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Investigation into the applicability of the equivalence principle in quantum mechanics has taken many
forms, with varying conclusions. Here, a dynamical semiclassical description of a wave packet in terms
of its center of mass and higher quantum fluctuations is applied to the case of a quantum particle in
gravitational free fall. The analysis provides an intuitive account of the origin of mass dependence in
quantum-gravitational dynamics through an effective potential that enforces the uncertainty principle. This
potential has two implications: (i) The lowest order quantum fluctuations encoding the width and spreading
of the wave packet obey an uncertainty relation whose observance is mass dependent. (ii) In an
inhomogeneous gravitational field tidal effects couple the center of mass motion to the quantum
fluctuations. The combined effect results in a clear demonstration of how some conceptions of the weak
equivalence principle, based on mass dependence, are violated. The size of this violation is within
sensitivities of current Eötvös and clock-based return time experiments.
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I. INTRODUCTION

For over a century, general relativity has been a corner-
stone for our understanding of gravity. However, despite its
remarkable success, general relativity presents inconsisten-
cies with quantum theory. A significant area of conflict
between the two theories has been their different predic-
tions for the mass dependence of gravitational phenomena.
The present study revisits this conflict and clarifies how
mass dependence emerges as one incorporates quantum
effects into gravitational physics in the weak-field regime.
At the same time, we will construct useful new methods
that may be applied to derivations of quantum dynamics
relevant for potential experiments in this context.
In general relativity, gravity manifests as the metric

geometry of spacetime and particle trajectories are deter-
mined by the geodesics of this spacetime. In the weak-field
limit of the theory, the geodesic equation is expressed in
terms of the perturbation tensor hab as [1]

d2xi

dt2
¼ 1

2

∂h00
∂xi

: ð1Þ

This result yields a set of coupled ordinary differential
equations for the coordinates xi of a freely falling particle,
determined without any information about the particle
mass. The principle of weak equivalence elevates this

model-dependent result to a general physical principle
often stated as the independence of the future history of
a particle in gravitational free fall from its specific proper-
ties. Tino et al. recently provided a comprehensive review
[2] of the status of the equivalence principle and its tests,
which presents compelling experimental support for the
mass independence of particles in gravitational free fall.
Quantum theory contests this claim. Indeed, quantum

theory’s necessary dependence on mass is evident in the
commutation relation ½x̂; p̂� ¼ iℏ. The presence of the
dimensionful quantity ℏ in this relation makes it generally
impossible to rescale the equations of quantum theory in a
way which eliminates the implicit mass dependence from
any calculation. The manner in which quantum theory’s
predictions either violate or adhere to the equivalence
principle in specific cases is increasingly well understood
theoretically. For example, Greenberger’s early study [3]
demonstrates that applying quantum theory to a particle
bound in an external gravitational potential leads to mass-
dependent predictions for observables, including energy
levels, frequencies, and orbital radii. Mass dependence has
also been predicted for physically more relevant dynamical
wave packet states in [4].
Following this analysis, Greenberger proposed the

abandonment of the equivalence principle within quantum
theory [3]. In support of this proposal, Sonego demon-
strated how the weak equivalence can be dispensed with as
a fundamental principle without compromising the formal
apparatus of general relativity [5]. Okon and Callender
view these developments as indicating that the question of
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whether quantum phenomena adhere to or violate the
equivalence principle has been resolved [6]. These authors
contend that further quantum tests of the equivalence
principle are unlikely to yield substantial theoretical
insights. Yet, in embracing this standpoint, it remains
essential to address the mechanism behind the vanishing
of mass-related influences on gravitational phenomena in
the classical limit—a challenge that the authors of this
study contend has yet to be satisfactorily met.
For example, in Greenberger’s study [3] the disappear-

ance of mass in the classical limit is explained via a
quantization condition where the quantum number char-
acterizing the state becomes proportional to the particle
mass in the classical limit (therefore canceling it from all
results) without explaining how this equivalence arises.
This present study provides a new analysis which better
clarifies how mass dependence emerges as quantum effects
are incorporated into gravitational physics in the weak-field
regime.
The outline for the paper is the following. In Sec. II we

review an uncommon geometric formulation of quantum
mechanics. We discuss the kinematical and dynamical
aspects of the theory, its relation to the wave function
formulation, and highlight the role geometrical quantum
theory plays in providing a structure on which to define a
consistent semiclassical hierarchy. In Sec. III, this frame-
work is applied to the problem of quantum particle motion
in an external gravitational field. We obtain equations of
motion incorporating mass-dependent quantum effects
which permit us to address a number of issues surrounding
the quantum theory of motion in a gravitational back-
ground field.
Section III C introduces the Eötvös framework for para-

metrizing violations of the weak equivalence principle.
We apply our analysis to compute nonzero quantum
corrections to the Eötvös parameter. The corrections we
develop depend on wave packet contributions which typical
Eötvös experiments may not be sensitive to. However, as
established by the foundational studies [7–9], atom inter-
ferometers are well suited to testing weak-field aspects of
general relativity due to their precise control over test
matter preparation and observation. Our analysis is par-
ticularly relevant to atom interferometric Eötvös tests, as
these experiments involve quantum matter manipulation. In
Sec. III E we indicate how our methods can be used to
obtain the interferometer phase, generalizing the methods
used in [10].
Atom interferometric Eötvös tests probe the particle only

at the set of positions defined by the laser pulse sequence
used. Limitations of this design are detailed in [11]. Clock
experiments provide a complementary framework for test-
ing the equivalence principle with quantum matter. In these
experiments, one characterizes motion in a gravitational
potential as barrier scattering and tracks the return time
for a particle launched into the potential. If particles of

differing masses and matching initial conditions are found
to return in different times, this would signal a violation of
the weak equivalence principle. Time of flight measure-
ments depend on properties integrated across a particle’s
entire trajectory. These experiments may therefore be
sensitive to violations in the weak equivalence principle
not easily seen in Eötvös experiments.
In Sec. III D we address also the problem of geodesic

motion of quantum particles from this point of view. We
provide a new analysis of the return time of a quantum
object thrown up in a gravitational field which benefits
from the fully dynamical equations of motion for a
quantum particle we develop here.
We conclude in Sec. IV with a brief discussion of the

general features of our analysis which may prove useful in
future studies.

II. CANONICAL EFFECTIVE METHODS

The mathematical structures underlying classical and
quantum physics appear very different, a fact which can
complicate the understanding of conflicting predictions
like the mass dependence of particle motion. However, this
difference can be better understood thanks to a geometric
formulation of quantum mechanics in which the classical
limit may be carefully defined. Here we review the
elements of this theory only as they are relevant to the
problem posed in modeling a quantum particle in a
gravitational field. Mathematically precise treatments of
the general theory may be found in Refs. [12–16].

A. The space of states and observables

As a starting point in modeling a quantum system, we
make a choice of a unital operator algebraA specifying the
relevant observables. In this paper we choose the algebra
generated by position and momentum operators satisfying
the canonical commutation relation

½x̂; p̂� ¼ iℏ: ð2Þ

In the analytical description of quantum theory, we
would next choose a representation of this algebra by
operators acting on a separable complex Hilbert space H
and define states as positive trace-class linear operators
on H. For example, in this formulation one typically
denotes a pure state ρ in terms of a representative ψ ∈H
as ρ ¼ jψihψ j=hψ jψi. It is easy to show that a state thus
defined is insensitive to arbitrary complex (and possibly
time dependent) rescaling of the representative:

jψi ↦ fðtÞjψi ð3Þ

for fðtÞ∈C at fixed t. This result indicates that we may
equivalently identify the pure states of a quantum system

JOSEPH BALSELLS and MARTIN BOJOWALD PHYS. REV. D 108, 084030 (2023)

084030-2



with the rays of H. The collection of rays of H form the
projective Hilbert space.
The geometric formulation arises as an alternative to the

analytical formulation by taking seriously that the projec-
tive Hilbert space, and not H itself, provides the correct
space of states. As a subspace, the projective Hilbert space
has the structure of a symplectic manifold called the
quantum phase space Γ (for additional details on this,
see Refs. [12,13]). Two consequences of this characteri-
zation follow. First, the physical states contain all physical
information about the system. Choice of a specific wave
function state ψ ∈H from its projection onto Γ is non-
unique and requires additional (nonphysical) information.
This point will be especially relevant in our discussion of
the interferometer phase in Sec. III E. Second, the phase
space characterization facilitates identifying the classical
phase space as a submanifold of the quantum phase space.
In the geometric formulation of quantum mechanics, as

in classical mechanics, a point p∈Γ specifies the state of
the system. Observables are constructed as smooth real-
valued functions on the quantum phase space F∶Γ → R. A
useful set of observables for the algebra generated by (2) is
the set consisting of the action of the state on the algebra
generators, hx̂i and hp̂i, together with higher central
moments of the state defined in a completely symmetric
ordering as

Δðxo−mpmÞ≡ hðx̂ − hx̂iÞo−mðp̂ − hp̂iÞmisymm; ð4Þ

where o ≥ 2 and 0 ≤ m ≤ o are integers. The utilities of
these functions are several. For one, they summarize
statistical information about the state and we refer to these
observables as moments of the quantum state. For a given
moment observable we will call the quantity o the
moment’s order. Second, these observables are used to
establish the semiclassical condition of a quantum state. We
say a state is semiclassical if the moment observables
evaluated on this state satisfy the hierarchy condition,

ΔðxapbÞ ¼ OðℏðaþbÞ=2Þ: ð5Þ

Such conditions are satisfied for Gaussian states, but also
by more general states because the specific coefficients of
ℏðaþbÞ=2 are not determined by the condition (5).

B. Poisson structure and dynamics

The symplectic structure on the state space of quantum
mechanics can be expressed through a Poisson bracket. A
Poisson bracket acts on functions on a symplectic or
Poisson manifold, which we introduce by using arbitrary
operators Â and B̂ acting on the Hilbert space. The
expectation values gÂðψÞ¼hψ jÂjψi and gB̂ðψÞ¼ hψ jB̂jψi
can then be interpreted as functions on the Hilbert space
because they depend on the state ψ in which they are
computed. The condition that ψ be normalized implies

unique values on each ray of the Hilbert space, and we can
view gÂ and gB̂ as functions on the projective Hilbert space.
The normalization condition does not completely eliminate
the rescaling freedom (3), which is still possible by a phase
factor fðtÞ with jfðtÞj2 ¼ 1. However, the expectation
value functions gÂ and gB̂ are independent of this remaining
freedom. Therefore, they only capture physical information
about quantum states.
Given these functions on state space, their Poisson

bracket is defined by

fgÂ; gB̂g ¼ 1

iℏ
h½Â; B̂�i ¼ 1

iℏ
g½Â;B̂�: ð6Þ

This definition can directly be applied to powers and
products of the basic operators x̂ and p̂, and to moments
(4) if we use linearity and the Leibniz rule. Elementary
discussion and applications of this structure can be found in
[17]. In particular, a semiclassical truncation in which only
moments up to a given order aþ b in the hierarchy (5) are
used leads to Poisson submanifolds that are in general not
symplectic. The Poisson tensor of the bracket (6) restricted to
such a subspace is then noninvertible, such that there are so-
called Casimir functions C which have vanishing Poisson
brackets with all other functions in the same truncation.
The Poisson structure allows us to associate to each

observable a vector field generating a Hamiltonian flow
on the phase space. The dynamics are specified by the
Hamiltonian vector field of a distinguished observable, the
quantum Hamilton function obtained from the Hamiltonian
operator Ĥ for the quantum system as H ¼ hĤi. Dynamics
are obtained directly from the phase space structure:

d
dt
A ¼ fA;Hg: ð7Þ

Based on (6), this dynamics is equivalent to the familiar
Ehrenfest theorem for the dynamics of expectation values.
By definition, the quantum Hamilton function H ¼ hĤi

is a function on quantum phase space obtained by evalu-
ating the expectation value of the Hamiltonian operator in a
generic state. When we parametrize states by their basic
expectation values hx̂i and hp̂i together with the central
moments, H becomes a function of these variables. A
general expression for this function showing its dependence
on these variables can be obtained from a series expansion
centered around the basic expectation values:

H ¼ hHðhx̂i þ ðx̂ − hx̂iÞ; hp̂i þ ðp̂ − hp̂iÞÞi

¼ Hclassðhx̂i; hp̂iÞ þ
X∞
o¼2

Xo
m¼0

1

o!

�
o
m

�

×
∂
oH

∂xo−m∂pmΔðxo−mpmÞ: ð8Þ

The structure of the series expansion is revealing. First,
we see that quantum dynamics reduce to their underlying
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classical analog when H can be expressed as a quadratic
function of x and p. This characteristic contributes to the
prevalence of quadratic potentials in modeling quantum
systems and explains the extensive research devoted to
systems governed by quadratic potentials in the literature,
for example in that of [18], where the Newtonian gravi-
tational potential is approximated by its second order
series expansion. Second, when dealing with nonquadratic
potentials, the remaining terms in this expansion reveal
the emergence of quantum effects. States whose fluctua-
tions are nonzero are extended. In the higher-order terms,
quantum fluctuations of the state couple to the external field
through a derivative expansion of the potential. This
coupling structure shows how the nonlocal nature of
quantum dynamics appears for extended states in inhomo-
geneous fields.
In the nonquadratic setting the quantum effects can

dominate or act as perturbations depending on the relative
magnitude of higher-order terms. If the Hamiltonian
remains polynomial, the series terminates at a finite order
and perturbation theory may not be necessary. Otherwise
for nonpolynomial interactions, we must consider the
convergence properties of the series (8). In this case,
systems satisfying the moment hierarchy condition,
Eq. (5), are well behaved as higher-order terms are sup-
pressed by powers of ℏ. Truncating the expansion at a finite
order yields a closed semiclassical dynamics with con-
trolled errors. This dynamics agrees with the classical
dynamics at zeroth order in ℏ but introduces perturbative
couplings from higher moments. These perturbative effects
may capture interesting quantum properties of the system
as demonstrated in [19] for the case of tunneling. In this
work, we apply this method to analyze the emergence of
mass dependence of trajectories in gravitational free fall for
quantum systems.

C. Canonical structure

The first nontrivial quantum effects appear at second
order in moments. Up to second order there are two basic
expectation values and three fluctuation moments. Their
nonvanishing Poisson brackets are

fhx̂i; hp̂ig ¼ 1

fΔðx2Þ;ΔðxpÞg ¼ 2Δðx2Þ
fΔðxpÞ;Δðp2Þg ¼ 2Δðp2Þ
fΔðx2Þ;Δðp2Þg ¼ 4ΔðxpÞ: ð9Þ

The odd dimension implies that the phase space is not
symplectic. Moreover, the brackets are not canonical,
but the Darboux theorem (or its generalization to Poisson
manifolds [20]) guarantees that we can transform to
canonical coordinates. In this case, if we make the
transformation

Δðx2Þ¼ s2; ΔðxpÞ¼ sps; Δðp2Þ¼p2
s þ

U
s2
; ð10Þ

then s is a configuration variable for the wave packet
width and ps its conjugate momentum such that

fs; psg ¼ 1: ð11Þ

This transformation, without the background of Poisson
geometry, has been found several times independently
in a variety of fields [21–23]. A derivation from Poisson
geometry and generalizations to higher orders and
2 degrees of freedom can be found in [24,25].
In (10), the variableU, a Casimir function, is a conserved

quantity with dimensions of action squared satisfying

Δðx2ÞΔðp2Þ − ΔðxpÞ2 ¼ U: ð12Þ

[Geometrically, hypersurfaces of constant U in phase space
are symplectic leaves of the Poisson manifold that admit
canonical coordinates ðx; pÞ and ðs; psÞ.] The transforma-
tion to canonical variables therefore shows that U is the
phase space uncertainty volume for the wave packet, and
the second-order dynamics conserves its value. If higher-
order moments are considered, we would find that the
product of second-order moments in Eq. (12) need not be
conserved exactly, but still satisfy the usual uncertainty
inequality. Likewise higher order moments are subject also
to uncertainty relations. Higher order relations are devel-
oped for quantum states in [26], although we will not need
them here.
We choose to measure U in units of the minimum action

squared,

U ¼ λUmin ¼ λ
ℏ2

4
; ð13Þ

where λ ≥ 1 is dimensionless. The correct value of λ for a
given problem will depend on the preparation of the state.
To keep the calculation transparent and focus on the
concepts, we consider the case λ ¼ 1, which is correct
for Gaussian states, as explained below.

D. Generation of wave function states from moments

Canonical effective methods work directly with the
observable quantum statistics hx̂i; hp̂i, and ΔðxapbÞ.
These statistics may be measured and predicted independ-
ently of a specific choice of wave function state.
Nonetheless, questions arise about whether these statistics
encode all the physical information about the state, if there
is redundancy in this choice of statistics, and how these
statistics are related to the alternative description of
quantum states using wave functions. In this section we
provide a procedure for generating a wave function state
ψðxÞ from specified moment data.
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1. General considerations

Extracting moments from wave function states is
straightforward. However, the inverse task, constructing
a wave function state compatible with specified moment
data, is more challenging. Indeed, in general neither
existence nor uniqueness of such a state is guaranteed.
The mathematical literature refers to the task of determin-
ing a distribution that generates a given set of moments as
the problem of moments. A historical perspective on the
moment problem, along with its extension into complex
function theory, is presented in [27].
In simple terms, we can ensure the existence of a real-

valued distribution whose moments match a given sequence
of numbers mj by confirming that the Hankel matrices
ðHnÞij ¼ miþj; iþ j ≤ n are positive definite for all n∈N.
An accessible proof of this statement can be found in [28].
However, in our subsequent application, wewill assume that
a wave function state exists based on physical reasoning,
without examining the positivity of Hankel matrices con-
structed from the moments.
The uniqueness problem is nuanced. Nonuniqueness in

the choice of a wave function state appears in two ways.
First, a conventional wave function state encodes informa-
tion for an infinite set of moments. This allows for the
existence of multiple nonidentical states that share identical
low-order statistics, making it impossible to reconstruct a
unique state for our truncated moment system. Second,
even when selecting a wave function compatible with the
provided moments, an additional freedom persists due to
the complex rescaling (3). Consequently, we present a
procedure for obtaining a specific state from the space of
states compatible with the provided data. Our procedure
generates a wave function state in the polar form

ψðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðx; tÞ

p
expðiθðx; tÞÞ ð14Þ

by first building the probability density ρ and then the
phase, θ, out of moment data. The extension of this
procedure to states described by density matrices is dis-
cussed in [25].
Results obtained through moment evolution and this

procedure should agree with experimental results, but may
not agree with results obtained from the Schrödinger wave
function theory. Such disagreements do not have physical
implications because they merely correspond to different
rescaling choices of the form (3). Examples of disagree-
ment with the Schrödinger theory are presented in the
applications, Secs. III A and III B. An agreement of this
method when used to determine the interferometer phase
identified by certain experiments is presented in Sec. III E.

2. Density reconstruction

If the unknown probability density ρ can be expressed as
a polynomial in x, the reconstruction problem is linear and

has a unique solution. However, due to normalization
constraints, ρ typically is not polynomial. Nonetheless,
the simplicity of reconstructing polynomials suggests a
general approach: we decompose ρ into a polynomial basis
that approximates it. We then reconstruct these approxima-
tions order by order to achieve the desired level of accuracy.
Following this idea, let LnðxÞ be a complete, orthogonal

set of polynomials with weight function w on L2ðw;RÞ and
let unðxÞ be the associated orthonormal basis such that

Z
R
unðxÞukðxÞdx ¼ δnk; ð15Þ

with

unðxÞ ¼
1ffiffiffiffiffiffi
Nn

p
ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
LnðxÞ: ð16Þ

Having assumed the basis property of the un, any function
fðxÞ in L2ðw;RÞ can be expanded with coefficients in R as

fðxÞ ¼
X∞
n¼0

cnunðxÞ ð17Þ

with coefficients

cn ¼
Z

fðxÞunðxÞdx: ð18Þ

In particular, we can reconstruct the density ρ from
moment data if we choose fðxÞ ¼ ρðxÞ= ffiffiffiffiffiffiffiffiffiffi

wðxÞp
. In this

case, the expansion coefficients reduce to expectation
values of polynomials:

cn¼
Z

ρðxÞffiffiffiffiffiffiffiffiffiffi
wðxÞp 1ffiffiffiffiffiffi

Nn
p

ffiffiffiffiffiffiffiffiffiffi
wðxÞ

p
LnðxÞdx¼

1ffiffiffiffiffiffi
Nn

p hLnðx̂Þi: ð19Þ

Because LnðxÞ is a polynomial in x, hLnðx̂Þi can be
reconstructed from moments

hLni ¼
Xn
k¼0

ln;khx̂ki: ð20Þ

Expressing the expectation value in coefficient form uses
the so-called raw forms of the moments, not the centralized
ones. The two are nonetheless related by the binomial
theorem

ΔðxaÞ ¼ hðx̂ − hx̂iÞai ¼
Xa
i¼0

�
a
i

�
ð−1Þa−ihx̂ia−ihx̂ii ð21Þ

which is a matrix equation that can be inverted to solve for
the hx̂ii from the provided ΔðxaÞ.
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Tracing these steps backwards gives finally the distri-
bution reconstructed from its moments as

ρðxÞ ¼ wðxÞ
X∞
n¼0

1

Nn
hLnðx̂ÞiLnðxÞ

¼ wðxÞ
X∞
n¼0

Xn
j¼0

Xn
k¼0

1

Nn
ln;jln;khx̂jixk: ð22Þ

3. Phase reconstruction

Moments of the form hx̂np̂i can be used to reconstruct
the phase. These nonsymmetric moments can be obtained
as linear combinations of symmetrically ordered ones. The
real parts of these moments are given from the definition as

Rðhx̂np̂iÞ ¼ R
Z

dxψ�
�
xn

ℏ
i
d
dx

�
ψ ð23Þ

¼ R
Z

dx
ffiffiffi
ρ

p
expð−iθÞxn ℏ

i

×

�
d

ffiffiffi
ρ

p
dx

expðiθÞ þ ffiffiffi
ρ

p
i
dθ
dx

expðiθÞ
�

ð24Þ

¼ ℏ
Z

dxxnρ
dθ
dx

: ð25Þ

The function that multiplies the monomial powers
of x in this is ℏρdθ=dx. Consequently, we can apply the
reconstruction procedure from before on this product with
the outcome

dθ
dx

¼ wðxÞ
ℏρðxÞ

X∞
n¼0

Xn
j¼0

Xn
k¼0

1

Nn
ln;jln;kRðhx̂jp̂iÞxk: ð26Þ

This result determines the phase derivative from moment
data because the density’s dependence on moments is
already established. Together with Eq. (22), these results
provide the link between moments and wave function
states.
The reconstruction procedure works by adapting a

reference distribution—the selected weighting function
wðxÞ—to nearby distributions such that the result matches
the specified statistics. Here “nearby” means that only
finitely many Taylor coefficients change. In a finite
truncation of the procedure there are many nearby distri-
butions having the same statistics depending on the
arbitrary choice of orthogonal polynomial system. We
focus our examples on the useful choice of generalized
Hermite polynomials which are characterized by the shifted

and rescaled Hermite weight function expð− ðx−mÞ2
2α Þ. This

choice allows us to encompass not only Gaussian states but
also provides a structured approach for handling states that
go beyond the Gaussian approximation.

Explicitly substituting generalized Hermite polynomials
into the reconstruction provides the first order in moments
approximations:

ρðx;m;αÞ¼ 1ffiffiffiffiffiffiffiffi
πα2

p e−
ðx−mÞ2

α2

×

�
1þ2

m2

α2
−
2mhx̂i
α2

−2
mx
α2

þ2
hx̂ix
α2

�
ð27Þ

dθ
dx

ðx;m; αÞ ¼ hp̂i
ℏ
�
1þ 2 m2

α2
− 2mhx̂i

α2
− 2mx

α2
þ 2hx̂ix

α2

� : ð28Þ

Centering the generalized Hermite functions about the
center of mass with the choice m ¼ hx̂i simplifies these
expressions to

ρðxÞ ¼ e−
ðx−hx̂iÞ2

α2ffiffiffiffiffiffiffiffi
πα2

p ð29Þ

dθ
dx

¼ hp̂i
ℏ

; ð30Þ

where α is still arbitrary because we have not assumed any
second order statistics.
For fixed choices of the first order data at a time t, the

phase derivative may be integrated with respect to x to give
the phase profile of the instantaneous state as

θðx; tÞ ¼ θðx0Þ þ
hp̂iðtÞðx − x0Þ

ℏ
: ð31Þ

This linear phase profile matches that of a plane wave with
momentum hp̂i so we refer to the first order result as the
plane wave approximation to the phase, see Fig. 1. In this
approximation, the phase at any position is known if the
phase at any other position and the (mean) momentum of
the state are known.
In Sec. III E, this first-order reconstruction will be shown

already to reproduce the interferometer phase identified for
plane-wave states evolving in linear and quadratic poten-
tials as presented in [29,30]. We extend those results by
carrying the reconstruction to the next order (i.e. first
nontrivial quantum order). Incorporating second order
quantum fluctuations and choosing α2 ¼ Δðx2Þ provides
the reconstructions

FIG. 1. An abs-arg plot of a plane wave demonstrating its linear
phase profile.

JOSEPH BALSELLS and MARTIN BOJOWALD PHYS. REV. D 108, 084030 (2023)

084030-6



ρðxÞ ¼ e
−ðx−hx̂iÞ2

2Δðx2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔðx2Þ

p ð32Þ

dθ
dx

¼ hp̂i
ℏ

þ ðx − hx̂iÞ ΔðxpÞ
ℏΔðx2Þ : ð33Þ

The probability density obtained in this case reproduces
the well-known formula for a Gaussian probability density
parametrized by its first two statistical moments. More
interestingly, the phase derivative gains an additional term
which is nonzero for x ≠ hx̂i. When looked at nearby to the
wave packet center, the phase of a Gaussian state resembles
that of a plane wave with momentum hp̂i and has a well-
defined wavelength, see Figs. 2 and 3. Corrections to the
plane wave phase due to spatial localization become
important when displacements from the wave packet center
are significantly larger than the ratio of second-order
moments ΔðxpÞ=ℏΔðx2Þ.
The spatial dependence of corrections is better under-

stood when the phase derivative formula is expressed in
canonical coordinates (10). In this form, the phase deriva-
tive is given by

dθ
dx

¼ p
ℏ
þ x − hx̂i

s
ps

ℏ
ð34Þ

with s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Δðx2Þ

p
giving the standard width of the packet.

This result resembles that of a plane wave when either ps is

small, indicating narrow momentum spread, or when
looking near the distribution center where ðx − hx̂iÞ=s < 1.
Figure 2 illustrates the case of a state with narrow

momentum spread. Its phase closely matches that of a
plane wave for most of its weight. Conversely, when the
momentum distribution is wide (and ps > 0), the phase
increases more rapidly than a plane wave for x > hx̂i,
resulting in wavelength compression, and more slowly for
x < hx̂i, causing wavelength elongation. These corrections
to the plane wave result are evident in Fig. 3 where
parameters are chosen for a Gaussian wave packet with
a broad momentum distribution.
For fixed choices of statistics, Eq. (33) [or its canonical

form, Eq. (34)], may be integrated and combined with the
density reconstruction, Eq. (32), to give the instantaneous
pure state reconstruction

ψðxÞ ¼
�

1

2πΔðx2Þ
�

1=4
exp

�
−
ðx − hx̂iÞ2
4Δðx2Þ

�
1 − i

ΔðxpÞ
ℏ=2

�

þ i
hp̂ix
ℏ

þ iθ0

�
: ð35Þ

The overall phase exp ðiθ0Þ incorporates both the arbitrary
integration constant from Eq. (33) as well as the unspeci-
fied choice of branch from the square root of ρ. It is
interesting to compare this result with the general form for a
Gaussian pure state.
In the position basis, a general Gaussian wave packet can

be represented as

ψðx;A;B;CÞ ¼ exp ðAx2 þ Bxþ CÞ ð36Þ

with A;B;C∈C. We identify the real degrees of freedom as

A ¼ −ðaþ iαÞ ð37Þ

B ¼ bþ iβ ð38Þ

C ¼ cþ iγ ð39Þ

and require a > 0 so that the state is normalizable. A
tedious, but straightforward process of evaluating expect-
ation value integrals and solving systems of equations
identifies these parameters in terms of the state’s statistical
moments as

a ¼ 1

4Δðx2Þ ð40Þ

b ¼ hx̂i
2Δðx2Þ ð41Þ

α ¼ −
ΔðxpÞ
2Δðx2Þℏ ð42Þ

FIG. 2. A Gaussian state as defined in Eq. (35). The parameters
for this state were chosen to give a narrow momentum distribu-
tion about the same mean momentum as the plane wave in Fig. 1.

FIG. 3. A Gaussian state with the same mean momentum but
with a wide momentum distribution compared with Fig. 2.
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β ¼ hp̂i
ℏ

−
ΔðxpÞhx̂i
Δðx2Þℏ ð43Þ

c ¼ −
b2

4a
þ log

��
2a
π

�1
4

�
ð44Þ

with the overall phase γ undetermined. With this choice of
parametrization, the general Gaussian wave packet written
in (36) is expressed in terms of its statistics as

ψðxÞ ¼
�

1

2πΔðx2Þ
�

1=4
exp

�
−
ðx − hx̂iÞ2
4Δðx2Þ

�
1 − i

2ΔðxpÞ
ℏ

�

þ i
hp̂ix
ℏ

þ iγ

�
: ð45Þ

Up to an overall (x-independent) phase, this result is
identical to Eq. (35). Agreement between these two results
indicates that our reconstruction procedure with the choice
of generalized Hermite polynomials contains Gaussian
states. When higher-order fluctuations are provided, the
general reconstruction equations (22) and (26) allow state
approximations beyond the Gaussian form to be derived.

III. APPLICATIONS

Our quasiclassical model can be used to address several
questions related to quantum test masses traveling in a
gravitational background field. We motivate our approach
through the Ehrenfest equation. This equation relates the
acceleration of the barycenter of a particle in a nonlocal
quantum state to the potential energy V as

m
d2

dt2
hx̂i ¼ −

	
dV
dx

ðx̂Þ


: ð46Þ

For a Newtonian gravitational potential VðxÞ ¼ mΦðxÞ,
with ΦðxÞ independent of mass the Ehrenfest equation
reduces to an equation without explicit mass dependence:

d2

dt2
hx̂i ¼ −

	
dΦ
dx

ðx̂Þ


: ð47Þ

In the classical theory, we identify the metric component
h00 from the geodesic equation (1) with the Newtonian
gravitational potential as

h00 ¼ −2Φ: ð48Þ

This leads to the equation of motion for a classical test mass

d2x
dt2

¼ −
dΦ
dx

: ð49Þ

Similar to its classical counterpart, the absence of
explicit mass dependence in the quantum equation hints

at an extension of the classical weak equivalence principle
into quantum theory. Lämmerzahl proposes such a quan-
tum equivalence principle in [18]. However, the absence of
explicit mass dependence conceals a subtlety. Unlike the
classical equation, the quantum result forms a closed
system of differential equations only when ΦðxÞ is at most
quadratic in x. In general, Eq. (47) must be supplemented
with equations for higher moments (or suitable closure
conditions and truncations that parametrize the values of
higher moments).
We provide these additional equations from the effective

Hamiltonian function associated with the Newtonian poten-
tial. Limiting the expansion (8) to second order in moments
provides the lowest-order quantum corrections:

Heff;2ðx; p;Δðx2Þ;ΔðxpÞ;Δðp2ÞÞ

¼ p2

2m
þmΦðxÞ þ ΔðpÞ2

2m
þ 1

2
m
d2Φ
dx2

Δðx2Þ: ð50Þ

The coupling between quantum and classical degrees of
freedom in the final term depends on the gravitational field
curvature given by d2Φ=dx2 which, being the second
derivative of the metric, can be considered part of the
Riemann tensor.
We present a case analysis to emphasize the role of this

coupling. In Sec. III A,we examine the scenariowithΦ ¼ 0,
representing a free particle. In Sec. III B,we selectΦ ¼ gx to
represent a particle in a linear gravitational potential. These
cases illustrate classical center-of-mass dynamics with
decoupled quantum dynamics. Subsequently, we explore
quadratic and higher-order cases, discussing their implica-
tions for equivalence principle violation in the Eötvös
framework (Sec. III C) and the return time framework
(Sec. III D). Finally, in Sec. III E, we apply these methods
to determine the interferometer phase shift in a Mach-
Zehnder atom interferometer.

A. Free particle

An extensive investigation of the free particle case,
Φ ¼ 0, using the geometric point of view implied by
our methods, appears in [17]. Using the brackets for second
order moments (9) and the second-order effective Hamilton
function (50) with Φ ¼ 0 produces the Hamilton equations
of motion for the quantum free particle:

dhx̂i
dt

¼ hp̂i
m

ð51Þ

dhp̂i
dt

¼ 0 ð52Þ

dΔðx2Þ
dt

¼ 2ΔðxpÞ
m

ð53Þ
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dΔðxpÞ
dt

¼ Δðp2Þ
m

ð54Þ

dΔðp2Þ
dt

¼ 0: ð55Þ

These equations have solutions in terms of initial data as

hx̂iðtÞ ¼ x0 þ
p0

m
ðt − t0Þ ð56Þ

hp̂iðtÞ ¼ p0 ð57Þ

Δðx2ÞðtÞ ¼ Δðx2Þ0 þ
2ΔðxpÞ0

m
ðt − t0Þ þ

Δðp2Þ0
m2

ðt − t0Þ2

ð58Þ

ΔðxpÞðtÞ ¼ ΔðxpÞ0 þ
Δðp2Þ0

m
ðt − t0Þ ð59Þ

Δðp2ÞðtÞ ¼ Δðp2Þ0: ð60Þ

The first two of these equations indicate that for a localized
free particle state, the center of mass trajectory is the
classical one. The remaining equations of motion allow us
to infer quantum mechanical effects.
To lighten notation we will assume that the initial

conditions are specified such that t0 ¼ 0 when the wave
packet is minimally squeezed, that is, ΔðxpÞ0 ¼ 0.
Additionally, we define shorthand for the initial width
and spreading frequency via

σ2 ¼ Δðx2Þ0 ð61Þ

ω2
σ ¼

Δðp2Þ0
m2Δðx2Þ0

: ð62Þ

With these choices and substituting the solutions (56) into
the Gaussian template equation (35), we reconstruct the
wave function

ψðx; tÞ ¼
�

1

2πσ2ð1þ ω2
σt2Þ

�1
4

exp

�
−
ðx − x0 − p0t=mÞ2
4σ2ð1þ ω2

σt2Þ

× ð1 − iωσtÞ þ i
p0x
ℏ

þ iγ

�
ð63Þ

with the unspecified phase γ.
Although it has been argued that obtaining the specific

wave function solving the Schrödinger equation is rarely
necessary, the moment formalism provides an approach to
doing so in which the partial differential equation is
replaced by a system of ordinary differential equations
which may be easier to solve. We see how this works out
in this case. Substituting the result (63) into the time-
dependent free particle Schrödinger equation reveals a
differential equation for γðtÞ:

dγ
dt

¼ −
p2
0

2mℏ
−
1

2

ωσ

1þ ω2
σt2

: ð64Þ

This separable equation shows that in order for our
reconstruction to solve the Schrödinger equation, we must
choose the x-independent phase to satisfy

expðiγÞ ¼ exp

�
−i

p2
0

2mℏ
t −

i
2
arctanðωσtÞ

�
: ð65Þ

With this, we have demonstrated that the reconstruction
(63) occupies the same ray of the Hilbert space as the wave
function solving the Schrödinger equation.

B. Evolution in a linear potential

In a linear potential VðxÞ ¼ mgx, the equations of
motion for the second-order statistics are identical to those
for the free particle, but the solutions for the packet’s
centroid now satisfy

hx̂iðtÞ ¼ x0 þ
p0

m
t −

1

2
gt2 ð66Þ

hp̂iðtÞ ¼ p0 −mgt: ð67Þ

The construction of a falling Gaussian wave packet is
immediate from the reconstruction template, Eq. (35),

ψðx; tÞ ¼
�

1

2πσ2ð1þ ω2
σt2Þ

�1
4

× exp

�
−
ðx − x0 −

p0

m tþ 1
2
gt2Þ2

4σ2ð1þ ω2
σt2Þ

ð1 − iωσtÞ

þ i
ðp0 −mgtÞx

ℏ
þ i
ℏ
gt2

2

�
p0 −

mgt
3

��
: ð68Þ

As a point of comparison, the construction of a falling
Gaussian wave packet was solved by Nauenberg in [31].
Nauenberg found that a solution ψ to the Schrödinger
equation in a frame accelerated with acceleration a with
respect to an inertial frame may be constructed from any
solution ϕðx; tÞ from the unaccelerated frame as

ψðx; tÞ ¼ ϕ

�
xþ at2

2
; t

�
exp

�
−
imat
ℏ

�
xþ at2

6

��
: ð69Þ

Choosing ϕ to solve the free Schrödinger equation and
using Nauenberg’s results to determine the corresponding
wave packet in a frame accelerated by a ¼ g gives a
result which agrees with the moment result up to the
overall x-independent phase.
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C. Eötvös parameter

Gravitational fields arising from matter sources exhibit
inhomogeneity. In the Newtonian framework, inhomoge-
neity corresponds to nonlinear potentials. The simplest
nonlinear potential is the quadratic potential. In a quadratic
potential, the second derivative d2Φ=dx2 is constant
ensuring that the center-of-mass dynamics decouple from
the quantum moment dynamics, similarly to the previously
considered cases. Because of this similarity we do not
immediately construct the equations of motion or present a
wave packet solution as before. However, if desired, these
can be easily derived. The distinctive features arising in the
quadratic case are more relevant in the context of atom
interferometry, the topic of Sec. III E. Discussion of this
case is postponed until that section.
Quantum effects begin to influence classical dynamics

only when the second derivative d2Φ=dx2 becomes depen-
dent on x. However, accurately characterizing the source
mass distribution with sufficient resolution to resolve the
field structure to this order it is challenging. (A recent
experiment byOverstreet et al. in [32] presents an intriguing
counterexample, where deliberate efforts were made to
precisely characterize the source mass distribution.) A
simpler test, albeit with less far reaching implications,
emerges from the consequence that the weak-field geodesic
equation predicts a universal acceleration for all objects
regardless of the specific geometry. This observation leads to
a class of experiments known as Eötvös experiments. These
experiments are designed to constrain the normalized differ-
ential acceleration between two objects, expressed as

ηð1; 2Þ ¼ a1 − a2
ā

: ð70Þ

In this definition ā ¼ a1þa2
2

represents the average accel-
eration, and the quantity η is referred to as the Eötvös
parameter.
In general relativity, the weak-field geodesic equation

[Eq. (1)] predicts ηð1; 2Þ ¼ 0 identically for any two
objects even when their masses differ, m1 ≠ m2. In a sense,
general relativity is constructed as a geometric theory of
gravity with the explicit aim of arriving at this conclusion.
Modern extensions to the standard model and general
relativity typically anticipate some deviation from this
classical prediction. Consequently, the parameter η serves
as a valuable model-independent framework for quantify-
ing violations of the weak equivalence principle. We are
particularly interested in whether quantum effects lead to
η ≠ 0 and, if so, at what level these effects become
significant.
Let us rephrase the dynamics in terms of canonical

variables (10) via the Hamilton function

Hðx; p; s; psÞ ¼
p2

2m
þ p2

s

2m
þmΦeffðx; sÞ ð71Þ

with the quantum-gravitational potential

Φeffðx; sÞ ¼ ΦðxÞ þ 1

2

d2Φ
dx2

s2 þ 1

8

�
ℏ
m

�
2 1

s2
: ð72Þ

Our canonical effective methods provide direct predictions
for quantum corrections to the acceleration of a quantum
state in a nonuniform gravitational field. The equations of
motion for x and s in terms of the gravitational field
strength gðxÞ≡Φ0 are

ẍ ¼ −g −
1

2
∂
2
xgs2 ð73Þ

̈s ¼ −∂xgsþ
�
ℏ
m

�
2 1

4s3
: ð74Þ

We read off the anomalous center of mass acceleration���� d2dt2 hx̂i − ð−gðhx̂iÞÞ
���� ¼ 1

2
∂
2
xgΔðx2Þ: ð75Þ

The center of mass acceleration deviates from the local
gravitational field acceleration when both the width of the
state and the gravitational field strength curvature are
nonvanishing. Although this is the outcome expected
from classical tidal forces acting on extended objects in
an inhomogeneous field, our canonical formulation is
more general because it provides also the dynamics of
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Δðx2Þ

p
. In particular, the final value of the anoma-

lous acceleration depends on the value of s which is
plainly mass dependent because m appears explicitly in ̈s.
The origin of the mass dependence lies ultimately in the
quantum requirement to preserve the uncertainty product,
which is defined for moments of x together with p, rather
than ẋ.
We estimate the Eötvös parameter for a delocalized

quantum particle as compared to a more localized
particle as

η ≈ g−1
���� d2dt2 hx̂i − ð−gðxÞÞ

���� ¼ 1

2
g−1∂2xgΔðx2Þ: ð76Þ

Parameter values suitable for terrestrial experiments are g ≈
10 m=s2 and ∂

2
xg ≈ 10−12=ms2; however, the wave packet

width Δðx2Þ is not independently well constrained by
experiment. Equation (76) indicates a range of values for
η from η ≈ 0.5 × 10−33 when the wave packet width is
atomic scale (s ≈ 10−10 m) to η ≈ 0.5 × 10−13 when the
wave packet width approaches the armlength of typical
interferometers (s ≈ 1 m). This latter value is within the
sensitivity range of proposed atom interferometers [33–36]
and it is possible that proposed future experiments includ-
ing km-scale underground tests and space based atom
interferometers could reach these dimensions.
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Inverting the above reasoning with the experimental
constraints of state-of-the-art atom interferometers which
have resolutions of nearly 10−11 g [37] requires the wave
packet width to remain bounded:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Δðx2Þ

q
≲ 10 m: ð77Þ

D. Gravitational scattering return time

In [38,39] Davies considered the possibility that the
quantum dynamics of a particle may allow its time of flight
to differ systematically from the classical prediction by
traveling beyond the classical turning point into the for-
bidden region of the gravitational potential. Perhaps sur-
prisingly, Davies found no evidence for tunneling delay.
Instead, the particle return time adheres to the classical
prediction in gravitational fields which are at most quad-
ratic in position and provided that the particle is measured
far from the classical turning point. This result does not
challenge the status of the weak equivalence principle for
quantum phenomena. However, stationary state analysis of
quantum objects tunneling into the classically forbidden
region of a potential gives only limited insight into the
dynamical problems encountered, particularly in the con-
text of interferometer experiments.
The equations of motion (73) and (74) indicate that for

low order gravitational potentials where ∂
2
xg vanishes, the

classical degrees of freedom decouple from the quantum
degrees of freedom. It follows directly then that the
measured return time for a wave packet in linear or
quadratic potentials is identical to that of a classical point
particle in agreement with the stationary state calculations
of [38,39]. For higher order potentials ∂2xg does not vanish
and instead couples the spreading motion of the wave
packet to the motion of its center of mass. This outcome
was anticipated by [10,18], but neither provided quantita-
tive calculations, which would be quite challenging if based
on wave functions.
Estimating an out-and-back time of flight prediction

requires integrating the equations of motion. To do so, we
specialize to the case of a Newtonian potential where the
effective Hamilton function is

Hðr;p;s;psÞ¼
p2

2m
þ p2

s

2m
þ U
2ms2

−
GMm
r

−
GMm
r3

s2: ð78Þ

It can be seen here that the classical Newtonian potential
energy has a power law correction of the form

VðrÞ ¼ −
GMm
r

�
1þ αN

�
r0
r

�
N−1

�
ð79Þ

with N ¼ 3, α3 ¼ 1, and r0 ¼ s. Power law modifications
of this form have previously been studied. In the context of

extensions to the standard model, the case N ¼ 3 can be
considered as arising from the simultaneous exchange of
two massless pseudoscalar particles [40]. A power law
correction with N ¼ 3 also arises from the model of
Randall and Sundrum [41] where noncompact warped
extra dimensions with warping scale r0 are considered.
If there are indeed Yukawa-style couplings present, then the
finite-width effects that we discuss here could confound
their detection.
Choosing an arbitrary length scale equal for example to

the earth radius, rc ¼ re and corresponding time, energy,
and momentum scales as

tc ¼
ffiffiffiffiffiffiffiffi
r3e
GM

r
ð80Þ

Ec ¼ pc
rc
tc

¼ GMm
re

ð81Þ

gives the nondimensional Hamilton function and equations
of motion

Hðr; p; s; psÞ ¼
p2

2
þ p2

s

2
þ u
2s2

−
1

r
−
s2

r3
ð82Þ

̈r ¼ −
1

r2

�
1þ 3s2

r2

�

̈s ¼ u
s2

þ 2s
r3

: ð83Þ

Unlike the classical case where all free parameters may be
scaled out, here a free parameter remains which depends on
the particle mass

u ¼ ℏ2=4
r2cp2

c
¼ ℏ2=4

GMm2re
: ð84Þ

This parameter reflects the minimal uncertainty product
compared to the scale of the problem. The same effect
could be had in identifying characteristic length ðrcÞ and
momentum ðpcÞ scales and rescaling 1

2
ℏ → 1

2
ℏ=ðrcpcÞ ¼

1
2
ℏ̃ such that the canonical commutation relation is dimen-

sionless. Such a phrasing, however useful, tends to obscure
the mass dependence of the relation because it implies an
m-dependent, nonfundamental ℏ̃.
The uncertainty-product enforcing term becomes impor-

tant when the wave packet is very narrow compared to
ffiffiffi
u

p
in which case the wave packet is forced to expand but for
terrestrial experiments, u is entirely negligible. For a
neutron moving in the earth’s gravitational field near the
mean earth radius the numerical value is u ≈ 10−36 while
for a 10 gram mass in the same conditions u ≈ 10−86.
Without this term the resulting trajectory is the one
predicted from classical tidal effects only and is not mass
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dependent. This aligns with the thinking that existing atom
interferometers are essentially classical in their operation.
The main perturbation to the center of mass trajectory of a
wave packet will come from tidal effects and not quantum
effects owing to the uncertainty principle.
Figure 4 presents typical return time curves from

numerical integration of the equations of motion for
particles whose classical component of the energy is

ϵ ¼ p2

2
−
1

r
: ð85Þ

The total energy of the particle is still given by Eq. (82). In
an experiment, the choice of initial conditions depends on
the preparation of the state. The ability to discriminate the
total energy of the particle from its classical initial con-
ditions may complicate the return time-energy dependence.
Here it is evident that a wave packet prepared at a given
height and velocity returns quicker than an identically
prepared point particle. The effect is most pronounced in
the nonlinear regime, a result in agreement with our earlier
discussion.

E. Propagation phase in interferometry

In 1924, Louis de Broglie introduced a groundbreaking
concept through his work [42], suggesting that massive
particles possess wavelike characteristics. These wave
properties can be understood within the framework of

wave functions, where they stem from the polar decom-
position described by Eq. (14). A consequence of this
description is interference of wave components. A simple
example is the interference of two wave function compo-
nents of equal magnitude where the resulting probability of
measuring a particle depends on the relative phase of the
two components via

j expðiθ1Þ þ expðiθ2Þj2 ¼ 2þ 2 cosðθ1 − θ2Þ: ð86Þ

Equation (86) and its dependence on the phase difference
δθ ¼ θ1 − θ2 is an example of an interference effect
typically ascribed to wave phenomena.
The field of matter wave interference has matured

significantly over time and atom interferometer experi-
ments now play a crucial role in a variety of fundamental
research endeavors. In this section, we describe how we
can gain insights into interference by examining quantum
moments. This goal begins with relating quantum moments
to the phase difference between spacetime points, denoted
θðxf; tfÞ − θðxi; tiÞ. This quantity is known as the propa-
gation phase of a single wave function component. It is
defined rigorously only in the wave function formalism.
Nonetheless, we previously described how to determine a
position-dependent phase from moments and separately
explained the time dependence of these moments. In this
section, we bring these concepts together to describe the
evolution of the phase along a spacetime trajectory.
As a point of comparison, we first review the approach

for calculating the propagation phase presented in [29]
based on Feynman path-integral techniques. Other appro-
aches, based on evolving plane waves ([18]) and Gaussian
wave packets ([43]) have also been described. These
however produce predictions for the phase shift which
agree with the semiclassical approach at the level of
experiment; see Ref. [44].

1. Path integral method

In an approach based on the path integral, we consider a
state prepared in the wave function state ψðxi; tiÞ. The
quantum evolution of this state is given by the propagator
formula

ψðxf; tfÞ ¼
Z

dxiKðxf; tf; xi; tiÞψðxi; tiÞ: ð87Þ

The path integral method uses Feynman’s expression for
the quantum propagator, in which the propagator is
represented as a sum over paths Γ connecting the spacetime
points ðxf; tfÞ and ðxi; tiÞ according to

Kðxf; tf; xi; tiÞ ¼ N
X
Γ
e
i
ℏSΓ : ð88Þ

In this equation, SΓ represents the action along the path Γ.

FIG. 4. Particle return time. The dashed line plots the out-and-
back return time for a classical point particle in Newtonian 1=r
gravity. The behavior for small energy is quadratic as predicted
from the linear potential result t ¼ ffiffiffi

ϵ
p

. At higher energy the
return time grows until it diverges at the classical escape energy
ϵ ¼ 1. The solid lines represent the return time for a particle
obeying the perturbed equations of motion (83) for u∈ ð10−5; 1Þ.
These are generically lower than the unperturbed result and
approach the classical result as u → 0.
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Storey and Cohen-Tannoudji [29] prove that, when the
system Lagrangian is quadratic, the quantum propagator
(88) can be simplified as

Kðxf; tf; xi; tiÞ ¼ Fðtf; tiÞ exp
�
i
ℏ
Sclðxf; tf; xi; tiÞ

�
: ð89Þ

In this equation Sclðxf; tf; xi; tiÞ represents the action along
the classical path connecting ðxf; tfÞ and ðxi; tiÞ. When we
substitute this expression into Eq. (87), we obtain

ψðxf;tfÞ¼Fðtf; tiÞ
Z

dxi exp

�
i
ℏ
Sclðxf; tf;xi; tiÞ

�
ψðxi; tiÞ:

ð90Þ

In the quadratic case, the classical action is a quadratic
function of xf and xi. Therefore, for certain initial states
including plane wave and Gaussian states, this integral can
be solved in closed form. For a plane wave initial state

ψðxi; tiÞ ¼
1ffiffiffiffiffiffiffiffi
2πℏ

p exp

�
iðp0xi − E0tiÞ

ℏ

�
: ð91Þ

In this case, the phase of the integrand is stationary when

∂Scl
∂xi

þ p0 ¼ 0: ð92Þ

Since Scl is quadratic, Eq. (92) is a linear equation for the
stationary phase point xi;stationary ≡ x0. The expansion of the
classical action around this point is given by

Sclðxf; tf;x0þζ; tiÞ¼ Sclðxf; tf;x0; tiÞ−p0ζþCðtf; tiÞζ2:
ð93Þ

In this expression, we used Eq. (92) to replace the first
derivative of the action with the negative plane wave
momentum. We also introduced the second derivative
∂
2Scl=∂x2i ≡ Cðtf; tiÞ, which is assumed to be independent
of xf and xi. Following these adjustments, the integral (90)
becomes straightforward to evaluate, yielding the result

ψðxf; tfÞ ¼ Fðtf; tiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iπℏ

Cðtf; tiÞ

s
ψðx0; tiÞ

× exp

�
i
ℏ
Sclðxf; tf; x0; tiÞ

�
: ð94Þ

From this expression we read off the propagation phase
accumulated between spacetime points as

θðtf; xðtfÞÞ − θðti; xðtiÞÞ ¼
1

ℏ

Z
tf

ti

Lclassicalðx; ẋÞdt: ð95Þ

The classical Lagrangian Lclassicalðx; ẋÞ is treated as a
function of time once we specify the classical trajec-
tory xðtÞ.

2. Moment method

In the moment approach we obtained the reconstruction
formula for the phase derivative dθ=dx. Considering now
the phase as a function of space and time, θ ¼ θðx; tÞ, it is
appropriate to consider the reconstruction formula (26) as
providing the partial derivative with respect to position
appearing in the differential

dθ ¼ ∂θ

∂x
dxþ ∂θ

∂t
dt: ð96Þ

Both of the partial derivatives may depend on the coor-
dinates x and t. For example, the second order Hermite
reconstruction depends explicitly on the position coordi-
nate from Eq. (33):

∂θ

∂x
¼ hp̂i

ℏ
þ ðx − hx̂iÞ ΔðxpÞ

ℏΔðx2Þ : ð97Þ

With the equations of motion for the moments supplied,
this becomes also a function of time, ∂θ=∂x ¼ ∂θ=∂xðx; tÞ.
If the phase where genuinely a multivariate function, then
to determine the phase difference between two spacetime
points from differential data would require a line integral of
the differential (96),

θðxf; tfÞ − θðxi; tiÞ ¼
Z
γ

�
∂θ

∂x
dxþ ∂θ

∂t
dt

�
; ð98Þ

where γ is a path connecting the spacetime points ðxf; tfÞ
and ðxi; tiÞ. We can define the path arbitrarily by a para-
metrization γ∶½τi; τf� → R2; γðτÞ ¼ ðxγðτÞ; tγðτÞÞ where we
require the coordinate functions satisfy xγðτi=fÞ ¼ xi=f and
tγðτi=fÞ ¼ ti=f. That is, we compute the parametrized line
integral

θðxf; tfÞ − θðxi; tiÞ ¼
Z

τf

τi

�
∂θ

∂x
ðxγðτÞ; tγðτÞÞ

dxγ
dτ

þ ∂θ

∂t
ðxγðτÞ; tγðτÞÞ

dtγ
dτ

�
dτ: ð99Þ

There are some difficulties in this approach. For one, the
moment data does not directly constrain the partial deriva-
tive ∂θ=∂t. However, if we require that the result obtained
be independent of the integration path, then the mixed
partial condition

∂

∂t
∂θ

∂x
¼ ∂

∂x
∂θ

∂t
ð100Þ
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will allow us to reconstruct ∂θ=∂t from integration of ∂θ=∂x
up to an overall time dependent function. For example,
when we use the first order result for ∂θ=∂x and substitute
the time dependence of moments appropriate for a particle
in a linear gravitational field we have

∂θ

∂x
ðx; tÞ ¼ hp̂i0 −mgðt − t0Þ

ℏ
ð101Þ

which, being the plane wave approximation, is a trivial
function of position. Partial differentiating with respect to
time gives

∂

∂t
∂θ

∂x
¼ −

mg
ℏ

: ð102Þ

Using the mixed partial condition (100) and integrating
with respect to position gives the time partial in this case as

∂θ

∂t
¼ −

mgx
ℏ

þ fðtÞ; ð103Þ

where the arbitrary function of time fðtÞ is added without
affecting the mixed partial equality. This residual freedom
of time dependence cannot be eliminated using moment
data alone and represents the nonphysical arbitrary phase
which may be included in any wave function under the
scaling (3). Nonetheless, in this case we are free to choose
this arbitrary function of time as

fðtÞ ¼ −
hp̂iðtÞ2
2mℏ

; ð104Þ

where hp̂iðtÞ is the classical time dependence of the
momentum. Putting everything together, we have

θðxf; tfÞ−θðxi; tiÞ¼
Z
γ

�
∂θ

∂x
dxþ∂θ

∂t
dt

�
ð105Þ

¼
Z
γ

�hp̂iðtÞ
ℏ

dx−
�hp̂iðtÞ2

2mℏ
þmgx

ℏ

�
dt

�
:

ð106Þ

This line integral was constructed to be independent of
choice of integration path. It is convenient to choose the
integration path parametrized by time, γ ¼ ðhx̂iðtÞ; tÞ. Then
the line integral is

θðxf; tfÞ − θðxi; tiÞ ¼
1

ℏ

Z
γ

�
hp̂i dhx̂i

dt
−H

�
dt; ð107Þ

where H is the conserved energy

H ¼ hp̂i2
2m

þmghx̂i: ð108Þ

The integrand in (107) is numerically equal to the classical
Lagrangian evaluated along the classical trajectory

hp̂i dhx̂i
dt

−Hðhx̂i; hp̂iÞ ¼ LclassicalðtÞ: ð109Þ

This demonstrates equality between the moment approach
and the result derived from the Feynman path integral,
expressed in Eq. (95).
The plane wave approximation determines the propaga-

tion phase using only classically defined quantities which
respect the weak equivalence principle in the absence
of quantum backreaction. Quantum backreaction occurs
only if higher-order structure of the gravitational field
can be resolved. Therefore, in low-order gravity-resolving
atom interferometer phase measurements, we anticipate no
observed violation of the weak equivalence principle. This
expectation is supported by experiments, including: (i) a
series of simultaneous dual-species atom-interferometer
Eötvös tests, presented in [37,45,46], which constrained
ηð85Rb; 87RbÞ < 10−12; (ii) the dual-species test conducted
by [47], which placed constraints on the more significant
mass gap, ηð39K; 87RbÞ < 10−7; and (iii) the work of [48],
which constrained the differential acceleration for atoms in a
coherent superposition of metastable energy states at the
10−9 level.
These analyses highlight the importance of distinguish-

ing between an atom interferometer’s use of quantum
properties in making a measurement and the absence of
backreaction of the quantum properties on the measure-
ment. As discussed in [10] and revisited more recently in
[44], the null results obtained so far indicate that quantum
backreaction on the center of mass dynamics either does
not manifest, or itself conforms to the equivalence princi-
ple. Our analysis suggests that quantum effects do not
conform to the equivalence principle. Therefore, it is
reasonable to deduce that current instruments lack the
detection sensitivity to resolve wave packet effects, i.e. the
atoms used in these experiments mimic classical test
particles, at least as far as their center of mass motion is
concerned.
Our moment expansion accommodates this conclusion

through the moment hierarchy defined in Eq. (5). However,
it also offers a new framework for performing calculations
in the regime where quantum backreactions become
important. The challenge of incorporating the wave packet
structure intrinsic to atomic test masses prepared for a local
experiment has received comparatively little attention, with
the work [43] being an exception.

3. Incorporating wave packet effects

The potential for quantum backreaction onto the
classical trajectory is highly interesting since it would
signal a deviation from the geodesic motion predicted by
general relativity, providing a unique regime for testing the
compatibility of gravity and quantummechanics. The effect
of higher-order potentials on nonlocal wave packet struc-
ture is mass dependent with the nonzero Eötvös parameter
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calculated in Sec. III C. This quantum effect may be
incorporated into the phase determination with the sec-
ond-order accurate result, Eq. (33):

∂θ

∂x
¼ hp̂i

ℏ
þ ðx − hx̂iÞ ΔðxpÞ

ℏΔðx2Þ : ð110Þ

An example of the application of this formula could be to
identify wave packet effects on the propagation phase.
We consider a simple Mach-Zehnder interferometer and

imagine that the device operates based on light pulses
coherently splitting, redirecting, and recombining an
atomic wave packet at equally spaced times. The spacetime
geometry is sketched in Fig. 5. In this sketch it is made
evident that, in the presence of a linear gravity gradient,
particle trajectories within a Mach-Zehnder interferometer
do not close at the time of an equally spaced pulse after a
single reflection. We can determine the phase of either
wave packet component at the time of the recombining
pulse, t ¼ 2T, at any vertical displacement most easily if
we choose an integration path which follows the compo-
nent’s center of mass trajectory until t ¼ 2T, and then
follows a vertical path at the fixed time t ¼ 2T. This choice
of integration path is convenient because for the first two
segments of the piecewise path the path satisfies xγ ¼ hx̂i
and the second-order contributions to the phase vanish.
Then in the last segment the moments are all time
independent yielding a simple integration.
Lastly, we comment on the structure of the second-order

result. The first order phase difference, adequate for
describing plane waves propagating in low-order poten-
tials, was determined by the classical Lagrangian action

δθ ¼ 1

ℏ

Z
Lclassicaldt: ð111Þ

The moment approach with its canonical structure eval-
uates the same phase difference, but in phase space
coordinates. At the lowest order this was expressed by
the Legendre transform of the classical Lagrangian as

δθ ¼ 1

ℏ

Z
ðpẋ −HclassicalÞdt: ð112Þ

The second-order formula for the phase derivative in
canonical phase space coordinates (10) was

∂θ

∂x
¼ p

ℏ
þ x − hx̂i

s
ps

ℏ
: ð113Þ

Integrating over a physical trajectory and changing varia-
bles with the Jacobian

ds
dx

¼ x − hx̂i
s

ð114Þ

yields

δθ ¼ 1

ℏ

Z
ðpdxþ psdsÞ: ð115Þ

The integration is over the phase space trajectory xðtÞ,
on which sðtÞ depends through s2 ¼ ðx − hx̂iÞ2 þ constant
according to (114). To this, we may incorporate the
time-dependent contribution from the conserved energy,
H ¼ hĤi, for free without leaving the same Hilbert space
ray and finally obtain the propagation phase,

δθ ¼ 1

ℏ

Z
ðpẋþ psṡ −HÞdt; ð116Þ

where H ¼ hĤi is not equal to the classical Hamilton
function but is the effective quantum energy including
moments, for example as given by (71). This final result
connects the phase contribution from second-order wave
packet structure to the Lagrangian formulation. We expect
that this result is obtainable also from the propagator
method outlined in [29] because the integrals involved
remain Gaussian. Nonetheless, it appears the quantum
propagation phase is more naturally understood through
its dependence on the quantum phase space structure.

IV. CONCLUSION

Although it has been known for some time that several
mathematical ingredients of quantum dynamics are gen-
erally mass dependent even in the case of gravitational
forces, there remain questions about the extension of the
equivalence principle to quantum mechanics. With this

FIG. 5. Mach-Zehnder interferometer spacetime geometry in an
inhomogeneous gravitational field. The center of mass trajecto-
ries of the separated wave packet components do not intersect
at the time of the third equally spaced pulse. Instead, spatial
separation implies that wave packet structure will determine the
interferometric phase difference. The phase of each component is
most easily computed by integrating the differential phase along a
piecewise path traveling first along the two center of mass
trajectories, and then vertically at the fixed end time.
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motivation, we set out a simple analysis for the behavior of
a quantum object in a (possibly inhomogeneous) gravita-
tional field. In place of stationary state analysis, we
considered the physically motivated case of a wave packet
following a nearly classical trajectory whose fluctuations
remain bounded by powers of ℏ.
The presented moment expansion systematically bridges

between classical and quantum dynamics but at all steps,
the method’s mathematical description of the dynamics
takes a classical form. The (quasi)classical nature of the
dynamical system permits intuitive dynamical interpreta-
tions to our findings which we have evaluated for the
Eötvös parameter of a test mass in free fall, for the return
time of a quantum test mass in a gravitational field, and for
the propagation phase of a quantum object transiting an
interferometer. In all cases, quantum fluctuations—or the
spreading of a wave packet—imply specific corrections to
the classical equations of motion and affect physical
conclusions.
Wave packet spreading is always mass dependent, even

for a free particle. Whether this mass dependence notice-
ably affects the center of mass motion is a matter of
precision. At the classical end, when no quantum fluctua-
tions are kept, the center of mass motion of a freely falling
particle is independent of mass. When quantum fluctua-
tions are considered, the mass dependence of the center of
mass motion depends on the functional form of the
potential used, or the order of its Taylor expansion.
Owing to the position of the derivative in Ehrenfest’s
equation, when the gravitational potential is at most
quadratic in position, the resulting equations of motion
close on the center of mass and are mass independent in
keeping with the findings of previous studies. However, for
higher order potentials (e.g. Newtonian) we have demon-
strated that inhomogeneities in the gravitational field create
quantum tidal forces. The tidal force has the same form here
as in classical calculations, with the addition of a mass-
dependent term enforcing uncertainty constraints on the
second-order statistics. In the coupling of this spreading
behavior to the center of mass we find the center of mass
dynamics become mass dependent as well.
The observed coupling is coarse in that it reflects only

the second-order statistics of the wave packet and then only
in the direction of motion. If further precision is required,
then following the logic of Sec. II, this framework may be

extended to examine the tidal effects of higher order
fluctuations. In pursuing this, one could use the canonical
mappings of higher order fluctuations obtained in [24] up
to fourth order. Should the full three-dimensional structure
of the wave packet be considered, that reference includes
in addition canonical mappings for more than 1 degree of
freedom. The systematic derivation of these mappings
using methods from Poisson geometry for quantum
moments implies computational advantages compared with
a many-body treatment that would be required for classical
tidal effects of mass distributions. If ℏ terms such as our u
are ignored, the quantum derivation may also be interpreted
as a shortcut for a description of the classical effects.
In the case that tidal forces affect the dynamics, the

magnitude of the influence on the center of mass motion
may be determined by an Eötvös parameter η. However,
owing to differences in state preparation across experi-
ments and because the wave packet width in interferom-
eter experiments is typically not independently well
constrained, it is difficult to judge a value for η. Values
for this effect corresponding to atomic-scale sized wave
packets are orders of magnitude below current experi-
mental bounds. The smallness of the mass dependence
for these conditions is a consequence of the smallness
of the only free parameter appearing in the dynamics:
u ¼ ℏ2=ð4GMm2reÞ. If the wave packet width is permit-
ted to approach the size of a meter then Eötvös parameter
values near the sensitivities reached by existing experi-
ments are plausible to obtain.
In summary, a quantum weak equivalence principle for

expectation values is correct only in the limit that tidal
effects are irrelevant; i.e., the width of the wave packet is
small compared to the curvature length of the field. Our
analysis uses only nonrelativistic quantum mechanics.
Such analysis highlights features particular to the non-
relativistic theory. We hope our viewpoint is sufficiently
clear as to remove any uncertainty which may persist on the
topic of universal free fall in quantum mechanics. This
framework may prove useful in connection with further
tests of the weak equivalence principle.
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Dittus, W. Ertmer, A. Görlitz, M. Inguscio, A. Landragin
et al., Nucl. Phys. B, Proc. Suppl. 166, 159 (2007).

[34] G. Tino, F. Sorrentino, D. Aguilera, B. Battelier, A.
Bertoldi, Q. Bodart, K. Bongs, P. Bouyer, C. Braxmaier,
L. Cacciapuoti et al., Nucl. Phys. B, Proc. Suppl. 243–244,
203 (2013).

[35] A. Trimeche, B. Battelier, D. Becker, A. Bertoldi, P. Bouyer,
C. Braxmaier, E. Charron, R. Corgier, M. Cornelius, K.
Douch et al., Classical Quantum Gravity 36, 215004 (2019).

[36] B. Altschul, Q. G. Bailey, L. Blanchet, K. Bongs, P. Bouyer,
L. Cacciapuoti, S. Capozziello, N. Gaaloul, D. Giulini, J.
Hartwig et al., Adv. Space Res. 55, 501 (2015).

[37] P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A.
Kasevich, Phys. Rev. Lett. 125, 191101 (2020).

[38] P. C. W. Davies, Classical Quantum Gravity 21, 2761
(2004).

[39] P. C. W. Davies, Classical Quantum Gravity 21, 5677
(2004).

[40] E. Fischbach, D. E. Krause, V. M. Mostepanenko, and M.
Novello, Phys. Rev. D 64, 075010 (2001).

[41] L.Randall andR. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).
[42] L. de Broglie, London, Edinburgh, Dublin Phil. Mag. J. Sci.

47, 446 (1924).
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