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Within nonlinear electrodynamics (NED), photons follow null geodesics of an effective geometry, which
is different from the geometry of the spacetime itself. Over the last years, several works were dedicated to
investigate the motion of photons in the effective geometry of NED-based magnetically charged regular
black hole (RBH) solutions. We study the light rings, shadows, and gravitational lensing of the electrically
charged RBH solution proposed by Irina Dymnikova (ID), which is a static and spherically symmetric
spacetimewith a NED source.We show that the shadow associated with the effective geometry can be almost
10% bigger that the one associated with the standard geometry. We also find that the ID solution may mimic
the shadow properties of the Reissner-Nordström BH, for low-to-extreme values of the electric charge.
Besides that, by using the backwards ray-tracing technique, we obtain that ID and Reissner-Nordström BH
solutions can have a very similar gravitational lensing, for some values of the correspondent electric charges.
We also show that the motion of photons in the effective geometry can be interpreted as a nongeodesic curve
submitted to a four-force term, from the perspective of an observer in the standard geometry.
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I. INTRODUCTION

General relativity (GR) is a well-established classical
gravitational theory [1–3]. Although it has accumulated
remarkable and numerous triumphs, it presents limitations,
specially at the core of the standard black hole (BH)
solutions. GR predicts the existence of singularities, which
are pathologies where the laws of physics break down [4],
challenging the validity of Einstein’s theory.
A possibility to overcome such pathologies is to consider

appropriated distributions of matter, leading to singularity-
free BH solutions within GR. The first line element for a
nonsingular BH geometry was proposed by James Bardeen
in 1968 [5]. By minimally coupling GR and nonlinear
electrodynamics (NED), it was shown that it is possible to
obtain various exact charged regular black hole (RBH)
solutions (cf. Refs. [6–9]). In these theories, the Bardeen
geometry can be interpreted as a RBH sourced by a
nonlinear magnetic [10] or electric monopole [11].

NED models can be seen as possible ultraviolet com-
pletions of linear electrodynamics, i.e., for electromagnetic
fields with magnitudes approaching [12]

Ecri ¼ 1.3 × 1018
V
m

and Bcri ¼ 4.4 × 109T: ð1Þ

One of the first covariant models of NED was proposed in
1934 (the so-called Born-Infeld electrodynamics) as an
attempt to obtain a finite self-energy density for the electric
charge [13,14]. Another influential model of NED is the
Euler-Heisenberg theory [15], which is related with two
important predictions of quantum electrodynamics (QED):
the light-by-light scattering [16,17] and the vacuum
birefringence [18,19]. Beyond BH physics (see also
Refs. [20–29]) and QED, NED has also applications in
string/M theories [30–33] and cosmology [34–37]. Among
the applications of NED in BH physics, one important
result is that the motion of photons can be interpreted as a
null geodesic of an effective geometry [38–41], which is
different from the geometry of the spacetime itself.
Since NED affects the motion of photons, the analysis

of light rings (LRs), shadows, and gravitational lensing—
which are of utmost importance within the context of BH
physics—requires special attention. The LRs are circular
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photon orbits that can be studied by analyzing the null
geodesics in a given (effective) geometry, as it was done for
some NED-based magnetically charged RBHs [42–45].
Noticeably, the analysis of the null geodesics alone is not
enough to distinguish the type of charge of a BH in the
same NED theory, since the effective geometry is the same
(up to a conformal factor) for both types of charge [46,47].
Besides that, in the electromagnetic channel, the LRs are
closely related to the BH shadow [48], as seen by a distant
observer. The BH shadow is related to the dark region
formed when a BH is illuminated by some source of light,
for instance, an accretion disk that surrounds the BH [3].
Recently, some works studying the shadows of NED-based
RBHs, considering the effective geometry, were performed,
for instance, in Refs. [49–54].
The study of the deflection of a light ray by a compact

object due to the gravitational interaction plays an impor-
tant role in Einstein’s theory. For instance, the first
confirmed prediction of GR, the deflection of light by
the Sun [55,56], is an example of gravitational lensing
effect. Over the last decades, several works on gravitational
lensing in standard BH spacetimes have been done (see,
e.g., Refs. [57–65] and references therein). In the back-
ground of NED-based RBH solutions, considering the
effective geometry, the gravitational lensing was studied
for electric and magnetic models [66–70]. However, the
computation of gravitational lensing using backwards ray-
tracing techniques [48,71] has not been performed so far in
the background of electrically charged NED-based RBHs.
It is also important to emphasize that, within NED,

electrically charged RBHs are, in general, derived in the
so-called P framework [20]. In this framework, the electric
models could exist, from the theoretical point of view,
if they satisfy the weak energy condition [22]. The weak
energy condition leads to a de Sitter behavior at the core
of the central object, providing a regular center, and the
Maxwell limit can be satisfied at infinity, which is the case,
e.g., for the solutions in Refs. [7,22].
Although it is widely believed that astrophysical BHs are

essentially neutral, it has been argued that (at least) a small
nonzero electric charge is possible [72–74], which can
affect the motion of charged particles. Therefore the study
of electrically charged BHs, in the spherically symmetric
case, can be useful not only to improve our theoretical
understanding of BH physics but also to gauge the role of
NED and its hypothetical impact in the context of astro-
physical BHs.
The aim of this work is to study the imprints of NED in

the trajectories of the photons by analyzing the LRs,
shadows and gravitational lensing. For concreteness, we
focus on the static and spherically symmetric electrically
charged NED-based RBH solution proposed by Irina
Dymnikova (ID) [22]. Since the causal structure of the
ID solution is similar to the Reissner-Nordström (RN) one,
we compare our results to those obtained in the RN

geometry. The remainder of this paper is organized as
follows. In Sec. II we review the ID geometry. The null
geodesic equations, considering the standard and effective
geometries, are studied in Sec. III. Our main results are
presented in Sec. IV, and our final remarks in Sec. V.
Throughout this paper we use the natural units, for which
G ¼ c ¼ ℏ ¼ 1, and the metric signature (þ;−;−;−).

II. BACKGROUND

In the F framework, the action that describes NED
minimally coupled with gravity can be written as [20]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − LðFÞ�; ð2Þ

where g is the determinant of the metric tensor gμν, R is the
corresponding Ricci scalar, and LðFÞ is a gauge-invariant
electromagnetic Lagrangian density. The function F≡
FμνFμν is the Maxwell scalar, with Fμν being the standard
electromagnetic field tensor. By introducing a structural
function HðPÞ through a Legendre transformation [75],
namely

HðPÞ ¼ 2FLF − LðFÞ; ð3Þ

one can obtain an alternative form for the NED theory in
the so-called P framework [20]. Within this context, the
function P≡ PμνPμν is a scalar obtained from the auxiliary
antisymmetric tensor Pμν, defined as Pμν ≡ LFFμν, where
LF ≡ ∂L=∂F. The relations between the F and P frame-
works are given by (see, for instance, Ref. [22]):

P ¼ ðLFÞ2F; HPLF ¼ 1; and Fμν ¼ HPPμν; ð4Þ

where HP ≡ ∂H=∂P. By using Eqs. (2)–(4), we can write
the corresponding action in the P framework as

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − ð2PHP −HðPÞÞ�: ð5Þ

The corresponding field equations are given by

Gμ
ν ¼ −Tμ

ν ¼ 1

2
½4HPPναPμα − δμνð2PHP −HÞ�; ð6Þ

which are the Einstein-NED (E-NED) field equations
written in the P framework. The conservation equation
of Pμν and the corresponding Bianchi identities are
given by

∇μPμν ¼ 0 and ∇μðHP⋆PμνÞ ¼ 0; ð7Þ

respectively, where ⋆ is the Hodge symbol. A correspon-
dence with Maxwell’s theory is obtained if HðPÞ → P and
HP → 1, for small P. The P framework is useful to obtain
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exact solutions of Einstein field equations in the presence of
NED sources [75] and it is equivalent to the F framework
where the function FðPÞ is a monotonic function of P [20].
Within the P framework, NED-based RBHs may be

found by specifying the NED source HðPÞ and the
appropriated function Pμν.

1 For the electrically charged
RBH solution proposed by ID [22], the NED source is
specified by the following structural function:

HðPÞ≡ P

ð1þ α
ffiffiffiffiffiffiffi
−P

p Þ2 ; ð8Þ

where α is a constant to be determined by the field
equations.
To solve the field equations we need to take an ansatz

for the line element describing the spacetime. For the ID
solution, it is considered a static and spherically symmetric
geometry, with the line element of the form

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2dΩ2; ð9Þ

in which dΩ2 ¼ dθ2 þ sin2 θdφ2 is the line element of a
unit two-sphere and fðrÞ is the metric function, given by

fðrÞ ¼ 1 −
2MðrÞ

r
: ð10Þ

The function MðrÞ is determined by the E-NED field
equations. From its asymptotic behavior it is possible
to obtain the total mass Mðr → ∞Þ ¼ M of the (regular)
BH [26,28]. Since we are considering a spherically sym-
metric background and a purely electric NED source, the
appropriated ansatz for Pμν can be written as

Pμν ¼ ðδtμδrν − δtνδ
r
μÞDðrÞ; ð11Þ

where DðrÞ is a function to be determined by the
conservation equation of Pμν (7). Notice that the NED
source (8) satisfies a correspondence with Maxwell’s
theory at infinity, which can be inferred by taking a series
expansion of the model around P ¼ 0. Taking this into
account and integrating Eq. (7), we obtain that DðrÞ is
given by

DðrÞ ¼ Q
r2

; ð12Þ

where Q is the electric charge of the central object, then

P ¼ −
2Q2

r4
: ð13Þ

The Gt
t component of the E-NED field equations leads to

MðrÞ ¼ −
1

4

Z
r

0

HðPÞx2dx; ð14Þ

which, considering Eqs. (8) and (13), results in

MðrÞ¼Q2

8

�
2
3
4ffiffiffiffiffiffiffi
αQ

p arctan

�
r

2
1
4

ffiffiffiffiffiffiffi
αQ

p
�
−

2rffiffiffi
2

p
αQþr2

�
: ð15Þ

The value of α can be fixed by recalling that the limit
Mðr → ∞Þ ¼ M provides the unique mass of the BH, thus

α ¼ π2Q3

64
ffiffiffi
2

p
M2

: ð16Þ

Since α is a model parameter, rather than an integration
constant (which is the case forM, Q) this means the choice
of BH mass and charge, fixes the model coupling α. But the
choice of charge to mass ratio Q=M does not fix α.
Considering Eqs. (15) and (16), and defining

z≡ πQ2

8M
; ð17Þ

we obtain the metric function of the ID solution,
given by [22]

fIDðrÞ ¼ 1 −
4M
πr

�
arctan

�
r
z

�
−

rz
r2 þ z2

�
: ð18Þ

In the limit r → ∞, fIDðrÞ behaves as

fIDðrÞj∞ ≈ 1 −
2M
r

þQ2

r2
−
2Q2z2

3r4
þO

�
1

r5

�
; ð19Þ

which approaches the metric function of the RN spacetime,
as expected since the NED source associated with the ID
solution satisfies a correspondence with the linear electro-
dynamics in the weak field limit. Although the contribu-
tions of order r−n, with n ≥ 4, in the metric function are
negligible in the weak field limit, they play an important
role in the higher order corrections of the weak deflection
angle, as discussed in Appendix A. On the other hand,
as we approach the core, the ID solution has a de Sitter
behavior, given by

fIDðrÞj0 ≈ 1 −
1

3

�
Q2

z4

�
r2 þ 2Q2

5z6
r4 þO½r5�; ð20Þ

which is related with the finiteness of the self-energy
density of the electric NED source, with Λ ¼ Q2=z4 being
an effective cosmological constant. In addition, the ID
solution reduces to the Schwarzschild solution in the
chargeless limit (Q → 0).

1BH solutions obtained in the P framework can also be
formally derived in the F framework by using a suitable
nonuniform variational method [76].
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The event horizon of the BH solution (9) can be
determined by fðrÞ ¼ 0. For the ID solution, the equation
fðrÞ ¼ 0 leads to a transcendental equation. Hence we
cannot obtain a closed expression for the event horizon
radius as functions of M and Q, although we can obtain it
numerically. The extreme charge value, Qext, can be
obtained by solving fðrÞ ¼ 0 and f0ðrÞ ¼ 0, simultane-
ously, where the prime denotes differentiation with respect
to the coordinate r. Therefore we can show that Qext for
the ID solution is given by QID

ext ≅ 1.07305M and the
corresponding extreme event horizon location by rIDext ≅
0.82532M (recall that for the RN BH solution,
QRN

ext ¼ rRNext ¼ M).
In Fig. 1, we compare the metric functions of ID and RN

BHs solutions, for a given value of the normalized electric
charge, defined as q ¼ Q=Qext, which satisfies 0 ≤ q ≤ 1.
We note that these solutions have a similar causal structure.
For 0 < q < 1 we have a Cauchy horizon, r−, and an event
horizon, rþ, while for q ¼ 1 the two horizons degenerate
into a single null hypersurface (rext). The q > 1 case is
associated with horizonless solutions. Here we will consider
only BH solutions, which occur when 0 ≤ q ≤ 1, with the
case q ¼ 0 corresponding to the Schwarzschild solution.
As a means to verify the regularity of the ID solution,

we compute the Kretschmann scalar, defined as K≡
RμνσρRμνσρ. For the ID solution, K is given by

KðrÞ ¼ 64M2

π2y6A6z6
ð3A6B2 − 2A3Byð9y4 þ 8y2 þ 3Þ

þ y2ð7y4 þ 4y2 þ 1Þð5y4 þ 4y2 þ 3ÞÞ; ð21Þ

where we defined the auxiliary functions:

AðrÞ ¼ 1þ y2; ð22aÞ

BðrÞ ¼ arctan y; ð22bÞ

and y≡ r=z. In Fig. 2, we display the behavior of the
Kretschmann scalar of the ID solution. We see that this
scalar is finite for r ≥ 0, as long as Q ≠ 0, which is enough
to avoid the existence of curvature singularities [77].

III. NULL GEODESICS

In this section we present the equations of motion for
null geodesics in the standard geometry (SG) [see Eq. (9)],
as well as in the effective geometry (EG) [see Eq. (33)],
where photons in NED theory propagate along null geo-
desics of the EG. Due to the spherical symmetry, we
consider the motion in the equatorial plane, i.e., θ ¼ π=2,
without loss of generality.

A. Null rings in the standard geometry

The classical Hamiltonian Hgeo that provides the equa-
tions of motion for massless particles is given by2

Hgeo ¼
1

2
gμνpμpν ¼

1

2

�
p2
t

fðrÞ − fðrÞp2
r −

p2
φ

r2

�
; ð23Þ

where pμ are the components of the 4-momentum of
massless particles. By using the Hamilton’s equations,
we obtain

ṫ ¼ pt

fðrÞ ; ð24Þ

ṙ ¼ −fðrÞpr; ð25Þ

φ̇ ¼ −
pφ

r2
: ð26Þ

0 0.5 1 1.5 2
– 6

– 4

– 2

0

2

FIG. 1. Comparison between the metric functions of ID ½fIDðrÞ�
and RN ½fRNðrÞ� BH solutions, considering three distinct values
of q ¼ 0.4, 0.7, and 1, as functions of r=M.

0 0.5 1 1.5 2
0

50

100

150

200

FIG. 2. Kretschmann scalar of the ID RBH solution, normal-
ized by π2z6, as a function of r=z. At the core of the ID solution,
the Kretschmann scalar is finite and given by KðrÞj0 ¼
512M2=3π2z6.

2In the remainder of this paper, we use the term “massless
particles” to refer to any particle that follows null geodesics in
the SG (9).
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Since the Hamiltonian (23) does not depend explicitly on
the coordinates t and φ, pt ≡ E, and pφ ≡ −L are constants
of motion, where E and L are the energy and angular
momentum of the massless particles, respectively. Recall
also that for null geodesics in the SG Hgeo ¼ 0.
Using Eqs. (24)–(26), and Hgeo ¼ 0, we may obtain a

radial equation for massless particles, given by

ṙ2 þ VðrÞ ¼ E2; ð27Þ

where VðrÞ is the effective potential for the radial motion of
particles following null geodesics, defined as

VðrÞ≡ L2
fðrÞ
r2

: ð28Þ

In Fig. 3, we display the effective potential for massless
particles on the ID RBH background. Notice that the local
maximum of the effective potential increases as we con-
sider higher values of the normalized electric charge. At the
local maximum of the effective potential we have unstable
circular orbits for massless particles.
Closed circular null orbits are described by ṙ ¼ 0 and

̈r ¼ 0, which implies that

V ¼ E2 and V0 ¼ 0; ð29Þ

respectively. Moreover if d2V=dr2 < 0, then the closed
circular orbit is unstable. From Eq. (29), we may find the
radius rc of the unstable circular orbit and the correspond-
ing critical impact parameter bc at this orbit, namely

2fc − rcf0c ¼ 0; ð30Þ

bc ¼
Lc

Ec
¼ rcffiffiffiffiffi

fc
p : ð31Þ

The impact parameter is defined as b≡ L=E and the
subscript “c” denotes that the quantity under consideration
is computed at the critical radius rc. In Fig. 4, we display
the motion of massless particles on an ID RBH spacetime
with q ¼ 0.8, obtained by solving Eqs. (26) and (27)
numerically. For b < bc, massless particles are absorbed
by the central object, while for b > bc they are scattered.
At the threshold, when b ¼ bc, the trajectories describe a
circular orbit around the BH at r ¼ rc. Therefore, we can
interpret bc as the threshold between absorbed and scat-
tered null geodesics.
In linear electrodynamics, photons follow null geodesics

of the SG. Consequently, the equations of motion for
massless particles and photons coincide. On the other hand,
in NED theory, photons are interpreted to follow the
null geodesics of an EG [40], which are different from
the SG. Accordingly, the null geodesics analysis in the
SG (9), considering NED-based RBHs, concerns only
massless particles particles with a nature other than
electromagnetic. In other words, the trajectories examined
above do not describe photon motion. In Sec. III B we
analyze the appropriate equations that govern the photon
trajectories in NED-based spacetimes.

B. LRs in the effective geometry

In NED, electromagnetic fluctuations propagate along
an effective light cone, that in general differs from the “light
cones” defined by the standard geometry [38,39]. In fact, for
a general theory of NED, depending on the two independent
four-dimensional relativistic invariants, F (defined above)

1 2 3 4 5
0

0.02

0.04

0.06

0.08

FIG. 3. Effective potential for null geodesics on the background
of the ID RBH solution, normalized by the angular momentum,
as a function of r=rþ, and for distinct values of q.

5 0 5
4

0

5

FIG. 4. Null trajectories on the ID RBH with q ¼ 0.8, for
distinct choices of b. In this figure, rc ¼ 2.3929M and bc ¼
4.4309M, with the solid and dashed black circles denoting the
orbit at rc and the event horizon location, respectively. Here the
numerical infinity was placed at r∞ ¼ 100M.
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and Fμν⋆Fμν, there are (in general) two effective light cones,
one for each polarization. This encodes the phenomenon of
birefringence, which substantiates a medium interpretation
for electromagnetic fluctuations propagating on a NED
background (regardless of the coupling to gravity). For
the particular case of NED models depending solely on F
(no dependence on Fμν⋆Fμν), birefringence does not occur
in general.3 Then, the single effective light cone can be made
geometric by considering that photons propagate along null
geodesics of an effective metric tensor gμνeff, which depends
on the contributions of the NED source to the energy-
momentum tensor [38–41].
The effective metric tensor of an electrically charged

RBHs obtained in the P framework is given by [41]

gμνeff ¼
1

HP
gμν þ 4

HPP

FP
Pμ

σPσν: ð32Þ

If the NED source is characterized by a purely electric field
in the P framework, with the SG given by (9), then the
corresponding line element of the EG can be written as [20]

ds2eff ¼ geffμνdxμdxν ¼
1

Φ

�
fðrÞdt2 − dr2

fðrÞ −ΦHPr2dΩ2

�
;

ð33Þ

where Φ≡HP=FP. From Eq. (4), we notice that the scalar
F can be written as F ¼ ðHPÞ2P, and if Maxwell’s weak
field limit is satisfied (as it is for the ID solution) then
HðPÞ → P and HP → 1, for small P. Consequently,
FP → 1, since HP → 1, and we see that the EG (33)
reduces to the SG (9) in the weak field limit.
From Eq. (33) one concludes that apart from the overall

1=Φ factor, that is irrelevant for null geodesics (modulo
possible singularities), the only difference with the respect
to the SG is the angular coefficient. Thus radial photon
orbits coincide with the null geodesics of the SG.
The classical Hamiltonian Heff

geo for the effective metric
tensor geffμν is given by

Heff
geo ¼

1

2
gμνeffp̄μp̄ν ¼

Φ
2

�
p̄2
t

fðrÞ− fðrÞp̄2
r −

p̄2
φ

ΦHPr2

�
; ð34Þ

where p̄μ are the components of the 4-momentum of
photons. Following the same procedure presented in
Sec. III A, the equations of motion can be written as

ṫ ¼ EΦ
fðrÞ ; ð35Þ

ṙ ¼ −fðrÞΦp̄r; ð36Þ

φ̇ ¼ L
HPr2

: ð37Þ

Using Eqs. (34)–(37), and Heff
geo ¼ 0, we obtain a radial

equation for photons given by

�
F2
P

H2
P

�
ṙ2 þ UðrÞ ¼ E2; ð38Þ

where UðrÞ is the effective potential for the radial motion of
photons, defined as

UðrÞ≡ L2
FPfðrÞ
H2

Pr
2
: ð39Þ

In Fig. 5, we show the effective potential (28), for some
values of q. One observes that when 0 ≤ q < 1, there are no
stable circular photon orbits for r > rþ, but when q ¼ 1 we
have a stable photon orbit exactly on the extreme event
horizon, i.e., rext ¼ 0.82532M. These results are similar to
those obtained in the RN geometry [80]. Moreover the
profile of the effective potential shown in Fig. 5 is similar
to the profile of other NED-based RBH solutions (see,
e.g., Ref. [43]).
Let us now quantitatively analyze the circular photon

orbits, also known as LRs. From ṙ ¼ 0, which implies
U ¼ E2, we obtain the critical impact parameter associated
to the LR, namely

bl ¼
rlðHPÞlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðFPÞlfl
p ; ð40Þ

whereas from ̈r ¼ 0, which implies U0 ¼ 0, we get the
corresponding radial coordinate of the LR rl, given by

fl

�
2 −

rlðF0
PÞl

ðFPÞl
þ 2rlðH0

PÞl
ðHPÞl

�
− rlf0l ¼ 0: ð41Þ

1 2 3 4 5
0

0.02

0.04

0.06

0.08

FIG. 5. Effective potential for photons on the background of the
ID RBH solution, as a function of r=rþ.

3The birefringence phenomenon can take place for NED
models that depends only on F in the presence of external
magnetic fields [78,79].
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The subscript “l” denotes that the quantity under consid-
eration is computed at the LR coordinate rl. Figure 6
compares the LR perimetral radius4 and the critical impact
parameter of the ID and RN BHs solutions. Generically, we
see that these quantities diminish as we increase the charge.
The LR perimetral radius of the ID RBH solution is
typically smaller than the RN one, for the same values
of q. For its turn, the critical impact parameter of the ID
RBH solution is smaller than the RN one only up
to q ≈ 0.8659≡ qcri.
In terms of z, the functions HP and FP are given by

HPðrÞ¼
r6

ðr2þz2Þ3 and FPðrÞ¼
r12ðr2−2z2Þ
ðr2þz2Þ7 ; ð42Þ

respectively. To ensure that the effective geometry does
not flip its signature along photon’s geodesic, we need to
require that functions HPðrÞ and FPðrÞ must be positive.
The function HPðrÞ is everywhere finite and positive for
r > 0. On the other hand, the function FPðrÞ is zero at

r ¼
ffiffiffi
2

p
z≡ reff : ð43Þ

For r < reff, the signature of the metric changes. This
also happens to magnetically charged NED-based RBH

solutions [51]. In Fig. 7, we compare the location of the
event horizon and of the effective radius reff . We see that
the region where the line element of the EG changes its
signature is always inside the event horizon. Hence, the
motion of photons outside the event horizon will not
be affected by the sign flip of the coordinates t and r,
which occurs only for r < rþ.

IV. SHADOWS AND GRAVITATIONAL LENSING

A. Observational setup consistent with NED

In this section, we discuss the observational setup
consistent with a NED model and the applications to the
shadows and gravitational lensing on the background of
the ID RBH solution, considering the EG (33). We apply
backwards ray-tracing techniques [48,71], in order to
simulate the visual appearance of the ID RBH (33). We
solve numerically the following geodesic equations in the
effective metric:

ṫ ¼ EΦ
fðrÞ ; ð44Þ

φ̇ ¼ L
HPr2sin2θ

; ð45Þ

̈rþ Γ̄r
μνẋμẋν ¼ 0; ð46Þ

θ̈ þ Γ̄θ
μνẋμẋν ¼ 0; ð47Þ

where Γ̄α
μν are the components of the Christoffel symbol

computed with the EG (33). The initial conditions for
Eqs. (44)–(47) are obtained by projecting the 4-momentum
of the photon into the vierbein of a given observer.
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4

4.4

4.8
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FIG. 6. Top panel: comparison between the LR perimetral
radius, of the ID and RN BH solutions. Bottom panel: compari-
son between the critical impact parameter of the ID and RN BH
solutions, as functions of q.
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FIG. 7. Comparison between the location of the event horizon
with that of the effective radius, as functions of q.

4We notice that the concept of distance is very subtle in curved
spacetimes. In particular, the radial coordinate r is not a
geometrical invariant measure of distance. A meaningful geo-
metrical quantity to compare distance in two different geometries
is the perimetral radius, defined by r̄≡ ffiffiffiffiffiffiffigφφ

p jθ¼π
2
. For the SG, we

have r̄ ¼ r, whereas, for the EG, we obtain r̄ ¼ ffiffiffiffiffiffiffi
HP

p
r. In the

remainder of this paper, we shall plot the perimetral radius of the
LR to compare radial distance in different geometries.
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We assume that the observer follows a timelike worldline
(of the SG) and has no net charge. Hence the vierbein
attached to the observer is dictated by the SG (9). We
consider a static observer in the ID geometry, which is
described by the following vierbein:

λ̂0̂μ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

fIDðrÞ
q

; 0; 0; 0
�
; ð48Þ

λ̂1̂μ ¼
�
0;

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
fIDðrÞ

p ; 0; 0

�
; ð49Þ

λ̂2̂μ ¼ ð0; 0; r; 0Þ; ð50Þ

λ̂3̂μ ¼ ð0; 0; 0; r sin θÞ; ð51Þ

which is obtained by adopting λ̂0̂μ as the four velocity of the

observer, and imposing orthonormality condition5 with λ̂1̂μ,

λ̂2̂μ, λ̂
3̂
μ. The components of the 4-momentum of the photon

projected into the vierbein are

p̄â ¼ λ̂â
μp̄μ: ð52Þ

We note that the components of λ̂â
μ are computed using

the SG, since it is related to an observer following a
timelike curve, while the components of p̄μ are computed
using the EG, since it is related to the motion of photons.
p̄â are the components of the 4-momentum of the photon
as measured by a static observer in the ID spacetime. In
particular, p̄t̂ is the photon frequency and p̄r̂; p̄ϕ̂; p̄θ̂ are
the components of the spatial momentum measured by the
static observer.
The 4-momentum of the photon p̄μ is null with respect to

the effective metric tensor gμνeff. However it is, in general,
a non-null vector with respect to the standard metric
tensor gμν. In particular, for a local static observer, the
norm of the 4-momentum is given by

p̄âp̄â ¼ ηâ b̂λ̂â
μλ̂b̂

νp̄μp̄ν ¼ gμνp̄μp̄ν∴

p̄âp̄â ¼ −4
HPHPP

FP
Pμ

σPσνp̄μp̄ν; ð53Þ

where we used Eq. (32) in the last equality and the fact
that gμνeffp̄μp̄ν ¼ 0. Moreover, using Eqs. (11)–(12) and the
geodesic equations (35)–(38), we obtain that

p̄âp̄â ¼ −4
HPPL2

HPr2
ðPtrÞ2 ≤ 0; ð54Þ

which is negative since HP and HPP are positive outside
the event horizon. Therefore, the 4-momentum of the
photon is a spacelike or null-like vector with respect to
the metric tensor gμν, namely

gμνp̄μp̄ν ≤ 0: ð55Þ

We note that, outside the event horizon, p̄â is a null
vector only for radially moving photons, since L ¼ 0.
For nonradial geodesics, p̄â is a spacelike vector. Thus,
from the viewpoint of the SG, a local static observer
measures photons that travel with a speed greater than
that of massless particles (cf. Sec. III A), except for
radially moving photons that are null also from the
SG perspective.
We can parametrize the spatial components of the

4-momentum in terms of the celestial coordinates ðα; βÞ:

p̄r̂ ¼ p cos α cos β; ð56Þ

p̄θ̂ ¼ p sin α; ð57Þ

p̄ϕ̂ ¼ p cos α sin β; ð58Þ

where p is the norm of the photon’s spatial 3-momentum.
Using Eqs. (52), (56)–(58), and (35)–(37), we obtain that

E ¼ p̄t̂
ffiffiffiffiffiffiffi
fID0

q
; ð59Þ

ṙ ¼ p
ffiffiffiffiffiffiffi
fID0

q
ðΦÞ0 cos α cos β; ð60Þ

θ̇ ¼ p sin α
ðHPÞ0r0

; ð61Þ

L ¼ pr0 sin θ0 cos α sin β; ð62Þ

where ðr0; θ0Þ is the location of the observer. The subscript
“0” denotes that the quantity under consideration is
computed at the observer’s radial coordinate r0. We can
explicitly compute the norm of the 4-momentum p̄â. Using
Eqs. (54) and (62) we find that

p̄âp̄â ¼ ðp̄t̂Þ2 − p2 ¼ −3z2 sin2 θ0 cos2 α sin2 βp2

ðr20 þ z2Þ : ð63Þ

Thus, the relation between the norm of the spatial
3-momentum and the photon’s frequency measured by
the local observer p̄t̂ is

ðp̄t̂Þ2 ¼
�
1 −

3z2sin2θ0cos2αsin2β
ðr20 þ z2Þ

�
p2: ð64Þ5The orthonormality condition for the vierbein implies that

gμνλ̂â
μλ̂b̂

ν ¼ ηâ b̂, where ηâ b̂ is the Minkowski metric.
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We note that, for an observer located at the equatorial plane
θ0 ¼ π=2, the right hand side of Eq. (64) is positive for any
direction (β, α) if the observer is located at the region

r0 > reff : ð65Þ

The trajectory of photons is independent of the specific
value of the local frequency p̄t̂. A change in the local
frequency simply implies in a rescaling of the affine
parameter along the geodesic. Thus, we can always choose
p̄t̂, such that p ¼ 1, what simplifies the initial conditions
for the ray tracing (59)–(62). This can be achieved by
choosing

p̄t̂ ¼
�
1 −

3z2 sin2 θ0 cos2 α sin2 β
ðr20 þ z2Þ

�1
2

: ð66Þ

We note that the choice of p̄t̂, such that p ¼ 1, depends on
the observation angles ðα; βÞ. Therefore, the initial con-
ditions for the ray tracing with normalized p are given by

E ¼
�
1 −

3z2sin2θ0cos2αsin2β
ðr20 þ z2Þ

�1
2

ffiffiffiffiffiffiffi
fID0

q
; ð67Þ

ṙ ¼
ffiffiffiffiffiffiffi
fID0

q
ðΦÞ0 cos α cos β; ð68Þ

θ̇ ¼ sin α
ðHPÞ0r0

; ð69Þ

L ¼ r0 sin θ0 cos α sin β: ð70Þ

Dividing Eq. (70) by (67), we may obtain the relation
between the critical impact parameter bl and the observa-
tion angle of the shadow edge βl, measured in the observer
frame6 (considering α ¼ 0 and θ0 ¼ π=2)

sin βl ¼
bl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ z2

p ffiffiffiffiffiffiffi
fID0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20ðr20 þ z2Þ þ 3b2l z

2fID0

q ; ð71Þ

while the shadow radius of the RBH in the observer’s
screen is given by

rs ¼ r0 sin βl: ð72Þ

Notice that if we place the observer very far away from the
RBH, i.e., for r0 → ∞, we have

rs ¼ bl; ð73Þ

with bl given by Eq. (40). Hence, as seen by a
distant observer, the impact parameter is the radius of
the shadow. These features are in agreement with linear
electrodynamics.
The shadow boundary curve for a distant observer can be

expressed in terms of the so-called celestial coordinates
ðx; yÞ as [81]

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ð74Þ

where

x ¼ lim
r0→∞

�
−r0

p̄ϕ̂

p̄t̂

�
; ð75Þ

y ¼ lim
r0→∞

�
r0
p̄θ̂

p̄t̂

�
: ð76Þ

The shape of the shadow can be obtained from a
parametric plot of the circle equation (74).

B. Main results

In Fig. 8, we present some examples of shadows for ID
RBH solutions, as seen by an observer at spatial infinity.
We note that the size of the shadows decreases with the
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FIG. 8. Shadows of the ID RBH solution, as seen by an
observer at spatial infinity, for distinct values of q. We also
consider the Schwarzschild case q ¼ 0, for comparison.

6As far as we are aware, the previous works about shadows in
NED place the observer at spatial infinity where the relation
between the observation angle and the critical impact parameter
is rather simple, given by Eq. (72). In this work, we note that
when the observer is placed at a finite radial coordinate, the
relation between the observational angle and the critical impact
parameter is nontrivial. The nontriviality arises due to the fact
that a local observer perceives the photon as a spacelike particle
[see Eq. (54)].
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increase of q, as expected since the critical impact param-
eter, which corresponds to the shadow radius [cf. Eq. (73)],
diminishes as we increase the charge (cf. Fig. 6).
It is possible to quantify the influence of the EG in the

shadows size when compared to the SG. To do this, we
analyze the ratio between the shadow radius, seen by an
observer at infinity, obtained from Eq. (73) (rEGs ) with the
corresponding one obtained from Eq. (40) (rSGs ), as shown
in Fig. 9. We also consider the ratio between rEGs and rRNs .
We see that rEGs is typically bigger than rSGs . In particular,
the highest difference between them, with rEGs > rSGs ,
occurs for the extreme charge case, for which rEGs is
≈9.29% bigger than rSGs . Remarkably, for some q ¼ qcrit
(see Sec. III B, in particular, the bottom panel of Fig. 6)
the shadow radius of ID and RN BHs solutions coincide,
with rEGs < rRNs for q < qcrit, while for q > qcrit one has
rEGs > rRNs .

0 0.2 0.4 0.6 0.8 1
0.98

1

1.02

1.04

1.06

1.08

1.1

FIG. 9. Ratio between the shadows radius of the ID RBH
solution, for two different scenarios: (i) the effective and standard
geometries (red curve); and (ii) the effective geometry and the
shadow radius of the RN BH solution (blue-dashed curve).

FIG. 10. Top panels: comparison between the trajectories of photons (continuous lines) and the trajectories of massless particles in the
SG (blue dashed lines) for the same observational angle β. The color map plots represent the contribution (−F r

νβẋνẋβ) along the
photon’s trajectory. The black dashed circles represent the event horizon. Bottom panels: the contribution (−F r

νβẋνẋβ) computed along
the photon’s trajectory as a function of the radial coordinate. We notice that the contribution is always negative for the ID spacetime,
representing an attractive force to the BH center. In the left panels, we have chosen (q ¼ 0.8, β ¼ 0.41, r0 ¼ 10M), and O is the
observer’s position; while in the right panels, we have chosen (q ¼ 1, β ¼ 0.04, r0 ¼ 100M).
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At first sight, the result rEGs > rSGs might seem counter-
intuitive, since null geodesics of the EG are in general
spacelike curves from the perspective of the SG. However,
we notice that the null geodesics of the EG can be
interpreted as nongeodesic curves, from the perspective
of the SG, described by

ẍμ þ Γμ
νβẋνẋβ ¼ F μ

νβẋνẋβ; ð77Þ

where Γμ
νβ are the components of the Christoffel symbol

computed with the SG (33) and F μ
νβ is a four-force term,

whose analytical expression is given in Appendix B. In
order to substantiate the interpretation of photons following
a nongeodesic curve, submitted to a four-force term, we
show in the top panels of Fig. 10 the trajectories of photons
(continuous lines), compared to the trajectories of massless
particles in the SG (blue dashed lines) for the same
observational angle β. Along the photon’s trajectories we
show, as a color map plot, the absolute value of the four

force along the radial direction. The regions in red have a
larger absolute value, while the regions in blue have a
smaller absolute value. We also show in the bottom panels
of Fig. 10, the four-force term ð−F r

νβẋνẋβÞ as a function of
the radial coordinate. We notice that the four-force term
along the radial direction is negative, meaning that photons
experience an additional attractive force, when compared to
massless particles moving in the SG. Due to this additional
force, the photon is captured by the BH while the massless
particle (with the same observational angle β) is scattered to
infinity. Hence, such a four-force term in Eq. (77) explains
why the shadows computed with the EG are always larger
than the shadows of massless particles in the SG.
In Fig. 11, we show the shadows and gravitational

lensing for the ID RBH solution with different values of q.
We have chosen the observer to be located at r0 ¼ 15M and
θ ¼ π=2. This figure was obtained using backwards ray-
tracing techniques, which consists in evolving the light rays
from the observer position, and backwards in time, until it

(a) Schwarzschild (b) q = 0.3

(c) q = 0.6 (d) q = 1

FIG. 11. Shadow and gravitational lensing of the ID RBH solution for distinct values of q, considering the EG (33). In this figure, we
have chosen an observer located at r0 ¼ 15M and θ ¼ π=2. We also considered the Schwarzschild case (q ¼ 0) for comparison.
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reaches a colored celestial sphere with radius rcs ¼ 30M
or falling to the event horizon. The numerical code was
written in Cþþ and it is a slightly modified version of
the code used in Refs. [82,83]. From Fig. 11 we notice
that the shadow decreases as we increase q, in agreement
with the analytical results presented in Fig. 8. We also
notice that the gravitational lensing varies with q. The
major difference in the gravitational lensing arises close to
the shadow edge. Far from the shadow edge, the gravita-
tional lensing is essentially the same. In Appendix A, we
derive an analytical approximation for the scattering angle
in the weak field limit, and we notice that the lower
contribution of the charge to the scattering is quadratic.

C. Fine-tuned degenerated shadows
for asymptotic observers

The situation where rEGs ¼ rRNs suggests that the EG (32)
may mimic the shadow properties of singular BHs, such as
the RN BH solution, as seen by an observer at spatial
infinity. This property, named as shadow degeneracy, was
investigated for static, as well as stationary BHs, that are
degenerated with respect to the Schwarzschild/Kerr-like
BHs in Refs. [84,85]. Moreover, given the spherical
symmetry of the black hole shadows, we remark that there
might exist further shadow degeneracies when the observer
is Lorentz boosted in the radial direction. However, we
shall not expand further on this point. To address the
possibility of the ID RBH to be shadow degenerated with
respect to the RN BH, as seen by an observer at spatial
infinity, we may begin by searching for the values of the
pairs ðqID; qRNÞ, for which their corresponding bl coincide.
We name this property as fine-tuned degenerated shadows,
since we need to fine-tune the charges for the shadow to be

degenerate. The fine-tuned charge pairs are shown in
Fig. 12. We notice that it is possible to find fine-tuned
shadow degenerated solutions for qRN ≲ 0.9728.
In Fig. 13, we compare the shadows of the RN BH with

that of the ID RBHs for some pairs ðqID; qRNÞ, for which
the shadows are degenerated. The ID RBH and the RN BH
shadows can not be distinguished, as seen by a distant
observer, for low-to-extreme values of the normalized
electric charge.

V. FINAL REMARKS

With the recent experimental tests of NED [16–19], it is
clear that a full comprehension of the nature of electro-
magnetic fields requires the consideration of nonlinear
effects in the appropriated field regime. However, the
imprints of these nonlinearities in the astrophysical envi-
ronment of BHs still need to be better understood. By
studying LRs, shadows, and gravitational lensing of the ID
RBH solution, and considering the effective geometry,
which describes the motion of photons, we revealed some
imprints of NED in BH physics. Our main results can be
summarized as follows:

(i) We performed the shadow analysis for an observer at
a finite radial coordinate, as well as for an observer
at spatial infinity. We noticed that the observer in a
finite radial coordinate perceives the photon as a
spacelike particle (one may interpret that the NED
“accelerates” the photons to a superluminal speed).
The fact that photons are perceived as spacelike
particles by a local observer has implications to the
shadow’s observational angle, as shown in Eq. (71).
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FIG. 12. Values of the normalized electric charges for which the
ID and RN BHs solutions are fine-tuned shadow degenerated.
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FIG. 13. Comparison of the shadows of the RN BH with the
shadows of the ID RBH, as seen by an observer at infinity,
considering the pairs ðqID; qRNÞ ¼ ð0.2; 0.2138Þ, (0.4,0.4231),
(0.6,0.6231), (0.8,0.8089), (1,0.9728). Recall that the smaller the
value of the normalized electric charges, the bigger the shadows.
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For an observer placed at spatial infinity, we recover
results available in the literature, namely that the
critical impact parameter is the radius of the shadow.

(ii) We obtained that the shadow size decreases as we
consider higher values of the electric charge, in
agreement with linear electrodynamics. In addition,
the effective geometry can increase the shadow
radius in more than 9%, in comparison with the
standard geometry. We explained the fact that the
shadow size computed with the effective geometry is
larger than the standard geometry by writing the
photon’s equation of motion as a nongeodesic curve
submitted to a four-force term, from the standard
geometry perspective. We obtained an analytic
expression for the four-force term and showed that
it acts as a radially attractive force, thus increasing
the shadow size for the effective geometry.

(iii) For 0 < q < qcri, the shadow radius of the ID
solution is smaller than the RN one, while for
q > qcri, it is bigger, since the shadow radius
corresponds to the critical impact parameter
[cf. Eq. (73)]. At the threshold value, i.e.,
q ¼ qcri, the shadows of ID and RN BHs solution
are the same. Noticeably, it is possible to find other
configurations for which the shadows of these BHs
coincide. We named these configurations as fine-
tuned degenerated shadows, since it is necessary to
fine-tune the electric charges in order to obtain two
geometries with degenerated shadows.

(iv) We also observed that the main difference in the
gravitational lensing appears close to the shadow
edge. In the weak field limit, the gravitational
lensing is essentially the same, since the contribu-
tions of the charge are very small.

As an extension of this work, the study of other optical
phenomena, such as the birefringence, can be performed
in future work, aiming to reveal more signatures of NED
within BH physics. We also plan to consider rotating NED-
based RBH spacetimes due to their relevance in astro-
physical scenarios.
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APPENDIX A: WEAK DEFLECTION ANGLE
IN THE ID METRIC BY USING

THE GEODESIC METHOD

In Sec. IV B, we numerically computed the gravitational
lensing of the ID RBH solution. In this appendix, we derive
an expression for the deflection angle of the IDmetric in the
weak field limit by using the geodesic method and con-
sidering the standard and effective geometries.
Considering the SG, we can rewrite Eq. (27) as

�
dr
dφ

�
2

¼ r4

b2
− r2fðrÞ; ðA1Þ

and, similarly for the EG, Eq. (38) as

�
dr
dφ

�
2

¼ r4H4
P

F2
Pb

2
−
r2H2

PfðrÞ
FP

: ðA2Þ

The impact parameter associated with the radius of
maximum approximation of the particle rm is obtained
by solving ðdr=dφÞjr¼rm¼ 0 for b. For the SG, we get

b ¼ rmffiffiffiffiffiffi
fm

p ; ðA3Þ

while for the EG we have

b ¼ rmðHPÞrmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFPÞrmfm

q : ðA4Þ

The deflection angle of the scattered massless
particle is [86]

ΘðbÞ ¼ γðbÞ − π; ðA5Þ

where

γðbÞ ¼ 2

Z
∞

rm

�
dr
dφ

�
−1
dr: ðA6Þ
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Since we are interested in the weak field limit, we can
expand the integrand of Eq. (A6) in powers of 1=r,
considering Eqs. (A1) or (A2), up to the fourth order.
The radius rm as function of b is obtained by solving
Eqs. (A3) or (A4) and expanding the results in powers of
2M=b up to the fourth order. Following these steps, we
obtain that the weak deflection angle for the SG is given by

ΘðbÞ ¼ 4M
b

þ 3πð5M2 −Q2Þ
4b2

þ 16Mð8M2 − 3Q2Þ
3b3

þ 5Mzð21ð33M4 − 18M2Q2 þQ4Þ þ 8Q2z2Þ
8b4Q2

þO
�
1

b5

�
: ðA7Þ

Note that up to the third order in 1=b, the results for the
ID RBH solution, considering the SG, coincide with the
RN result [60,87], with 4M=b being Einstein’s deflection
angle [88]. However for b−n, with n ≥ 4, the results are
different, due to the higher order contributions of the ID
metric function (18) in the far field.
In the case of the EG we obtain

ΘðbÞ ¼ 4M
b

þ 3πð5M2 −Q2Þ
4b2

þ 6Mz3

b2Q2

þ 16Mð8M2 − 3Q2Þ
3b3

þ 16Mz2

b3
þO

�
1

b4

�
: ðA8Þ

We see that the weak deflection angle, computed consid-
ering the EG, reproduces the results of the SG with
corrections for b−n, with n ≥ 2. These corrections can be
related with the nonlinearity of the NED source, since the
EG is a direct consequence of the nonlinearities of the
electromagnetic field. Besides that, in the chargeless limit
(Q → 0), we obtain the Schwarzschild deflection angle,
as expected.

APPENDIX B: THE DESCRIPTION OF
PHOTON’S MOTION FROM THE

SG PERSPECTIVE

In Sec. III, we stated that photons follow null geodesics
of an effective geometry, which is different from the
standard spacetime geometry. This is the standard
approach, adopted by several authors, concerning the
motion of photons in NED geometries. In this appendix,
we propose an alternative (but equivalent) interpretation for
the motion of photons in NED spacetimes. Namely, we
show that, from the perspective of the SG, the motion of

photons can be interpreted as a nongeodesic curve sub-
mitted to a four-force term F μ

αβ.
In order to establish this result, we rewrite Eq. (32) as

gμνeff ¼
1

HP
gμν þ hμν; hμν ¼ 4

HPP

FP
Pμ

σPσν: ðB1Þ

Using gμνeffg
eff
νλ ¼ δμλ, we obtain an analytical expression for

the covariant components of geffνλ , given by

geffμν ¼ HPgμν þ ΣPhμν; ðB2Þ

where

ΣP ≡ −
H2

P

1 − 2PHPPΦ
: ðB3Þ

We notice that the geodesic equation for the effective
geometry is written as

ẍμ þ Γ̄μ
ναẋνẋα ¼ 0: ðB4Þ

Using Eqs. (B1) and (B2) into the geodesic equation (B4),
we obtain that

ẍμ þ Γμ
ναẋνẋα ¼ F μ

ναẋνẋα; ðB5Þ

where Γμ
να≡ 1

2
gμβð∂νgβαþ∂αgνβ−∂βgναÞ are the compo-

nents of the Christoffel symbol computed with the SG (9),
and

F μ
να ¼

1

2

�
1

HP
gμν þ hμν

�
½ð∂βHPÞgνα − ð∂αHPÞgνβ

− ð∂νHPÞgαβ þ ∂βðΣPhναÞ − ∂νðΣPhβαÞ
− ∂αðΣPhνβÞ� −HPhμβΓβνα; ðB6Þ

is interpreted as a four-force term that acts on photons along
their world-line. Hence we conclude that, from the SG
perspective, the motion of photons are described as non-
geodesic curves subjected to a four-force term F μ

αν. In
Sec. IV, we show the contribution from the four-force term
along the photon’s motion. We notice that the contribution
is negative along the radial direction. Therefore the photons
experience an additional inward force in the radial direc-
tion, arising due to the NED. This explains why the
shadows computed with the EG are always larger when
compared to the SG shadows.
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