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In this work, we present novel analytical solutions for static and spherically symmetric wormhole
geometries threaded by an anisotropic distribution of matter conformally coupled to a scalar ghost field. We
explore the main features of the theory, such as the dynamics of the scalar field and matter throughout the
wormhole, as well as the role played by the nonminimal coupling. Furthermore, coupled ghosts in the
presence of a scalar potential are considered, and traversability conditions are analyzed within such
geometrical scheme. More specifically, we find analytical solutions in which, although the energy density
of the ghost is strictly negative, the energy density of matter may attain positive values.
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I. INTRODUCTION

In wormhole physics, a crucial element lies in the
flaring-out condition of the throat. This condition, together
with the Einstein field equations in standard General
Relativity (GR), leads to the violation of the null energy
condition (NEC) [1,2]. Matter that violates the NEC has
been denoted as exotic matter, and a number of wormhole
solutions supported by these exotic fields have been
analyzed in the literature [3,4]. In this realm, phantom
fields that are possible candidates for the present accel-
erated expansion of the Universe have been explored [5–7].
This phantom field possesses an equation of state of the
form ω ¼ p=ρ < −1, where p is an isotropic cosmological
pressure and ρ is the energy density, which consequently
violates the NEC. Thus, this cosmic fluid, being the
essential component for sustaining traversable wormholes,
offers a natural framework for the presence of these exotic
geometries. Despite that, in a cosmological context, these
cosmic fluids [8–12] are considered homogeneous, gravi-
tational instabilities may induce inhomogeneities. Hence, it
is conceivable that these solutions originate from density
perturbations within the cosmological background. Within
the inflationary model of the early Universe, it has been
proposed that macroscopic wormholes could naturally

emerge from the submicroscopic structures that initially
permeated the quantum foam [13].
An interesting avenue of research to explore wormhole

geometries is the context of modified theories of gravity,
where the gravitational field equations usually involve
higher-order curvature terms. This is of particular interest,
as, in addition to obtaining a richer class of solutions than
in GR, subtle issues arise when concerning the energy
conditions [14,15]. In fact, the classical energy conditions
arise when one invokes the Raychaudhuri equation for the
expansion of volume elements, where the specific term,
Rμνkμkν, with Rμν the Ricci tensor and kμ a null vector, is
considered. The positive character of Rμνkμkν entails the
attractive nature of gravity. Thus, in GR, through the is a
change of coordinates that Tμνkμkν ⩾ 0, which is precisely
the definition of the NEC [3,4,16]. In modified theories of
gravity, in order to replace the Ricci tensor using the
corresponding field equations, one arrives at more com-
plicated conditions (see Refs. [14,15,17,18] for more
details). Therefore, within this framework, it has been
demonstrated explicitly that wormhole geometries can be
theoretically formed without requiring exotic matter, at the
expense of relying on a modified gravity approach [19]. In
that reference, it was shown that the matter threading the
wormhole satisfies all of the energy conditions, while the
higher-order curvature terms, resembling a gravitational
fluid, play the primary role of sustaining these unconven-
tional wormhole geometries. Indeed, this is an active area
of research, and wormhole geometries have been explored
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in a plethora of modified theories of gravity, namely,
fðRÞ gravity [20–29], nonminimal curvature-matter cou-
plings [30–32], modified teleparallel gravity [33–36], the
Palatini [37–46] and hybrid metric-Palatini approaches of
gravity [47–49], fðR; TÞ gravity [50–56], Einstein-Cartan
gravity [57], Eddington-inspired Born-Infeld gravity [58],
Einstein-Gauss-Bonnet gravity [59], conformal Weyl
gravity [60], and Lovelock gravity [61], among many other
gravitational theories.
On another note, much work has also been explored within

the framework of scalar-tensor theories (STTs) [62–66]
(see also [67–69]). Within STTs, it is known [70,71] that
there are no traversable wormhole solutions for a positive
coupling (assuring the nonghost nature of the graviton)
nor with a nonghost scalar field. Thus, in STTs of gravity,
in order to reproduce wormhole solutions, at least one ghost
degree of freedom is required. Let us stress that, although it
is known that a ghost scalar field is unstable [72,73], one
may regard the field theory model at hand to be treated as an
effective theory, valid up to a certain energy scale, which
may be derived from a stable fundamental theory [74].
Additionally, it has been shown that if one defines the
effective cutoff scale at 100 MeV, the timescale of the
instability can be greater than the age of the Universe [75].
Therefore, ghost scalar fields can still provide insights into
wormhole physics. Lastly, ghost fields are still extensively
studied to this day due to their historical context: they were
one of the first proposals in 1973, as an exotic fluid to
sustain a wormhole or, as originally dubbed in Ref. [76], a
drainhole. This is one of the reasons that ghost scalar fields,
i.e., a scalar field with a negative kinetic term, are widely
used in the literature as the source of supporting wormhole,
and other nontrivial, geometries [77–80]. Accordingly, in
this work, we adopt the Ellis ghost scalar field, presented as
the plumber’s best friend in the seminal papers in Refs. [76]
(see also [62]). On the other hand, the ghost field is
conformally coupled to matter and may also acquire a
nonzero self-interacting potential. Consequently, in the
following, we shall explore the main dynamics and proper-
ties of the ghost field in such a setting while focusing on
its interplay with the additional matter source. It is to be
noted that the same procedure employed in this work to
couple the scalar field to matter, through a conformal
transformation, was already employed by Bronnikov in
Ref. [62]. However, this was done by considering that the
conformal transformation affects Maxwell’s electromag-
netic Lagrangian, which is conformally invariant, and thus
no effective interaction arises.
Nonetheless, herein, we look for solutions where the

additional coupled matter source is nonvanishing and
meticulously study the synergy between the scalar source
and the anisotropic matter species. This work is organized
in the following manner. In Sec. II, we present the action
and field equations for a ghost scalar field and a distribution
of matter, in the Einstein frame, and briefly explore the

violations of the energy conditions of the theory. In Sec. III,
we investigate solutions with a vanishing self-interacting
potential and find specific analytical solutions. In Sec. IV,
we analyze solutions with a nonvanishing scalar potential
and briefly study the traversibility conditions of specific
solutions obtained. Finally, in Sec. V, we discuss our results
and conclude.

II. (RE)VISITING GHOSTS: THE MODEL

A. Setting the stage

This present work regards interactions betwen a canoni-
cal scalar field ϕ∶M → R and an anisotropic distribution
of matter, threading a static and spherically symmetric
wormhole geometry. One common approach to introduce
a nonminimal coupling to matter is by assuming that
matter experiences a different metric, say ḡ, from the one
on which ϕ propagates, g. These two different metrics
can be related through a Weyl scaling stemming from
a conformal transformation. More specifically, given a
Riemannian space ðM; gÞ, consisting of a smooth mani-
fold M endowed with a metric g, a conformal trans-
formation ζ is a diffeomorphism,

M ⟶
ζ

M

xμ ⟼ x̃μ ¼ ζðxμÞ;

such that ζ�g ¼ Ω2ðxμÞg, where ζ�g denotes the pullback
of g by ζ, i.e., ζ�g ¼ g̊ζ. It is a change of coordinates that
leaves the metric invariant up to a conformal factor Ω2.
Note that the trivial case Ω ¼ 1 simply represents an
isometry and we have assumed a squared function in order
for the metric to preserve its signature.
In STTs of gravity, the conformal factor is assumed to be

mediated by a scalar field ϕ naturally present in the theory,
i.e., ΩðxμÞ ¼ Ω½ϕðxμÞ�. It is then common to evoke a given
theory S½g;ϕ;ψ � (where ψ , portraying the matter fields, is
any set of sections of the frame bundle ofM) in one of two
different representations or, as it is customary to say, two
different frames, which portray the same underlying
theory but with distinct interpretations for gravitational
phenomena. One spacetime, say, ðM; gÞ, is known as the
Einstein frame if the scalar degree of freedom is minimally
coupled to gravity, Lg ¼ LgðgÞ, but nonminimally coupled
to matter, Lm ¼ Lmðg;ϕ;ψÞ. In the other frame, ðM; g̃Þ,
with g̃ ¼ Ω2g, dubbed the Jordan frame, ϕ is minimally
coupled to matter, Lm ¼ Lmðg;ψÞ, and nonminimally
coupled to gravity, Lg ¼ Lgðg;ϕÞ. This nonminimal cou-
pling to gravity, in the so-called Jordan frame, can be
interpreted as endowed with a varying gravitational con-
stant and was introduced by Brans and Dicke as an effort to
integrate Mach’s principle into the framework of GR
[81–83]. Note that both ðM; gÞ and ðM; g̃Þ possess
identical causal structure. We refer the reader to [84,85]
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to explore the details of scalar-tensor cosmology. One may
then write the action for a given theory in a given frame and
map it to the other simply by means of a Weyl scaling,
g ↦ g̃ ¼ Ω2g. Nevertheless, there remains ongoing dis-
cussion regarding which frame should be regarded as the
physical one [85].

B. Action and field equations

The total action for a ghost scalar field ϕ and a
distribution of matter, collectively denoted by ψ, in the
Einstein frame, is given by

S¼
Z

ωg

�
R
2κ2

þ1

2
gμν∂μϕ∂νϕ−V

�
þSmðg̃μν;ψÞ; ð2:1Þ

where κ2 ¼ 8πG; ωg ¼ d4x
ffiffiffiffiffiffi−gp

is the volume form, g
being the determinant of gμν; R is the standard curvature
scalar constructed from the metric g; and V ¼ VðϕÞ is the
scalar potential. The positive sign in the kinetic term of
the scalar field above characterizes its ghost nature [63].
Note that the matter fields propagate in geodesics related to
a metric g̃, conformally associated to g through a Weyl
scaling [84,85], given above:

g̃μν ¼ Ω2ðϕÞgμν: ð2:2Þ

In essence, the propagation of the matter fields is
affected by the dynamics of ϕ, as Sm depends on ϕ
through Eq. (2.2).
Varying the action (2.1) with respect to gμν yields the

following field equations:

Rμν −
1

2
gμνR ¼ κ2TðeffÞ

μν : ð2:3Þ

TðeffÞ
μν is the effective energy-momentum tensor defined in

terms of the two matter sources within the theory,

TðeffÞ
μν ≔ TðϕÞ

μν þ TðmÞ
μν ; ð2:4Þ

where

TðϕÞ
μν ¼ −∂μϕ∂νϕþ gμνLϕ; ð2:5Þ

TðmÞ
μν ¼ −

2ffiffiffiffiffiffi−gp δSm

δgμν
ð2:6Þ

are the energy-momentum tensors of the ghost field and
matter, respectively, with the ghost Lagrangian density,

Lϕ ¼ 1

2
∂
μϕ∂μϕ − V: ð2:7Þ

The contracted Bianchi identities yield the following
conservation relations for the energy-momentum tensors:

∇μTðϕÞμ
ν ¼ −TðmÞ∇νðlnΩÞ; ð2:8Þ

∇μTðmÞ μ
ν ¼ TðmÞ∇νðlnΩÞ; ð2:9Þ

where TðmÞ is the trace of the matter energy-momentum
tensor (2.6). Since the conformal factor Ω is mediated by ϕ
as per Eq. (2.2), we may write

∇μTðϕÞμ
ν ¼ −

Ωϕ

Ω
TðmÞ∇νϕ; ð2:10Þ

∇μTðmÞμ
ν ¼

Ωϕ

Ω
TðmÞ∇νϕ; ð2:11Þ

where Ωϕ ¼ dΩ=dϕ. Note that, while the effective energy-
momentum tensor (2.4) is conserved, each individual
species is not; i.e., there is a flow of energy-momentum
between matter and the ghost mediated by the conformal
factor ΩðϕÞ. This is germane to the fact that we have
considered the action (2.1) in the Einstein frame, where the
scalar degree of freedom is decoupled from gravity but
nonminimally coupled to matter. For obvious reasons, this
specific form of interactions bears the nomenclature of
conformal couplings [84,85].
In this current work, we focus on the exponential case

given by

ΩðϕÞ ¼ e−κβϕ; ð2:12Þ
where β is a dimensionless constant governing the strength
of the interaction between the two components. Thus, from
Eqs. (2.10) and (2.11), we have

∇μTðmÞμ
ν ¼ −∇μTðϕÞμ

ν ¼ −κβTðmÞ∇νϕ: ð2:13Þ
This specific form of the coupling has been widely studied
throughout the literature, for example, in the context of dark
energy driven by a scalar field conformally coupled to a
dark matter component [86,87]. Thus, in the following, we
shall study the existence of wormhole geometries and their
dynamical behavior as different values of the conformal
coupling, β, are considered.
Finally, the variation of the action (2.1) with respect to ϕ

provides the coupled Klein-Gordon equation,

□ϕþ Vϕ ¼ −κβTðmÞ; ð2:14Þ

where Vϕ ¼ dV=dϕ and □ ¼ gμν∇μ∇ν is the d’Alembert
operator.

C. Wormhole metric

Let us examine a static and spherically symmetric
wormhole geometry characterized by the following line
element [1,88,89]:

ds2¼−e2ΦðrÞdt2þ dr2

1− bðrÞ
r

þ r2ðdθ2þ sin2θdφ2Þ: ð2:15Þ
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The radial coordinate r possesses the range r∈ ½r0;∞½,
where the minimum value r0 is defined as the wormhole
throat. The redshift function, ΦðrÞ, encloses the effects of
the gravitational redshift and tidal accelerations and is
assumed to be finite in the entire domain of r so that no
event horizons are present, rendering the wormhole tra-
versable. The shape function, bðrÞ, portrays the geometrical
shape of the wormhole and obeys the following conditions:
bðr0Þ ¼ r0; the flaring-out condition, i.e., b0ðrÞ < bðrÞ=r
(so that b0ðr0Þ < 1 at the throat), near the throat, where
the prime denotes a derivative with respect to the radial
coordinate r; and bðrÞ < r. In principle, one can construct
asymptotically flat spacetimes, in which bðrÞ=r → 0 and
ΦðrÞ → 0 as r → þ∞. Note that the grr component of
the metric entails a coordinate, albeit not a physical,
singularity, at r0, which can be avoided by a suitable
change of coordinates. For instance, the proper radial
distance lðrÞ ¼ � R

r
r0
½1 − bðrÞ=r�−1=2dr is required to be

finite everywhere.
We consider that the ghost field couples to an anisotropic

distribution of matter threading the wormhole and given by
the following energy-momentum tensor:

TðmÞ
μν ¼ðρmþpmÞuμuνþpmgμν− ðτmþpmÞχμχν; ð2:16Þ

where uμ is the four-velocity vector; χμ ¼ δμr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b=r

p
is

the radial component of a unit spacelike vector; and the
energy density, radial tension, and tangential pressure
(orthogonal to the radial direction) are represented by
ρm, τm, and pm, respectively. This can be summarized as

TðmÞμ
ν ¼ diagð−ρm;−τm; pm; pmÞ; ð2:17Þ

where the trace reads

TðmÞ ¼ −ρm − τm þ 2pm: ð2:18Þ

Note that the evolution of this distribution of matter
throughout the wormhole spacetime depends explicitly
on the ghost evolution, through the coupling relation (2.13).
Given the symmetries of our spacetime continuum

(2.15), we will assume the scalar source to be a function
of the radial coordinate only, i.e., ϕ ¼ ϕðrÞ. Within this
geometrical setting, and taking into account Eq. (2.5), we

identify the nonzero components of TðϕÞ
μν as

ρϕ ≔ −TðϕÞt
t ¼ −

1

2

�
1 −

b
r

�
ϕ02 þ V; ð2:19Þ

τϕ ≔ −TðϕÞr
r ¼

1

2

�
1 −

b
r

�
ϕ02 þ V; ð2:20Þ

pϕ ≔ TðϕÞθ
θ ¼ TðϕÞφ

φ ¼ TðϕÞt
t; ð2:21Þ

respectively. Without a loss of generality, henceforth, we
set κ2 ¼ 1. The field equations (2.3) can now be written as

ρeff ¼ ρm þ ρϕ ¼ b0

r2
; ð2:22Þ

τeff ¼ τm þ τϕ ¼ b
r3

− 2

�
1 −

b
r

�
Φ0

r
; ð2:23Þ

peff ¼ pm þ pϕ ¼
�
1 −

b
r

��
Φ00 þ

�
Φ0 þ 1

r

�

×

�
Φ0 þ b − b0r

2rðr − bÞ
��

: ð2:24Þ

On the other hand, Eq. (2.14) with the metric (2.15)
provides the following equation of motion for the ϕ field:

ϕ00
�
1 −

b
r

�
þ ϕ0

2r

�
4 − 3

b
r
− b0 þ rΦ0

�
1 −

b
r

��
þ Vϕ

¼ −βTðmÞ; ð2:25Þ

where we identify the scalar interaction to matter as the
right-hand side of the above equation. Hence, the evolution
of the ghost field will be intimately related with the
dynamics of matter within the wormhole. Analogously,
the conservation relation for matter, Eq. (2.13), provides the
following continuity equation:

τ0m þ 2

r
ðτm þ pmÞ þΦ0ðτm − ρmÞ ¼ βϕ0TðmÞ: ð2:26Þ

Note that this equation is not independent, since it can be
derived by combining the radial derivative of Eq. (2.23)
with Eqs. (2.22), (2.24), and (2.25). In the absence of a
coupling, by setting β ¼ 0, one recovers the standard
energy-momentum (2.16) conservation.
Due to the nonlinearity of the field equations, it is

extremely difficult to find solutions. Indeed, note that now
one has four equations, namely, the field equations (2.22)–
(2.25), and seven unknown functions of r, i.e., ρm, τm, pm,
ϕ, V, and the metric functions bðrÞ and ΦðrÞ. Thus, we
are free to impose three assumptions, in order to close
the system.
Taking into account the flaring-out condition, Eqs. (2.22)

and (2.23) imply the following condition in the vicinity of
the throat, r ¼ r0:

ρeff − τeff ¼ ρm þ ρϕ − τm − τϕ < 0: ð2:27Þ
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III. SOLUTIONS WITH A VANISHING
SELF-INTERACTING POTENTIAL

The case we consider throughout this section consists of
a ghost field in the absence of a self-interacting potential,
i.e., V ¼ 0. In Secs. III A and III B below, we consider a
constant redshift function Φ ¼ Φ0 and the following shape
function:

b ¼ r20
r
: ð3:1Þ

Thus, resorting to the modified field equations (2.22)–
(2.24), the Klein-Gordon equation (2.25) can be written as

�
1 −

r20
r2

��
ϕ00 þ ϕ0

�
1

r
− βϕ0

��
þ ϕ0

r
þ 2β

r20
r4

¼ 0: ð3:2Þ

A. Noninteracting case: Ellis drainhole with matter

The uncoupled case β ¼ 0 significantly simplifies
Eq. (3.2), which yields

ϕ00
�
1 −

r20
r2

�
þ ϕ0

r

�
2 −

r20
r2

�
¼ 0; ð3:3Þ

that provides the following solution for the ghost field,
which is uncoupled to matter,

ϕ ¼ ϕ0 þ C tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffi

r2

r20
− 1

s �
; ð3:4Þ

where the parameter ϕ0 ¼ ϕðr0Þ is the value of the field at
the throat, which together with C constitutes the two
integration constants issued from Eq. (3.3). Far from the
throat, we have

ϕ∞ ¼ lim
r→∞

ϕ ¼ ϕ0 þ
Cπ
2

: ð3:5Þ

Hence, we express the constant C in a more natural way,
as the difference of the values of the scalar field at the throat
and at infinity, i.e.,

C ¼ 2

π
ðϕ∞ − ϕ0Þ; ð3:6Þ

so that Eq. (3.4) renders

ϕ ¼ ϕ0 þ
2

π
ðϕ∞ − ϕ0Þ tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r20
− 1

s �
: ð3:7Þ

Taking the derivative of the above equation and plugging it
into Eq. (2.19) gives an energy density for the scalar field,
given by

ρϕ ¼ −
r20C

2

2r4
¼ −

2r20
π2r4

ðϕ0 − ϕ∞Þ2: ð3:8Þ

Note that there is a subtle difference between the
solutions presented in the literature, including the Ellis
ghost [76,77], and this one, namely, that we have freedom
in the value of the integration constant C, which is directly
associated with the ghost energy density as per (3.8) above
and gives a whole new family of solutions (one for each
value of C). This arises due to the fact that we are
considering an extra matter source, whose energy density,
ρm, together with ρϕ reproduces ρeff ¼ b0=r2 as given
by Eq. (2.22).
It is straightforward to notice that, although the NEC for

the ghost,

ρϕ − τϕ ¼ −
C2r20
r4

; ð3:9Þ

is always violated, the same is not always true for the matter
source,

ρm − τm ¼ r20
2r4

ðC2 − 2Þ; ð3:10Þ

where it is positive for C2 > 2. Thus, by adding an extra
ingredient to the theory, we are able to tune the difference
of values of the ghost at the throat and at infinity (i.e., the
parameter C), to make the ordinary matter source non-
exotic. We follow to fix the value of the field at infinity to
zero, ϕ∞ ¼ 0, rendering the ghost energy density as per
Eq. (3.8) to depend solely on the value of the field at the
throat, ϕ0.
Let us notice two limiting cases at this stage: should

no matter source be assumed besides the ghost, the value
C ¼ ffiffiffi

2
p

would be fixed by the first Einstein equation,
Eq. (2.22). In this case the ghost is the only source
supporting the wormhole, i.e. ρeff ¼ ρϕ, and therefore
we get C2 ¼ 2. This was already studied in the literature
in Refs. [76,77]. Finally, in the trivial case when C ¼ 0, no
ghost scalar field is present, and thus only matter threads
the wormhole.
By introducing a new variable,

η ¼ r0
r
; ð3:11Þ

the domain of r, i.e., r∈ ½r0;∞½, is compactified to
η∈ �0; 1�, which simplifies the analysis of the solutions.
With this redefinition at hand, the uncoupled ghost

field profile is displayed in Fig. 1. Since Eq. (3.4) is
invariant under ðϕ; CÞ ↦ ð−ϕ;−CÞ, we restrict ourselves
to the C ⩾ 0 case. Near the throat, the field decays faster as
C increases. This can easily be appreciated by expanding
Eq. (3.4) around r0,
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ϕ ≈ ϕ0 þ C
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
r
r0

− 1

r
þO½ðr − r0Þ3=2�: ð3:12Þ

The special case C ¼ 0 yields a constant value for the ghost
field, recovering a model where only matter threads the
wormhole, i.e., ρϕ ¼ 0 and ρm ≡ ρeff . On the other hand, as
mentioned above, the choice C2 ¼ 2 (solid line in Fig. 1)
recovers a theory where the ghost field is the sole source
supporting the wormhole [76,77], ρm ¼ 0 and ρϕ ≡ ρeff .
The energy densities for both the ghost and the matter

species are displayed in Fig. 2. Depending on the value of
the integration constant C, which by Eq. (3.6) is directly
related with the ghost value at the throat, the energy
densities of both sources will contribute to sum up to
ρeff . However, although the energy density of the ghost,
Eq. (3.8), is strictly negative, the energy density of matter
obviously can attain positive values. Therefore, one may
tailor this pure uncoupled solution, through the value of C,
so as to render the ghost the only exotic source while
sustaining the wormhole. Contrary to what concerns matter,
the scalar field, if present, is doomed to violate all of the
energy conditions due to Eq. (3.9).

B. Haunting matter I: Coupled noninteracting ghost

The novelty in this scenario is that interestingly we are
also able to find an analytical solution to Eq. (3.2) for a
general β, in particular,

ϕ ¼ C1 −
1

β
log

8<
:cosh

2
4 ffiffiffi

2
p

βtan−1

0
@

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r20
− 1

s 1
Aþ βC2

3
5
9=
;;

ð3:13Þ

which is well behaved in the entire domain of r∈ ½r0;∞½,
with C1 and C2 being the two integration constants. Note
that the constant C1 has the same dimensions of the field ϕ
(mass) and the other integration constant was explicitly
written as the product βC2; thus, C2 is dimensionless.

Although Eq. (3.13) is not strictly defined for β ¼ 0, it has a
well-behaved uncoupled limit, β → 0, in which case the
field freezes, ϕ → C1, and its energy density ρϕ would be
zero according to Eq. (2.19). Consequently, in this limit
β → 0, only matter threads the wormhole, ρeff ≡ ρm.
Complementarily, in the weak coupling limit, we may
expand Eq. (3.13) at first order around β ¼ 0, yielding

ϕ≈C1−β

2
4tan−1

0
@

ffiffiffiffiffiffiffiffiffiffiffi
r2

r20
−1

s 1
Aþ C2ffiffiffi

2
p

3
52

þOðβ2Þ; ð3:14Þ

which is valid for β ≪ 1. In contrast, the strong coupling
regime, i.e., β → ∞, yields ρeff ≡ ρϕ, which reproduces a
wormhole threaded only by the scalar source, with vanish-
ing matter, ρm ¼ 0.
The coupled ghost Eq. (3.13) attains the values

ϕ0 ¼ C1 −
1

β
log ½cosh ðβC2Þ� ð3:15Þ

at the throat, whereas

ϕ∞ ¼ lim
r→∞

ϕ¼C1−
1

β
log

�
cosh

�
β

�
πffiffiffi
2

p þC2

���
ð3:16Þ

at infinity. Setting ϕ∞ ¼ 0 enables us to find the value for
the C1 constant given in terms of C2 and β. Moreover,
assuming ϕ∞ ¼ 0, the scalar field behavior given by
Eq. (3.13) is symmetric in ðϕ; βÞ ↦ ð−ϕ;−βÞ; thus,
henceforth, we will focus solely on the positive coupling
case, i.e., β > 0. In this scenario, the energy density for the
field (3.13) can simply be found through Eq. (2.19) and
reads

FIG. 1. Ghost field profile, Eq. (3.4), for the uncoupled case
with different values of C. FIG. 2. Ghost and matter energy densities for the uncoupled

case with different values of C.
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ρϕ ¼ −
r20
r4
tanh2

2
4 ffiffiffi

2
p

βtan−1

0
@

ffiffiffiffiffiffiffiffiffiffiffiffi
r2

r20
− 1

s 1
Aþ βC2

3
5; ð3:17Þ

which, as desired, vanishes as r → ∞. At the throat of the
wormhole, the ghost energy density above depends on both
the values of β and C2, as follows,

ρϕðr0Þ ¼ −
tanh2 ðβC2Þ

r20
; ð3:18Þ

which vanishes when either one of these values approaches
zero. This result is consistent with the fact found in the
β → 0 limit, namely, that in the weak coupling regime the
field vanishes or, more precisely, approaches a constant
behavior rendering a vanishing energy density. Along the
same lines, the case β → ∞ gives ρϕ ¼ ρeff independently
of the (nonvanishing) value of C2.
In Figs. 3 and 4, we show the ghost and matter energy

densities, respectively, for different values of the coupling β
and C2.
Since the interaction between the species can be under-

stood as an energy transfer between matter and the scalar

field, one can already verify from the weak coupling
regime, β → 0, that all the energy density of the wormhole
is contained in matter (ρm ≈ ρeff ). As β grows, energy is
transferred from the matter component into the ghost scalar
until, in the strong coupling regime, it is practically only the
scalar field that threads the wormhole.
When C2 ¼ 0, the energy density of the ghost scalar

vanishes at the throat, in which case it is the matter that
sustains the wormhole throat, and thus violates the NEC at
r0. When for a fixed β we increase C2 for positive values,
i.e., C2 > 0, the energy densities approach their limiting
behavior more abruptly, thus closer to the throat. The case
C2 < 0 on the other hand possesses interesting properties.
Note that in such cases Eq. (3.17) vanishes at some specific
radius, r⋆, expressed in terms of C2,

r⋆ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2

�
C2ffiffiffi
2

p
�s
: ð3:19Þ

This means that once a negative value for C2 is chosen,
there is a particular radius, given by Eq. (3.19), such that, at
that distance from the throat, the ghost density vanishes,

FIG. 3. Energy density profile for the ghost scalar field with V ¼ 0 coupled to matter, given by Eq. (3.17) for different values
of β and C2.

FIG. 4. Energy density profile for coupled matter, ρm ¼ ρeff − ρϕ for different values of β and C2.
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ρϕðr⋆Þ ¼ 0. In Figs. 3 and 4, we show this behavior for an
illustrative value of C2 ¼ −0.8.
From the limiting cases studied above, it is straight-

forward to show that the energy densities of the ghost and
matter are always contained within the regions,

0 > fρϕ; ρmg > ρeff : ð3:20Þ

However, by noticing that for each species ρ ¼ −τ, we
gather that both fluids violate all the energy conditions. Due
to the latter equality, which is valid provided V ¼ 0 and
bðrÞ given by Eq. (3.1), both the NEC and weak energy
condition (WEC) profiles can also be contemplated through
Figs. 3 and 4, as in this specific case the NEC is explicitly
given by ρ − τ ¼ 2ρ.
Note that this framework was attained by fixing ϕ∞ ¼ 0.

Nonetheless, given the fact that the field equations (2.22)–
(2.24) and (3.2) depend solely on ϕ0, one may relax this
condition since the determination of ϕ0, which was
automatically determined by imposing the vanishing of
ϕ∞, does not affect these equations. This can be understood
by noticing that from Eq. (3.16) onward we have fixed C1

so as ϕ∞ ¼ 0. However, the ghost energy density (3.17)
does not depend on C1. If the ϕ∞ value is not set to zero, the
ghost field ϕ would simply freeze to a constant limiting
value far from the wormhole, with no influence on the
dynamics whatsoever.

IV. SOLUTIONS WITH A SCALAR POTENTIAL

Let us now turn our attention to the case where a scalar
self-interacting potential is present in the total action (2.1),
i.e., V ≠ 0. In such a case, our approach will be different
from the one employed in Sec. III. Instead of solving the
Klein-Gordon equation with respect to the field, we shall
assume specific dynamical behaviors for both the ghost
and for the metric functions and find the particular self-
interacting potential V that solves the gravitational scheme.
In particular, let us assume that the scalar field follows a
simple decaying form throughout the wormhole,

ϕ ¼ ϕ0

�
r0
r

�
α

; ð4:1Þ

with α > 0 being a constant. For the metric functions, let us
write the following ansätze,

b ¼ r0

�
r0
r

�
γ

; and Φ ¼ Φ0

�
r0
r

�
λ

; ð4:2Þ

with constant γ > −1 such that bðrÞ obeys the flaring-out
condition, and a non-negative constant value of λ so the
redshift function Φ vanishes as r → ∞.

A. Uncoupled self-interacting case

Under the hypotheses above, the Klein-Gordon equation
for the ghost, Eq. (2.25), in the noninteracting case, i.e.,
β ¼ 0, becomes

dV
dr

¼ α2ϕ2
0

r3

�
r0
r

�
2η
�
η − 1þ λΦ0

�
r0
r

�
λ

−
�
r0
r

�
γþ1

�
γ

2
þ η −

1

2
þ λΦ0

�
r0
r

�
λ
��

; ð4:3Þ

which yields the following analytical solution,

V ¼ α2ϕ2
0

2r2

�
r0
r

�
2α
�
1 − α

1þ α
þ
�
r0
r

�
γþ1 2αþ γ − 1

2αþ γ þ 3

þ 2λΦ0

��
r0
r

�
γþλþ1 1

2αþ γ þ λþ 3

−
�
r0
r

�
λ 1

2αþ λþ 2

��
þ V∞; ð4:4Þ

withV∞ being an integration constant standing for the value
of the potential at infinity, which we set to zero in order for
the energy density of the ghost to vanish at r → ∞. It is
straightforward to get an expression for VðϕÞ by expressing
Eq. (4.1) in the form rðϕÞ and plugging the result into
Eq. (4.4). Therefore, due to our specific choices for the field,
Eq. (4.1), and metric functions, Eq. (4.2), we notice that V
follows a simple sum of powers of ϕ. The simple case with
Φ0 ¼ 0 results in the following potential,

VðϕÞ ∝ Aϕ2ð1þ1
αÞ þ Bϕ2þ3þγ

α ; ð4:5Þ

where A and B are constants which depend on the free
parameters, namely, r0,Φ0, ϕ0, α, and γ. TheΦ0 ≠ 0 case is
depicted in Fig. 5 for different values of λ. Note that the
potential of the field will always contribute to the total
energy of the ghost at the throat, except in the specific case
where

FIG. 5. Scalar field potential given by Eq. (4.4) with α ¼ γ ¼
ϕ0 ¼ Φ0 ¼ 1 and different values of λ.
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Φ0 ¼
ð2αþ λþ 2Þð2αþ γ þ λÞ
λð1þ αÞð2αþ γ þ 3Þ ; ð4:6Þ

in which case the total potential vanishes at r0.
In all these cases of this section, Sec. IVA, the NEC for

the scalar field does not depend on the redshift function
parameters, which is transparent from Eqs. (2.19) and
(2.20) that provide ρϕ − τϕ ¼ −ð1 − b=rÞϕ02, and thus
reads

ρϕ − τϕ ¼ −
ϕ0α

2

r2

�
r0
r

�
2α
�
1 −

�
r0
r

�
1þγ

�
; ð4:7Þ

which is always nonpositive and vanishes at the throat.
Indeed, as ρϕ − τϕ → 0, at the wormhole throat, we have
ρm − τm < 0 at r ¼ r0. Thus, the NEC is generically
violated at the wormhole throat by the matter threading
the wormhole for the case analyzed in this section. This
means that, although the ghost scalar field will violate
the classical energy conditions throughout the wormhole
spacetime, at the throat, r ¼ r0, the ordinary matter source
will be responsible for generating a tension (negative radial
pressure) larger than the energy density, i.e., τm > ρm, in
order to hold the wormhole throat open. On the other hand,
it is possible to tune the parameters such as to minimize the
NEC violation close to the throat. This can be observed in
Fig. 6, in which by increasing the decaying power of the
field, that is, α, it is possible for ordinary matter to obey the
NEC for some interval of r during which it is the ghost field
that violates the NEC. We verified that this behavior can be
more prominent when allowing other parameters, in par-
ticular γ and ϕ0, to vary. However, as mentioned, at the
throat, we always have ρϕ − τϕ ¼ 0.

B. Haunting matter II: Coupled self-interacting ghost

We now consider the general case where the ghost field
has a self-interacting potential, V ≠ 0, and couples to
matter, β ≠ 0. In order to illustrate the rich phenomenology
of this scenario and due to the complicated form of the
differential equation to solve, we will focus on the specific
case where the scalar field follows an inverse radial
function ϕ ¼ ϕ0r0=r, i.e., Eq. (4.1) with α ¼ 1 and a
well-known wormhole shape function b ¼ r20=r. Regarding
the redshift function, we will assume for simplicity that it
depends explicitly on the coupling constant β as

Φ ¼ Φ0

�
r0
r

�
β

: ð4:8Þ

Thus, the redshift of photons and tidal accelerations felt by
a traveler will be directly influenced by the interaction
between the ghost and matter.
Within this setting, we are able to find an analytical

expression for the potential. However, due to its long
expression we chose to write it simply as1

VðϕÞ ¼
X6
i¼0

fAðiÞϕi þ eBϕ½CþDðiÞΓðEðiÞ; BϕÞ�g; ð4:9Þ

where AðiÞ; B; C;DðiÞ, and EðiÞ are constants depending on
ϕ0;Φ0, and β and with the real domain on βϕ0 < 0. The
integration constant was fixed such that V → 0 as r → ∞.
For illustrative purposes, we plot the scalar self-

interacting potential in Fig. 7. Due to the specific forms
of the energy density and tension of the field, given by
Eqs. (2.19) and (2.20), respectively, the difference ρϕ − τϕ
does not depend on the specific shape of the potential nor,
thus, the NEC. Therefore, the combination ρϕ − τϕ follows
the same profile as in the previous subsection given by

FIG. 6. Null energy condition profile for the scalar field (solid)
and matter (dashed), for the solution presented in Sec. IVA, with
a constant redshift function, λ ¼ 0, γ ¼ ϕ0 ¼ 1 and different
values of α.

FIG. 7. Scalar field potential given by Eq. (4.9) with Φ0 ¼ 3,
ϕ0 ¼ −2, and different values of the coupling β.

1Here, Γða; zÞ denotes the incomplete gamma function,
Γða; zÞ ¼ R

∞
z xa−1e−xdx.
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Eq. (4.7) with α ¼ γ ¼ 1. The same conclusions are thus
drawn; at (and near) the throat, it is matter that violates
the energy conditions, thus sustaining the wormhole.
Nonetheless, our solutions allow for a positive energy
density of matter in the whole interval of values of η
depending on the parameters. This trend is depicted in
Fig. 8 in which for a stronger interaction, i.e., higher values
of β, the value of the energy density ρϕðr0Þ at the throat
decreases, resulting in a positive matter energy density. We
emphasize the fact that this trend is dependent on the
choices for ϕ0 and Φ0.
The aforementioned traversability conditions in Sec. II C

(the finite character of Φ) render the wormhole free from
horizons and singularities, thus having a traversable nature.
However, for a trip to be within human reach, some extra
conditions should be imposed on the metric functions [1].
As mentioned before, since we have tailored the redshift
function to explicitly depend on the parameter β, this will
affect the forces felt by a traveler when traversing the
wormhole. Although an advanced civilization might have
the technology to withstand large G forces, that is (still) not
the case for human beings. Thus, for this present wormhole,
it is of paramount importance that the acceleration felt by a
human traveller, when radially traversing the wormhole
(see Ref. [4] for more details), given by

jaj ¼
				
�
1 −

bðrÞ
r

�
1=2

e−ΦðrÞðγLeΦðrÞÞ0
				⩽g⊕; ð4:10Þ

is less than Earth’s gravitational field. In the above
equation, γL ¼ ð1 − v2=c2Þ−1=2 is the Lorentz factor, v
being the velocity of the traveler, and g⊕ denotes Earth’s
gravitational force. Assuming a human is traveling with a
nonrelativistic speed, γ ≈ 1, for this present solution, with
ϕ ¼ ϕ0r0=r, b ¼ r0=r2 together with Eq. (4.8), we have

g
g⊕

¼ −β
Φ0

r0
η1þβ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
: ð4:11Þ

Note that negative or positive values express the attractive
or repulsive character of the wormhole. The above equation
tells us that, given a wormhole with a large Φ0, the
interaction, provided by β, between the fluid species has
to be small for human traversability. On the other hand, a
strong interaction needs to be compensated with small
values of Φ0. This behavior merely expresses the smallness
conditions for Eq. (4.8). The influence of the interaction
on the acceleration felt by a traveler is depicted in Fig. 9.
While for small values of β the increase goes as a
multiplicative factor β, as the coupling becomes stronger,
the term η1þβ dominates, which is evident away from the
throat [since aðr0Þ ¼ 0], generating a faster decrease of the
profile, resulting on negligible Gs away from the throat, or
at least smaller than for very small couplings.

V. CONCLUSIONS AND OUTLOOK

In this work, we have obtained exact solutions for
wormhole geometries supported by a ghost scalar field that
is conformally coupled to an anisotropic distribution of
matter. The main features of the theory were explored, such
as the scalar field phenomenology, the matter threading the
wormhole, and the role played by the nonminimal coupling.
We verified that for a vanishing self-interaction potential,
with a matter-scalar noninteraction, although the energy
density of the ghost is strictly negative, the energy density
of matter attains positive values. This effect was also
shown to be possible for the coupled self-interacting case.
Furthermore, specific traversability conditions were ana-
lyzed for coupled massive ghosts, in the presence of a scalar
potential. This extends several works already presented in
the literature by allowing for a coupling between the scalar
source and matter, in the Einsten frame.
The geometrical aspects of conformal mappings in

wormhole and black hole physics were explored in

FIG. 8. Energy density profile for the scalar field (solid) and
matter (dashed), for the solution presented in Sec. IV B, with
Φ0 ¼ 1, ϕ0 ¼ −2, and different values of the coupling β.

FIG. 9. Impact of the coupling on the acceleration felt by a
traveler, Eq. (4.11), for a fixed value of Φ0 and different values of
the coupling β.
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Refs. [90,91]. However, studies of wormholes within STTs
in the literature [64,67,71,92–94] neglect the extra matter
source which couples to the scalar degree of freedom under
the Weyl scaling (2.2), and most conduct the analysis in the
Jordan frame. Here, we have obtained exact solutions
considering a general matter source; contemplated the
scalar self-interacting case; and, additionally, by doing
the analysis in the Einstein frame, were able to explicitly
trace the effects arising from the interaction, which
becomes evident in this gravitational frame.
An interesting extension of these static and spherically

symmetric wormholes would be to include dynamic geom-
etries [95] and rotating solutions [96]. These have been
known to improve the violation of the energy conditions; in
particular, for rotating wormhole solutions, the exotic matter
is distributed in specific regions, such that a radially infalling
observer may avoid the NEC violating matter altogether, and
the dynamic geometries may satisfy the energy conditions
for specific finite time intervals [95]. In this realm, stability
issues are also of fundamental importance, and it was shown
that wormholes in specific modified theories of gravity are
linearly stable with respect to radial perturbations [97]. Thus,
extensions of the solutions outlined in this work to the

rotating and dynamic solutions would provide further insight
into these extremely interesting geometries. Work along
these lines is presently underway.
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