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We present a methodology based on the implementation of a fully connected neural network
algorithm to estimate the temporal evolution of the high-frequency gravitational wave emission for a
core collapse supernova (CCSN). For this study, we selected a fully connected deep neural network
(DNN) regression model because it can learn both linear and nonlinear relationships between the input
and output data, it is more appropriate for handling large-dimensional input data, and it offers high
performance at a low computational cost. To train the Machine Learning (ML) algorithm, we construct
a training dataset using synthetic waveforms, and several CCSN waveforms are used to test the
algorithm. We performed a first-order estimation of the high-frequency gravitational wave emission on
real interferometric LIGO data from the second half of the third observing run (O3b) with a two
detector network (L1 and H1). The relative error associated with the estimate of the slope of the
resonant frequency versus time for the GW from CCSN signals is within 13% for the tested candidates
included in this study up to different Galactic distances (1.0, 2.3, 3.1, 4.3, 5.4, 7.3, and 10 kpc). This
method is, to date, the best estimate of the temporal evolution of the high-frequency emission in real
interferometric data. Our methodology of estimation can be used in future studies focused on physical
properties of the progenitor. The distances where comparable performances could be achieved for
Einstein Telescope and Cosmic Explorer roughly rescale with the noise floor improvements.
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I. INTRODUCTION

We are witnessing the era of ground-based gravitational
wave (GW) detectors. Since 2015, the rate of confirmed
events, the sensitivity and accuracy of the GW interfer-
ometers, and the detector network, have been improved to
levels that might open the door to new and complex
Galactic sources of GW such as core collapse supernovae
(CCSNe) (for a review, see Refs. [1,2]). A detection of
GW’s from CCSNe could be one of the main scientific
achievements for the Advanced LIGO [3], VIRGO [4], and
KAGRA [5] detectors (LVK).
CCSNe designate the final life stage for a massive star

ðM⊙ > 8Þ, a highly energetic process of stellar explosion
recorded and observed since ancient times. (For a review,
see Refs. [6–11].) The explosion process begins once the

star’s iron core mass exceeds its Chandrasekhar limit and
collapses on itself. After core collapse, a compact, dense
(above nuclear matter density 1 − 2 × 1014 g=cm3) star is
created, a protoneutron star (PNS), whose physical proper-
ties are inherited from the progenitor star. Several processes
involving different regions of the PNS are associated with
the generation of high-frequency (above 100 Hz) GW:
convective instabilities, convective overshoot, and accre-
tion onto the PNS (e.g., see Refs. [12–14]).
A central problem in transient GW astronomy is to

reconstruct the physical parameters associated with the
source of the gravitational radiation when the signal is
detected in laser interferometric data. This problem
involves two parts: The identification of the relevant
deterministic parameters, and the best procedure to esti-
mate them. The GW from CCSN numerical simula-
tions manifest as strongly stochastic signals [12–51];
nevertheless, some features can be classified as determi-
nistic. A feature that emerges from all CCSN numerical
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simulations is commonly referred to as the “g-mode”
[13,14,16,20,24,25,27–29,31,33–35,40,44–46,49,50,52–54].
This feature is recognizable in a time-frequency spectro-

gram as a continuous, strictly increasing, and to a first order
approximation linear feature, in the sense that, the cWB
reconstructed events in current interferometric are mostly
reliable for frequencies below 1000 Hz. Starting at around
100 Hz and increasing up to ∼1–2 KHz with time after
bounce. Here, instead, we refer to this feature simply as the
high-frequency feature, or HFF. It has been shown that the
modal classification of the HFF is more complex than
previously thought and can include both f and gmodes [27]
or possibly multiple gmodes (e.g., surface and interior) [11].
The rate of increase of the HFF is a deterministic feature
present in several studies focused on physical properties of
the progenitor [7,27,28,50,53,55,56], parameter estimation
[16,31,52,57,58], and data analysis strategies [59–63]. The
first attempt to estimate the slope of the HFF with real
interferometric noise was performed in [63], applying a
chi-squared method to a low-order polynomial evolution
of the resonant frequency. The authors applied the pro-
cedures on CCSN events identified by cWB, the flagship
algorithm for the detection of GW bursts. Other studies
[39,53,64], proposed an approach involving normal mode
decomposition, along with a polynomial interpolation and
simulated Gaussian noise, to infer the time evolution of a
combination of the mass and radius of the compact
remnant.
In this work we use an optimized neural network

approach for the estimation of the slope of the HFF from
CCSN events detected by cWB. The results of the
estimation associated with the evolution of the HFF
resonant frequency with time are produced in real inter-
ferometric LIGO noise, equatorial orientation, and different
Galactic distances across 1.0, 2.3, 3.1, 4.3, 5.4, 7.3, and
1.0 kpc (see Tables V and VI). This aims to quantify the
capability to use the slope of the HFF in different studies
where numerical determination of the slope constitutes the
component of a framework for parameter estimation that
can be used once the GW from a CCSN are detected by the
LIGO, Virgo, and KAGRA detectors.

In the rest of the text we focus our attention on the
estimation of the evolution of the HFF resonant frequency
with time. In order to estimate the HFF slope, we develop a
deep neural network (DNN) model for regression, consist-
ing in a set of Machine Learning (ML) algorithms that
encompass diverse computational and statistical methods
acting simultaneously to extract information, and to infer
properties from a large variety of datasets using hierarchical
structures to recognize prominent features from input data.
To identify the detected events, we use CoherentWaveBurst
(cWB) [65–68], a powerful computational pipeline designed
to detect and reconstruct GW bursts with minimal assump-
tions about the morphology of the signal. We perform cWB
event production on two different kinds of GW signals: The
first is used to train our algorithm, providing estimated slopes
associated with spectrograms in absence of noise, that reveal
a linear growth of the HFF. These signals will be designated
as synthetic waveforms. Once the algorithm is trained from
the synthetic waveforms [52], a set of gravitational wave-
forms from CCSN simulations [12,13,15,16,24,27,31] are
included as testing data. Figure 1 illustrates the different steps
proposed in this manuscript. We quantify the accuracy of the
deep learning regression model, to estimate the slope of the
HFF, using the standard deviation. Graphically (see Figs. 10
and 11) a band around the mean value of the estimated slope,
denoted ˆ̄s, in the spectrograms of the CCSN GW signals
illustrates the possible outcomes of the estimation process,
controlled by the standard deviation, induced by the NN
model. We compute this quantity for different DNN archi-
tectures (see Table II).
The manuscript is organized as follows. Section II

describes the stages for the construction of the training
and testing datasets, the cWB event production analyses
performed to obtain the signal detections and likelihood
maps for the CCSN signals selected, the corresponding
processing for the cWB outcomes, and the topology of the
neural network model and the hyper-parameters that deter-
mine the performance of the neural network. In Sec. III we
present the results of the implementation and the accuracy of
the model. Finally, in Sec. IVwe present the conclusions and
future directions for this work.

FIG. 1. Graphical description of the follow-up deep learning method proposed to estimate physical parameters of GW from CCSN
events detected with cWB—specifically, the slope of the HFF oscillatory feature. The cWB pipeline detects a GW event and provides
reconstructed signal information, such as the likelihood time-frequency map L. This time-frequency information is processed to
construct a gray-scale image Xðt; fÞ, which in turn is used as input for a deep learning regression model that estimates the value of the
HFF slope, ŝ.
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II. METHODOLOGY

In this section we describe the methodology carried out
to estimate the slope of the HFF fundamental resonant
frequency evolution associated with CCSN GW events
detected with cWB. The methodology uses (A) GW from
CCSN signals, (B) the cWB algorithm to obtain likelihood
time-frequency maps for detected events, (C) processing of
the likelihood time-frequency maps to construct an image,
and (D) the DNN model used to estimate the HFF slope
value. Figure 2 illustrates the variability of the HFF slope in
the synthetic, and in the GW from CCSN signals imple-
mented in this study.

A. GW from CCSN signals

1. Synthetic signals

We created stochastic signals with increasing frequency
over time, observable in their spectrograms, thus emulating
CCSN GW signals containing the HFF feature. The
synthetic signals are to be used in cWB event production
analyses to obtain a training dataset of likelihood time-
frequency maps with estimated values of the HFF slope.
These signals were created based on the damped harmonic
oscillator with an external stochastic driving force; i.e., a
second order, nonhomogeneous differential equation, as
proposed in recent work (see Eq. (1) in [52]). The solution
to such differential equations is performed numerically, and
the choice of several parameters such as the duration,
and initial and final frequencies (which encode the HFF)
can be modified easily to obtain different solution signals.

Even though these synthetic signals do not carry any
physical information, they are highly beneficial because
it is straightforward to vary their associated parameters and
because the computational cost to generate them is very
low. Therefore, we can obtain signals that resemble GW
from CCSN, with the HFF feature, and for each signal we
directly have the value of the HFF slope, s, which is simply
computed as the difference between the higher and lower
frequency divided by its duration. We generated 100
different synthetic CCSN GW signals with HFF slopes
ranging from 500 to 5000 Hz=s and duration ranging
between 0.1s to 1.6s. these values cover the range of
durations found in the CCSN GW signals implemented in
this study, which will be described in the next subsection.
Figure 3 shows a sample of three synthetic CCSN GW
signals included in this study, with HFF slope values of
626, 2319, and 4765 Hz=s.

2. Numerical simulation signals

We also used CCSN GW signals from 2D and 3D
numerical simulations, all of which contain the HFF
feature. This set of CCSN GW signals is used in our
cWB event production analyses as a test dataset, with
its estimated values of the HFF slope in the absence
of noise, denoted s, computed in the following way:
(i) Using the spectrogram of a CCSN GW signal, we
select, for each time, the more intense pixels in its time-
frequency evolution. (ii) Using the pixels described in (i),
we apply a simple linear regression in the frequency range
where the HFF is present. The linear regression provides
the value of the slope in the absence of noise, s, along with

FIG. 2. Range of HFF slopes associated with (a) CCSN GW signals included in this study [see Sec. II A 2] and (b) 10 different
synthetic signals [see Sec. II A 1].
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the corresponding intercept in time. In this way, as a result of
the cWB event production, every likelihood time-frequency
map encodes the slope of the HFF. Specifically, we selected
the following set of GW from CCSN signals computed from
different progenitors and degree of rotation:

(i) Model s20 from Andresen et al. [69]. The GW signal
is extracted from a 3D approximately general
relativistic radiation (neutrino) hydrodynamics sim-
ulation with a 20M⊙ nonrotating progenitor.

(ii) Model s15.nr from Andresen et al. [12]. The GW
signals are extracted from three different models
based on 3D approximately general relativistic radi-
ation (neutrino) hydrodynamics simulations with a
single progenitorwith a zero-agemain-sequencemass
(ZAMS)of15M⊙, solarmetallicity, andwith different
rotation rates 0 rad=s, 0.2 rad=s, and 0.5 rad=s.

(iii) Model Fiducial from Cerdá-Durán et al. [52]. This is
a GW signal generated from a 2D general relativistic

FIG. 3. Examples of three synthetic CCSN GW signals with HFF slopes of 626, 2319, and 4765 Hz=s. The amplitude and SNR of the
synthetic waveforms range between 1 × 10−21 and 1 × 10−23 and between 6 < SNR < 30, respectively. Left panels show the strain
signals, while the right panels shows their spectrograms. The solid white lines in the spectrograms trace the rising frequency over time.
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FIG. 4. Strain signals (left panels) and time-frequency evolution spectrograms (right panels) for CCSN GW models: Model s20 from
Andresen et al. [69], Model s15.nr from Andresen et al. [12], Model Fiducial from Cerdá-Durán et al. [52], Model s15.0 from Kuroda
et al. [24], Model C15-3D from Mezzacappa et al. [13], Model M10-DD2 from Morozova et al. [27], and Model mesa20 from
O’Connor and Couch [31]. The solid white lines in the spectrograms trace the HFF.
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hydrodynamics simulation associated with a low-
metallicity, rapidly rotating progenitor, with a zero-
age main-sequence mass of 35M⊙ whose initial
central angular velocity is 2 rad=s.

(iv) Model s15.0 from Kuroda et al. [24]. For this signal,
the GW emission is obtained from a 3D general
relativistic radiation (neutrino) hydrodynamics with
a 14M⊙, solar metallicity, nonrotating progenitor.

(v) Model C15-3D fromMezzacappa et al. [13]. For this
signal the GW emission is computed for a 3D
approximately general relativistic radiation (neutrino)

hydrodynamics simulation with a nonrotating 15M⊙
progenitor of solar metallicity.

(vi) Model M10-DD2 from Morozova et al. [27]. This
signal was generated from a 2D approximately
general relativistic radiation (neutrino) hydrodynam-
ics CCSN simulation with a 10M⊙ progenitor
with solar metallicity and moderate rotation:
0.2 rad=s.

(vii) Model mesa20 from O’Connor and Couch [31].
In this model, the GW emission is modeled from a
3D approximately general relativistic radiation

FIG. 5. Strain signals (left panels) and time-frequency evolution spectrograms (right panels) for CCSN GW models: Model s20 from
Andresen et al. [69], Model s15.nr from Andresen et al. [12], Model Fiducial from Cerdá-Durán et al. [52], Model s15.0 from Kuroda
et al. [24], Model C15-3D from Mezzacappa et al. [13], Model M10-DD2 from Morozova et al. [27], and Model mesa20 from
O’Connor and Couch [31]. The solid white lines in the spectrograms trace the HFF.
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(neutrino) hydrodynamics CCSN simulation with a
20M⊙, solar metallicity, nonrotating progenitor.

Note that all of these CCSN GW signals are from 3D
numerical simulations except for the signalsmodelsFiducial
and M10-DD2, which correspond to 2D simulations. In
addition, these signals were used in recent studies involving
targeted searches [62], false detection rates [70], and sensi-
tivity analyses of GW’s from CCSNe [61], using strain data
of the LIGO, VIRGO, and KAGRA detectors. Figures 4 and
5 shows the strain signals and the spectrograms of signal
models s20, s15.nr, Fiducial, s15.0, C15-3D, M10-DD2,
and mesa20. Note how the spectrograms manifest the HFF
feature.

B. cWB event production

Coherent waveburst (cWB) is a standard method for
detecting and reconstructing GW embedded in strain data
recorded with the LIGO, VIRGO, and KAGRA detectors.
The method uses minimal assumptions about the signal
morphology [65–68], which has been a successful meth-
odology in the search of “unmodeled” GW’s, including
those from CCSNe, although GW’s from CCSNe are by
now far from unmodeled. The cWB algorithm (1) searches
for coincident signal power across detectors by projec-
ting the multidetector data onto the wavelet (i.e., time-
frequency) domain using the Wilson-Daubechiers-Meyer
transform [71], (2) identifies a collection of coherent time-
frequency components with amplitudes above noise levels,
and (3) clusters them to obtain a likelihood time-frequency
map L ¼ fðti; fiÞ; ligNL

i¼1, where li is the likelihood point
value at time ti and frequency fi, and NL is the number
of time-frequency points. Figure 6 shows the likelihood
time-frequency map L for a detected event from a synthetic

GW signal. We use in this study the likelihood time-
frequency map L to estimate the HFF slope value because
it contains the significant time-frequency information that
is used to reconstruct the detected GW signal. cWB event
production analyses were performed using LIGO data
from the second half of the third observing run (O3b)
with a two-detector network (L1 and H1). The aim was to
obtain distributions of likelihood time-frequency maps of
detected GW from CCSNe, to train and to test the deep
learning algorithm that estimates the value of the HFF
slope. The cWB event production was developed at
standard configuration [68]. Known GW from CCSN
signals were injected every 50 s, at seven different
Galactic distances 1.0, 2.3, 3.1, 4.3, 5.4, 7.3, and
10 kpc, with equatorial orientation, into the detector strain
data on the second half of the third observing run O3b.
Along this paper we use the cWB detections, and we
performed the HFF slope estimation without going into the
details of how the significance is assigned. The amount of
detections vary depending on the injected signals, we
obtained 12.221 detections for the synthetic waveforms,
and 5134 detections for the GW from CCSN signals. Some
relevant parameters involved in the configuration file, that
controls the operation of cWB for the event production are:
The optimal probability for black pixel selection, (bpp),
that was set at bpp ¼ 0.05, and the subnetwork threshold,
(subnet), subnet ¼ 0.5. Along with this parameters the
production thresholds, netRHO and netCC, was fixed at
netrho ¼ 4.0 and netCC ¼ 0.4. The lowest and highest
frequencies were adjusted at fLow ¼ 100 and fHigh ¼
750, respectively. Then, the search for GW is carried out,
and for each detected event, the likelihood time-frequency
map L is computed, along with some reconstructed
signal attributes. All cWB event production analyses were

FIG. 6. Likelihood time-frequency map, L, of a detected event from a synthetic signal and its corresponding two-dimensional data
matrix Xðt; fÞ of dimension k × k with k ¼ 28.
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performed in two separate stretches of strain data. The first,
comprising 1 day of coincident data, was used to obtain the
training data, while the second stretch of data, comprising
8 days of coincident data, was used to obtain the testing
data. In addition, our cWB analyses were performed
separately with the synthetic and with the CCSN GW
signals containing the characteristic HFF feature, as was
described below. The set of synthetic signals constructed as
part of this study (see Sec. II A 1) was used in the first
stretch of strain data, to obtain the training dataset,
Dtrain ¼ fLj; sjgNtrain

j¼1 , where Lj and sj are the likelihood
time-frequency map and the HFF slope value of the jth
detected event, respectively, and Ntrain is the number of
training instances. Furthermore, the set of GW from CCSN
signals (see Sec. II A 2) was used in the second stretch of
strain data, to obtain the test dataset of likelihood time-
frequency maps, Dtest ¼ fLj; sjgNtest

j¼1 , where Ntest is the
number of test instances. It is important to remark at this
point that training and test datasets are mutually exclusive,
which is a necessary condition to assess the robustness of
the machine learning algorithm used to perform the
estimation of the HFF slope with unknown GW from
CCSN signals.

C. Image construction

The likelihood time-frequency map, L¼ fðti;fiÞ; ligNL
i¼1,

varies across detected events in the number of points, the
frequency range, and the time range. Therefore, it is
necessary to produce a data representation with standard
dimensions so that it can be used as input to the machine
learning model that estimate the slope of the HFF. Hence,
the goal is to define a function fð·Þ that maps L into a two-
dimensional data matrix Xðt; fÞ; that is, f∶L → Xðt; fÞ,
where the width (t-dimension) and height (f-dimension) are
the same for any detected GW. Given L ¼ fðti; fiÞ; ligNL

i¼1,
the image construction is carried out through the following
procedure. First, we select the time-frequency point that has
the maximum likelihood value, ftm; fmg. Then, we select a
region around tm in the interval ½tm − δt; tm þ δt� (width in
the t-dimension of 2 · δt), and around fm in the interval
[50Hz, 750Hz],where the cWB reconstructed signal ismore
accurate. The length of δt is fixed at 0.3 s such that the time
interval is large enough to contain the primary evolution of
the early high-frequency HFF present in the GW from the
CCSN models considered in this study [see Sec. II A 2].
This region is then transformed into a high-resolution, gray-
scale image where the intensity is given by the likelihood
value of the corresponding time-frequency points, while
pixelswith no corresponding time-frequency points are set to
zero. Finally, this gray-scale image is downsized to dimen-
sionNr × Nc to obtain the final two-dimensional datamatrix
or image Xðt; fÞ, where Nr and Nc represent the number
of rows and columns, respectively. Equivalently, the data
matrix or image Xðt; fÞ can be flattened to construct the

N-dimensional column vector x∈RN, where N ¼ Nr · Nc.
Figure 6 shows the two-dimensional data matrix Xðt; fÞ,
with dimension Nr ¼ Nc ¼ 28, for a likelihood time-fre-
quency map, L, of a detected event given a synthetic signal.

D. Deep neural network model for regression

To estimate the HFF slope of CCSN GWevents detected
with cWB, we use a deep learning regression model. The
input to this model is the column vector representation
x∈RN of the processed likelihood time-frequency map,
Xðt; fÞ, while the output is the estimated HFF slope value ŝ.
The HFF slope values estimated in this work are con-
tinuous, real, and positive (i.e., s∈Rþ), ranging from
500 Hz=s to 5000 Hz=s. Hence, there are several regres-
sion methods that can be used to address this task; for
instance, linear and polynomial models, decision trees, and
artificial neural networks [58–61,72–75]. For this study, we
selected a fully connected deep neural network (DNN)
regression model because it can learn both linear and
nonlinear relationships between the input and output data, it
is more appropriate for handling large-dimensional input
data, and it offers high performance at a low computational
cost. DNN are machine learning models inspired by
biological neural network models of the brain, consisting
of many interconnected processing units known as neurons,
which vaguely mimic biological neurons [59,73,76]. The
structure of a DNN comprises an input layer, one or more
hidden layers, and an output layer, thus resembling a brain
neural network [58–60]. The input layer consists of nodes
that receive the input data and pass them directly into the
first hidden layer for further processing, whereas hidden
and output layers consist of many neurons [59,76] inter-
connected by weighted synaptic links. In a DNN, the
information flows from the input toward the output while
being processed in the layers, through the following
function:

f∶ Rm ⟼ Rn; ð1Þ
where m and n denote the number of nodes or neurons of
two successive layers. Therefore, the jth neuron in a layer
(hidden or output) with n neurons is connected to all of the
m outputs of the preceding layer, via the weighted synaptic
connections [76], in such a way that the neuron produces
the output yj as a function of linear combinations of the
input information as follows:

yj ¼ g

�Xm
i¼1

wi;jxi

�
; ð2Þ

where wi;j are the weights connecting allm inputs to the jth
neuron and gð·Þ is a bounded, differentiable, real, and
nonlinear function known as an activation function [73,75].
The activation function allows the nonlinearity between the
input–output relationship. In regression problems, typical
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activation functions are linear, sigmoid, or the rectified
linear unit [76]. Note that the number of nodes of the input
layer corresponds to the input variables (in our case, N
inputs), the number of neurons in the output layer corre-
sponds to the output variables (in our case, one output),
whereas the number of hidden layers, the number of
neurons in each layer, and the activation functions are
hyper-parameters that can be freely varied to obtain dif-
ferent DNN models. Therefore, the synaptic weights are
the parameters that are fitted from a training dataset. We
considered five DNN models with different numbers of
hidden layers and neurons. Table I presents the technical
details of the DNN models, which are named M1, M2, M3,
M4, and M5. In all models, the activation functions

correspond to the rectified linear unit (ReLu) in the
hidden layers and to the linear function in the output
layer. The training of the models (i.e., the fitting of the
synaptic weights) was based on the back-propagation
learning algorithm using the root-mean-squared propagator
(MNSprop) with the mean-squared error as a loss function,
a learning rate of 0.001, a batch size of 512 samples of the
training data, and 300 epochs.

III. RESULTS

In this section we present the results of two analyses
devoted to assessing the performance of the estimation of
the HFF slope of CCSN GW events using DNN regression
models.

A. Hold-out cross-validation with Dtrain

We first assessed the effectiveness and reliability of the
proposed DNN model for the estimation of the HFF slope,
testing the training dataset of likelihood time-frequency
maps, Dtrain, through a hold-out cross-validation (HOCV)
procedure [76,77], where the entire dataset was randomly
split into two parts for training (70%) and for testing (30%).
This procedure was repeated 30 times to account for the
randomness of the process and to be able to compute

TABLE I. Architectural description of the deep neural network
(DNN) regression models used to assess the estimation of the
HFF slope from likelihood time-frequency maps.

No. of hidden layers No. of neurons No. of weights

M1 1 16 12,577
M2 2 32-16 25,665
M3 3 64-32-16 52,865
M4 4 128-64-32-16 111,361
M5 5 256-128-64-32-16 244,737

FIG. 7. Distribution of the performance metrics, r2, RMSE, and MAPE, achieved with the five DNN regression models in the hold-out
cross-validation procedure with the dataset Dtrain. The horizontal central lines in the box plots denote the median of the estimated HFF
slopes.
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distributions of the performance metrics. Note that in each
repetition the training and testing data are mutually
exclusive. The training set is used to fit the weights of
the DNNmodel, while the test set is used to asses the model
performance [59,60]. To assess the performance, we used
the following metrics: (i) the coefficient of determination
(r2), defined as:

r2 ¼ 1 −
P

iðs − ŝiÞ2P
iðs − siÞ2

; ð3Þ

where ðs − ŝiÞ2 denote the sum of the squares of the
residuals, si ¼ 1

n

P
i si is the mean of the estimated slopes

in absence of noise (for n-observations), and ðPi s − siÞ2
corresponds to the total sum of squares. This metric
measures for every model the linear correlation between
the estimated slopes in absence of noise (s) present in the
likelihood maps and the corresponding estimated slopes
ðŝÞ; (ii) the root-mean-square error (RMSE) defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðŝi − siÞ2
n

r
. ð4Þ

This metric is computed, like the coefficient of determi-
nation, using the residuals, ðs − ŝÞ. Its computation serves

to discriminate how far from the mean the estimated slopes
are, and finally (iii) the mean-absolute-percentage error,
(MAPE), defined as:

MAPE ¼ 100%

n

Xn
i¼1

js − ŝj
s

ð5Þ

is a performance metric that measures the accuracy of our
estimations evaluating the residuals, ðs − ŝÞ, divided by (s)
and summed over every estimated value on a certain
number, (n), of observations. These performance metrics
provide support to evaluate the accuracy of each model
from different perspectives and clarify the outputs obtained.
Table II shows the average values of the performance
metrics achieved with the five DNN models.
According to the scores presented in the table, we

conclude that model three (M3) (see Table I) exhibits
the best performance in estimating the slope of the HFF,
among the five different DNN architectures (M1 to M5),
because (1) it has the higher linear correlation (0.76)
expressed through the r2 coefficient and (2) the lowest
residuals (594.64) and percentage error (21%) reported by
the RMSE and MAPE, respectively. Figure 7 illustrates the
performance metrics for each model. Model 3 (in green)
shows a lower dispersion with respect to the mean of the
estimated slopes for the HFF, and lower residuals compared

FIG. 8. Distribution of estimated values ŝ achieved with the five DNN models in the hold-out cross-validation procedure with the
dataset Dtrain for the specific cases of real values of s ¼ 1111.0 Hz=s, s ¼ 2023.0 Hz=s, and s ¼ 3560.0 Hz=s.
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with those associated with the remaining models: M1
(blue), M2 (orange), M4 (red), and M5 (purple). To give
a more individual characterization of the different DNN
models, Fig. 8 illustrates how distinct architectures estimate

a single slope contained in the training dataset. This figure
clarifies the fact that estimation performed by model M3
produces the best fit compared with the other DNN
architectures.

TABLE II. Summary (mean � standard deviation) of the performance metrics, r2, RMSE, and MAPE, achieved
with the DNN regression models in the hold-out cross-validation procedure with the dataset Dtrain.

Metric M1 M2 M3 M4 M5

r2 0.68� 0.02 0.72� 0.05 0.76�0.01 0.74� 0.05 0.73� 0.07
RMSE (Hz=s) 690.57� 32.86 651.27� 65.08 594.64�26.31 616.79� 62.03 636.85� 81.94
MAPE 0.27� 0.02 0.25� 0.04 0.21�0.01 0.23� 0.05 0.24� 0.06

TABLE III. HFF slope estimation results. Each column contains the values associated with the slope, s, estimated
slope, ŝ, plus its corresponding standard deviation, STD, its RMSE, and its MAPE. All of this is for the M3-DNN
architecture.

Model s ðHz=sÞ ŝðHz=sÞ � STD RMSE ðHz=sÞ MAPE

Fiducial from Cerdá-Durán et al. [52] 1288 1204.78�120.75 142.37 0.09
s15.0 from Kuroda et al. [24] 3082 3169.36�67.52 108.68 0.03
M10-DD2 from Morozova et al. [27] 1389 1193.24�122.76 228.54 0.14
mesa20 from O’Connor and Couch [31] 2381 2525.21�146.58 204.95 0.06
s15.nr from Andresen et al. [12] 2246 2263.17�380.58 380.59 0.13
s20 from Andresen et al. [12] 1907 2399.42�759.80 904.59 0.33
C15-3D from Mezzacappa et al. [13] 3406 3358.91�619.03 719.98 0.20

FIG. 9. Estimation of the HFF slope for model s15.0 from Kuroda et al. [24], across nine different random orientations.
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FIG. 10. HFF estimated slope, ŝ, HFF estimated slope mean, ˆ̄s, and their corresponding HFF estimation errors, associated with dif-
ferent CCSN GW signals included in this study. The histograms on the left show, in blue, the HFF estimated slopes and, with red, dashed
lines, the HFF estimatedmeans. The right column illustrates the estimation error in the spectrograms of the CCSNGW signals described in
Sec. II A 2. The gray, dashed lines denote the estimation errors.White, solid lines with circles denote the slope of the HFF, in the absence of
noise. And red lines with stars correspond to the mean of the estimated HFF slopes obtained through the M3-DNN architecture.
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B. Estimation of the HFF slope of 3D CCSNGW signals

After the design [Sec. II], construction [Sec. II C], and
successive sanity checks performed on the training dataset,
Dtrain [Sec. III A], we use the M3-DNN architecture [see
Table I], along with the processed likelihood maps for the
GW from CCSN signals, as a test dataset, Dtest, in order to
perform the estimation of the HFF slope. Dtest is only
composed of processed likelihood maps obtained from

CCSN signals [see Sec. II A 2] that were not considered in
the training process; therefore, the estimation of the HFF
slope is carried out on Dtest, an unknown set of signals for
the DNN architecture. Table II contains the performance
metrics results for every model described in Sec. II D on the
training datasetDtrain; moreover, Table III shows the results
of the implementation for the DNN architecture [see
Table I] on the different GW from CCSN signals included

FIG. 11. HFF estimated slope, ŝ, HFF estimated slope mean, ˆ̄s, and their corresponding HFF estimation errors, associated with
different CCSN GW signals included in this study. The histograms in the left column show, in blue, the HFF estimated slopes and, with
red, dashed lines, the HFF estimated mean. The right column illustrates the estimation error in the spectrograms of the CCSN GW
signals described in Sec. II A 2. The gray, dashed lines denote the estimation error. The white, solid lines with circles denote the slope of
the HFF, in absence of noise. And the red lines with stars correspond to the mean of the estimated HFF slopes obtained through the M3-
DNN architecture.
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in this study [see Sec. II]. These results reflect a mean-
absolute-percentage error, (MAPE), in the estimation of the
HFF slope for this sample of 13%, which includes GW
from CCSN signals for different progenitor (ZAMS)
masses, metallicities, and rotation rates. To frame our
results (see Table IV) we consider the variation of the
HHF slope with equation of state, (EOS), progenitor mass,
rotation, and metallicity. In Figs. 10 and 11, we show (left
column) the histograms that describe the distribution of
estimated slopes (in blue) for each CCSN GW signal
included in Dtest. The vertical, black, dashed lines stand
for the values of the HFF slope in the absence of noise,
while the red, dashed lines define the estimated HFF slope
means, denoted ŝ. In the right column, the spectrogram of
each CCSN GW signal illustrates the estimation error. The
solid white lines with circles indicate the values of the
slopes in the absence of noise, for each model. Solid red
lines with stars indicate the means of the estimated slopes,
ˆ̄s, obtained from the M3-DNN architecture. The dashed,
gray lines denote the estimation errors according to the
STDs reported in Table III. An estimation of the GW
temporal evolution of the HFF fundamental resonant
frequency for a core collapse supernova was recently
presented in [63], using a chi squared approach in the
context of a multimessenger analysis for the identification
and parameter estimation of the standing accretion shock
instability (SASI) with neutrino and GW signals. Following
our methodology based on the implementation of a neural
network (see Secs. II and III B), the estimation of the slope
of the HFF fundamental resonant frequency for a CCSN is
improved by 85% for model s15.0 from Kuroda et al. [24]
when compared with the value reported in the study of the
SASI. This fact reveals that the implementation of a neural

network model yields a substantial improvement when
compared with chi-squared-based estimation. Assuming
we are not aware of theoretical reasons why the HFF should
have a strong dependence on the source orientation, we
estimated the robustness of our results with respect to
randomizing the orientation of the source. In Fig. 9 we
present an example of HFF slope estimation for model
s15.0 from Kuroda et al. [24], considering nine different
random orientations. A systematic study was performed for
the remaining CSSN GW signals implemented in this
paper, and the impact on the slope value varies between
a few percent and 10%. For a real CCSN detection, we will
have a specific orientation. The source orientation vari-
ability discussed in this paragraph will, however, have to be
accounted for in future efforts to extract physical informa-
tion about the progenitor.

IV. SUMMARY

We incorporate a set of synthetic CCSN GW signals
(see Sec. II) to train a DNN model (Sec. III A) to esti-
mate the slope associated with the gravitational wave
temporal evolution of the HFF present in CCSN GW
signals (Sec. II A 2). We quantified the accuracy of distinct
DNN architectures using three different performance met-
rics to evaluate the accuracy of every model under different
topologies, as presented in Table II, searching for the more
accurate configuration to achieve estimation of the HFF
slope. Our analysis and implementation of such DNN
architectures indicate we can estimate the slope of the
HFF in real interferometric data for different Galactic
sources and CCSN GW idiosyncrasies (Sec. II A 2).
Tables V and VI show the HFF slope estimation with its

TABLE IV. Variation of the HFF slope across progenitor mass, rotation, and metallicity, and across EOS.

Model s ðHz=sÞ ŝ ðHz=sÞ EOS Mass M⊙ Rotation Metallicity

Fiducial, Cerdá-Durán et al. [52] 1288 1204.78 LS220 35 2 rad=s Low
mesa20, O’Connor and Couch [31] 2381 2525.21 SFHo 20 — Solar
s20, Andresen et al. [69] 1907 2399.42 LS220 20 — Solar
s15.0, Kuroda et al. [24] 3082 3169.36 SFHx 15 — Solar
C15-3D, Mezzacappa et al. [13] 3406 3358.91 LS220 15 — Solar
s15.nr, Andresen et al. [12] 2246 2263.17 LS220 15 0.5 rad=s Solar
M10-DD2, Morozova et al. [27] 1389 1193.24 LS220 10 0.2 rad=s Solar

TABLE V. Variation of the HFF estimated slope across different Galactic distances: 1.0, 2.3, 3.1, and 4.3 kpc.

Model s ðHz=sÞ 1.0 kpc 2.3 kpc 3.1 kpc 4.3 kpc

Fiducial, Cerdá-Durán et al. [52] 1288 1204.78 1345� 221 1575� 496 1954� 596
mesa20, O’Connor and Couch [31] 2381 2525.21 2689� 145 2903� 312 3312� 396
s20, Andresen et al. [69] 1907 2399.10 2614� 223 3012� 496 3324� 342
s15.0, Kuroda et al. [24] 3082 3169.36 3243� 109 3472� 221 3723� 443
C15-3D, Mezzacappa et al. [13] 3406 3358.91 3443� 237 3743� 396 3978� 234
s15.nr, Andresen et al. [12] 2246 2263.17 2509� 207 2689� 441 2945� 504
M10-DD2, Morozova et al. [27] 1389 1193.24 1349� 115 1576� 396 1608� 503
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corresponding Standard Deviation, (STD), for seven differ-
ent Galactic sources at 1.0, 2.3, 3.1, 4.3, 5.4, 7.3, and
10 kpc. As we might expect, the number of triggers reduces
with distance. As shown in Tables Vand VI, the HFF slope
estimation presents a higher STD. The results obtained
using our methodology reflect that, this implementation
could be applied to develop parameter estimation in
upcoming LVK scientific runs. We leave this aspect for
future publications.
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