increases with the
product ytM ∝ yML.
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Afterwards, the second image arrives alone without inter-
ference, therefore having the shape of a single chirp (but
affected by magnification). Both images have different
magnifications respect to the unlensed signal, which are
dependent on y [Eq. (15)].
Unlike the amplification and beating pattern, which can

be mimicked by other processes (precession [78,79],
eccentricity [80]), the detection of the two separated images
is a unique and distinct feature of gravitational lensing.
Spectrograms in the time-frequency plane reveal the

signal’s power, and while traditionally not employed for
parameter estimation, new methods based on neural
networks have emerged for identifying signals [84–87].

Microlensed signals, characterized by distinctive maxima
and minima, could be one of the classes that the network is
trained on.
To generate the spectrograms, we apply the Q-transform

algorithm [88] via the PyCBC software package to the noise-
added strain signal. Figure 11 shows the results for the
parameters similar to those utilized in Fig. 10. As the lens
mass increases, we notice a transition from the amplifica-
tion of the original signal to the emergence of a beating
pattern between two distinct images, resembling a crab’s
claw. The pattern includes dim regions where the signal is
suppressed and bright regions where it is enhanced. These
correspond to destructive and constructive interference,
respectively. The separation between evenly spaced
maxima/minima is determined by Eq. (A6).
Both GO images experience a time delay compared

to the unlensed signal, and we can predict their positions.
The first image (labeled as 1 in Fig. 11) is determined
as the minimum of the Fermat potential [7]; t1 ¼
tM½12 ðx1 − yÞ2 − ln jx1j� with x1 ≡ ð1=2Þðyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
Þ.

The position of the second image (labeled as 2) is obtained
by adding to t1 the time delay Δt21 ≈ 2ytM [36].
In O4 and O5, it is likely that most signals will be

detected at SNRs close to the threshold SNR. Then, in
practice, the minima and maxima might not be observable
by eye due to the abundance of noise. Figure 12 shows
spectrograms in simulated O4 noise at signal-to-noise
ratio ρ ¼ 10 for y ¼ 0.25 and several lens masses. Some
maxima and minima are visible, but the whole waveform
becomes difficult to distinguish. Table I shows the
match and SNR increase for Model 1(a)–(d). Beyond,
ML ¼ 3000M⊙, ρrel and the mismatch stop growing since
lensing is independent of ML once the GO average is
reached. An injection of higher SNR will leave Table I
unchanged. At ρ ≥ 20, the spectrograms will look similar
to those in Fig. 11.
Note that spectrograms do not retain the phase informa-

tion from the underlying signal. So any parameter con-
straints that are obtained only using spectrogram data will
be worse than those obtained using data that includes both
amplitude and phase.

FIG. 12. Spectrograms of the lensed signal in simulated O4
noise at SNR ¼ 10 for y ¼ 0.25 and ML varying between 30M⊙
and 6000M⊙.

TABLE I. Model parameters for lensed signals with y ¼ 0.25 in
simulated O4 noise.

Model ML½M⊙� Match
SNR increase

(ρrel)

1a 30 98.5% 1.3
1b 300 92.8% 2.1
1c 3000 78.4% 2.0
1d 6000 78.9% 2.0
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