
Extended bodies with spin induced quadrupoles
on circular equatorial orbits in Kerr spacetime

Iason Timogiannis,1,* Georgios Lukes-Gerakopoulos ,2,† and Theocharis A. Apostolatos1,‡
1Section of Astrophysics, Astronomy, and Mechanics, Department of Physics,
University of Athens, Panepistimiopolis Zografos GR15783, Athens, Greece

2Astronomical Institute of the Czech Academy of Sciences,
Boční II 1401/1a, CZ-141 00 Prague, Czech Republic

(Received 21 June 2023; accepted 11 September 2023; published 11 October 2023)

This work discusses the motion of extended test bodies as described by the Mathisson-Papapetrou-
Dixon (MPD) equations in the pole-dipole-quadrupole approximation. We focus on the case that the
quadrupole is solely induced by the spin of the body which is assumed to move on a circular equatorial orbit
in a Kerr background. To fix the center of mass of the MPD body we use two different spin supplementary
conditions (SSCs): the Tulczyjew-Dixon SSC and the Mathisson-Pirani SSC. We provide the frequencies
of the circular equatorial orbits for the pole-dipole-(spin induced) quadrupole approximation of the body
for both SSCs. In the process we develop an explicit four-velocity four-momentum relation for a pole-
dipole-quadrupole body under the Mathisson-Pirani SSC.
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I. INTRODUCTION

The discussion of finite size effects of a body moving in a
curved background dates back at least to the pioneering
work of Mathisson [1]. Mathisson introduced a “gravita-
tional skeleton” for the extended body, i.e., a multipole
expansion of the body’s energy-momentum tensor Tμν

around a reference point zμ. This point is called centroid
and corresponds to the center of mass of the body. In
practice, the multipole expansion is truncated at a certain
order, which in our study is the quadrupole, and all the
higher multipoles are ignored. The motion of this test body
in a curved spacetime is described by the so-called
Mathisson-Papapetrou-Dixon (MPD) equations [1–3].
When only gravitational interactions are considered, the
MPD equations in the pole-dipole-quadrupole approxima-
tion read

ṗμ ¼ −
1

2
Rμ

ναβuνSαβ þ Fμ; ð1Þ

Ṡμν ¼ 2p½μuν� þ Fμν; ð2Þ

where Rμ
ναβ is the Riemann tensor of the background

gravitational field, pμ is the four-momentum of the test
body, ˙ ¼ uμ∇μ denotes the covariant derivative along the
four-velocity uμ, and Sμν represents the spin tensor of the

body. The quadrupole contribution to the MPD equations
comes only from the terms Fμ ¼ − 1

6
Jαβγδ∇μRαβγδ and

Fμν ¼ 4
3
Jαβγ½μRν�

γαβ, with Jαβγδ designating the quadrupole
tensor. There is no corresponding evolution equation for the
quadrupole tensor, which is simply defined by the matter
structure of the body [4,5].
The MPD equations are an underdetermined set of

evolution equations needing in general four additional
closing relations [6]. By choosing uμ to represent the
four-velocity of the body, i.e., by selecting the evolution
parameter of the MPD equations to be the proper time, we
have introduced the constraint uμuμ ¼ −1. The other three
constraints1 originate from the imposed spin supplementary
condition (SSC), which fixes the center of the mass of the
body. A SSC is given by the general relation

VμSμν ¼ 0; ð3Þ

where Vμ is a future oriented timelike vector, which is often
accompanied by the normalization condition VμVμ ¼ −1.
Having defined the reference vector Vμ, a four-vector of

the spin can be defined as

Sμ ≔ −
1

2
ϵμνρσVνSρσ; ð4Þ

while the inverse relation of Eq. (4) reads
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1Only three of the four equations of a SSC described by Eq. (3)
are linearly independent.
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Sρσ ¼ −ϵρσνκSνVκ; ð5Þ

where ϵμνρσ is the Levi-Civita tensor. The latter relation
after some calculations entails that

SμνSνβ ¼ SμSβ − S2hμβ; ð6Þ

where hμβ ¼ δμβ þ VμVβ is the space projector orthogonal
to Vμ and S2 ¼ 1

2
SμνSμν ¼ SμSμ is the square of the

magnitude of the spin. Moreover, with the help of the
reference vector the quadrupole moment can be decom-
posed in the following manner [7,8]:

Jαβγδ ¼ ταβγδ − 3V ½αQβ�½γVδ� − V ½αΠβ�γδ − V ½γΠδ�αβ; ð7Þ

where Qμν is the mass quadrupole, Πμνκ is the flow (or
current) quadrupole, and ταβγδ is the stress quadrupole [9].
In this work we focus on the spin induced quadrupole

model, for which the mass quadrupole reads

Qβγ ¼ cS2S
β
αSαγ; ð8Þ

where cS2 is a constant depending on the internal structure
of the body [4]. Note that due to Eq. (6) the right-hand side
can be rewritten in terms of the spin four-vector. We are
going to exploit this observation in our investigation of
circular equatorial orbits (CEOs).
Studies of CEOs are an important first step in the

comprehension of the orbital dynamics around a black
hole [4,10–16]. This fact is especially pronounced in the
modeling of extreme mass ratio inspirals [17–23], in which
a stellar compact object, such as a black hole or a neutron
star, inspirals in the background of a supermassive black
hole. Even when calibrating the gravitational wave wave-
forms, the starting points are CEOs [24,25]. Hence, in our
study we focus on CEOs of an extended test body in a pole-
dipole-(spin induced) quadrupole approximation around a
Kerr black hole.
Our study on this topic differs from previous ones

[4,13,26] in several ways. We do not consider only the
Tulzcyjew-Dixon (TD) SSC [27,28]

pμSμν ¼ 0; ð9Þ

but also the Mathisson-Pirani (MP) one [1,29],

uμSμν ¼ 0: ð10Þ

We do not use the effective potential approach to find CEOs
for the TD SSC, but an analytic treatment introduced in
Ref. [30] and later further developed in our work [15]. This
treatment is exact in the framework of the pole-dipole-(spin
induced) quadrupole approximation and does not employ
any approximation in powers of the spin magnitude S.

The rest of the article is organized as follows. Section II
briefs the four-velocity four-momentum relation for a pole-
dipole-quadrupole body approximation under the TD SSC
presented in Ref. [4] and introduces such a relation under
the MP SSC as well. Section III is divided into two main
parts; the first subsection provides a novel procedure on
how to find CEOs for a pole-dipole-(spin induced) quadru-
pole body under the TD SSC, while the second subsection
provides the CEOs for such a body under the MP SSC for
the first time. Finally, Sec. IV summarizes the findings.
Units and notation:We use geometric units, in which the

speed of light and the gravitational constant are normalized
to c ¼ G ¼ 1. The Riemann tensor is defined as
Rμ
νκλ¼Γμ

καΓα
λν−∂λΓ

μ
κν−Γμ

λαΓα
κνþ∂κΓ

μ
λν, while the Christoffel

symbols are computed from the metric with signature
ð−;þ;þ;þÞ. Greek indices run from 0 to 3. The Levi-
Civita tensor is given by ϵμνρσ ¼ ffiffiffiffiffiffi−gp

ϵ̃μνρσ, where ϵ̃μνρσ is
the Levi-Civita symbol and g is the determinant of the
background metric. In the present paper the background
metric coincides with the Kerr black hole metric. The
central black hole’s mass is denoted byM, while for the test
body we employ the two notions of mass μ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−pμpμ

p
andm ≔ −uμpμ. To be consistent with our definition of the
reference vector, for the TD SSC we use Vμ ¼ pμ=μ.
Dimensionless quantities are denoted by the symbol ^. For
instance, the dimensionless Kerr parameter a is denoted as
â ¼ a=M and the dimensionless radius r is similarly
denoted as r̂ ¼ r=M. However, for the dimensionless
measure of the spin we follow a different convention
depending on the SSC: for the TD SSC the dimensionless
spin measure is denoted as σ ¼ S

μM, while for the MP SSC

we use σ ¼ S
mM. In a similar fashion, we set ĉS2 ¼ μcS2 for

the TD SSC and ĉS2 ¼ mcS2 for the MP SSC. Whenever
Jαβγδ; Fκ; Fνκ is used in our work, the general pole-dipole-
quadrupole case is considered.

II. VELOCITY-MOMENTUM RELATIONS

Even if the MPD equation system closes by choosing a
SSC and an evolution parameter, it is useful to have a
relation between the four-velocity and the four-momentum
in order to evolve the MPD equations numerically. Such
relations have been provided for the TD SSC in the pole-
dipole case [9] and in the pole-dipole-quadrupole case [4],
while for the MP SSC the pole-dipole got its velocity
momentum relation recently in Ref. [31]. In this section we
review the existence of a uν ¼ fðpνÞ relation by taking
advantage of the analytical framework set up in [4,31].
Below, we treat each SSC separately.

A. TD SSC

For the Tulczyjew-Dixon SSC, Steinhoff and Puetzfeld
derived in [4] a momentum-velocity relation, analogous to
the pole-dipole case, by defining the quantity
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p̃ν ¼ 1

μ2
ðmpν þ FκSνκ − pκFνκÞ: ð11Þ

The desired relation reads

uν ¼ p̃ν þ 2RκλμσSνκSμσp̃λ

4μ2 þ RαβγδSαβSγδ
: ð12Þ

Note that for the pole-dipole-quadrupole approximation in
general Sνuν ≠ 0. To prove this statement one starts by
contracting the evolution equation of the spin tensor Eq. (2)
with the covariant four-momentum pμ in order to get

pμṠμν ¼ −μ2uν þmpν þ pμFμν: ð13Þ

By virtue of Eq. (9) pμṠμν ¼ −ṗμSμν, while the contraction
of Eq. (13) with the spin Sν finally yields

Sνuν ¼
pμSνFμν

μ2
: ð14Þ

As a result, the quadrupole contribution implies that while
Sνpν ¼ 0, Sνuν ≠ 0, contrary to the pole-dipole approxi-
mation where

Sνpν ¼ Sνuν ¼ 0; ð15Þ

under the TD and MP SSCs. In Sec. III we shall see that the
demand for CEOs, along with its associated assumptions for
the spin inducedquadrupole, eventually rendersEq. (15) valid.
Notice that Eq. (12) combined with the normalization

condition of the four-velocity, i.e., uνuν ¼ −1, implies a
relation between μ (dynamical mass) and m (kinematical
mass). The aforementioned expression reads

m2

�
F 4

F 2
0

−
1

μ2

�
þm

�
F 2

F 0

þ F 5

F 2
0

�

þ
�
F 1 þ

F 3

F 0

þ F 6

F 2
0

þ 1

�
¼ 0; ð16Þ

with the corresponding coefficients given by

F 0 ¼ 4μ2 þ RαβγδSαβSγδ;

μ4F 1 ¼ FκSμαFαSμκ − 2FκFμνpνSμκ þ FμλpνpλFμν;

μ2F 2 ¼ 4RκλνσSμκSνσpλðSμαFα − FμβpβÞ;
μ2F 3 ¼ 4RκλνσSμκSνσðFγSλγ − pδFλδÞðSμαFα − FμβpβÞ;
μ4F 4 ¼ 4RκλνσSμκSνσRπ

ρϵζSμπS
ϵζpλpρ;

μ4F 5 ¼ 4RκλνσSμκSνσRπ
ρϵζSμπS

ϵζpλðFαSρα − pβFρβÞ þ 4RκλνσSμκSνσRπ
ρϵζSμπS

ϵζpρðFξSλξ − pτFλτÞ;
μ4F 6 ¼ 4RκλνσSμκSνσRπ

ρϵζSμπS
ϵζFαSραðFξSλξ − pτFλτÞ − 4RκλνσSμκSνσRπ

ρϵζSμπS
ϵζpβFρβðFξSλξ − pτFλτÞ:

For a brief cross-check notice that Eq. (16) reduces to the
expression given in [32], when Jαβγδ ¼ 0. In general,
Eq. (16) has two distinct roots mþ, m−. The physically
accepted solution, however, is mþ, since it is the respective
positive one in the pole-dipole limit.

B. MP SSC

The derivation of an explicit momentum-velocity relation
under the MP closure choice, even in the pole-dipole
approximation, has been missing for almost a century.
This rendered numerical calculations, for instance, more
cumbersome than for the TD SSC choice. It was not until
recently that Costa et al. [31] shed light on the matter and
extracted the long sought relation for the pole-dipole
approximation. In this part of the article we attempt to derive
an analogous relation for the pole-dipole-quadrupole
approximation, based on fundamental principles. In addition,
in Appendix Awe present an alternative way of treating the
problem, by taking into account the framework employed in

[31] for the pole-dipole case, that leads to the same result as
given in this section.
Our starting point is Eq. (6), implemented in the MP

reference frame, which yields

SμνSνβ ¼ SμSβ − S2ðδμβ þ uμuβÞ: ð17Þ

The contraction of Eq. (17) with the four-momentum pβ

gives

muν ¼ pν þ SμβpβSνμ − SβpβSν

S2
; ð18Þ

which is the desirable result. Wewish to underline that in the
pole-dipole case, where Sβpβ ¼ 0, the last term vanishes and
Eq. (18) is identical to the expression in [31]. The last term in
Eq. (18) pertains to the quadrupole tensor through Fμν. To
confirm this, one contracts the evolution equation of the spin
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tensor, Eq. (2), with the covariant four-velocity uν in order
to get

uνṠμν ¼ −pμ þmuμ þ uνFμν: ð19Þ

The adoption of MP SSC yields uνṠμν ¼ −u̇νSμν, and the
contraction of Eq. (19) with Sμ reveals

Sμpμ ¼ uνSμFμν: ð20Þ

Furthermore, if we contract Eq. (18) with the covariant
component of the four-momentum pν, we conclude that

m2 ¼ μ2 −
1

S2
½SμβpνpβSνμ − ðpνSνÞ2�: ð21Þ

Even if in the right-hand side (RHS) of Eq. (18) uμ does
not appear explicitly, Eq. (18) is not on the same footing as
its pole-dipole counterpart, due to the emergence of Sμ on
the RHS. Namely, the RHS of Eq. (18) should be only
function of pμ and Sμν; the Sμ presence indirectly implies
the existence of uμ. Despite this shortcoming, we found it
very useful in our study of CEOs discussed in the next
section.

III. CIRCULAR EQUATORIAL ORBITS

The study of an extended spinning body moving on a
CEO in a fixed background consists of selecting the
appropriate initial conditions for the variables fzν; pν; Sμνg,
so that circular equatorial motion is obtained upon the
evolution of the MPD equations. The vast majority of
attempts in the literature include effective potential meth-
ods [4,12–14,26]. In our approach we take advantage of an
algorithm introduced in Ref. [30] and improved in [15,16]
for the pole-dipole approximation. We work in Kerr
spacetime using Boyer-Lindquist coordinates, where the
metric components are functions of r and θ, and more
precisely

gtt ¼ −1þ 2Mr
Σ

; gtϕ ¼ −
2aMr sin2 θ

Σ
; gθθ ¼ Σ;

gϕϕ ¼
Λ sin2 θ

Σ
; grr ¼

Σ
Δ
;

with the parameters

Σ ¼ r2 þ a2 cos2 θ;

Λ ¼ ϖ4 − a2Δ sin2 θ;

Δ ¼ ϖ2 − 2Mr;

ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
:

The present study is restricted in the equatorial plane, with
the spatial coordinates described by r ¼ const, θ ¼ π=2,
and ϕ ¼ Ωt. The orbital frequency of the extended,
spinning body is Ω ¼ uϕ

ut , whereas the radial and polar
components of the four-velocity are set to ur ¼ 0 and
uθ ¼ 0. Under these assumptions the normalization con-
dition of the four-velocity, i.e., uνuν ¼ −1, entails that

ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕΩ − gϕϕΩ2

q : ð22Þ

In addition, we demand that the spin four-vector,
Sν ¼ Sθδνθ, is aligned (or antialigned) with the angular
momentum Jz, which by convention is always pointing
along the positive z direction in our setup. Subsequently,
Eq. (5) manifestly shows that the spin tensor is charac-
terized by four nonvanishing components, for both closure
choices examined here

Str ¼ −Srt ¼ −S
ffiffiffiffiffiffiffiffiffiffi
−
gθθ
g

r
Vϕ; ð23Þ

Srϕ ¼ −Sϕr ¼ −S
ffiffiffiffiffiffiffiffiffiffi
−
gθθ
g

r
Vt: ð24Þ

Under the restrictions imposed by the introduced setup,
the set of the MPD Eqs. (1) and (2) leads to trivial identities,
apart from the ṗr and Ṡtϕ components. Note that this
behavior was also present in the pole-dipole case and was
outlined in [15,16,30].

A. CEOs under TD SSC

For the TD SSC the reference four-vector has to be
replaced by Vν ≔ pν=μ. The evolution equation of the
dynamical rest mass is described by [4]

μ̇ ¼ μṘρβγδJρβγδ

6m
−
4ṗαpβR

½α
γπκJβ�γπκ

3μm
; ð25Þ

while the covariant derivative of the spin length reads [4]

SṠ ¼ 2SαβRα
ρκλJβρκλ

3
: ð26Þ

The difference in the signs of Eqs. (25) and (26) compared
to the corresponding relations found in [4] originates from
the different signature convention of the metric tensor. The
demand for CEOs combined with the imposed TD SSC
renders both μ and S conserved quantities, i.e., μ̇ ¼ 0,
Ṡ ¼ 0. The latter is not generally true within the pole-
dipole-quadrupole regime. In addition, Eq. (12) implies that
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ur ∝ pr as well as uθ ∝ pθ, which are features that also
hold in the pole-dipole case.
For the nonvanishing components of the MPD Eqs. (1)

and (2) one has

3cS2MS2½r2μ2 þ 5a2ðptÞ2 − 2að5a2 þ 4r2Þptpϕ

þ ð5a4 þ 8a2r2 þ 3r4ÞðpϕÞ2�
¼ 2 μMr2pt½−ð3aSþ μr2Þut þ ð3a2Sþ r2Sþ aμr2Þuϕ�
þ 2μr2pϕ½Mð3a2Sþ 2r2Sþ aμr2Þut
− ð3a3MSþ 3aMr2Sþ μMa2r2 − μr5Þuϕ�; ð27Þ

3cS2MS2½aðptÞ2 − ð2a2 þ r2Þptpϕ þ aða2 þ r2ÞðpϕÞ2�
¼ μr2pϕ½ðaMS − μr3Þut þ Sðr3 −Ma2Þuϕ�
þ μr2pt½ðaMSþ μr3Þuϕ −MSut�: ð28Þ

Notice that when cS2 ¼ 0, Eqs. (27) and (28) reduce to
Eqs. (19) and (20) from [30]. To numerically solve the
system of Eqs. (27) and (28) it is convenient to introduce
the quantity W ¼ pϕ=pt, whereas the definition of the
dynamical rest mass μ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−pμpμ

p
correlates the compo-

nent pt with W,

pt ¼ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gtt − 2gtϕW − gϕϕW2

q : ð29Þ

We use the SOLVE routine of Mathematica in order to
solve the nonlinear system of Eqs. (27) and (28) for Ω > 0
and W > 0, with a, r, ĉS2 , S as fixed parameters. First, to
check our scheme we compare it with the frequency of the
innermost stable circular orbit (ISCO) Ω̂ISCO given in
Table I of [13]. In particular, we solve numerically the
system of Eqs. (27) and (28) for selected values of â, σ, and
ĉS2 , while we adopt the r̂ISCO results from Table I of [13].
Two cases of ĉS2 have been taken into consideration:
ĉS2 ¼ 1, which corresponds to a black hole for the TD
SSC, and ĉS2 ¼ 6 that describes a neutron star for the TD
SSC [13,33]. Notice that the orbital frequencies derived by
the proposed method are in agreement up to the third
decimal place with the approximate OðS3Þ analysis of Bini
et al. [13]. This order of agreement is expected, since the
spin of the secondary has been set to jσj ¼ 0.1 in the
examples given in [13]. Another source of discrepancy
could be the slightly different definition of the spin induced
quadrupole in Ref. [13] contrasted to Eq. (8) of the present
article. However, the fact that we have reached the optimal
possible concurrence between our exact approach and the

OðS3Þ approach of Ref. [13], implies that the different
definitions do not influence the reached agreement. For a
future possible comparison we also provide Table II,
while some further numerical examples are given in
Appendix B.

TABLE I. Dimensionless innermost stable circular orbit radius
along with its associated frequency for an extended spinning
body governed by the TD SSC, for two special cases of ĉS2 .

ĉS2 ¼ 1

r̂ISCO MΩISCO

σ

â −0.1 0 0.1 −0.1 0 0.1

0 6.1643 6 5.8377 0.06596 0.06804 0.07012
0.1 5.8313 5.6693 5.5094 0.07120 0.07354 0.07586
0.3 5.1351 4.9786 4.8248 0.08466 0.08765 0.09063
0.5 4.3824 4.2330 4.0876 0.10454 0.10859 0.11258
0.7 3.5259 3.3931 3.3002 0.13829 0.14388 0.14724
0.9 2.4018 2.3209 2.2427 0.21925 0.22544 0.23152

ĉS2 ¼ 6

r̂ISCO MΩISCO

σ

â −0.1 0 0.1 −0.1 0 0.1
0 6.1893 6 5.8627 0.06553 0.06804 0.06965
0.1 5.8565 5.6693 5.5346 0.07072 0.07354 0.07532
0.3 5.1604 4.9786 4.8501 0.08400 0.08765 0.08990
0.5 4.4065 4.2330 4.1122 0.10366 0.10859 0.11155
0.7 3.5438 3.3931 3.2815 0.13720 0.14388 0.14818
0.9 2.4094 2.3209 2.2504 0.21801 0.22544 0.23011

TABLE II. Orbital frequencies Ω̂ of a spinning body (black
hole or neutron star) moving in a corotating/counterrotating
circular equatorial orbit of r̂ ¼ 10, under the TD SSC.

ĉS2 ¼ 1

â

σ −0.9 0 0.9

−0.9 0.03390 0.03260 0.03135
−0.1 0.03275 0.03177 0.03085
þ0.1 0.03234 0.03147 0.03064
þ0.9 0.03027 0.02993 0.02956

ĉS2 ¼ 6

â

σ −0.9 0 0.9
−0.9 0.03105 0.03038 0.02954
−0.1 0.03271 0.03174 0.03082
þ0.1 0.03231 0.03144 0.03062
þ0.9 0.02766 0.02790 0.02790

EXTENDED BODIES WITH SPIN INDUCED QUADRUPOLES ON … PHYS. REV. D 108, 084023 (2023)

084023-5



B. CEOs under MP SSC

Under the MP SSC the reference four-vector Vν coin-
cides with the four-velocity uν of the spinning body, i.e.,
Vν ≔ uν. For this particular SSC the evolution equation of
the kinematical rest mass m reads [4]

ṁ ¼ ṘαβγδJαβγδ

6
−
4u̇βuγR½β

ρκλJγ�ρκλ

3
; ð30Þ

whereas Eq. (26) is still valid. It is worth noting that the
CEOs scenario directly leads to the conservation of the
kinematical rest mass and the spin measure, i.e., ṁ ¼ 0,
Ṡ ¼ 0. Moreover, Eq. (18) guarantees proportionality
between the radial and polar components of the four-
momentum and the four-velocity, or in other words ur ∝ pr

and uθ ∝ pθ. Following the CEO setup presented at the
beginning of Sec. III the two nontrivial MPD equations for
the MP case read

3cS2MS2½r2 þ 5a2ðutÞ2 − 2að5a2 þ 4r2Þutuϕ
þ ð5a4 þ 8a2r2 þ 3r4ÞðuϕÞ2� ¼ 6MSr2ð2a2
þ r2Þutuϕ − 6aMSr2ðutÞ2 − 6aMSr2ða2 þ r2ÞðuϕÞ2
− 2Mr4ptðut − auϕÞ þ 2r4pϕ½aMut þ ðr3 −Ma2Þuϕ�;

ð31Þ

3cS2MS2½aðutÞ2 − ð2a2 þ r2Þutuϕ þ aða2 þ r2ÞðuϕÞ2�
¼ r5ðptuϕ − pϕutÞ −MSr2ðutÞ2
þ 2aMSr2utuϕ þ Sr2ðr3 −Ma2ÞðuϕÞ2: ð32Þ

The definition of the kinematical mass m ≔ −pνuν, com-
bined with one of Eqs. (31) and (32) can be used as a
constraint in order to eliminate pν. Furthermore, employing
Eq. (22), along with the expression Ω ¼ uϕ=ut, leads to the
construction of a quartic equation with respect to the orbital
frequency as can be seen below

ζ4Ω4 þ ζ3Ω3 þ ζ2Ω2 þ ζ1Ωþ ζ0 ¼ 0; ð33Þ

where

ζ4 ¼ −2mr10 − 2ma2r8 þ 2Mr7ð3cS2S2 þ 6aS −ma2Þ þMa2r5ð27cS2S2 þ 2ma2 þ 14aSÞ þ 2a2M2r4ð2ma2

þ 3aS − 6cS2S
2Þ þ 6MSa4r3ðaþ 6cS2SÞ þ 2SM2a4r2ð5aþ 6cS2SÞ þ 3McS2S

2a4rð5a2 − 4M2Þ þ 24cS2S
2M2a6;

ζ3 ¼ −2½−Sr8 − 2Mr7ðma − 3SÞ þ aMr5ð2ma2 þ 12aSþ 15cS2S
2Þ þ aM2r4ð8ma2 þ 9aS − 12cS2S

2Þ
þ 6MSa3r3ðaþ 5cS2SÞ þ 4SM2a3r2ð5aþ 6cS2SÞ þ 3McS2S

2a3rð5a2 − 8M2Þ þ 48cS2S
2M2a5�;

ζ2 ¼ 2mr8 − 2Mmr7 þ 3MSr5ð2aþ cS2SÞ þ 6M2r4ð4ma2 þ 3aS − 2cS2S
2Þ þ 9McS2S

2a2r3

þ 12SM2a2r2ð5aþ 6cS2SÞ − 72cS2S
2a2M3rþ 144cS2S

2M2a4;

ζ1 ¼ −2M½−2r5ðmaþ SÞ þMr4ð8amþ 3SÞ − 3aSr3ð2aþ 3cS2SÞ þ 4aSMr2ð5aþ 6cS2SÞ
− 3acS2S

2rð5a2 þ 8M2Þ þ 48McS2S
2a3�;

ζ0 ¼ M½−2mr5 þ 4Mmr4 − 3Sr3ð2aþ cS2SÞ þ 2MSr2ð5aþ 6cS2SÞ − 3cS2S
2rð5a2 þ 4M2Þ þ 24McS2S

2a2�:

It is worth noticing that Eq. (33) reduces to Eq. (27) of
[15] in the pole-dipole approximation limit, i.e., when
cS2 ¼ 0. Such an equation can be solved analytically in
order to derive the orbital frequencies of an extended
spinning body moving in the equatorial plane of a super-
massive black hole. These solutions are provided in our

work as a Supplemental Material in a Mathematica note-
book [34]. By applying a similar criterion as in
Refs. [16,31], that is, by using the limit M → 0, a → 0,
we find that two of the four solutions are physical, since in
the aforementioned limit we arrive at Ω → 0, and two
nonphysical, since in this limit we have Ω ≠ 0. In

TABLE III. Orbital frequencies Ω̂ of a spinning body moving in
a corotating/counterrotating circular equatorial orbit of r̂ ¼ 10,
under the MP SSC.

ĉS2 ¼ 1

â

σ −0.9 0 0.9

−0.9 0.03468 0.03320 0.03185
−0.1 0.03276 0.03178 0.03085
þ0.1 0.03235 0.03148 0.03065
þ0.9 0.03098 0.03049 0.03001

ĉS2 ¼ 6

â

σ −0.9 0 0.9
−0.9 0.03565 0.03398 0.03252
−0.1 0.03277 0.03179 0.03086
þ0.1 0.03236 0.03149 0.03066
þ0.9 0.03192 0.03122 0.03063
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Refs. [16,31] it has been shown using numerics that in the
pole-dipole approximation the physical solutions led to
nonhelical orbits; in the pole-dipole-(spin induced) quadru-
pole we may postulate the same thing, i.e., that the physical
solutions are also the nonhelical ones, since we retrieve the
pole-dipole solutions in the limit cS2 ¼ 0. Additionally, in
Figs. 1 and 2 included in Appendix B the curves for the TD
and MP SSCs tend to coincide as jσj gets smaller. For a
possible future comparison we provide some numerical
results for the MP cases in Table III as well. Note that each
SSC appears to give a different value of cS2 for each type of
object as a black hole or a neutron star [33]. It is beyond the
scope of this work to make the correspondence for the MP
SSC between the cS2 and the type of object it describes.

IV. CONCLUSIONS

The present article intently examines the motion of
extended bodies in general relativity. Namely, we shed
light on the problem of finding circular equatorial orbits in
Kerr spacetime, for a spinning body described by a pole-
dipole-(spin induced) quadrupole approximation. The
analysis is based on an algorithm developed in [30] and
improved in [15,16]. Two frequently employed spin sup-
plementary conditions have been taken into consideration;
the TD condition and the MP condition.
Primarily, for an extended spinning test body governed

by the TD SSC we derive a correlation between the
dynamical rest mass μ and the kinematical rest mass m,
which is in agreement with its pole-dipole counterpart [32].
In addition, it is shown that for the concept of circular
equatorial orbits investigated here, μ and the spin magnitude
S are constants of motion. This fact is not generally valid
within the pole-dipole-quadrupole regime. Furthermore, in
Sec. III we discuss the process of computing the orbital
frequencies of a spinning body moving on a circular orbit on
the equatorial plane of a supermassive Kerr black hole. It is
worth noting that this is the first attempt for a nonapprox-
imative analytical formulation of such a problem in the
literature. The results presented in Table I seem to be in
accordance with the approximate OðS3Þ method introduced
in [13].
The notion of circular equatorial orbits of a pole-dipole-

(spin induced) quadrupole test body under the imposal of
the MP SSC has been an uncharted territory for the
community. In this study we employ the findings of
[15,16,30] to calculate the orbital frequencies of a spinning
body moving in the background of a Kerr black hole. This
calculation culminates in obtaining the solutions of a
quartic polynomial, according to Eq. (33). In the procedure
of achieving this very first analytical treatment of the
problem hitherto, we show that the nonhelical CEOs under
the MP SSC are characterized by two conserved quantities;
the kinematical rest mass of the test body m and its spin
magnitude S.

In principle, the algorithm we used in this work to find
CEOs for a pole-dipole-(spin induced) quadrupole in a Kerr
background could be used for other SSCs than the TD and
MP ones. The MPD equations for CEOs in a Kerr back-
ground reduce to two nontrivial equations, which depend
on uμ, pμ, and Vμ. In the case of TD and MP SSCs Vμ

coincides with pμ and uμ, respectively. Hence, in these two
cases Vμ does not introduce extra unknowns into the
system. For other SSCs this is not, in general, the case
anymore, and one has to deal with extra unknowns, which
increases the complexity of the problem and might render it
not solvable. Even in the pole-dipole approximation it has
been shown in Ref. [15,16] that it is much more difficult to
obtain the orbital frequencies for CEOs, when we consider
other SSC than the TD or the MP one.
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APPENDIX A: ALTERNATIVE DERIVATION OF
A MOMENTUM-VELOCITY RELATION FOR

THE MP SSC

The main goal of Appendix A is the reproduction of
Eq. (18) in the spirit of [31]. For that purpose, one starts by
taking the covariant derivative of Eq. (5) with Vν ≔ uν and
substitutes in Eq. (2) in order to get

pμuν − pνuμ þ Fμν ¼ ϵμναβðu̇αSβ þ uαṠβÞ: ðA1Þ
The contraction of Eq. (A1) with the quantity ϵκλμνSλ leads
to an expression for the four-acceleration, generalized in
the pole-dipole-quadrupole case

u̇ν ¼ −
2ṠμSνuμ þ 2pαSνα þ ϵνλαβSλFαβ

2S2
: ðA2Þ

In addition, the contraction of Eq. (2) with the four-velocity
uμ yields

pν ¼ muν − u̇μSμν − uμFμν; ðA3Þ

where the relation uμṠμν ¼ −u̇μSμν (only valid for the MP
SSC) has been taken into account. The combination of
Eqs. (A2) and (A3) gives

muν ¼ pν þ uμFμν þ SμαSνμpα

S2
−
ϵμκαβSκSμνFαβ

2S2
: ðA4Þ

Note that if one takes advantage of the definition of the spin
vector Eq. (4), Eq. (A4) can be reexpressed in terms of the
spin tensor
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muν ¼ pν þ SμαSνμpα

S2
þ uαSβSνFαβ

S2
: ðA5Þ

For the last step of the calculation Eq. (20) is implemented
in Eq. (A5), which leads to Eq. (18).

APPENDIX B: NUMERICAL EXAMPLES

In Appendix B we make a detailed discussion on our
numerical findings, which in Secs. III A and III B were
briefed into Tables I–III. The initial motivation has been to
show that the results presented in the aforementioned tables
are sound and not numerical artifacts. We expect that curves
demonstrating the orbital frequency of a CEO as a function
of the spin measure σ for a fixed radius should be smooth
without discontinuities. Figures 1 and 2 illustrate such
curves for the radius r̂ ¼ 10 of a CEO achieved under the
TD SSC (dashed black curves) and the MP SSC (dotted red
curves). In Fig. 1 we set ĉS2 ¼ 1, while in Fig. 2 we use
the value ĉS2 ¼ 6. From the smooth behavior of the plots,

we deduce that the results of the aforementioned tables
are sound.
An interesting outcome from these plots, when con-

trasted with the corresponding pole-dipole results, is that
the frequency curves produced under the different formal-
isms (TD SSC and MP SSC) appear to have different
curvatures. Namely, in our previous work [16] we have
concluded that within the limits of the pole-dipole approxi-
mation for given radius r̂, CEOs under the TD and MP
SSCs agree up to order Oðσ2Þ in the orbital frequency
expansions. Since the absolute value of the higher order
coefficients in the expansion in σ become smaller as the
order increases for a pole-dipole body [15,16], the change
in the curvature shown in Figs. 1 and 2 indicates that the
frequency agreement between the TD and MP SSCs in the
pole-dipole-(spin induced) quadrupole case should be
smaller than in the pole-dipole case; i.e., it should be less
than Oðσ2Þ without the proper correction in position and
spin. However, this discrepancy might simply show that the
same value of ĉS2 for the TD SSC and the MP SSC does not

FIG. 1. The top panel depicts the shift of the orbital frequency
of a spinning test body (ĉS2 ¼ 1) due to the presence of its spin,
computed in dimensionless units under the TD and MP con-
ditions, for a CEO of r̂ ¼ 10, when â ¼ 0.9. The bottom panel
represents the orbital frequency of a spinning test body (ĉS2 ¼ 1)
with respect to the spin, for a CEO of r̂ ¼ 10, when â ¼ −0.9,
under the TD and MP formalisms.

FIG. 2. The top panel demonstrates the shift of the orbital
frequency of a spinning test body (ĉS2 ¼ 6) due to the presence of
its spin, computed in dimensionless units under the TD and MP
conditions, for a CEO at r̂ ¼ 10, when â ¼ 0.9. The bottom panel
illustrates the orbital frequency of a spinning test body (ĉS2 ¼ 6)
with respect to the spin, for a CEO of r̂ ¼ 10, when â ¼ −0.9,
under the TD and MP formalisms.
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correspond to the same physical object. A study of this
issue is left for a future work.
Another interesting effect reflected in Figs. 1 and 2 is that

the monotonicity appearing in the frequency curves for

ĉS2 ¼ 1 is broken in the ĉS2 ¼ 6 case. This designates that
the behavior of the curvature of the frequency curve is
dominated by the spin induced quadrupole term in this
approximation of the extended body.
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