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In this work, we propose a model of the gravitational collapse of dark matter in the presence of
quintessence or phantomlike scalar fields. Our treatment is based on the principles of general relativity up
to virialization. We have chosen a spherical patch that starts to collapse gravitationally as it happens in top-
hat collapse. It is seen that although the dark matter sector collapses the dark energy sector does keep a
profile that is almost similar to the dark energy profile for the background expanding Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe for suitable model parameters. It is observed that in order to formulate
the problem in the general relativistic setting one has to abandon the idea of a closed FLRW isolated
collapsing patch. General relativity requires an external generalized Vaidya spacetime to be matched with
the internal spherical patch whose dynamics is guided by the FLRW metric. It is shown that almost all
collapses are accompanied by some flux of matter and radiation in the generalized Vaidya spacetime. Some
of the spherical regions of the Universe are seen not to collapse but expand eternally, producing voidlike
structures. Whether a spherical region will collapse or expand depends upon the initial values of the system
and other model parameters. As this work shows that collapsing structures must emit some form of
radiation, this may be taken as an observational signature of our proposal.

DOI: 10.1103/PhysRevD.108.084025

I. INTRODUCTION

The formation of structure in a homogeneous and
isotropic universe is always an interesting and evergreen
topic in astrophysics and cosmology. In the standard
picture, the seed for structure formation in cosmology
comes from linear perturbation theory. During or after
recombination the cosmological perturbations, for some
modes, start to grow and does not remain strictly linear.
These modes act as seeds for future structure formation in
the Universe. Some of these perturbation modes move out
of the linear paradigm and enter the nonlinear mode where
different physical principles are operational. Just before
entering the nonlinear regime Jeans instability [1,2]
and other effects guide the formation of structures.
Gravitationally bound structures, from the cluster of gal-
axies scales to much lower scales, are supposed to have
been born due to nonlinear instabilities. In the standard

picture of structure formation, it is assumed that primarily
the dark matter sector plays the most important role. The
dark matter sector is supposed to be composed of a fluid
with zero pressure which follows the gravitational potential
produced by a marginally denser region and tries to
collapse about those regions. The baryonic matter follows
the dark matter flow [3–6]. One of the most important
semirelativistic methods used to study structure formation
is called the top-hat collapse [7]. In this collapse process, it
is assumed that if in some closed region of the cosmos, the
density of dark matter has exceeded the background matter
density then a collapse follows. In top-hat collapse, the
closed overdense region at first expands following the
background expansion, but this expansion halts at a certain
moment due to gravity and there is a turnaround. Following
the turnaround, the closed region starts to collapse. A pure
general relativistic top-hat collapse generally produces a
singularity as the end state, since the collapsing matter is
homogeneous and dustlike [8]. However, in astrophysics,
it is assumed that much before the formation of a
singularity the collapsing fluid virializes. The virialized
end state of the collapse signifies structure formation.
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n this sense, the top-hat collapse is a semirelativistic
process where people use a semi-Newtonian paradigm to
interpret the end phase of the collapse.
Traditionally one does not take into account the role of

the cosmological constant, Λ, in the structure formation
process. Some authors have tried to incorporate the
effects of such a constant in the gravitational collapse
process [9–12]. Traditional ΛCDM models have their own
difficulties [13,14], and consequently, the dynamical dark
energy models based on scalar fields have been introduced.
One of the most widely used scalar fields in this paradigm
is the quintessence field. Phantomlike scalar fields, with
a negative kinetic term, also is used to model dark energy
[15–19]. In this paper, we will mainly be working with
these two types of scalar fields. Our main goal is to study
the gravitational collapse process in a two-component
universe, with dark matter and a scalar field acting as
source of dynamic dark energy. Many authors have
attempted such a problem in various forms [20–24]. In
almost all of the attempts the authors never used a formal
general relativistic approach although they used one or two
equations that can only be found in a general relativistic
setting. The main reason for such a purely phenomeno-
logical approach by the previous authors is primarily based
on the following reason. If one wants to apply general
relativistic treatment for the gravitational collapse of a
closed spherical region then one has to start with the closed
Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
time with some matter inside the closed region. This closed
region does not exchange energy with the outside as this
spacetime is assumed to be “closed” and acts as an isolated
system. If this closed region undergoes a gravitational
collapse, as in top-hat collapse, then the energy density of
the matter inside grows as the region shrinks as that is
the only way the energy of matter can be conserved. On the
other hand in a two-component system, where one of the
components can be a dark energy candidate, this logic may
not apply as the dark energy sector may remain homo-
geneous and unclustered. By unclustered dark energy,
we mean that the energy density of dark energy practically
remains the same as that of the expanding background
FLRW spacetime. In simple terms, the dark energy sector
may not collapse at all following the dark matter partner
inside the closed region. In such a case energy conservation
becomes problematic and the problem becomes paradoxi-
cal. To evade this problem, previous authors have used a
pure phenomenological method. In this method, one does
not perceive the problem relativistically, where one uses
an FLRW metric with a positive spatial curvature constant
and then writes down the Friedmann equations. The first
Friedmann equation (containing the square of the first
derivative of the local scale factor) particularly becomes
problematic as it requires an estimate of all the known
energy sources inside the spherical patch. As energy
may not be conserved, this equation becomes redundant.

Mostly all of the previous works in this field only use the
other Friedmann equation containing the second derivative
of the scale factor and consider it as a second-order
ordinary differential equation in time and solve it with
appropriate initial conditions.
We have addressed the above-mentioned problem in a

more relativistic way. As it is known that for unclustered
dark energy, the scalar field sector does not collapse, we
expect that this sector primarily leaks out of the boundary
of the closed, positively curved spacial region. To incor-
porate such an idea we match the internal FLRW patch with
a generalized Vaidya spacetime before the internal space-
time closes (the internal radial distance marker is less than
one). As a result of this we predict the emission of radiation
from the boundary of the collapsing region, this radiation
is naturally obtained in generalized Vaidya spacetimes.
The two spacetimes are matched at a timelike hypersurface
using the standard junction conditions of general relativity.
The matching of the spacetimes solves the issue of non-
conservation of energy in the closed patch as in the
modified scenario the spherical patch is radiating energy
outside and ideally does not remain an isolated patch
anymore. In our model, the collapsing dark matter cloud
affects the dark energy density locally as the spherical
region under collapse forces the dark energy sector to
radiate. This model is natural in the sense that the effect of
a gravitational collapse does not go unnoticed in the dark
energy sector, it reacts to the collapse by transforming
locally into radiation although its energy density follows
the energy density of the background spacetime. We think
this is the first serious attempt to produce a formal general
relativistic paradigm of the spherical collapse of dark
matter in the presence of dark energy.
Although we have tried to formally establish a general

relativistic attempt to tackle the problem of the spherical
collapse of matter in the presence of dark energy we do not
fully extend the relativistic formalism up to the formation
of the singularity which is inevitable in such situations. The
primary reason for using a more phenomenological proc-
ess, to end the collapse, is related to the fact that large-scale
structures exist and perhaps they are produced from some
virialization process. The complete understanding of the
general relativistic version of the Newtonian virialization
process remains elusive. Efforts to comprehend the equi-
librium process during gravitational collapse within the
framework of general relativity have been limited. In a
publication by Dey et al. [25], a comprehensive and
dynamic solution based on general relativity is presented,
illustrating a gravitational collapse that ends in an equi-
librium state. However, it is important to note that the
authors do not assert in that paper that this equilibrium state
serves as the direct general relativistic equivalent of the
Newtonian virialization state. In [26], Meyer et al. present a
general relativistic virial theorem based on the Tolman-
Oppenheimer-Volkoff (TOV) solution for homogeneous,
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perfect-fluid spheres constructed for the Einstein–de Sitter
and ΛCDM cosmologies. However, in that paper, the
authors do not show how a gravitationally collapsing
matter cloud ultimately settles down to the virialization
state. They consider an approximately equilibrated system
when the vrialization process starts. The equilibrium
condition is obtained using the TOV equation for a
spherically symmetric static spacetime which is seeded
by dust and Λ-dark-energy-like fluid. The authors in that
paper do not describe any solution of a dynamical system
that ultimately satisfies the time-independent TOV equa-
tion at the virialized state. In another work [27], Friedman
and Stergioulas introduce a definition of the virial theorem
in the context of stationary spacetimes. This matter is
extensively covered in Sec. III.3 of their monograph. An
in-depth examination into the derivation of the relativistic
virial condition for a dynamic spacetime, building upon
the condition introduced in the monograph, would unde-
niably offer a valuable area for exploration. This inves-
tigation may shed light on the behavior of rotating
relativistic stars under dynamic conditions and contribute
to our understanding of their complex nature. However,
in this paper, our prime intention is to show the evolution
leading to a final virialized state of such a dynamical
system which is composed of dust and a minimally
coupled scalar field. Our radiating collapsing structure
inevitably must virialize at some point in time and after
that time the system does not remain relativistic.
Virialization by itself is not built in the collapsing process,
one has to bring in this pseudo-Newtonian concept to
explain the existence of large-scale gravitationally bound
objects. In the cases of collapse in the presence of
unclustered dark energy, the dark matter sector primarily
collapses and virializes whereas the dark energy sector
does not virialize. Although the dark energy sector does
not virialize it does affect the virialization process of the
dark matter sector. Virialization at the end of the collapse
does not deter us from using general relativistic methods
to unravel the collapsing process. At this point, we want to
specify briefly why general relativity is important in our
case. The points are as follows:

(i) Any gravitational collapse of matter is intrinsically
relativistic as it ends either in a black hole for-
mation or a naked singularity. The physics near
black holes or naked singularities can only be
tackled through general relativity. Although for
phenomenological reasons our specific collapse
ends in a virialized state, one can use our method
to tackle the full collapse scenario where virializa-
tion does not happen.

(ii) All the treatments of gravitational collapse, till now,
utilizes some of the assumptions and equations of
general relativity and avoids the full relativistic
machinery. These methods appear incomplete fun-
damentally and our attempt to fully represent the

problem in the general relativistic setting gives a
proper logical completion of the previous attempts.

In all the cases of spherical collapse, which we have
studied in this paper, the dark energy component remains
primarily unclustered and homogeneous for some suitable
small values of parameters in our model. Our attempt to
study collapse in such two-component systems does not
only produce unclustered dark energy, in some situations, it
is seen that the closed, spherical region does not proceed
to a collapse at all. In these cases, we have an eternal
expansion of a small local spherical patch in the back-
ground of the spatially flat FLRW spacetime. These regions
act like voids as the matter density inside them decreases.
The dark energy density in these patches exceeds the dark
energy density of the background and consequently, we can
say that clustered dark energy can also be produced in our
model. Whether a spherical patch will end up in a virialized
state or an expanding phase depends upon the parameters
of the theory and initial conditions. In these expanding
regions the dark matter density remains a factor of
10 smaller than the background spacetime for some time.
Ultimately as these patches expand the matter density
drops. The dark energy density remains less than the
background dark energy density for quintessence fields.
For phantom fields the dark energy density in the spherical
patch tends to be more in the voids.
The work in this paper is organized in the following way.

In Sec. II we elaborately discuss the semi-Newtonian
theory of virialization in a two-component universe where
the two components are related to the dark matter sector
and the dark energy sector. We call this treatment semi-
Newtonian as we use the language of Newtonian potentials
although the energy conservation equations are obtained
from an expanding universe paradigm. In Sec. III we
present the general relativistic formalism for our work.
This section contains the junction conditions used to join
a collapsing/expanding closed FLRW spacetime with the
generalized Vaidya spacetime. Section IV presents the
basic equations which guide the collapse of a spherical
FLRW patch in the presence of a quintessence/phantomlike
scalar field and dark matter. In Sec. V we have presented
the results obtained from the calculations in the previous
section. This section shows the details of the various
collapsing processes. Section VI gives a summary of the
work presented in this paper. Throughout the paper, we use
a system of units in which the velocity of light and the
universal gravitational constant (multiplied by 8π), are both
set equal to unity.

II. VIRIALIZATION STATE OF DARK MATTER
IN THE PRESENCE OF DARK ENERGY

The total gravitational potential of the overdense region
of a two-fluid system consisting of dark matter (DM) and
dark energy (DE) can be written as [28]
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VT ¼ 1

2

Z
v
ρDMϕDMdvþ

1

2

Z
v
ρDMϕDEdv

þ 1

2

Z
v
ρDEϕDMdvþ

1

2

Z
v
ρDEϕDEdv; ð1Þ

where ϕDM and ϕDE are the gravitational potentials of
dark matter and dark energy, respectively, and ρDM and ρDE
are the energy density of dark matter and dark energy,
respectively. The integration is done over the whole volume
(v) of the spherical overdense region. The nonzero values
of the four integrations written above can be used to
classify the two-fluid system into the following four
distinguishable scenarios,

(i) In the first scenario, the dark energy effect is totally
neglected considering only the first integration in
Eq. (1) is nonzero. In this case, the spherical over-
densities of dark matter behave like an isolated
subuniverse and virialize at a certain radius [7].

(ii) If only the first two integrations in Eq. (1) con-
tribute to the total gravitational potential of the
overdense region, then it can be shown that there
exists a non-negligible effect of dark energy which
affects the virialization process of the spherically
symmetric overdense regions of dark matter. In this
scenario, dark energy cannot cluster and virialize
with dark matter, and therefore, the dark energy
density inside the overdense region is similar to the
external dark energy density. Hence, this type of
model is known as the homogeneous dark energy
model [23,29–31].

(iii) In the third scenario, dark energy does not virialize
with dark matter though it can cluster inside the
overdense regions. In this scenario, it is considered
that from the starting point of the matter-dominated
era, dark energy moves synchronously with the
dark matter on both the Hubble scale and the galaxy
cluster scale. This scenario is known as the clustered
dark energy scenario [21,25,28,32–34].

(iv) At last, in the fourth scenario, dark energy can
cluster and also virializes with dark matter inside the
spherical overdense regions [28].

If we consider no influence of dark energy in the
evolution of the dark matter overdensities, then as men-
tioned previously, the first integration of Eq. (1) contributes
to the total gravitational potential of the overdense regions.
This scenario is described by the top-hat collapse model,
where one self-gravitating fluid, inside a spherical over-
dense region, virializes [7]. In the top-hat collapse model,
the overdense region expands first with the background but
at a slower rate than that of the background, and then after
a certain turnaround radius (Rmax), the overdense region
starts collapsing. At the turnaround radius, momentarily the
kinetic energy of the overdense region becomes zero, and
the total gravitational potential energy (VT) of the region
becomes the total energy (ET) of the same at that moment.

The total energy inside the spherical overdense region,
when it reaches the turnaround radius (Rmax), is

ET jt¼tmax
¼ VT ¼ 1

2

Z
vmax

ρDMϕDMdv ¼ −
3M2

5Rmax
; ð2Þ

where tmax is the turnaround time. Here M is the total mass
inside the spherical over dense region. A more detailed
intuitive description of this mass will be presented in the
next section. At the virialization time t ¼ tvir, the total

kinetic energy of the overdense region EKEjtvir ¼ −
VT jtvir

2
.

Therefore, at the virialization time, the total energy of the

overdense region ET jtvir ¼
VT jtvir

2
. Hence, using energy

conservation, one can show that the spherically symmetric
overdensities virialize when η ¼ Rvir

Rmax
¼ 0.5. In order to

model the dynamics of the overdense region, if one uses
the closed FLRW spacetime, then it can be shown
that tvir ¼ 1.81tmax.
In [23,29], the authors investigated the cosmological

scenario where the dark energy is homogeneous, i.e., the
internal and external dark energy densities are the same.
In [29], the authors studied the effect of the cosmological
constant on the virialization of the spherical overdensities,
whereas in [23], the authors consider the homogeneous
quintessence dark energy model. As previously mentioned,
in the homogeneous dark energy scenarios, the dark energy
does not cluster and virialize inside the spherical over-
densities of dark matter, however, the virialization process
of the overdensities is modified since there exist a nonzero
energy density and negative pressure of dark energy, and
this effect of dark energy can be realized by the different
values of η. For the homogeneous dark energy scenario,
the total potential energy of the overdense region can be
written as [28]

VT ¼
Z
v
ρDMϕDMdvþ

Z
v
ρDMϕDEdv; ð3Þ

which gives

VT ¼ −
3M2

5R

�
1 −

q
2
ð1þ 3ωÞ

�
ā

āmax

�
−3ð1þωÞ� R

Rmax

�
3
�
;

ð4Þ

where ω is the equation of state of dark energy, assumed to
be a constant, and q ¼ ðρDEρDM

Þ
t¼tmax

, which is the ratio of

energy densities of dark energy and dark matter inside
the spherical overdense regions at the turnaround time
t ¼ tmax. Here and throughout the paper, a and ā represent
the scale factor of the spherical overdense region and
the background, respectively. Since the physical radius
R ¼ raðtÞ, at the turnaround time, when the overdense
region reaches its maximum physical radius, the scale
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factor of the overdense region also reaches its upper
limit amax, and at that moment, the scale factor of back-
ground is āmax. At the virialization time t ¼ tvir, the scale
factors of the overdense region and background become
avir and āvir, respectively. Using Eq. (4) and the virializa-
tion condition ðVT þ 1

2
R ∂VT

∂R Þt¼tvir
¼ ðVTÞt¼tmax

, we can get
the following cubic equation of η:

4Qη3
�
āvir
āmax

�
−3ð1þωÞ

− 2ηð1þQÞ þ 1 ¼ 0; ð5Þ

where Q ¼ −ð1þ 3ωÞ q
2
. It can be verified that for the

vanishing value of q (i.e., neglecting the dark energy
effect), the solution of the above equation is η ¼ 0.5,
which we obtained earlier for the top-hat collapse model.
For a homogeneous cosmological constant model, where
ω ¼ −1, the above cubic equation for η becomes [29,30]:

4qη3 − 2ηð1þ qÞ þ 1 ¼ 0: ð6Þ

If we consider small value of q, then the solution of the
above equation for η can be written as [30]

η ¼ 0.5 − 0.25q − 0.125q2 þOðq3Þ; ð7Þ

which implies the value of η is always less than 0.5 for
models involving the cosmological constant. The presence
of Λ makes the overdense regions collapse more to attain
the virialization state.
In the homogeneous dark energy model, since the

background universe continues expanding after the virial-
ization of the overdense regions, the density of the dark
energy (with ω ≠ −1) in the virialized overdense region
also changes with time, and this is a big problem with the
homogeneous dark energy model. This problem is dis-
cussed elaborately in [28]. This problem does not appear
for models involving the cosmological constant since the
density of dark energy always remains constant in such
cases. The aforementioned problem is resolved in clus-
tered dark energy models, where, at the galaxy cluster
scale, dark energy can cluster and virialize inside the
overdense regions. In this scenario, the total gravitational
potential energy of the spherical overdense regions can be
written as [28]

VT ¼ −
3M2

5R
− ð2þ 3ωÞ 3M

2

5R
q

�
R

Rmax

�
−3ω

− ð1þ 3ωÞ 3M
2

5R
q2
�

R
Rmax

�
−6ω

; ð8Þ

where each of the integrations in Eq. (1) has nonzero
value. Using the virialization condition and the above
expression of the total gravitational potential energy one
can get the following equation for η [28]

½1þ ð2þ 3ωÞqþ ð1þ 3ωÞq2�η

−
1

2
ð2þ 3ωÞð1 − 3ωÞqη−3ω

−
1

2
ð1 − 6ωÞð1þ 3ωÞq2η−6ω ¼ 1

2
: ð9Þ

There exists another scenario where the dark energy only
can cluster inside the spherical overdensities; however, it
cannot virialize at that scale. For this scenario, the total
potential energy of the spherical regions can be written as

VT ¼ −
3M2

5R

�
1þ q

�
R

Rmax

�
−3ω

�
; ð10Þ

from which we get the following equation for η [28]:

ηð1þ qÞ − q
2
ð1 − 3ωÞη−3ω ¼ 1

2
: ð11Þ

Figure 1(a) depicts how much the value of η deviates from
0.5 for different values of q if we do not neglect the dark
energy effect in the evolution of the spherical overdense
regions. In that figure, the brown line shows how η
changes with q in those scenarios where dark energy
can cluster and virialize inside the overdense regions of
dark matter. For this scenario, one can verify that η is
always greater than 0.5. However, in the case where
clustered dark energy cannot virialize, the virialized radius
of the spherical overdense region becomes smaller than
half of the turnaround radius (i.e., η < 0.5) which is shown
by the blue line in Fig. 1(a). For both these cases, the
equation of the state of dark energy is ω ¼ −0.75, and that
is relevant for the quintessencelike scalar field. On the
other hand, the green curve in Fig. 1(a) shows η < 0.5 for
the case involving the cosmological constant, however,
the value of η in this scenario is less than that in the
scenario where dark energy can cluster but cannot viri-
alize. In Fig. 1(b), we show a similar thing for ω ¼ −1.5
which is allowed for phantomlike scalar field. It is evident
from the figure that the behavior of η in this scenario,
with ω ¼ −1.5, differs from the previous scenario with
ω ¼ −0.75. Specifically, when the phantomlike scalar
field is capable of clustering and virializing, the value
of η is greater compared to the quintessencelike scalar
field scenario where clustering and virialization occur.
In contrast, when considering the scenario where clustered
dark energy cannot virialize, the value of η for the
phantomlike scalar field is smaller compared to both
the quintessencelike scalar field scenario and the scenario
arising due to the cosmological constant case. Therefore,
we can see that the presence of negative pressure in the
dark energy fluid can create distinguishable large-scale
structures of dark matter.
In the next section, we use a two-fluid model to describe

one of the cosmological scenarios discussed above, where

GRAVITATIONAL COLLAPSE OF MATTER IN THE PRESENCE … PHYS. REV. D 108, 084025 (2023)

084025-5



the dark energy is homogeneous and it influences the
collapsing dynamics of the overdense dark matter region.

III. GRAVITATIONAL COLLAPSE IN THE
PRESENCE OF DUSTLIKE MATTER

AND A SCALAR FIELD

As we discussed in the previous section, in this paper,
we study the dynamics of a perfect fluid made of dustlike
matter and a scalar field [ϕðtÞ] in order to understand the
structure formation of dark matter in the presence of dark
energy. Since we consider a minimally coupled scalar
field with the dustlike matter, the energy-momentum
tensor of the resultant fluid (Tμν) can be written as the
sum of the energy-momentum tensors of the scalar field
and the matter:

Tμν ¼ ðTμνÞm þ ðTμνÞϕ; ð12Þ

where ðTμνÞm and ðTμνÞϕ correspond to the energy-
momentum tensor of dustlike matter and the scalar field,
respectively. Therefore, ðTμ

νÞϕ¼diagð−ρϕ;pϕ;pϕ;pϕÞ and
ðTμ

νÞm ¼ diagð−ρm; 0; 0; 0Þ. Here, we consider the col-
lapsing fluid is homogeneous and spherically symmetric.
In order to model the dynamics of the overdense region of
dark matter in the presence of dark energy, we use closed
FLRW spacetime:

ds2 ¼ −dt2 þ a2ðtÞ
1 − kr2

dr2 þ r2a2ðtÞðdθ2 þ sin2 θdΦ2Þ;
ð13Þ

where aðtÞ is the scale factor of the overdense region and
the constant k can be 0;�1. If k ¼ 0, then we have a flat

spatial part whereas negative and positive k imply an open
or closed spatial section. We could have taken the metric
of the overdense region as a spatially flat FLRW metric,
in that case, there will be no turnaround radius. We want
to generalize the top-hat collapse in the presence of dark
energy and for this, we require a turnaround. For a
continual gravitational collapse, singularity forms when
the scale factor aðtÞ becomes zero at a comoving time ts.
At the initial stage of the gravitational collapse (t ¼ 0),
aðtÞ can attain any positive definite value that can always
be rescaled to one. Therefore, we consider aðt ¼ 0Þ ¼ 1.
Since dark matter and dark energy should also be present
in the background of the overdense regions, we model the
background by the above-mentioned two-fluid model, and
we describe the dynamics of the background using flat
FLRW spacetime:

ds2¼−dt2þ ā2ðtÞdr2þr2ā2ðtÞðdθ2þsin2θdΦ2Þ; ð14Þ

where, as mentioned before, the scale factor of the
background is denoted by āðtÞ.
In the present paper, as stated above, we describe

the dynamics of the overdense region by closed FLRW
spacetime, and the background is modeled by flat FLRW
spacetime. However, in order to describe a matter flux
through the boundary of the overdense region, in the
immediate neighborhood of the overdense region, we
consider an external generalized Vaidya spacetime [35].
It should be noted that we do not consider Vaidya spacetime
as a background spacetime. The background at the Hubble
scale is modeled by flat FLRW spacetime. Vaidya space-
time is used only to describe the local dynamics of matter
around the boundary of the overdense patches.
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FIG. 1. Figures illustrate the variation of η with q, where η ¼ Rvir
Rmax

and q ¼ ðρDEρDM
Þ
t¼tmax

, for the following three scenarios: (a) Dark

energy is capable of clustering and virializing with dark matter, represented by the brown curve. (b) Dark energy can cluster but cannot
virialize within the overdense region, depicted by the blue curve. (c) In the case of a cosmological constant, shown by the green curve. In
the first figure (from left), we consider ω ¼ −0.75, which is relevant for quintessencelike scalar field. For the second figure, we consider
ω ¼ −1.5, which is relevant for a phantomlike scalar field.
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The boundary of the overdense region is a timelike
hypersurface Σ ¼ r − rb ¼ 0, and the dynamical spacetime
structure that we consider here is internally (V−) closed
FLRW metric and externally (Vþ) exploding generalized
Vaidya spacetime:

dS2− ¼ −dt2 þ a2ðtÞ
�

dr2

1 − r2
þ r2dΩ2

�
;

¼ −dt2 þ a2ðtÞdΨ2 þ a2ðtÞsin2ΨdΩ2; ð15Þ

dS2þ ¼ −
�
1 −

2Mðrv; vÞ
rv

�
dv2 − 2dvdrv þ r2vdΩ2; ð16Þ

where we consider comoving radius r ¼ sinΨ and rv and v
are the coordinates corresponding to the generalized Vaidya
spacetime. At the timelike hypersurface (Σ) where the
internal and external spacetimes match with each other, Ψ
becomes Ψb and the v and rv become the function of
comoving time t. Therefore, at Σ, we can write down the
induced metric from both the sides as

dS2−jΣ ¼ −dt2 þ a2ðtÞsin2ΨbdΩ2; ð17Þ

dS2þjΣ ¼ −
�
v̇2 −

2Mðrv; vÞ
rv

v̇2 þ 2v̇ṙv

�
dt2 þ r2vdΩ2;

ð18Þ

where v̇ and ṙv are the partial derivatives of v and rv with
respect to comoving time t. As we know, for the smooth
matching of two spacetimes at a hypersurface, the neces-
sary and sufficient condition is that the induced metric (hab)
and the extrinsic curvature (Kab) from both the sides should
match at the junction. From the induced metric matching of
the above spacetime structures on Σ yields

�
v̇2 −

2Mðrv; vÞ
rv

v̇2 þ 2v̇ṙv

�
¼ 1; ð19Þ

rv ¼ aðtÞ sinΨb: ð20Þ

In order to calculate the extrinsic curvature (Kab), one
needs the information of the spacelike normal (nα) to Σ
from both the sides. From the side V−, the four velocity (uα)
of the comoving shell Σ can be written as uα− ≡ f1; 0; 0; 0g.
Using ðnαÞ−nα− ¼ 1 and ðnαÞ−uα− ¼ 0, we get

ðnαÞ− ≡ f0; aðtÞ; 0; 0g:

For Vþ, we can write down the following expression of
uαþ; nαþ as

uαþ ≡ fv̇; ṙv; 0; 0g; ð21Þ

nαþ≡
8<
:−

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rv
þ 2 drv

dv

q ;
1 − 2M

rv
þ drv

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rv
þ 2 drv

dv

q ; 0; 0

9=
;: ð22Þ

Using the expressions of uα and nα from both the sides, we
get the following expressions of azimuthal components of
extrinsic curvature tensors:

K−
θθ ¼ aðtÞ sinΨb cosΨb; ð23Þ

Kþ
θθ ¼ rv

1 − 2M
rv

þ drv
dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
rv

þ 2 drv
dv

q : ð24Þ

Equating Kþ
θθ and K−

θθ, we get

cosΨb ¼
1 − 2M

rv
þ drv

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M

rv
þ 2 drv

dv

q : ð25Þ

Equating the temporal components of Ktt from both sides
we get

Mðrv; vÞ;rv ¼
F

2 sinψbaðtÞ
þ sin2 ψbaä; ð26Þ

where F is the Misner-Sharp mass of the internal collapsing
spacetime, which should follow the following condition at
the boundary:

Fðt; sinψbÞ ¼ 2Mðrv; vÞ: ð27Þ

From Eq. (26), it can be seen how the flux of the matter at
the boundary depends upon the scale factor and the Misner-
Sharp mass (F) of the collapsing spacetime. In the present
case, F is a function of time only, since it represents the
internal homogeneous two-fluid system. Due to the time
dependence of F, pressure is nonzero internally and it can
be written as

p ¼ −
Ḟ

ṘR2
: ð28Þ

A nonzero pressure at the boundary of a system implies the
existence of nonzero matter flux through the boundary and
that is the very reason why we consider generalized Vaidya
spacetime in the immediate neighborhood of the internal
two-fluid system. From the above expression of pressure, it
can be understood that the presence of negative pressure at
the boundary of an internal spacetime implies an inward
matter flux through the boundary for an expanding scenario
and an outward matter flux for a collapsing scenario.
In Ref. [36], the authors defined the mass inside a

spherical region, containing a fluid with energy density ρ,
to be M ¼ R

d3xρ which in our case becomes ð4π=3Þa3ρ.
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It is to be noted that for the dark matter component, this
mass term remains constant. For the scalar field compo-
nent, this mass inside the collapsing region (within the
matching surface) may vary. Figures 4 and 5 illustrate the
changes in the total relativistic mass of the dark energy
component produced by the phantomlike or quintessence-
like scalar fields, respectively, within the boundary of the
collapsing matter over comoving time. We obtain the mass
of the dark energy component (quintessence and phantom
field contributions) using the definition discussed in [36]. It
can be seen that due to the negative equation of states of
phantom and quintessence fields, mass increases during
expansion (i.e., there exists an inward flow of matter) and
decreases (i.e., there exists an outward flow of matter)
during the collapse. In this regard we want to point out that
in Ref. [37] the authors have given a detailed analysis on
the effect of clustering dark energy on the halo mass at
virialization. Although the models of dark energy consid-
ered in the reference have very low sound velocities and
their results cannot be directly related to the present work,
where the velocity of sound in the dark energy sector is
unity, we opine on one or two points related to the
aforementioned reference. In our model, the dark energy
component has a negligible mass contribution on the dark
matter halo when the system virializes, our model nearly
predicts unclustered dark energy. But as in Ref. [37], the
dark energy components do affect the virialization time as
seen from the plots of the scale factors during the collapse.
Although in our work it appears that, during the collapse,
before virialization, there is some form of temporary
clustering because of the nature of the variation of dark
energy mass inside the spherical collapsing region, this
temporary mass variation happens due to the flux of matter
across the junction surface and not due to clustering nature
of dark energy. Throughout the collapsing process the
energy density of the dark matter component, inside the
spherical patch, remains nearly constant and has nearly
the same value as that of the dark energy density of the
background.
In our model, the nonzero internal pressure is generated

due to the presence of a scalar field, and therefore, the
scalar field is responsible for the nonzero flux through the
boundary. On the other hand, the matter-field part of
the two-fluid system does not leak out of the boundary,
since it has zero pressure. Only the scalar field continuously
is leaking out/in throughout the whole dynamics of the
overdense region. If there exists a nonminimal coupling
between the matter and scalar field then a nonzero pressure
at the boundary can make the matter-field flux out/in along
with the scalar field. In this paper, we consider only the
minimal coupling between the matter and scalar field, and
therefore, the above-mentioned scenario where the matter
has nonzero flux at the boundary is not possible. The flux of
the scalar field from inside gives rise to nonzero compo-
nents of the energy-momentum tensor of the external

generalized Vaidya spacetime which is seeded by a fluid
composed of null dust and perfect fluid. Therefore, the
energy-momentum tensor of the internal spacetime and the
external spacetime can be, respectively, written as

T−
μν ¼ ðρm þ ρϕ þ pϕÞu−μu−ν þ pϕg−μν;

Tþ
μν ¼ ϵ̄lμkν þ ðϵþ PÞðlμkν þ lνkμÞ þ Pgþμν; ð29Þ

where ϵ̄, ϵ, and P can be written as

ϵ̄¼−
2M;v
r2v

; ϵ¼ 2M;rv
r2v

; and P¼−
M;rvrv
rv

; ð30Þ

and lμ, kμ are two null vectors which follow the condition:
lμkμ ¼ −1. Due to the existence of nonzero pressure at
the boundary, the flux from the internal spacetime at the
boundary seeds the components of the energy-momentum
tensor of the external generalized Vaidya spacetime. In the
next section, we show the dynamics of the two-fluid system
by solving Einstein’s equations for the internal spacetime.
Using the freedom to choose one free function, we consider
the scalar field is either a quintessence field or a phantom
field, and since the matter is minimally coupled with the
scalar field, ρm varies as 1

a3. This prior consideration makes
the matter part evolve like a closed dust ball, while the
internal density of the scalar field stays almost constant
throughout the evolution which implies a nonzero flux of
the scalar field through the boundary. We consider the
initial matter density ρm0

to be 103–104 times greater than
the initial density of the scalar field which allows us to use
the virialization technique discussed in Sec. II in order to
understand the virialization process of the two-fluid
system, though the two-fluid system in our model is
not a closed system.

IV. GRAVITATIONAL COLLAPSE SOLUTIONS OF
MATTER IN THE PRESENCE OF QUINTESSENCE

AND PHANTOMLIKE SCALAR FIELDS

Using Einstein’s equation for the FLRW spacetime
[Eqs. (13) and (14)], one can write down the effective
density and pressure of the resultant fluid as

ρ¼ ρϕ þ ρm ¼ 1

2
ϵϕ̇2 þVðϕÞ þ ρm ¼ 3ȧ2

a2
þ 3k
a2

; ð31Þ

p ¼ pϕ ¼ 1

2
ϵϕ̇2 − VðϕÞ ¼ −

2ä
a

−
ȧ2

a2
−

k
a2

; ð32Þ

where the VðϕÞ is the potential of the scalar field, ϵ is a real-
valued constant, k represents the curvature of 3-space, and
the overdot denotes the time derivatives of the function. In
this section, the above expressions of ρ and p and all other
differential equations are written in a general way, where
k ¼ 0 implies the corresponding equations are related to the
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background, on the other hand, k ¼ 1 implies they are
related to the overdense region. From Eqs. (31) and (32),
it can be seen that there are four unknown functions:
VðϕÞ;ϕðaÞ; ȧðaÞ, and ρmðaÞ and two differential equations,
and therefore, we have the freedom to choose two free
functions along with the initial conditions to solve the
differential equations. As stated before, here we consider
the scenario where the scalar field is minimally coupled
with dustlike matter. Therefore, the energy-momentum
tensors of matter and scalar field follow the conservation
equation separately:

∇aTab
ϕ ¼ 0 ⇒ ϕ̈þ 3

ȧ
a
ϕ̇þ V;ϕ ¼ 0; ð33Þ

∇aTab
m ¼ 0 ⇒ ρ̇m þ 3

ȧ
a
ρm ¼ 0: ð34Þ

Consequently we have ρm ∝ 1
a3. This shows that ultimately

we have to choose only one function out of VðϕÞ;ϕðaÞ;
ȧðaÞ to solve the differential Eqs. (31)and (32).
Using the expression of energy density and pressure of

the scalar field, we can write

ρϕ þ pϕ ¼ ϵϕ̇2 ¼ ϵϕ2
;aȧ2; ð35Þ

where we use the chain rule ϕ̇2 ¼ ϕ2
;aȧ2 where ϕ;a imply a

derivative with respect to a. From Eq. (31) we get

ȧ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρϕ þ ρm

3
a2 − k

r
; ð36Þ

where the þ and − signs are for expanding and collapsing
scenarios, respectively. Now, differentiating (36) with
respect to the comoving time (t) we get

ä ¼ a
3

�
ρϕ þ ρm þ a

2
ðρϕ;a þ ρm;aÞ

�
; ð37Þ

where ρϕ;a and ρm;a are derivatives of the scalar field energy
density and the fluid energy density, respectively, with
respect to the scale factor a.
Using Eqs. (35) and (36) we get

ρϕ

�
1 −

ϵϕ2
;aa2

3

�
− ρm

ϵϕ2
;aa2

3
þ pϕ þ kϵϕ2

;a ¼ 0: ð38Þ

From Eq. (31) we get

pϕ ¼ ρϕ − 2VðϕÞ: ð39Þ

Since the quintessencelike scalar field has positive
kinetic energy, ϵ ¼ 1 and we can write down the following
expression of ρϕ using Eqs. (38) and (39)

ρϕ ¼
ρmϕ

2
;aa2

6
þ VðϕÞ − kϕ2

;a

2�
1 − ϕ2

;aa2

6

� : ð40Þ

Now, using Eqs. (35)–(38), we get

ρϕ;a ¼
−ϕ2

;aρϕa2 − ð3þ a2ϕ2
;aÞρm þ 3kϕ2

;a

a
− ρm;a: ð41Þ

Now, differentiating Eq. (40) with respect to a and using
equation Eq. (41) we get the following second order
differential equation

−ϕ2
;aρϕa2 − ð3þ a2ϕ2

;aÞρm þ 3kϕ2
;a

a
− ρm;a

¼ 1

3ð1 − ϕ2
;aa2

6
Þ2
	
3V;ϕϕ;a þ

ρm;aϕ
2
;aa2

2
þ ρmaϕ2

;a

−
ρm;aϕ

4
;aa4

12
þ ρmϕ;aϕ;aaa2 −

V;ϕϕ
3
;aa2

2
þ VðϕÞaϕ2

;a

þ VðϕÞa2ϕ;aϕ;aa − 3kϕ;aϕ;aa −
kϕ4

;aa
2



; ð42Þ

where ϕ;aa is the second-order derivative of the scalar
field with respect to a. The above second-order differential
equation can also be derived from the Klein-Gordon
equation of the scalar field [Eq. (33)] replacing ϕ̈ with
ϕ;aa and ϕ̇ with ϕ;a, and using the expressions of ȧ and ρϕ
written in Eqs. (36) and (40), respectively. Therefore,
solving the differential Eq. (42) implies solving the
Klien-Gordon equation. As we have mentioned before,
we have to choose only one function among VðϕÞ;ϕðaÞ;
ȧðaÞ to solve the dynamics of collapse. Therefore, here, we
choose VðϕÞ ¼ V0e−λϕ, which is generally considered as
the potential of quintessencelike scalar fields [18]. This
form of the potential gives accelerating expansion in FLRW
models where we also have a dark matter component, as
shown in Ref. [18] and consequently we have chosen this
form of the scalar field potential. Any arbitrary scalar field
potential (as 1

2
m2ϕ2 or 1

2
m2ϕ2 þ g

4!
ϕ4, for scalar field mass

m and self-coupling g) does not, in general, produce
accelerating expansion of FLRW models where we also
have dark matter. Now, considering VðϕÞ ¼ V0e−λϕ,
ρm ¼ ρm0

ða0a Þ3, where a0 is the initial value of scale factor
and k ¼ 1 we get

− 4V0e−λϕϕ;aa3 þ 9ϕ;aaþ V0e−λϕϕ3
;aa5

2
þ ρm0

ϕ3
;aa2

4

− ϕ3
;aa3 þ 3λa2V0e−λϕ −

5ρm0
ϕ;a

2
− ρm0

aϕ;aa þ 3a2ϕ;aa

− V0e−λϕa4ϕ;aa −
λV0e−λϕϕ2

;aa4

2
¼ 0; ð43Þ
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and for k ¼ 0,

− 4V0e−λϕϕ;aa3 þ
V0e−λϕϕ3

;aa5

2
þ ρm0

ϕ3
;aa2

4

þ 3λa2V0e−λϕ −
5ρm0

ϕ;a

2
− ρm0

aϕ;aa

−
λV0e−λϕϕ2

;aa4

2
− V0e−λϕa4ϕ;aa ¼ 0; ð44Þ

where we consider initial scale factor value a0 ¼ 1.
We can now solve the above differential equations for

k ¼ 0, 1 to get the functional form of ϕðaÞ and using the
solution of ϕðaÞ and the differential Eqs. (31) and (32),
we can get the expression of scale factor a as a function of
comoving time t. Since the differential Eq. (43) corre-
sponds to k ¼ 1, solving that equation and using Eqs. (31)
and (32), we can get the dynamics of the resultant fluid
in the overdense region. On the other hand, the solution of
Eq. (44) shows the dynamics of the resultant fluid in the
background, since that equation corresponds to k ¼ 0.
It is generally considered that the phantomlike scalar

field has negative kinetic energy and therefore, for the
phantom field ϵ ¼ −1. For the phantom field, the above
two differential equations become, for k ¼ 1,

4V0e−λϕϕ;aa3 − 9ϕ;aaþ
V0e−λϕϕ3

;aa5

2
þ ρm0

ϕ3
;aa2

4

− ϕ3
;aa3 þ 3λa2V0e−λϕ þ

5ρm0
ϕ;a

2
þ ρm0

aϕ;aa − 3a2ϕ;aa

þ V0e−λϕa4ϕ;aa þ
λV0e−λϕϕ2

;aa4

2
¼ 0; ð45Þ

and for k ¼ 0,

4V0e−λϕϕ;aa3 þ
V0e−λϕϕ3

;aa5

2
þ ρm0

ϕ3
;aa2

4
þ 3λa2V0e−λϕ

þ 5ρm0
ϕ;a

2
þ ρm0

aϕ;aa þ
λV0e−λϕϕ2

;aa4

2

þ V0e−λϕa4ϕ;aa ¼ 0; ð46Þ

where we consider VðϕÞ ¼ V0e−λϕ for the phantomlike
scalar field.
The differential Eqs. (43)–(46) are second order differ-

ential equations of ϕðaÞ. Therefore, we need to consider
two initial conditions ϕða ¼ 1Þ and ϕ0ða ¼ 1Þ to solve the
differential equations. These initial values are chosen in
such a manner that ȧ and pϕ=ρϕ, both of which depends
on both ϕ and ϕ0 attains reasonable values at the initial
point when collapse starts to commence. The initial values
are so chosen that pϕ=ρϕ is near about −1 so that the scalar
field sector acts like a dark energy constituent. Here we
have taken the initial conditions as ϕða ¼ 1Þ ¼ :001,
ϕ0ða ¼ 1Þ ¼ 0.00001 for solving the differential Eqs. (43)
and (45). We have three parameters V0, ρm0

, and λ. In our

FIG. 2. Figure depicts the allowed parameters’ space (i.e.,
shown by blue shaded region) of V0 and ρm0

for which the
overdense region collapses in the presence of quintessencelike
scalar field after reaching its maximum physical radius. Both V0

and ρm0
are expressed in inverse length squared unit. The specific

nature of the unit is given in text.
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0.0
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FIG. 4. Figure shows the variation of M=Mmax with t=tmax.
Where M is the phantom contribution in mass in collapse and
Mmax is the maximum value of it and tmax represents the time
when mass reaches its maximum value Mmax.

FIG. 3. Figure depicts the allowed parameters’ space (i.e.,
shown by blue shaded region) of V0 and ρm0

for which the
overdense region collapses in the presence of phantomlike scalar
field after reaching its maximum physical radius. Both V0 and
ρm0

are expressed in inverse length squared unit. The specific
nature of the unit is given in text.
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geometrical system of units, the scalar field and λ are
dimensionless whereas a has the dimension of length, ρm0

and V0 have the dimensions of inverse length squared. One
can choose the unit of length from the critical density of the
background FLRW spacetime. In our cases we have chosen
the values of ρm0

in such a way that it is always near to the
critical density of the background in the epoch where
collapse commences. For any particular epoch where
collapse happens, if one expresses ρm0

in conventional
units, then one can easily convert it into geometrized units
by multiplying ρm0

by Gc−4 (where G is the universal
gravitational constant and c is the velocity of light) and
obtain a value L−2, where L has the dimension of length.
This value of L−2 can act as a suitable unit in our case to
specify the values of V0, ρm0

in Figs. 2 and 3. We have not
specified the unit as we want to keep our work very general.
The unit of the scale factor is not that important, as in this
case only the ratio of scale factors are relevant. Given that

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

t/tmax

M
/M

m
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FIG. 5. Figure shows the variation of M=Mmax with t=tmax.
WhereM is the quintessence contribution in mass in collapse and
Mmax is the maximum value of it and tmax represents the time
when mass reaches its maximum value Mmax.

FIG. 6. Figure shows variation of different variables with variation of V0 for scalar potential VðϕÞ ¼ V0e−λϕ for quintessence field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here top hat collapse is represented by red dotted line
whereas V0

Vmax
¼ 1.01 is represented by blue curves and V0

Vmax
¼ 1.02 is represented by the black curves. Where Vmax is the value of VðϕÞ at

turnaround.
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the initial density of the overdense regions, ρm0
, and the

background density, ρ0, have nearly identical values, any
variation in the ρm0

value signifies a shift in the epoch when
the primordial overdense regions begin to evolve. In order
to compare our model with the standard top-hat collapse
model, in this paper, we only discuss those scenarios where
the initial value of ȧ is positive. The initial positive value
of ȧ ensures an initial expansion phase of the overdense
region. Now, depending on the values of the parameters V0,
ρm0

, and λ, the overdense region may reach its maximum
physical radius (i.e., at the turnaround time t ¼ tmax) where
from it starts collapsing. In Figs. 2 and 3, we show the
parameters’ space of V0 and ρm0

which allows the above-
mentioned dynamics of the overdense region in the
presence of quintessencelike scalar field and phantomlike
scalar field, respectively. In both cases, we consider
λ ¼ 1. The values of V0 and ρm0

in the unshaded region

correspond to the ever-expanding dynamics of the over-
dense patches.
Considering k ¼ 1 and the values of V0 and ρm0

from the
shaded region of the Figs. 2 and 3, it can be shown that the
solution of the end state of the gravitational collapse of

the two-fluid system is a spacetime singularity. Therefore,
in order to stabilize the system, like the standard top-hat
collapse model, we invoke the Newtonian virialization
technique in our model. In the top-hat collapse model,
the matter in the overdense subuniverse is pressureless, and
therefore, as discussed before, it virializes when it reaches
half of its maximum physical radius. However, as discussed
before, when there exist two fluids inside a compact region,
and if one of them is nondust then the virialization radius
may not be equal to half of the maximum physical radius.
In Sec. II, we have briefly reviewed the works where the
effect of dark energy on the virialization of dark matter is
studied [19,21,23,25,28–34,38–43]. In the next section, we
show that the scalar field behaves almost like homogeneous
dark energy in our model and therefore, we can use Eq. (7)
to calculate the virialization radius of the overdense region.

V. MODELING OF HOMOGENEOUS
DARK ENERGY SCENARIO BY THE

TWO-FLUID MODEL

As we stated before, in our model the scalar field plays the
role of dark energy, and the dustlike matter is considered

FIG. 7. Figure shows variation of different variables with variation of λ for scalar potential VðϕÞ ¼ V0e−λϕ for quintessence field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value.
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dark matter. In this section, we show how the dynamics of
the overdense region vary when we change the values of
V0; ρm0

, and λ. Below we list the various dynamics of the
overdense region for different values of V0; ρm0

, and λ.
In Fig. 6, we show how the dynamical quantities like

a;ωϕ ¼ pϕ=ρϕ; ρϕ=ρ̄ϕ, and ωt ¼ pϕ=ðρm þ ρϕÞ evolve

with time for different values of V0, where ωϕ is the
equation of state of the quintessencelike scalar field, ρϕ=ρ̄ϕ
is the density ratio between the energy densities of the
scalar field in the overdense region and background, and ωt
is the effective equation of state of the two-fluid system.
In order to show the dynamics of the above-mentioned

FIG. 8. Figure shows variation of different variables with variation of ρm0
for scalar potential VðϕÞ ¼ V0e−λϕ for the quintessence

field.Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. ρm0
has the dimension of inverse

length squared. Discussion on the unit of ρm0
can be found in the main text. Here, top hat collapse is represented by red dotted line

whereas ρm0

ρmmax
¼ 24 is represented by blue curves and ρm0

ρmmax
¼ 50 is represented by the black curves. Where ρmmax

is the value of ρm at

turnaround.
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dynamical quantities for different values of V0, we consider
ρm0

ρmmax
¼ 24, and λ ¼ 1. From Figs. 2 and 3, it can be

understood that, for a fixed value of ρm0, there exists a
V0 such that for all values of V0 < V0, the overdense region
can have a collapsing phase after the initial phase of
expansion. Therefore, for a fixed value of ρm0

, one cannot
consider any arbitrarily large value of V0 in order to model
the desired top-hat collapselike dynamics. The above
statement is also true for ρm0

since there exists a lower
limit ρm0

for a fixed value of V0. Therefore, one cannot
consider arbitrary large values of both the parameters ρm0

and V0 to model a top-hat collapselike dynamics. Hence,
in our model, we consider suitable small values of these
two parameters. The plots of a;ωϕ;

ρϕ
ρ̄ϕ
, and ωt with respect

to time for V0

Vmax
¼ 1.01, 1.02 are shown in Figs. 6(a)–6(d),

respectively. In Fig. 6(c), it can be seen that the density ratio
ρϕ
ρ̄ϕ

slowly increases with comoving time and stays close to

one throughout the total evolution of the overdense region.

The reason behind this increment of the value of the density
ratio is that the background density of the scalar field
decreases while the internal scalar field density approaches
a constant value. However, one can consider suitable
small values of V0 to make the density ratio close to
one throughout the evolution. Therefore the quintessence-
like scalar field in our model approximately behaves
like homogeneous dark energy. On the other hand, from
Fig. 6(b), we can see that inside the overdense region, the
equation of state of the scalar field ωϕ ∼ −1 throughout the
evolution, and that is the reason why the internal density of
the scalar field approaches to a constant value. Therefore,
internally, the scalar field behaves like a cosmological
constant Λ. In Sec. II, we discussed the homogeneous
dark energy scenario where the dark energy is the
cosmological constant. For this case, the solution of η
which is the ratio of virialized radius (RVir) and the
turnaround radius (Rmax) becomes

η ¼ 0.5 − 0.25q − 0.125q2 þOðq3Þ;

FIG. 9. Figure shows variation of different variables with variation of V0 for scalar potential VðϕÞ ¼ V0e−λϕ for the phantom field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. V0 has the dimension of inverse
length squared. Discussion on the unit of V0 can be found in the main text. Here the top hat collapse is represented by red dotted line
whereas for the blue curves V0

Vmax
¼ 1 with V0 ¼ :01, in inverse length squared unit, and for black curves V0

Vmax
¼ 1 with V0 ¼ :001, in

inverse length squared unit. Where Vmax is the value of VðϕÞ at turnaround.
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where q ¼ ðρDEρDM
Þ
a¼amax

. In our model, at the initial stage,

we get ρϕ0
¼ 9.990 × 10−4 and ρϕ0

¼ 9.990 × 10−3 for
V0

Vmax
¼ 1.01, 1.02, respectively. Therefore, initially,

ρϕ0
=ρm0

¼ 1.998 × 10−4 for V0

Vmax
¼ 1.01 and ρϕ0

=ρm0
¼

1.998 × 10−3 for V0

Vmax
¼ 1.02 which at the turnaround,

becomes 4.09 × 10−3 and 4.09 × 10−2, respectively.
Therefore, in our model, the value of η does not differ
much from that in the top-hat model where η ¼ 0.5. In the
top-hat model, the time interval taken by the overdense
region to reach half of its maximum scale factor is 2.40.
In our model, the time intervals are 2.52 and 2.79 for
V0

Vmax
¼ 1.01 and V0

Vmax
¼ 1.02, respectively. Therefore,

due to the effect of the quintessencelike scalar field,
the overdense region takes larger time to virialize.
Figure 6(d) shows that the total or effective equation of
state (ωt) of the two-fluid system stays close to zero
throughout the evolution. It should be noted that here
and throughout the remaining paper, we consider scale
factor a ¼ 1 at the initial time to solve the differential
Eqs. (43)–(46).

In Fig. 7, we show the evolution of a;ωϕ;
ρϕ
ρ̄ϕ
, and ωt for

λ ¼ 1 and λ ¼ 0.1. In this case, the values of ρm0

ρmmax
and V0

Vmax

are fixed at 24 and 1.01, respectively. The Figs. 7(a)–7(d)
show a similar type of behavior of a;ωϕ;

ρϕ
ρ̄ϕ
, and ωt

as we have seen in the previous case. In this case,
also the ratio ρϕ

ρ̄ϕ
stays close to one, and the ωϕ ∼ −1.

Consequently, for different values of λ, we can still say our
model approximately resembles the homogeneous dark-
energy model. Here, for λ ¼ 0.1, at t ¼ 0, we get
ρϕ0

¼ 9.999 × 10−4. Therefore, at the initial stage,
ρϕ0

=ρm0
¼ 1.999 × 10−4 and at turnaround time, this ratio

becomes 4.2 × 10−3. Therefore, similar to the previous
case, here also the value of η ∼ 0.5 and the time interval
taken by the overdense region to reach the virialized radius
is 2.69 that is 1.12 times greater than the virialization time
in top-hat collapse model.
The same similarity can be seen in Fig. 8 where we vary

the ρm0
. Therefore, observing the behavior of a;ωϕ;

ρϕ
ρ̄ϕ
, and

ωt for all three cases, it can be concluded that our model of

FIG. 10. Figure shows variation of different variables with variation of λ for scalar potential VðϕÞ ¼ V0e−λϕ for the phantom field.
Where amax is the maximum value of scale factor and tmax is the time when it will reach that value.
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two-fluid system consisting of pressureless matter and
quintessencelike scalar field approximately resembles the
homogeneous dark energy model.
In Figs. (9–11), we show the dynamics of a;ωϕ;

ρϕ
ρ̄ϕ
, andωt

for various values of V0; λ, and ρm0
in the presence of a

phantomlike scalar field. From Figs. 9(a)–9(d), 10(a)–10(d),
and 11(a)–11(d), it can be seen that similar to the previous
case here also ρϕ

ρ̄ϕ
∼ 1 and ωϕ ∼ −1. Therefore, the phantom-

like scalar field in our model also behaves like homogeneous
dark energy.

FIG. 11. Figure shows variation of different variables with variation of ρm0
for scalar potential VðϕÞ ¼ V0e−λϕ for the phantom field.

Where amax is the maximum value of scale factor and tmax is the time when it will reach that value. ρm0
has the dimension of inverse

length squared. Discussion on the unit of ρm0
can be found in the main text. Here, top hat collapse is represented by red dotted line

whereas ρm0

ρmmax
¼ 24 is represented by blue curves and ρm0

ρmmax
¼ 50 is represented by the black curves. Where ρmmax

is the value of ρm in turn

around.
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Till now what we have discussed deals with top-hat-like
collapse in the presence of quintessence or phantomlike
scalar fields. The ranges of potential parameter value and
the initial matter density, which gives rise to such kind of
collapse, are shown in Figs. 2 and 3. What happens if the
potential parameter value and the initial matter density does
not lie in the shaded region of Figs. 2 and 3? In such cases
we see that our model predicts that instead of gravitational
collapse, the spherical over dense patch starts to expand.
These patches expand forever producing voidlike struc-
tures, inside which the matter energy density is one order
less than the background matter density for some period.
Later the matter density goes down. For the phantom scalar
fields, it is seen that the dark energy density grows inside
the spherical expanding patch, when compared with the
background dark energy density. For quintessence fields
the dark energy density in the spherical patch becomes less
than the corresponding energy density outside of the patch.
If one assumes ρm0

has a wide distribution in space for
various nonlinear perturbations then, for a fixed V0 in the
shaded regions of Figs. 2, 3, one can have collapse or
expansion depending on the value of ρm0

. Our work
predicts that some regions of the Universe will collapse
gravitationally whereas other regions will expand eternally
to produce voids. For gravitational collapse of pressureless
matter in the absence of scalar fields, one only obtains
collapsing solutions.

VI. CONCLUSION

In this paper we have studied the gravitational dynamics of
a two component system consisting of pressure-less matter
and a scalar field, where the scalar field does not have any
direct couplingwith thematter component. Themotivation to
investigate this type of two-fluid dynamics is to understand
how at a certain cosmological epoch, dark energy affects
gravitational collapse of pressureless dark matter, where the
scalar field and the pressureless matter play the role of dark
energy and dark matter, respectively. We have chosen the
scalar field potential in such a way that it represents the
potential of quintessence- or phantomlike fields. In order to
model the dynamics of the primordial overdense regions of
dark matter in the presence of dark energy, we have chosen a
closed FLRW metric as the internal spacetime of the over-
dense region which is seeded by the two component system.
On the other hand, the background is modeled by flat FLRW
metric which is also seeded by the two components: pressur-
eless matter and a scalar field.
Previous authors have attempted this problem phenom-

enologically, where the guiding equation for the gravita-
tional collapse of the dark matter component in presence of
the scalar field was obtained from the Friedmann equations,
but the complete relativistic framework was not used. The
primary reason for not using the full general relativistic
machinery is related to the fact that the dark energy
components do not collapse with the dark matter part.

In such a case one cannot use an isolated, closed FLRW
spacetime which collapses towards a virial state. In the
present work we have tried to implement a full general
relativistic scheme to monitor the spherical collapse of the
dark matter component in presence of the scalar field, up to
virialization of the dark matter sector. To incorporate the
relativistic treatment we have abandoned the idea of an
isolated, closed FLRW spacetime collapse. Although we
have used the FLRW spacetime with positive spatial
curvature as the collapsing spacetime, we have matched
this spacetime with an external, radiating Vaidyia spacetime
at a suitable radial distance. In doing so the system has
become an open system which can radiate. In order to
describe a matter flux through the boundary of the over-
dense region, in the immediate neighborhood of the over-
dense region, we consider an external generalized Vaidya
spacetime. We consider the potential of the scalar field
VðϕÞ ¼ V0e−λϕ which is the typical potential of quintes-
sencelike and phantomlike scalar fields. We solve the
Friedmann equations considering the above type of poten-
tial to investigate the dynamics of the overdense region.
In order to compare our results with that of the top-hat
collapse model, we restrict ourselves to investigating those
scenarios where the overdense region collapses after an
initial expansion phase. The collapsing spacetime is homo-
geneous and isotropic up to the matching radius, after
which the spacetime remains isotropic but becomes
inhomogeneous.
In our scheme, the collapsing dark matter affects the

dark energy sector locally and induces radiation in the
Vaidya region. Our work predicts that there will be over-
dense regions in the Universe which will not collapse, they
will expand forever producing voids. Which regions will
collapse and which regions will not collapse depends upon
the potential parameter V0 and the initial value of the local
dark matter density ρm0

. The nature of the outgoing flux,
in the Vaidya region, will depend on whether there is a
collapse or an expansion. Gravitational collapse in general
always produce unclustered dark energy kind of a model,
where the dark energy density inside the collapsing core
remains practically the same as that of the background dark
energy density. On the other hand expanding patches can
have clustering of dark energy as in these cases, the
expanding patches have different dark energy density
compared to the background spacetime. The Vaidya radi-
ation from collapsing regions are an unique prediction of
our model and in near future we will like to work on the
observational side of this problem.
In this paper, we qualitatively discuss our model of

spherical gravitational collapse of a two component system
and do not attempt any comparison with observational data.
One straightforward comparison can be done by comparing
the theoretical value of the effective equation of state wt
at the virialized state with the observed equation of state
of the overdense regions in the galactic cluster scale.
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This comparison would give constraints on the values of
V0; λ, and ρm0

and that would be important to understand
the effects of the homogeneous dark energy on structure
formation at the galactic cluster scale. We will discuss this
phenomenological aspect in the future.
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