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The event horizon of a dynamical black hole is generically a nonsmooth hypersurface. We classify the
types of nonsmooth structure that can arise on a horizon that is smooth at late time. The classification
includes creases, corners and caustic points. We prove that creases and corners form spacelike
submanifolds of dimension 2,1 and that caustic points form a set of dimension at most 1. We classify
“perestroikas” of these structures, in which they undergo a qualitative change at an instant of time.
A crease perestroika gives an exact local description of the event horizon near the “instant of merger”
of a generic black hole merger. Other crease perestroikas describe horizon nucleation or collapse of a
hole in a toroidal horizon. Caustic perestroikas, in which a pair of caustic points either nucleate or
annihilate, provide a mechanism for creases to decay. We argue that properties of quantum entanglement
entropy suggest that creases might contribute to black hole entropy. We explain that a “Gauss-Bonnet”
term in the entropy is nontopological on a nonsmooth horizon, which invalidates previous arguments
against such a term.
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I. INTRODUCTION

Consider a smooth spacetime containing a black hole.
Only in special circumstances, such as a stationary space-
time, is the event horizon H smooth. In general, H is a
hypersurface that is continuous [1] but not everywhere
differentiable. It is nondifferentiable at p if and only if p is
an endpoint of at least two horizon generators [2]. The set
of such points is called the crease set. There exist examples
for which the crease set is very complicated [3]. However,
in various simple examples of black hole formation or
merger [4–12], it is found that the crease set has a simple
structure. In the examples of nonaxisymmetric black hole
mergers discussed in [7,9,11,12], the crease set consists of a
2-dimensional submanifold of points at which exactly two
generators enter the horizon. The boundary of this sub-
manifold is a 1-dimensional set of caustic points. In
nongeneric examples, the crease set degenerates; to a line
in the case of an axisymmetric black hole merger [6,8,10],
or to a point in the case of spherically symmetric gravi-
tational collapse.

The first aim of this paper is to prove that certain
properties of the crease set in these examples extend to
a much wider class of spacetimes, i.e., to identify con-
ditions satisfied by these examples which lead to a fairly
simple structure for the crease set. In Sec. II, we shall
review rigorous results concerning properties of the end-
point setHend of horizon generators. We shall then add two
assumptions that hold for the examples just discussed.
Specifically, we shall assume that spacetime is globally
hyperbolic, and that H is “smooth at late time.” The latter
means that there exists a Cauchy surface Σ to the future of
Hend such that H is smooth in a neighborhood of the
horizon cross section H ∩ Σ.
We define a normal crease point to be a noncaustic

point of Hend at which exactly two generators enter H. We
shall show that the set of such points (if nonempty) forms
a 2-dimensional submanifold, the crease submanifold.
At a normal crease point, H exhibits a transverse self-
intersection so, locally, the crease submanifold resembles
the intersection of two null hypersurfaces. On a spatial
cross section of the horizon, normal crease points form a
1-dimensional crease at which the horizon looks like a
transverse intersection of 2 surfaces; see Fig. 1. This has
been seen in various examples. In (nonaxisymmetric) black
hole mergers, before the merger the two horizons can
exhibit “chisel-like” structures, with the crease correspond-
ing to the sharp edge of the chisel [7,12]. After a merger, or
in axisymmetric gravitational collapse, the horizon can, in
some time slicings, exhibit a brief period of toroidal (or
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higher genus) topology. In this case, a crease runs around
the inner edge of the hole in the torus [5,6,9,11–13].
We define a normal corner point to be a noncaustic point

ofHend at which exactly three generators enterH. We shall
show that the set of such points (if nonempty) forms a
1-dimensional submanifold, the corner submanifold. At a
normal corner point, H exhibits a triple transverse self-
intersection and locally resembles the intersection of three
null hypersurfaces. A corner on a horizon cross section is
shown in Fig. 1. Normal corner points are points at which 3
creases meet, as at a vertex of a tetrahedron or cube.
The set of points of Hend that are neither normal crease

points nor normal corner points consists of (i) caustic points
and (ii) noncaustic points at which more than 3 generators
enter H. We shall prove that this set has (Hausdorff)
dimension at most 1. Thus, a generic point ofHend belongs
to the crease submanifold (if nonempty).
It is natural to focus attention on properties of Hend that

are stable under small perturbations, i.e., properties ofHend
that hold in a generic spacetime. The results described so
far do not assume genericity. However, if one assumes
genericity then Hend exhibits more structure. Siino and
Koike used methods of catastrophe theory to classify points
of Hend in a (globally hyperbolic) spacetime, again assum-
ing that H is smooth at late time, but now subject to a
genericity assumption [14]. The results of this classification
are summarized in Table I. The notation used in this
classification is due to Arnol’d [15–17]. The first 4 rows
of the table classify noncaustic points. The first row
corresponds to points of H that are not endpoints. The
next two rows are the normal crease points and normal
corner points that we defined above. The fourth row
corresponds to a point of quadruple self-intersection of
the horizon. Generically such intersections will be trans-
verse and form a set of dimension 0. (Genericity is
important here since in special cases one might have
nontransverse quadruple intersections.) The final two rows

of the table classify caustic points. We shall discuss these in
more detail below. All of the endpoints of Table I lie in the
closure of the crease submanifold (so generically this is
nonempty). We emphasize that this work employs a
particular mathematical notion of genericity but it is unclear
whether this is the same as the physically relevant notion of
genericity of the spacetime metric. We shall discuss this
point further below.
In Sec. III we shall study the time evolution of creases.

Given a time function τ we can foliate spacetime with
Cauchy surfaces Στ (level sets of τ). On a horizon cross
section H ∩ Στ, the qualitative structure of the creases
remains unchanged except at special instants of time for
which Στ is tangent to the crease submanifold. We refer to
such a point of tangency as a pinch point. A pinch point
corresponds to a qualitative change (under time evolution)
in the structure of the crease set and hence ofH. Following
the terminology of Arnol’d for closely related phenomena
arising on wave fronts in flat spacetime [17], we shall refer
to such a change as a crease perestroika.1 We emphasize
that the definition of a perestroika depends on the choice of
a time function; a different choice could shift the location of
the pinch point or change its interpretation.
We shall present an exact local description of the

geometry of the horizon around a pinch point associated
with a crease perestroika.2 We find that, generically, there
are three distinct types of crease perestroika. Examples of
these are shown in Fig. 2.3 First, there is a perestroika
associated with the “collapse of a hole in the horizon.” It is
well-known that horizons of toroidal (or higher genus)
topology can form in gravitational collapse [4,13] or a
black hole merger [11,12]. These evolve to spherical
topology, with the hole in the torus closing up. In such
examples, an elliptical crease runs around the inner rim of
the hole. The crease perestroika describes the geometry of
H near the point at which this crease collapses to zero size
and the horizon changes topology.
The second type of crease perestroika describes the

nucleation of a topologically spherical component of the
horizon, with an elliptical crease running around its rim, so
it resembles a “flying saucer.” In generic gravitational
collapse, this would describe the event horizon at the
instant of time at which it first appears (for a generic time
function τ). In a black hole merger, flying saucers can
nucleate in an intermediate stage, subsequently merging
with each other and with the initial black holes.
The third type of crease perestroika describes the merger

of two (locally) disconnected sections of event horizon, for

FIG. 1. Left: Part of a horizon cross section exhibiting a crease
(green). Right: Part of a horizon cross section exhibiting a corner
with three creases emanating from it.

1“Perestroika” means “restructuring.”
2See also [18] which describes some of these perestroikas in

qualitative terms.
3Because of the teleological nature of an event horizon, it is

sometimes helpful to think of these processes in terms of
backwards time evolution. However, in order to avoid repetition,
we shall only discuss forward time evolution in this paper.
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TABLE I. Classification of Siino and Koike [14] of points on the horizon of a globally hyperbolic 4d black hole spacetime that is
smooth at late time, subject to a genericity assumption. The penultimate column indicates how many horizon generators pass through the
point. The final column indicates the dimension of the set of points of each type (if nonempty).

Type # generators Dimension

Noncaustic points A1 Regular point 1 3
ðA1; A1Þ Normal crease point 2 2

ðA1; A1; A1Þ Normal corner point 3 1
ðA1; A1; A1; A1Þ 4 0

Caustic points A3 1 1
ðA3; A1Þ 2 0

FIG. 2. The evolution of the horizon cross section Στ ∩ H in the different types of crease perestroika. The time function has been
shifted so that the perestroika occurs at τ ¼ 0. Creases are highlighted in green. Horizon generators that exist through multiple cross
sections are shown in the same color. Top: Collapse of a hole in the horizon. The black hole region is the exterior of the surface shown on
the left and the region between the two surfaces on the right. For τ < 0, the horizon has a hole, which closes up as τ → 0. Middle:
Nucleation of a component of horizon of spherical topology. The black hole region lies inside the surface shown. At τ ¼ 0, the event
horizon nucleates and for τ > 0 takes the form of a “flying saucer,” with an elliptical crease around its equator. Bottom: Formation of a
“bridge” between two sections of horizon. For τ < 0, there are two (locally) disconnected parts of the horizon, each with a hyperbolic
crease. The creases degenerate to a pair of straight lines at τ ¼ 0, where the two parts of the horizon merge with sharp tips. For τ > 0, the
horizon is connected with hyperbolic creases along the edges of the bridge. The black hole region is the interior of the surface shown on
the right.
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example in a black hole merger. In this case, before the
merger each section of horizon exhibits a crease with a
hyperbolic shape. At the instant of merger, these creases
develop sharp tips and then reconnect so that after the
merger there is a “bridge” connecting the two sections of
horizon, with a crease running along each edge of the
bridge. This perestroika provides an exact description of the
horizon near the instant of merger of a generic (non-
axisymmetric) black hole merger, such as the ones studied
in [7,11,12].
Similarly to a crease perestroika, a corner perestroika

arises at an instant of time τ for which Στ is tangent to
the corner submanifold. We shall show that there are four
types of corner perestroika, each involving either the
nucleation, or the annihilation, of a pair of corners. A
point of type ðA1; A1; A1; A1Þ in the classification of [14]
can also be viewed as a perestroika. As above, the nature
of this perestroika depends on the choice of time function.
The simplest possibility is that such a point describes
the nucleation of a component of event horizon of
spherical topology, with a tetrahedral arrangement of
corners and creases.
In Sec. IV we discuss caustic points. The classification of

Siino and Koike (Table I) contains two types of generic
caustic points. As mentioned above, it is unclear whether
the notion of genericity/stability used in their work corre-
sponds to the physically relevant notion of stability with
respect to perturbations of the metric. We shall give
alternative arguments, still based on catastrophe theory,
which support their conclusions. We shall highlight the
assumptions required to justify these arguments. We shall
then go on to study the features of H near caustic points of
the two generic types according to this classification.
The first type of generic caustic point, denoted A3, is

associated with the famous “swallowtail” catastrophe
shown on the left in Fig. 3. This figure shows an A3 point
on a spatial cross section of the “big wave front” (in the
terminology of Arnol’d) obtained by extending the horizon
generators beyond their past endpoints as far as possible. In

spacetime, A3 points form spacelike lines, and so the
intersection with a spacelike hypersurface generically gives
isolated A3 points on a cross section of a wave front.
Emerging from an A3 point on the cross section are two
cusp lines, denoted A2 in Arnol’d’s notation, and a self-
intersection line (i.e., a crease). To obtain a cross section
of H from this diagram one must discard the part that
corresponds to extending horizon generators beyond their
past endpoints (on the crease or A3 point). This gives the
diagram on the right of Fig. 3 where a crease terminates at
the A3 point (with the angle at the crease approaching π
there). Note A2 caustics occur on the big wave front but
not on H. Siino and Koike do not state a simple reason
why A2 caustics are absent in their results. We shall show
that an A2 caustic violates achronality and hence cannot
occur on H.
Generically, A3 points form a 1-dimensional line. We can

define an A3 perestroika in the same way as we defined a
corner perestroika; it corresponds to an instant of time at
which Στ is tangent to the A3 line. In the context of optics,
such perestroikas are well-known in the catastrophe theory
literature [15]. For a horizon cross section, we shall show
that they come in two qualitatively different types. In the
first type, a horizon cross section initially has a section of
crease with a pair of A3 endpoints. Under time evolution,
the crease shrinks to zero length and the A3 points merge
and disappear. In the second type, a horizon cross section
again initially has a section of crease. Under time evolution,
an A3 point nucleates on this crease, and immediately splits
into two A3 points. These points move apart, “eating up”
the crease as they go, leaving a smooth section of horizon
between the two points. Both perestroikas are processes of
“crease decay” mediated by A3 points, i.e., they have a
smoothing effect on the horizon.
The nonaxisymmetric black hole mergers studied in

[7,11,12] exhibit normal crease points and A3 caustics
but no other types of endpoint. Given a choice of time
foliation, these mergers give rise to a sequence of crease
and A3 perestroikas of the various types discussed above.

FIG. 3. Left: A3 caustic on a spatial cross section of the big wave front obtained by extending generators of H beyond their past
endpoints. Right: A3 caustic on a spatial cross section of H.
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These perestroikas might be regarded as the “elements,” or
primitive steps, of a merger. We shall describe this below.
The second type of generic caustic is denoted ðA3; A1Þ

and corresponds to a point at which a smooth section of the
horizon intersects a line of A3 points transversally. We shall
explain how this can describe three different types of
perestroika (for different choices of time function) involv-
ing a corner and an A3 point.
Section V is more speculative. We shall discuss whether

creases and caustics might play a role in black hole entropy.
It has been suggested that at least part of the entropy of a
black hole can be attributed to entanglement entropy of
quantum fields in the black hole spacetime [19,20].
Roughly speaking, a divergence in the entanglement
entropy, with coefficient proportional to the horizon area,
is absorbed into the Bekenstein-Hawking entropy via a
renormalization of Newton’s constant [21]. It is known that
a crease gives rise to a subleading divergence in the
entanglement entropy [22,23]. Combining these ideas
suggests that a crease might make a subleading contribution
to black hole entropy. Usually such a term would be
dominated by the Bekenstein-Hawking term in the entropy.
However, using crease perestroikas, we shall show that the
second law can be used to constrain this idea.
We shall also discuss the possibility of a “Gauss-Bonnet”

term in the entropy. In 4 spacetime dimensions, a Gauss-
Bonnet term in the gravitational action is topological, i.e., it
does not affect the equation of motion. However, it does
affect black hole entropy, contributing a term proportional to
the integral of the Ricci scalar of the induced metric on a
horizon cross section [24,25]. For a smooth horizon, this is a
topological term, proportional to the Euler number of the
cross section. Since this jumps discontinuously in black hole
formation or merger, it has been argued that such a term
always leads to a violation of the second law of thermody-
namics [26]. However, we shall explain that, for a non-
smooth horizon, this term in the entropy is not topological,
and instead varies continuously in black hole formation and
merger. We find that there is no obvious conflict with the
second law if one treats the Gauss-Bonnet term in the sense
of effective field theory.
Finally, we shall discuss the possibility of terms in black

hole entropy that are quadratic in the extrinsic curvature of a
horizon cross section. We shall explain why such terms are
finite at creases, corners and caustics but, unlike the Gauss-
Bonnet term, they diverge at an A3 perestroika and are
therefore excluded by finiteness of the entropy in such a
process.

A. Notation and conventions

We assume that the spacetime manifold is smooth. We
shall sometimes refer to singularities (e.g., “an A3 singu-
larity”); these are singularities of null hypersurfaces, i.e.,
caustics, not spacetime singularities. In Sec. II we shall
consider spacetimes of general dimension d. We set d ¼ 4
in Sec. III onwards. H denotes a future horizon, as defined

in Sec. II A. We shall not make use of any equations of
motion. W denotes the “big wave front” obtained from H
by extending its generators beyond their past endpoints as
far as possible (Sec. II B). If Σ is a spacelike Cauchy surface
H ≡ Σ ∩ H denotes a cross section of the horizon and
W ≡ Σ ∩ W denotes a “small wave front,” i.e., a cross
section of the big wave front (so H ⊆ W). A general time
function will be denoted τ and its level sets as Στ, i.e., Στ0 is
the surface τ ¼ τ0.
The spacetime metric has positive signature. Latin letters

a; b; c;… denote abstract tensor indices. Greek letters
μ; ν; ρ;… are tensor indices referring to a particular basis.

II. GENERAL RESULTS

A. Properties of endpoint set

In this section we shall review properties of the endpoint
set of an event horizon. We assume that we have a smooth
time-oriented spacetime and make the following defini-
tions [27,28]:

Definition 1.—An embedded hypersurface H is future
null geodesically ruled if every p∈H belongs to a future-
inextendible null geodesic Γ ⊂ H. Such geodesics are the
generators of H. A future horizon is an achronal, closed,
future null geodesically ruled topological hypersurface.

A black hole future event horizon is an example of a
future horizon. Another example is a past Cauchy horizon.
By applying time reversal one can define a past horizon,
which includes a black hole past event horizon or a future
Cauchy horizon.
It follows from the definition that generators cannot have

future endpoints. (If p were a future endpoint of Γ, it must
belong to H since H is closed. A generator Γ0 through p
cannot be the extension of Γ since Γ is inextendible.
Therefore we can join Γ to Γ0 and “round off the corner”
to construct a timelike curve between two points of H,
violating achronality.)
Let Hend ⊂ H denote the set of (past) endpoints of

generators of H. For p∈H let NðpÞ be the number of
generators through p (which might be ∞). Then H is
differentiable at p if and only if NðpÞ ¼ 1 [2]. Points with
NðpÞ > 1 must belong to Hend [2] but there may also be
points of Hend with NðpÞ ¼ 1.

Definition 2.—The crease set is the set of p∈Hend
with NðpÞ > 1, i.e., the set of points at which H is
nondifferentiable.

We shall now briefly review results of Chruściel et al.
[28] concerning the structure of the crease set. Let σ be a
Riemannian metric and, for p∈H, let N þ

p be the set of
future-pointing σ-unit vectors tangent to a generator
of H at p. The number of such vectors is NðpÞ. Define
Cp to be the convex cone generated by N þ

p , i.e., the set
fPi aiVi∶ ai ≥ 0; Vi ∈N þ

pg. Now for k ¼ 1;…; d define
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H½k� ¼ fp∈H∶ dimðCpÞ ≥ kg: ð1Þ

This gives H½1� ¼ H. H½2� is the set of points lying on
more than 1 generator, i.e., the crease set. Clearly H½1� ⊇
H½2� ⊇ H½3�… and since dimðCpÞ ≤ NðpÞ we also have

H½k� ⊆ fp∈H∶NðpÞ ≥ kg: ð2Þ
A simple argument [28] gives

H½k� ¼ fp∈H∶NðpÞ ≥ kg for k ¼ 1; 2; 3: ð3Þ
Chruściel et al. prove that, for 1 ≤ k ≤ d, H½k� can be
covered, up to a set of zero (d − k)-dimensional Hausdorff
measure, by a countable collection of (d − k)-dimensional
C2 submanifolds ofM. In particular,H½k� has dimension at
most d − k and H½d� is a countable set.
This result gives some understanding of the size of the set

of endpointswithNðpÞ > 1.Wenowdiscuss endpointswith
NðpÞ ¼ 1. It can be shown that the following are equivalent
[2]: (1)H is differentiable on an open set; (2)H is of classCr

on this open set for some r ≥ 1; and (3) this set does not
contain any endpoints. It follows that any neighborhood of
an endpoint with NðpÞ ¼ 1 must contain an endpoint with
NðpÞ > 1, i.e., an endpoint withNðpÞ ¼ 1 is a limit point of
a sequence of endpoints withNðpÞ > 1. Furthermore, it can
be shown that the set of endpoints with NðpÞ ¼ 1 has
vanishing (d − 1)-dimensional Hausdorff measure [28].
We emphasize that the above results follow only from the

definition of future horizon given above with no further
assumptions. The weakness of these assumptions permits
examples exhibiting seemingly pathological behavior, such
as spacetimes for which Hend is a dense subset of H [3] (of
zero measure). The authors of [3] emphasize that these
examples are very artificial and that onewould hope that this
behavior cannot occur for event horizons in “reasonable”
asymptotically flat spacetimes. In other words, by adding
extra conditions, such as asymptotic flatness, or global
hyperbolicity, one might expect the structure of Hend to be
significantly simpler than the most general possibility dis-
cussed above. In the next section we shall introduce further
assumptions that result in a much nicer structure for Hend.

B. Horizons smooth at late time

We shall study the endpoint set Hend subject to two
further assumptions which are satisfied in the examples
discussed in the Introduction:

Assumptions.—(1) Spacetime is globally hyperbolic.
(2) There exists a connected future horizonH and a smooth
spacelike Cauchy surface Σ⋆ lying to the future of Hend,
such that the horizon cross section H⋆ ≡ Σ⋆ ∩ H is a
smooth oriented compact connected submanifold and H is
smooth in a neighborhood of H⋆.

Regarding (2), if there are multiple black holes present at
arbitrarily late time then the event horizon will be

disconnected. In this case we simply define H to be a
single connected component of the event horizon, corre-
sponding to a single black hole at late time. The smoothness
assumption in (2) is made for simplicity; this assumption
could be replaced byCk for sufficiently large k (although see
comments after Proposition 2 below). Smoothness of H
certainly fails atHend. Assumption (2) captures the idea that
the horizon is “smooth at late time,” which is expected to
hold in physically relevant situations. For example, consider
a black hole formed in gravitational collapse, or through a
black hole merger. At late time, it is expected that the black
hole will be well-described by a perturbed Kerr black
hole. For the simpler case of a (nonlinearly) perturbed
Schwarzschild black hole, the smoothness ofH is related to
the smoothness of the perturbation and its behavior at
infinity, as described in [29]. Similar results are expected
for Kerr. These results demonstrate that there is a large class
of physically relevant spacetimes for which the horizon is
smooth (enough) at late time.
We shall introduce some more terminology for the

different types of points in Hend:

Definition 3.—p∈Hend is a caustic point if p is a focal
point of H⋆ along a generator of H.

Focal points are defined in [1] or [30] (where they are
called conjugate points). This definition is independent of
the choice of H⋆, i.e., if one chooses a different H⋆
satisfying the assumptions above then the definition of a
caustic point doesn’t change. Note that if p is a caustic
point with NðpÞ > 1 (i.e., p belongs to the crease set) then
there might be a generator along which p is not a focal
point of H⋆. We shall prove the following below:

Lemma 1.—Subject to the above assumptions, Hend is
closed and if p∈Hend then either p is a caustic point or p is
a crease point (or both).

In particular, an endpoint with NðpÞ ¼ 1 must be a
caustic point. It is convenient to refine the classification of
noncaustic points as follows:

Definition 4.—p is a normal crease point if it is a
noncaustic point withNðpÞ ¼ 2. p is a normal corner point
if it is a noncaustic point with NðpÞ ¼ 3.

Inspired by results for Riemannian manifolds [31] and
flat spacetime arguments [7] we shall prove

Proposition 1.—The set of normal crease points (if
nonempty) is a smooth spacelike submanifold of dimension
d − 2; the crease submanifold. The set of normal corner
points (if nonempty) is a smooth spacelike submanifold of
dimension d − 3; the corner submanifold.

The intuition behind this result is that near a normal
crease (corner) point, H looks like a transverse self-
intersection of 2 (3) smooth null hypersurfaces. (The result
does not generalize to noncaustic points with NðpÞ ¼ 4
because transversality might fail, see the comments after
the proof of Proposition 1 below.) These submanifolds
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might not be connected. If the corner submanifold is
nontrivial then it forms part of the closure of the crease
submanifold, where three components of the crease sub-
manifold meet, as shown in Fig. 4 for d ¼ 4.
Endpoints not covered by this proposition either have

NðpÞ > 3 or they are caustic points (or both). From Eq. (3),
the set of endpoints with NðpÞ > 3 is a subset of H½3� and
therefore has Hausdorff dimension at most d − 3 by the
results of [28] reviewed above (this is true even without the
assumptions introduced above).We shall adapt a result from
Riemannian geometry [31] to show that, with the above
assumptions, the set of caustic points has the same property:

Proposition 2.—The set of caustic points has Hausdorff
dimension at most (d − 3).

This proposition uses the smoothness of H⋆. If H⋆ is
only Ck then the set of caustic points can have larger
Hausdorff dimension. We discuss this briefly after the
proof below.
To prove these Propositions, and for later use, we

introduce the big and small wave fronts (the terminology
is due to Arnol’d [15]) which are defined as follows:

Definition 5.—The big wave front W is the union of the
generators of H, extended as far as possible to the past. A
small wave front is an intersection Σ ∩ W where Σ is a
spacelike Cauchy surface.

We can pick a smooth past-directed null vector la on
H⋆, orthogonal toH⋆, such that −la is everywhere tangent
to the generators ofH.W is the union of the future and past
inextendible null geodesics throughH⋆ with tangent vector
la on H⋆. To the future of H⋆, these geodesics coincide
with generators of H. However, to the past of H⋆ these
generators may have endpoints, in which case W corre-
sponds to extending the generators ofH (as null geodesics)
to the past, beyond their past endpoints. Clearly H ⊆ W.
More generally, a big wave front can be defined this way

for any smooth orientable codimension-2 spacelike sub-
manifold H⋆, irrespective of the connection with horizons.
We define a smooth map Φ∶R ×H⋆ → M (where M is

the spacetime manifold) as follows. LetΦðλ; uÞ be the point
affine parameter distance λ along the null geodesic starting
at the point u∈H⋆ with tangent vector la there. The big
wave front is the image of this map. In a neighborhood of
H⋆ this map defines an embedding, i.e., the part ofW with
small λ is a smooth submanifold. However, for larger λ, W
may exhibit singularities.4 For small λ, the smooth mapΦ is
nonsingular, i.e., its derivative dΦ has maximal rank d − 1.
However, there may exist ðλ0; u0Þ such that Φ is singular at
ðλ0; u0Þ, i.e., dΦ has rank less than d − 1. This happens if
and only if p≡Φðλ0; u0Þ is a focal point of H⋆ along the
null geodesic through u0, i.e., p is a caustic point. The
nonsingular condition on dΦ is precisely the condition that
Φ is an immersion. Thus, at a caustic point,W fails to be an
immersed submanifold.
To prove Lemma 1, we shall use the “null cut locus” of

H⋆. This is defined as follows [32,33]:

Definition 6.—Let γ∶ ½0; aÞ → M be a null geodesic
starting on H⋆ and orthogonal to H⋆. γðt0Þ is a null cut
point ofH⋆ along γ if and only if for 0 ≤ t ≤ t0 there does not
exist a timelike curve fromH⋆ to γðtÞwhereas for t > t0 there
does exist such a curve. The past null cut locusofH⋆ is the set
of null cut points along all such past-directed geodesics.

This is of interest because:

Lemma 2.—Hend is the set of null cut points ofH⋆ along
the generators of W.

(There are two families of past-directed null geodesics
emanating orthogonally from H⋆. Only one of these is W.
So Hend is not the past null cut locus of H⋆ but only a
subset of it.)

Proof.—Let p∈Hend and consider a (past-directed) null
geodesic of W that passes through p. (If NðpÞ > 1 then
there is more than one such geodesic.) Let u∈H⋆ label this
geodesic, i.e., p ¼ Φðλp; uÞ for some λp > 0. Consider a
point q slightly beyond p along this geodesic. We claim
that there is a (past-directed) timelike curve from H⋆ to q.
We justify this as follows. One can introduce normal
coordinates at p such that H is the surface x0 ¼ FðxiÞ
(i ¼ 1;…; d − 1) where F is a Lipschitz continuous func-
tion [1]. The point q has x0 ≠ FðxiÞ. Now follow the
integral curve of ∂=∂x0 from q to return to a point r on H.
qr cannot be past-directed because then pqr would be a
past directed causal curve from H to itself and since this
curve is not a null geodesic it can be deformed into a
timelike curve, violating achronality. Therefore qr is
future-directed. If we now extend qr by attaching it to a
future directed generator ofH through r we obtain a causal
curve from q to H⋆, which is not a null geodesic so can be

FIG. 4. Three components of the crease submanifold meeting at
the corner submanifold.

4We emphasize that these wave front singularities occur in a
smooth spacetime, they are unrelated to spacetime singularities.
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deformed into a future-directed timelike curve, establishing
our claim. Hence q lies beyond the null cut point on our
original geodesic, i.e., λq > λ0ðuÞ where λ0ðuÞ is the affine
parameter of the null cut point on this geodesic. This holds
for all q lying beyond p along this geodesic so we must
have λp ≥ λ0ðuÞ. However, if λp > λ0ðuÞ then (by the
definition of λ0) there exists a timelike curve from H⋆
to p, violating achronality of H. Therefore we must have
λp ¼ λ0ðuÞ, so p is the cut point that lies on this geodesic.
This shows thatHend is a subset of the set of null cut points
of H⋆ along the generators of W. Conversely, let p be a
point in the latter set, arising from a null geodesic starting at
u∈H⋆. Then points beyond p along this geodesic are
timelike separated from H⋆ and so must lie beyond an
endpoint q∈Hend. The above argument then shows that q
is a null cut point of H⋆ along this geodesic, and so we
must have p ¼ q as each geodesic has at most one null cut
point. This shows that the set of null cut points ofH⋆ along
generators of W is a subset of Hend, completing the proof.

Proof of Lemma 1.—This follows from Lemma 2 and
properties of null cut points in globally hyperbolic space-
times proved in [32,33]. Theorem 6.2 of [32] or Theorem 4
of [33] assert that if p is a null cut point ofH⋆ along a past-
directed null geodesic orthogonal to H⋆ then either (1) p is
a focal point of H⋆ along this geodesic; or (2) there exist at
least two null geodesic segments from H⋆ to p, both
orthogonal to H⋆. (Possibly both are true.) We can apply
this to p∈Hend, since Lemma 2 tells us that p is a null cut
point along a generator of W. In (2) we just need to check
that the null geodesics from H⋆ to p are generators of W,
rather than belonging to the “other” family of past-directed
null geodesics emanating orthogonally to H⋆. In the latter
case, we would have a future-directed null geodesic from p
to q∈H⋆ that is not a generator ofH. We could extend this
to the future by following the generator of H through q to
reach r∈H. This gives a causal curve from p to r that is not
a null geodesic, so can be deformed into a timelike curve,

violating achronality of H. Hence all the geodesics in
(2) must be generators of W and hence NðpÞ > 1 in this
case, i.e., p is a crease point. So either p is a focal point of
H⋆ along a generator of H or p is a crease point.
Theorem6 of [33] asserts that the past null cut locus ofH⋆

is closed. So if q is a limit point of a sequencepn ∈Hend then
q is a null cut point of H⋆ along some past-directed null
geodesic γ. The argument of the previous paragraph estab-
lishes that γ cannot belong to the “other” family of null
geodesics fromH⋆, so γmust be a generator ofW and hence
q∈Hend by Lemma 1. Therefore Hend is closed.

Proof of Proposition 1.—Let p be a normal crease point.
There exist exactly two null geodesics γ1, γ2 from H⋆ to p,
both belonging toW, starting at distinct points r1; r2 ∈H⋆.
Consider γ1. We have p ¼ Φðλp1; r1Þ for some λp1 > 0.
There cannot be a focal point of H⋆ along γ1 for λ ≤ λp1 so
Φðλ; r1Þ has maximal rank for λ∈ ½0; λp1�. By continuity,
there exist λ1 > λp1 and an open neighborhood O1 of r1 in
H⋆ such that Φ has maximal rank on ð0; λ1Þ ×O1.
The image of this set under Φ is an immersed null
submanifold N 1 ⊂ W. By shrinking O1 if necessary we
can ensure thatN 1 has no self-intersection, so it is a smooth
embedded null hypersurface. The same construction start-
ing from γ2 yields a second null hypersurface N 2 ⊂ W
and, by shrinkingO1 andO2 we can arrange thatO1 andO2

are disjoint so N 1 and N 2 have no generators in common,
as shown in the first diagram of Fig. 5. Clearly
p∈N 1 ∩ N 2. We now claim that there exists a neighbor-
hood U of p such that (a) every q∈U ∩ Hend is a normal
crease point and (b) U ∩ Hend ¼ U ∩ N 1 ∩ N 2.
To establish (a), assume the contrary; then there exists a

sequence of points qn ∈Hend with qn → p such that each
qn is not a normal crease point. The properties of N 1;2

imply that there exists rn ∈H⋆, rn ∉ O1 ∪ O2 such that
there is a null geodesic δn from rn to qn. (For if qn is a
caustic point then the generator along which qn is a focal

FIG. 5. Left: Setup for the proof of Proposition 1 in the case of a normal crease point. Note that for clarity the null hypersurfaces N A
have been drawn up to the crease submanifold C2 but they remain smooth in an open set slightly beyond C2. Right: Setup for the proof of
Proposition 2.
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point ofH⋆ cannot belong toN 1;2 hence its start point must
lie outside O1;2. If qn is a noncaustic point then there are at
least 3 null geodesics from H⋆ to qn but at most 2 of these
can belong to N 1;2 so the third must have a start point
outside O1;2.) Since qn → p, the curves δn admit a causal
limit curve δ fromH⋆ to p [1]. This must be a null geodesic
orthogonal to H⋆ (for otherwise we could deform it into a
timelike curve). The start point of δ lies outside O1;2 so δ
differs from γ1;2 which contradicts NðpÞ ¼ 2.
To establish (b) assume that we cannot find U satisfying

(a) such that (b) is also true. Then either (b1) there exists a
sequence of normal crease points qn → p such that qn ∉
N 1 ∩ N 2 or (b2) there exists a sequence qn ∈N 1 ∩ N 2

with qn → p such that qn ∉ Hend. In case (b1) consider the
two null geodesics fromH⋆ to qn, as n varies this gives two
sequences of null geodesics that must each admit a limit
curve that is a null geodesic from H⋆ to p. These two limit
curves must be γ1;2. It follows that, for large enough n, the
null geodesics from H⋆ to qn must belong to N 1;2 so
qn ∈N 1 ∩ N 2, a contradiction. In case (b2), each qn is not
a cut point, so let rn1 and rn2 be the cut points along the two
null geodesics from H⋆ to qn; these must occur strictly
before qn along these geodesics. We have rn1 ∈N 1 but
rn1 ∉ N 2 and similarly for rn2. There must exist a null
geodesic from H⋆ to rn1 starting at a point sn1 ∉ O1 ∪ O2.
(rn1 is a cut point so by Lemma 1 either a focal point ofH⋆
along some null geodesic, which must start outside O1 ∪
O2 becauseN 1;2 are smooth, or there exists a null geodesic
not in N 1 or N 2 from H⋆ to rn1.) Taking the limit curve
gives a null geodesic fromH⋆ to p that starts outsideO1;2, a
contradiction.
Next we show that the intersection N 1 ∩ N 2 is trans-

verse, implying that it is a submanifold. Let q∈N 1 ∩ N 2

and let Va
A be tangent to the null geodesic generator of N A

passing through q. Then Va
1 and Va

2 must be linearly
independent for otherwise these two generators would be
the same, which contradicts the fact that O1 and O2 are
disjoint. Now ðVAÞa is normal toN A at q so we have shown
that the normals to N A are linearly independent and hence
N 1 and N 2 intersect transversally. Since N 1 and N 2 are
null, the intersection is spacelike. Hence N 1 ∩ N 2 is a
(d − 2)-dimensional spacelike submanifold. Any chart of
this submanifold can be restricted to U to define a chart on
the set of normal crease points. Finally we need to show
that these charts are compatible where they overlap.
Assume that p belongs to two charts, associated with
U;N 1;N 2 and U0;N 0

1;N
0
2. From the above construction,

N A are locally unique, so we have U ∩ U0 ∩ N 1 ∩ N 2 ¼
U ∩ U0 ∩ N 0

1 ∩ N 0
2 and so chart compatibility follows

from the compatibility of charts on N 1 ∩ N 2. Hence we
have shown that the set of normal crease points is a (d − 2)-
dimensional spacelike submanifold.
Now let p be a normal corner point. Arguing as abovewe

can construct three null hypersurfaces N 1;2;3 from H⋆ to a

neighborhood of p. Let C3 be the set of normal corner
points. We claim that there exists a neighborhood U of p
such that U ∩ C3 ¼ U ∩ N 1 ∩ N 2 ∩ N 3. (This is the
analogue of statement (b) above, since statement (a) implies
that U ∩ Hend ¼ U ∩ C2 where C2 is the set of normal
crease points.) As before, we assume that there does not
exist suchU. We have two cases: (1) there exists a sequence
of normal corner points qn → p such that qn ∉ N 1 ∩
N 2 ∩ N 3; (2) there exists a sequence qn ∈N 1 ∩ N 2 ∩
N 3 with qn → p such that qn ∉ C3. To disprove (1), the
same argument presented under (b1) above generalises
immediately. In case (2), we have three subcases; either
(i) qn ∉ Hend, (ii) qn is a caustic point with NðqnÞ ¼ 3, or
(iii) NðqnÞ ≥ 4 (qn ∉ C2 since qn ∈N 1 ∩ N 2 ∩ N 3, so
there are at least three null geodesics from H⋆ to qn). In a
general sequence of points, the qn will fall under different
cases for different values of n. However, we are only
interested in the limit n → ∞, so each case is only relevant
if an infinite subset of the qn falls under it. Hence, we may
select a subsequence q̃n → p consisting of points in the
same category. In case (i), the argument for (b2) for normal
crease points generalises immediately. Case (ii) implies that
there exist caustic points arbitrarily close to p on one of the
surfacesN 1;2;3, a contradiction. Case (iii) implies that there
are four or more null geodesics from H⋆ to each q̃n, all but
three of which much start from points outside O1 ∪ O2 ∪
O3 for all n. Hence, there are at least four distinct limit
curves that are null geodesics from H⋆ to p. So p ∉ C3, a
contradiction.
Finally, we must show that the intersection N 1 ∩ N 2 ∩

N 3 is transverse. Arguing as above implies that N 1;2;3 are
pairwise transverse. If three null vectors are pairwise
linearly independent then they are linearly independent.
This implies that the three normals to N 1;2;3 are linearly
independent. Hence the three null hypersurfaces surfaces
intersect transversally at p, so the set of normal corner
points forms a (d − 3)-dimensional spacelike submanifold.
This completes the proof.
Note that this final step of this proof does not work for an

intersection of 4 null hypersurfaces: a set of 4 pairwise
linearly independent null vectors need not be linearly
independent. Hence transversality can fail in this case.
So the set of noncaustic points with NðpÞ ¼ 4 might not
form a (d − 4)-dimensional submanifold.

Proof of Proposition 2.—This follows closely the proof
of the corresponding result in Riemannian geometry [31].
We have written out the proof in greater detail than [31] to
check that nothing goes wrong in the Lorentzian setting.
The point Φðλ; uÞ∈W is a focal point of H⋆ (along the
generator Φð·; uÞ) if and only if ðdΦÞðλ; uÞ has rank d − 2
or less. By the Morse-Sard-Federer theorem [34], the image
of the set of points ðλ; uÞ at which dΦ has rank d − 3 or less
has Hausdorff dimension d − 3 or less. So to establish the
result we only need to consider the set A of caustic points
for which dΦ has rank d − 2. Let p ¼ Φðλp; upÞ be such a
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point. Let λc be the positive function on H⋆ defined
by the property that ΦðλcðuÞ; uÞ is the first focal point
of H⋆ along the null geodesic Φð·; uÞ [we define λcðuÞ ¼
∞ if there is no focal point along the geodesic; we do not
assume that the geodesic is complete]. In particular we
have λcðupÞ ¼ λp.
We shall prove that λc is smooth in a neighborhood of up.

To do this we shall study H⋆-Jacobi fields (called P-Jacobi
fields in [30]) along the geodesicsΦð·; uÞ for u near up. We
recall some standard results about Jacobi fields [1].
Introduce a basis Ea

μðλÞ parallelly transported along the
geodesic Φð·; uÞ where Ea

0 is the (null) tangent to the
geodesicΦ, Ea

i (i ¼ 1;…; d − 2) are orthonormal spacelike
vectors that are tangent to H⋆ at u, and Ea

d−1 is null,
orthogonal to Ea

i and satisfies gabEa
0E

a
d−1 ¼ −1. Consider

the space of H⋆-Jacobi fields along Φð·; uÞ that are
orthogonal to Ea

0 . If Sa is such a H⋆-Jacobi field then
we can write Sai ðλÞ ¼ AijðλÞSaj ð0Þ where the geodesic
deviation equation implies that the matrix Aij satisfies
(using a dot for a derivative with respect to λ)

Äijðλ; uÞ þ R0i0kðΦðλ; uÞÞAkjðλ; uÞ ¼ 0; ð4Þ

and this equation admits a conservation law: Ȧi½j�Ajijk�
is constant along the geodesic. However, the initial con-
ditions satisfied by a H⋆-Jacobi field imply that this
conserved quantity vanishes on H⋆ (it is proportional to
the antisymmetrized extrinsic curvature) and hence van-
ishes everywhere,

Ȧi½j�Ajijk� ¼ 0: ð5Þ

The fact that p is a focal point along Φð·; upÞ for which dΦ
has rank d − 2 implies that only a 1-dimensional space of
Jacobi fields vanishes at p and so Aijðλp; upÞ has rank
(d − 3). We can choose our definition of Ea

i so that the
initial direction of a Jacobi field in this 1d space is parallel
to Ea

1ð0; upÞ. Hence Ai1ðλp; upÞ ¼ 0, i.e., the first column
of A vanishes at ðλp; upÞ. Our rank condition implies that
the remaining d − 3 columns of Aijðλp; upÞ are linearly
independent. Equation (5) implies ðȦi1AijÞðλp; upÞ ¼ 0,
i.e., the columns of Aijðλp; upÞ are orthogonal to
Ȧi1ðλp; upÞ. Now consider

detA ¼ ϵi1i2…id−2Ai11Ai22…Aid−2ðd−2Þ ð6Þ

and so

∂λðdetAÞðλp; upÞ ¼ ϵi1i2…id−2 Ȧi11Ai22…Aid−2ðd−2Þ: ð7Þ

Assume, to establish a contradiction, that this vanishes.
Then Ȧi11ðλp; upÞ is a linear combination of the (linearly
independent) nonzero columns of Aijðλp; upÞ but we have

just seen that Ȧi1ðλp; upÞ is orthogonal to these columns.
Hence Ȧi1ðλp; upÞ must vanish. But setting j ¼ 1 in (4)
gives a linear ODE for Ai1ðλ; upÞ and we have shown that
this quantity and its derivative both vanish at λ ¼ λp, hence
Ai1ðλ; upÞ vanishes for all λ, in particular at λ ¼ 0, which is
not possible. We conclude that ∂λ detA is nonzero at
ðλp; upÞ. Since ∂λ detA depends smoothly on ðλ; uÞ near
ðλp; upÞ we can apply the implicit function theorem to
deduce that there exists a neighborhoodO of up inH⋆ such
that detAðλ; uÞ ¼ 0 admits a smooth solution λ ¼ λcðuÞ.
By continuity we can choose O so that ∂λ detAðλcðuÞ; uÞ ≠
0 in O, which implies that the singular matrix AijðλcðuÞ; uÞ
has d − 3 linearly independent columns and hence has rank
d − 3 throughout O, i.e., the space of Jacobi fields
vanishing at the focal point ΦðλcðuÞ; uÞ is 1-dimensional
for u∈O, so ðdΦÞðλcðuÞ; uÞ has rank d − 2 for u∈O.
We now define a smooth map Φc∶ O → M by

ΦcðuÞ ¼ ΦðλcðuÞ; uÞ. We claim that dΦc is singular at
up and hence has rank at most d − 3. Since p is an arbitrary
point of A, the Morse-Sard-Federer theorem implies
that the set A has Hausdorff dimension at most d − 3.
To justify the claim, introduce coordinates xμ on M so that
Φðλ; uÞ has coordinates xμðλ; uÞ and ΦcðuÞ has coordinates
xμcðuÞ ¼ xμðλcðuÞ; uÞ. Then since dΦ is singular at
ðλcðuÞ; uÞ there exists ðzλðuÞ; zAðuÞÞ ≠ ð0; 0Þ in its kernel,
where A ¼ 1;…; d − 1.5 In coordinates this means that

0 ¼ xμ;λðλcðuÞ; uÞzλðuÞ þ xμ;AðλcðuÞ; uÞzAðuÞ: ð8Þ

xμ;λ is tangent to the geodesic Φð·; uÞ and hence nonzero. It
follows that zAðuÞ ≠ 0. The kernel of ðdΦÞðλcðuÞ; uÞ is 1-
dimensional which implies that ðzλðuÞ; zAðuÞÞ may be
assumed to depend continuously on u. Now consider
ðdΦcÞðuÞ evaluated on zAðuÞ. In coordinates this is

xμc;AðuÞzAðuÞ¼xμ;λðλcðuÞ;uÞλc;AðuÞzAðuÞþxμ;AðλcðuÞ;uÞzAðuÞ
¼αðuÞxμ;λðλcðuÞ;uÞ; ð9Þ

where the second equality uses (8) and we have defined

αðuÞ ¼ λc;AðuÞzAðuÞ − zλðuÞ: ð10Þ

We shall show that αðupÞ ¼ 0, so (9) implies that zAðupÞ is
in the kernel of ðdΦcÞðupÞ, establishing the claim. So
assume αðupÞ ≠ 0. By reversing the sign of zAðuÞ if
necessary we can arrange αðupÞ < 0. View zAðuÞ as a
vector field on H⋆ and let CðtÞ be the integral curve of this
vector field through up, with Cð0Þ ¼ up. The lhs of Eq. (9)
is the tangent vector to the curve ΦcðCðtÞÞ, this equation

5We shall use capital Latin letters as indices in several different
sections of this paper. The range of these indices is not the same
in different sections.
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shows that for each t this curve is tangent to the null
geodesicΦð·; CðtÞÞ, i.e., it is an envelope curve of these null
geodesics. However, for small enough t, it has the opposite
sense [as αðtÞ < 0] to these geodesics, i.e., it is future-
instead of past-directed. So for small δ > 0 consider the
past-directed causal curve defined by following the gen-
erator Φð·; uðδÞÞ from H⋆ to ΦcðuðδÞÞ, then following
ΦcðCðtÞÞ backwards (decreasing t) toΦcðCð0ÞÞ¼ΦcðupÞ¼
p, as illustrated in the second diagram of Fig. 5. This is a
past-directed causal curve from H⋆ to p. Therefore it must
be an unbroken null geodesic orthogonal to H⋆ (for
otherwise we could deform it into a timelike curve, contra-
dicting p∈H). But then ΦcðCðδÞÞ is a focal point on this
null geodesic that occurs before p, so again we can deform
into a timelike curve, again a contradiction. We conclude
therefore that αðupÞ ¼ 0, completing the proof.

The above proof makes use of our assumption thatH⋆ is
smooth, which implies that the map Φ is smooth. If Φ is
onlyCk then the first application of the Morse-Sard-Federer
theorem implies that the set of caustic points for which dΦ
has rank d − 3 or less has Hausdorff dimension at most
d − 3þ 2=k. Similarly if Φc is Cl then the second appli-
cation of Morse-Sard-Federer implies that the set of caustic
points for which dΦ has rank d − 2 has Hausdorff
dimension at most d − 3þ 1=l.
We have formulated the above Propositions to apply to

the endpoint setHend of a future horizon. However, in view
of Lemma 2 one might expect similar results to apply to the
past (or future) null cut locus of any smooth, compact,
spacelike, acausal, oriented codimension-2 submanifold
H⋆ in a smooth globally hyperbolic spacetime. This is
indeed the case: for a point p in this cut locus we can define
NðpÞ to be the number of null geodesics from H⋆ to p and
define the notions of caustic, normal crease and normal
corner points as above. The proofs of the Propositions are
slightly modified because there are two families of past-
directed null geodesics orthogonal to H⋆, which we can
label arbitrarily as theþ family and the − family. Instead of
a single map Φ there are two maps Φ�. In the proof of
Proposition 1 we have to allow for the fact that two
geodesics from H⋆ to p might start at the same point of
H⋆ but belong to different families. We can do this by
adding an extra label, e.g., referring to ðO1;þÞ instead of
O1. This makes only minor changes to the proof. Similarly
the proof of Proposition 2 works with only minor changes.

III. CREASES AND CORNERS

A. Transverse self-intersections

At a normal crease (corner) point, the big wave
front W (Definition 5) is locally an intersection of
2 (3) null hypersurfaces. As explained in the proof of
Proposition 1, such an intersection is always transverse,
i.e., the normals to the hypersurfaces are linearly indepen-
dent. Transversality can fail for a self-intersection involving

4 sections of W; however, generically, one would expect
such an intersection to be transverse and this corresponds to
a point of type ðA1; A1; A1; A1Þ in the classification of [14]
summarized in Table I. A self-intersection involving more
than 4 sections of W is nongeneric.
Locally we can describe the geometry of H near a point

p of transverse self-intersection by discarding the points of
W that “lie beyond the self-intersection.” To do this, letN A
(A ¼ 1; 2;…) be null hypersurfaces corresponding to the
different intersecting sections of W. Then, locally, W is
the union of these surfaces. To construct H we retain only
the portion of N A that contains the future-directed null
geodesic generator of N A that starts at p. These geodesics
are the generators of H with a past endpoint at p.
The main aim of this section is to use this construction to

provide an exact local description of the geometry near a
crease or corner perestroika. Before doing this, we shall
briefly discuss points of type ðA1; A1; A1; A1Þ, correspond-
ing to a point of quadruple transverse self-intersection of
W. Generically, such points will be isolated. Emanating
from each such point will be 4 sections of the corner
submanifold and 6 sections of the crease submanifold. The
behavior of the crease set near such a point p is shown in
Fig. 6. Consider a time function6 τ such that p∈Σ0 and Στ

does not intersect Hend near p for τ < 0. For τ > 0, Στ will
intersect all of the components of the crease and corner

FIG. 6. Crease set near a point of quadruple self-intersection
ðA1; A1; A1; A1Þ (black point). Shown in red is the corner
submanifold. The remaining six surfaces are sections of the
crease submanifold.

6Recall that Στ0 is the Cauchy surface τ ¼ τ0 (see end of
Sec. I).
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submanifolds emanating from p. The result is that Στ ∩ H
has a topologically spherical component with a tetrahedral
arrangement of creases and corners. Hence, for this choice
of time function, p describes the nucleation of such a
section of the horizon. However, if Στ does intersect Hend
for τ < 0 then the interpretation will be different e.g., one
possibility appears to describe a process in which a corner
is present on Στ ∩ H for τ < 0 and for τ > 0 the tip of this
corner has been “sliced off” (removing a tetrahedron) to
produce a configuration with 3 corners. The time reverse of
this process also appears possible. We shall not attempt to
describe all of the other possible interpretations of a point
of type ðA1; A1; A1; A1Þ.

B. Crease perestroikas

Let τ be a time function. For a generic value of τ, if Στ

intersects the crease submanifold then it will do so trans-
versally. However, as τ varies there will be special values
τ ¼ τ⋆ such that Στ⋆ intersects the crease submanifold
tangentially. For a generic time function, such a tangential
intersection will occur only at isolated points of Στ⋆ . We
shall call such a point a pinch point. At such points, as we
shall explain, there is a qualitative change in the structure of
the creases. Motivated by the nomenclature of Arnol’d, we
shall refer to such a change as a crease perestroika. We
emphasize that the definition of a pinch point depends on
the choice of time function. Different time functions give
different pinch points. In this subsection we shall present a
local description of the event horizon near a pinch point and
investigate the physical interpretation of the resulting
crease perestroikas.
Our approach is partly motivated by the final section of

[12] which presents a model for the local behavior of the
horizon in an axisymmetric black hole merger [12]. We
shall discuss the axisymmetric case, and comment on this
model, in Sec. III C.
Let p be a pinch point and, without loss of generality,

assume that this occurs at τ ¼ 0. We shall determine how
the local geometry of H ∩ Στ changes as τ increases from
small negative values to small positive values. Near p we
can describe the big wave front W as the union of two null
hypersurfaces N A, A ¼ 1, 2, that intersect transversally. H
corresponds to the subset of W obtained by discarding
those parts of generators of N A that lie in the past of the
intersection. In particular the portions of the generators of
N A through p that lie to the future of p are generators ofH
(i.e., two generators enter H at p).
In a neighborhood of p we can introduce Riemannian

normal coordinates Xμ ¼ ft; xig, so p is the point
t ¼ xi ¼ 0, such that t ¼ 0 is the tangent plane to Σ0 at
p. These coordinates are unique up to rotations of xi. In
these coordinates, Στ has equation t ¼ Tðτ; xiÞ for some
smooth function T with ∂iTð0Þ ¼ 0. Taylor expanding T
gives the equation of Στ as

t ¼ aτ þ cτ2 þ diτxi þ
1

2
Kijxixj þ…; ð11Þ

where a; c; di and Kij are constants, a > 0 and Kij is the
extrinsic curvature tensor of Σ0 at p. The ellipsis denotes
terms of cubic or higher order in ðτ; xiÞ.
Let the equation of N A be fAðt; xiÞ ¼ 0 where fA is

smooth with fAð0; 0Þ ¼ 0. We choose fA so that the null
vector ðdfAÞa is future-directed. Locally the crease sub-
manifold has equation f1 ¼ f2 ¼ 0. At p, Σ0 is tangent to
the crease submanifold so the normal to Σ0 must be a
linear combination of df1 and df2. This implies there
exist αA such that α1df1 þ α2df2 ¼ dt at p, which is
equivalent to α1∂if1 þ α2∂if2 ¼ 0 at p. This is the
statement that the normals to Σ0 ∩ N 1 and Σ0 ∩ N 2

are either parallel or antiparallel. [The equation of Σ0 ∩
N A is fAðTð0; xiÞ; xiÞ ¼ 0, with normal proportional to
∂iT∂tfA þ ∂ifA, which reduces to ∂ifA at p.] If the
normals were parallel then df1 and df2 would be parallel,
contradicting the fact that N A intersect transversally.
Hence at p, the normals to the two sections of the small
wave front Σ0 ∩ W are antiparallel; p can be visualized as
an event at which a pair of wave fronts moving in opposite
directions touch.
We shall now consider the geometry of an arbitrary

smooth null hypersurface through p, with the aim of
applying the results to the surfaces N A. Such a surface has
equation f ¼ 0 for some smooth function f. Smoothness
implies that f can be expanded in our Riemmanian normal
coordinates as

f ¼ aμXμ þ bμνXμXν þ cμνρXμXνXρ þOðX4Þ ð12Þ

for certain constant coefficients aμ, bμν, etc. The condition
that the surface is null is that gμν∂μf∂νf ∝ f. Using gμν ¼
ημν þOðX2Þ this implies

ημνaμaν ¼ 0; aμbμν ∝ aν; ð13Þ

where aμ ¼ ημνaν. Smoothness implies that the null surface
has a unique generator passing through p. This has equation
Xμ ¼ aμλ where λ is an affine parameter.
The function f is not unique: locally gf describes the

same null hypersurface where g is any smooth function
nonvanishing at p. Expanding g ¼ Aþ BμXμ þ � � � gives

gf ¼ a0μXμ þ b0μνXμXν þ…; ð14Þ

where

a0μ ¼ Aaμ b0μν ¼ Abμν þ BðμaνÞ: ð15Þ

We shall use this freedom to simplify the form of the
equation for the surface. We can arrange that aμ is future-
directed, as assumed above. This restricts us to
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transformations with A > 0. A rotation of the spatial
coordinates xi ¼ ðx; y; zÞ, and an appropriate choice
of A, allows us to set aμ ¼ ð−1; 0; 0; 1Þ= ffiffiffi

2
p

, so aμ ¼
ð1; 0; 0; 1Þ= ffiffiffi

2
p

. Now define null coordinates (with respect
to ημν) u ¼ ðt − zÞ= ffiffiffi

2
p

, v ¼ ðtþ zÞ= ffiffiffi
2

p
so aμ ¼ −ðduÞμ

and aμ ¼ ð∂=∂vÞμ. The second equation of (13) implies
bvv ¼ bvi ¼ 0. One can then choose Bμ in (15) to set
buμ ¼ 0. The result is that we have simplified f to

f ¼ −uþ bABxAxB þOðX3Þ; ð16Þ

where A;B∈ f1; 2g (corresponding to the xy directions). A
final rotation of the coordinates can be used to set bAB ¼
diagðb1; b2Þ so our null hypersurface has equation

t ¼ zþ b1x2 þ b2y2 þOðX3Þ: ð17Þ

Consider the intersection of this surface with a surface of
constant t. Generically b1 and b2 will be nonzero so this
surface is a paraboloid (modulo corrections of order X3).
The axis of the paraboloid lies along the z-axis. If b1 and b2
have the same sign then it is an elliptic paraboloid, if they
have opposite sign then it is a hyperbolic paraboloid. As t
varies, we obtain a paraboloid moving at the speed of light
in the positive z-direction.
We can now return to the problem of describing the

behavior near a pinch point. We can apply the above
analysis to the surfaceN 1, bringing its equation to the form
(17). Now N 2 has an equation of the form (12), with
constants âμ, b̂μν, etc. The condition that the intersections
of N 2 and N 1 with Σ0 have antiparallel normals at p
implies that âμ ∝ ð−1; 0; 0;−1Þ. By rescaling as in (15) we
can then take âμ ¼ −ðdvÞμ, so âμ ¼ ð∂=∂uÞμ. Repeating
the analysis above we find that we can bring the equation
for N 2 to the form f̂ ¼ 0, where

f̂ ¼ −vþ b̂ABxAxB þOðX3Þ; ð18Þ

where b̂AB is generically nondegenerate. This surface is
another paraboloid (modulo X3 terms), elliptic if b̂AB is
positive/negative definite and hyperbolic otherwise.
To recap, we have introduced Riemannian normal

coordinates around the pinch point, with the surface t ¼
0 tangent to the Cauchy surface Σ0. In these coordinates,
the two sections of the horizon which intersect are a pair of
paraboloids (up to X3 corrections) whose axes are both
along the z-axis. The first paraboloid (with parameters bAB)
moves at the speed of light in the positive z-direction. The
second paraboloid (with parameters b̂AB) moves at the
speed of light in the negative z direction. At t ¼ 0 they are
tangent to each other at the origin (the pinch).
Recall that p is a normal crease point so there are

precisely two generators ofH that pass through p (and end

there). These are the generators z ¼ �t, xA ¼ 0 of N 1 and
N 2 (respectively) with t ≥ 0. Locally, only the parts of the
null hypersurfaces N A lying to the future of their inter-
section belong to H. These parts can be identified by the
fact that they contain the two generators just described.
Usually we shall be interested in situations for which H

satisfies the area theorem. This implies that the expansion
of N A must be non-negative near these generators; in
particular it must be non-negative at p. This implies that
bAA ≥ 0, i.e., b1 þ b2 ≥ 0, and b̂AA ≥ 0. Generically these
inequalities will be strict, i.e., bAA > 0, b̂AA > 0.
We can now consider the intersection of N 1 and N 2,

corresponding to (part of) the crease submanifold. Taking
the sum and difference of the equations of the two surfaces
gives equations for the intersection,

2t ¼ ðbAB þ b̂ABÞxAxB þOðX3Þ ð19Þ

and

2z ¼ ðb̂AB − bABÞxAxB þOðX3Þ: ð20Þ

These equations give an exact local description of the
crease submanifold near the pinch point.7 The part of N A
that belongs to H is the part lying to the future of the
intersection, which has t ≥ ð1=2ÞðbAB þ b̂ABÞxAxB.
Equation (19) indicates that the intersection is (generi-

cally) an ellipse or hyperbola in the xA plane, and
ffiffiffiffiffijtjp

sets
the scale for this curve. We are interested in the behavior for
small jtj, say jtj < ϵ. Then the interesting region near the
pinch point has xA ¼ Oðϵ1=2Þ and from (20), also
z ¼ OðϵÞ. Equation (11) implies jτj ¼ OðϵÞ in this region.
The “height” of this region in the z-direction is much
smaller than its “width” in the xA directions. This can be
ascribed to the fact that the evolution ofH in the z-direction
arises from the surfacesN A, which describe propagation at
the speed of light, but the evolution in the xA direction
arises from the crease, which propagates superluminally
(because the crease submanifold is spacelike).
We can now study the geometry of H on a Cauchy

surface Στ by writing out the equations for N 1;2 in terms
of τ, using xi as coordinates on Στ. Using (11) and
focusing on the region just described gives the equations
for N 1;2 as

aτ ¼ zþ
�
bAB −

1

2
KAB

�
xAxB þ…

aτ ¼ −zþ
�
b̂AB −

1

2
KAB

�
xAxB þ…; ð21Þ

7In flat spacetime, Eq. (19) [but not (20)], neglecting OðX3Þ
terms, was written down in [12] as a local model for the crease set
in a nonaxisymmetric merger.
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where the ellipses denote terms that are OðjxAj3Þ or
OðjτxAjÞ or Oðτ2Þ (we eliminate z from these correction
terms by iterating the equations). Thus, Στ ∩ N 1 is locally
a paraboloid, which is elliptic or hyperbolic according to
the signature of bAB − KAB=2, and similarly for Στ ∩ N 2.
Taking the sum and difference of these equations [or using
(11), (19), and (20)] gives the equations of the crease on
Στ (i.e., the intersection of Στ with the crease submani-
fold):

2aτ ¼
�
bAB þ b̂AB − KAB

�
xAxB þ…;

2z ¼
�
b̂AB − bAB

�
xAxB þ…: ð22Þ

For a generic time function, bAB þ b̂AB − KAB will be
nondegenerate. So, to leading order, the crease is either an
ellipse or a hyperbola (with 2 branches) in the xA plane.
We shall discuss the elliptical and hyperbolic cases
separately.

1. Elliptical intersection

This corresponds to bAB þ b̂AB − KAB being either
positive or negative definite. We consider first the negative
definite case. Since the area theorem implies bAAþ b̂AA ≥ 0,
this case requires that KAA > 0, in particular it excludes the
choice τ ¼ t (which gives Kij ¼ 0). For constant τ < 0, the
surfaces N A have an elliptical intersection, i.e., there is an
elliptical crease. The ellipse shrinks to zero size at the pinch
point at τ ¼ 0, and the surfaces do not intersect for τ > 0.
The union of N 1 and N 2 describes (part of) the big wave
front W. To construct H (locally) we need to discard the
parts of the big wave front corresponding to horizon
generators extended beyond their past endpoints. To do
this, we just discard the parts ofN 1 andN 2 which have not
yet entered the intersection. An example is shown on the
top row of Fig. 2. The first diagram shows Στ ∩ H for
τ < 0, where the black hole region lies outside the surface
shown. This is a horizon with an elliptical “hole” in it, i.e., a
horizon of toroidal (or higher genus) topology. The second
diagram on the top row of Fig. 2 shows the behavior at
τ ¼ 0 where the hole in the horizon collapses to zero size
and the horizon cross section has two sections that meet
tangentially at the pinch point. The behavior for τ > 0 is
shown in the third diagram on the top row of Fig. 2, where
we now have two paraboloidal sections of horizon moving
apart, with the black hole region between them.8

For τ < 0, the elliptical intersection of N 1 and N 2 is a
crease running around the circumference of the hole. We
shall now calculate some geometrical properties of this

crease. We have xA ¼ Oð ffiffiffiffiffiffi
−τ

p Þ and z ¼ Oð−τÞ on the
crease. So for small τ < 0, the length of the ellipse scales
as

ffiffiffiffiffiffi
−τ

p
, i.e., the “circumference of the hole” tends to zero

as
ffiffiffiffiffiffi
−τ

p
. To work out the angle Ω at which the two smooth

sections of horizon meet at the crease, we proceed as
follows. First determine the induced metric on a surface
of constant τ, finding it is hij ¼ δij þOðτÞ at the
crease. Second, use (21) to determine the unit normal n
to the surface Στ ∩ N 1 within Στ. Repeat to determine the
normal n0 to Στ ∩ N 2. Finally calculate the angle Ω
using cosðπ −ΩÞ ¼ hijnin0j. The result is Ω ¼ Oð ffiffiffiffiffiffi

−τ
p Þ.

(This can also be understood more heuristically using
tanΩ ∼ z=jxAj.)
Next we consider the case where bAB þ b̂AB − KAB is

positive definite. Now the surfaces N A do not intersect for
τ < 0 and there is an elliptical intersection for τ > 0. In this
case, H is obtained by discarding the part of W that lies
outside the intersection. For τ < 0 this removes everything,
so H is (locally) empty for τ < 0. For τ > 0 we have a
“flying saucer”-shaped horizon, with an elliptical crease
running around its equator. An example is shown in the
second row of Fig. 2. The height of the saucer scales as τ,
its circumference as

ffiffiffi
τ

p
, its area as τ, and the angle at the

crease as
ffiffiffi
τ

p
as above. This case describes the nucleation of

an event horizon of spherical topology. It is easy to
visualize how this arises: the surfaces Στ “bulge upwards”
towards the crease submanifold. They initially start to the
past of this submanifold. At τ ¼ 0, the bulge of Σ0 touches
the crease set at the pinch point, and for τ > 0 the
intersection is a flying saucer. One can choose a time
foliation with multiple bulges so one can arrange for
arbitrarily many of these tiny black holes to nucleate
(and subsequently grow and merge).9 This possibility of
adjusting the time function to obtain arbitrarily many black
holes has been noted previously [13] and explicit examples
have been found numerically [11].

2. Hyperbolic intersection

In this case bAB þ b̂AB − KAB is nondegenerate with
indefinite signature. Near p the intersection of Στ with the
crease submanifold is a hyperbola with 2 branches. At τ ¼
0 the hyperbola degenerates to a pair of straight lines
through the origin. This describes a pair of creases which
intersect and then reconnect. We need to determine which
sections of N 1 and N 2 belong to H. These sections must
include the generators xA ¼ 0, z ¼ �t, t ≥ 0, i.e.,
z ¼ �aτ þ � � �. This implies that for τ > 0, Στ ∩ H con-
tains the parts of N 1 and N 2 lying between the two
branches of the hyperbola. This is a connected surface with

8In this figure the z-axis is vertical, we have set bAB −
KAB=2 ¼ b̂AB − KAB=2 and taken this quantity to be diagonal
with values ð−1=4;−1=4Þ on the first row, (1,1) on the second
row and ð1;−1Þ on the third row.

9Similarly, the previous case of a hole in the horizon arises
when the surfaces Στ “bulge downwards.” With many downward
bulges one can arrange that the horizon cross section has
arbitrarily many holes, i.e., arbitrarily high genus [13].
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two creases (the two branches of the hyperbola), width
scaling as

ffiffiffi
τ

p
and height scaling as τ. For τ < 0 we must

take the parts of N 1 and N 2 that lie outside the two
branches of the hyperbola. This gives, at least locally, two
disconnected parts of the horizon (e.g., two black holes),
each with a crease with hyperbolic shape. These sections of
horizon merge to form a “bridge” connecting the two
sections of horizon. The bridge has hyperbolic creases
along its two edges. See the bottom row of Fig. 2. This is in
good agreement with the behavior seen in the numerical
simulations of black hole mergers in [11] (compare the top
rows of Figs. 15 and 16 of [11].) At the instant of merger,
the crease on each section of horizon degenerates to a pair
of straight lines, so each section of horizon has a sharp tip at
the instant of merger, with the tips of the two horizon
sections touching. For small jτj, the angle along each
crease, at the point where the creases are closest, scales asffiffiffiffiffijτjp

. This vanishes at the sharp tips, i.e., the horizon
flattens out at these tips.
It should be emphasized that this is a local description of

a merger, valid only near the pinch point. In particular,
whether or not the horizon is disconnected cannot be
determined locally. In Sec. IV D we shall describe how
two crease perestroikas can describe the formation of a
horizon of toroidal topology in a black hole merger. An
elliptic perestroika describes the subsequent collapse of the
hole to form a horizon of spherical topology.
We emphasize that these results depend on the choice of

time function. If we fix a normal crease point p and restrict
to time functions such that Σ0 is tangent to the crease
submanifold at p then we still have the freedom to adjust
the extrinsic curvature of Σ0 at p. All three of the possible
behaviors in Fig. 2 can arise from the same pinch point p by
adjusting Kij. Conversely, if we have enough control over
Kij (e.g., in a numerical simulation) to arrange that it is
negative definite at p then the first row of 2 cannot arise
without violating the area law.
There are many similarities between our results above

and the results of Arnol’d and collaborators for wave front
perestroikas involving caustics. The pictures in Fig. 2 and
the scaling of geometrical quantities with τ are the same as
for a perestroika associated with a “Legendrian singularity
of type A2.” See for example Fig. 48 of [17]. However, we
are not studying the same thing; the A2 singularity is a
caustic, rather than a transverse self-intersection. The
similarity arises because (as we shall discuss in Sec. IV B)
the A2 singularity is of codimension 2, just like the crease
submanifold so the form of its intersection with surfaces Στ

is qualitatively similar.

C. Axisymmetry

We can relate the above discussion to the case of a
horizon in a 4d axisymmetric spacetime by considering a
reduction to 3 dimensions. This can be done when the
Killing vector field associated with axisymmetry is

hypersurface-orthogonal (e.g., a head-on merger of non-
rotating black holes). In this case let S be a hypersurface
orthogonal to the Killing field. In adapted coordinates, S is
the union of surfaces ϕ ¼ 0 and ϕ ¼ π together with the
axis of symmetry. The axisymmetry reduces to a reflection
symmetry in 3d which interchanges the sections with ϕ ¼ 0
and ϕ ¼ π. The metric h induced on S is Lorentzian and so
ðS; hÞ is a 3d spacetime. The intersection S ∩ H (or S ∩ W)
is null with respect to h. The above analysis applies
straightforwardly to study a pinch point of S ∩ H in this
3d spacetime; we wish to understand the 4d interpretation
of such a point. We shall assume that the pinch point is
invariant under the 3d reflection symmetry so that it lifts to
a point p on the axis of symmetry in 4d.10

We assume that the time function τ respects axisym-
metry. In 4d, we can introduce Riemannian normal
coordinates Xμ at p as described above. We then transform
the spatial coordinates to cylindrical polar coordinates to
make the axisymmetry manifest. The metric becomes
g ¼ −dt2 þ dr2 þ r2dϕ2 þ dy2 þOðX2Þ. Restricting to a
surface orthogonal to ∂=∂ϕ gives the 3d metric
h ¼ −dt2 þ dr2 þ dy2 þOðX2Þ. In these coordinates we
must allow r to become negative: r > 0 corresponds to
ϕ ¼ 0 and r < 0 corresponds to ϕ ¼ π in 4d. The 3d
reflection symmetry is r → −r. The 3d pinch point
is t ¼ r ¼ y ¼ 0.
In 3d the pinch point is associated with a transverse self-

intersection. We denote the two intersecting sections of S ∩
W as N A as above. The general analysis above shows that
we can perform a rotation of the 3d spatial coordinates
ðr; yÞ to new coordinates ðx; zÞ such that the two surfaces
may be taken to have equations t ¼ zþ bx2 þOðX3Þ and
t ¼ −zþ b̂x2 þOðX3Þ and the horizon generators entering
at p are x ¼ 0 and z ¼ �t respectively, for t ≥ 0. We now
need to determine the rotation relating the ðx; zÞ coordi-
nates to the ðr; yÞ coordinates. To do this, we use the
reflection symmetry (inherited from axisymmetry), which
must preserve S ∩ H and hence preserve N 1 ∪ N 2. There
are two cases. (1) N 1 and N 2 are each invariant under the
reflection; and (2) the reflection interchanges N 1 and N 2.
In case (1), the reflection must act as x → −x so the z-

axis is the axis of reflection symmetry and we can identify
ðx; zÞ ¼ ðr; yÞ. In 4d, N A become a pair of wave fronts
moving in opposite directions along the axis of symmetry.
This is simply the axisymmetric version of the elliptic
intersections discussed above, i.e., it corresponds to the first
two rows of Fig. 2. (In the 4d coordinates, it corresponds to
taking bAB, b̂AB, and KAB proportional to δAB which
excludes the hyperbolic case.)

10If the pinch point were not invariant under the 3d reflection
symmetry then we would need 2 such points, related by this
symmetry. These would lift to a circle of points in 4d. We shall
not consider this case.
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In case (2) we must have b̂ ¼ b and the reflection acts as
z → −z. We can identify ðx; zÞ ¼ ðy; rÞ. The 4d lift of the
surfacesN A is a single surface with equation t ¼ rþ by2þ
OðX3Þ. The generators entering H at p have equation
y ¼ 0, r ¼ t ≥ 0, ϕ ¼ const and there are infinitely many
of them, related by the rotational symmetry. In 4d p is a
caustic point rather than a transverse self-intersection. This
type of caustic is nongeneric outside of axisymmetry so it
does not appear in Table I. We now consider the inter-
section with surfaces Στ. In axisymmetry, (11) becomes

t ¼ aτ þ cτ2 þ dτyþ 1

2
ðKyyy2 þ Krrr2Þ þOðX3Þ: ð23Þ

Repeating the analysis leading to (22) we find that for small
τ, the small wave front has r ∼ τ and y ∼

ffiffiffiffiffijτjp
and equation

aτ ¼ rþ ðb − Kyy=2Þy2 þOðτ2Þ: ð24Þ

If b − Kyy=2 > 0 this describes the nucleation of a “spin-
dle”; an axisymmetric portion of event horizon of spherical
topology, with a conical singularity at the poles. This is
shown in the first row of Fig. 7. The angle at the conical
singularity scales as

ffiffiffi
τ

p
and the horizon area scales as τ. In

the case b − Kyy=2 < 0 it describes the merger of two
disconnected axisymmetric sections of horizon, each with a

conical singularity, to form a smooth section of horizon.
The angle at the conical singularities scales as

ffiffiffiffiffijτjp
. This is

shown in the second row of Fig. 7.
Previous studies have found that in an axisymmetric

black hole merger, Hend is a 1-dimensional spacelike line
[6,8,10]. By adjusting τ one can intersect this set in
different ways; as in the “flying saucer” examples, a
spindle is produced when Στ “bulges upwards” towards
the crease set. By including multiple bulges, one can
arrange for arbitrarily many spindles to appear, along the
axis of symmetry, at an intermediate stage of an axisym-
metric merger. Each subsequent merger of these spindles
with each other, or with the initial black holes, is described
locally by the above results.
We shall now discuss the relation to [12], which

presented a flat space model for the behavior of the event
horizon near the merger point in an axisymmetric black
hole merger. The event horizon was modeled by the surface
f̃ ¼ 0 in flat spacetime where (in our cylindrical polar
coordinates) f̃ ¼ −tþ rþ by2 and b < 0. Clearly this is
very closely related to what we have just discussed: it
corresponds to case (2) with time function τ ¼ t (so
Kyy ¼ 0) and neglecting the higher-order terms in the
equation for the surface and in the metric (i.e., the metric
is described as exactly flat). A drawback of neglecting such
terms is that it gives ημν∂μf̃∂νf̃ ¼ 4b2y2, which implies that

FIG. 7. The evolution of the horizon in some 4d axisymmetric spacetimes arising from the 3d versions of crease perestroikas. Top:
Nucleation of a “spindle”; a portion of horizon of spherical topology, with conical singularities at the poles. The nucleation occurs at
τ ¼ 0. Bottom: Merger of two portions of the horizon. For τ < 0, there are two disconnected parts of the horizon, each with a conical
singularity. The singularities touch at τ ¼ 0, and the two sections of the horizon merge to form a smooth connected surface for τ > 0.
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the surface is null only at y ¼ 0; everywhere else it is
timelike. This seems unsatisfactory as a model of an event
horizon! However, there is no compelling reason to use this
truncated equation in Minkowski spacetime. We have
shown that one can perform an exact curved spacetime
treatment using Riemannian normal coordinates as above
(and allowing for a nonvanishing Kij) to obtain exactly the
same results as in [12], i.e., that the angle at the conical
singularities scales as

ffiffiffiffiffijτjp
.

D. Corner perestroikas

Recall that a normal corner point is a noncaustic point
with NðpÞ ¼ 3 and the set of such points forms the corner
submanifold. Locally, this submanifold is a transverse
intersection of 3 null hypersurfaces N A, A ¼ 1, 2, 3. Let
these have equations fA ¼ 0 where fA are smooth func-
tions and dfA are null and linearly independent.
We define corner perestroikas similarly to crease pere-

stroikas. Given a generic time function τ, Στ generically
intersects the corner submanifold transversally, in isolated
(corner) points. However, for special values of τ, Στ may
intersect the corner submanifold tangentially at p. As
above, we shall call such p a pinch point. We shall shift
our time function such that τðpÞ ¼ 0, so Σ0 is tangent to the
corner submanifold at p. Generically, the corner submani-
fold either “bends upwards” or “bends downwards” from
Σ0 at p. In the former case, Στ does not intersect the corner
submanifold (locally, near p) for τ < 0 and intersects it at
two points for τ > 0, and vice versa in the latter case. Thus,
a corner perestroika describes a process in which a pair of
corners either nucleates or disappears.
Let Va be tangent to the corner submanifold at p (and

hence also tangent to Σ0). Then Va is also tangent to each
surfaceN A. This implies that different sections of the small
wave front Σ0 ∩ N A have a common tangent vector Va at
p. Each pair of surfaces defines a crease. On Σ0 these are
Σ0 ∩ N A ∩ N B for A ≠ B. The three crease lines are
tangential to Va at p, where they meet. We need to
determine which of these lines belong to Σ0 ∩ H.
At p, one generator of each of N A must enterH. Hence,

for small positive τ, Στ ∩ H must have three smooth
sections corresponding to the threeN A. Their intersections
are crease lines. To visualize the geometry, we can, for
infinitesimal τ, take a cross section of Στ ∩ H transverse to
the vector Va. More precisely, consider a timelike surface S
through p with normal Va at p. Since Va is tangent to N A
we have 0 ¼ VaðdfAÞa and so ðdfAÞa is orthogonal to Va.
Hence the generator ofN A through p is tangent to S. If we
regard S as a 3d spacetime (using the induced metric) then
the generators enteringH at p lie on the future null cone of
p in this spacetime. So S ∩ N A is tangent to this null cone.
A surface of infinitesimal positive τ (i.e., Στ ∩ S) corre-
sponds to taking a cross section through this future null
cone, which gives a circle, on which the three generators

are three points and, locally, S ∩ N A are straight lines
tangent to the circle at these points (see Fig. 8). The
intersections of these tangent lines are the intersections of
creases with S. As usual, parts of these lines correspond to
portions ofW that do not belong toH. To construct Στ ∩ H
we must retain the three portions of the lines containing the
three generators entering at p. This leads to two cases.
(1) The three lines form a triangle (Fig. 8 left). When we
reinstate the direction perpendicular to S, this implies
that Στ ∩ H locally resembles a triangular prism, whose
cross section shrinks to zero size as τ → 0þ : (2) There is
one short line with two other lines extending from its
endpoints and, locally these other lines do not intersect
each other (Fig. 8 right). In this case, Στ ∩ H locally
resembles an “open prism” with one narrow face that joins
onto two other faces. The width of this narrow face shrinks
to zero as τ → 0þ.
For either of these cases there are two subcases to

consider: either (a) 2 corners are present for τ > 0 and none
for τ < 0 (the corner submanifold “bends up” from Σ0) or
(b) 2 corners are present for τ < 0 and none for τ > 0 (the
corner submanifold “bends down” from Σ0).
In case (1a) the corner perestroika describes the nucle-

ation of a topologically spherical section of event horizon,
with corners at the “poles” and three crease lines connect-
ing these corners. The horizon has an expanding triangular
cross section. See the top row of Fig. 9. In case (1b), for
τ < 0, Στ ∩ H exhibits two (locally) disconnected sections,
each with a corner from which three crease lines emanate.
The corners approach each other and merge at p to form a
connected section of horizon with three crease lines, and an
expanding triangular cross section. See the second row of
Fig. 9. At p, the corners degenerate to sharp “spikes,” with
vanishing solid angle. For small τ < 0, the solid angle at

FIG. 8. Wave front shortly after a corner perestroika in the 3d
spacetime S. This figure shows the wave front in Στ ∩ S for
infinitesimal positive τ. The black circle is a cross section of the
future light cone at p. The orange dots indicate the 3 generators
enteringH at p. The blue lines indicateN A and the green dots are
the intersections of the crease lines with S. The dashed segments
of N A are in W but not H. Left: The three lines that belong toH
close up to form a triangle. Right: The three lines do not close up
locally. In both cases, the local geometry of Στ ∩ H can be
visualized by translating the solid blue lines in the direction Va

normal to the plane of the figure.
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each corner scales as Ω ∼OðjτjÞ and the angle at the
corners between each pair of crease lines is Oð ffiffiffiffiffiffi

−τ
p Þ

as τ → 0−.
These corner perestroikas are analogous to the crease

perestroikas shown in the second and third rows of Fig. 2.
In particular they provide an alternative mechanism for
horizon nucleation or merger. However, they only occur if
the corner submanifold is nonempty.

In case (2a), the perestroika describes the nucleation of a
pair of corners on a crease. For τ < 0, Στ ∩ H has (locally)
two smooth sections meeting at a single crease line. At
τ ¼ 0 a corner point appears on this line, and immediately
splits into two corners which are connected by two new
crease lines bounding a new smooth section of the horizon.
See the third row of Fig. 9. In case (2b) the perestroika
describes the annihilation of a pair of corners. For τ < 0, a

FIG. 9. Corner perestroikas, with creases highlighted in green. Corners that are not obvious are shown by red points. Top: Nucleation
of a surface of spherical topology, with two corners connected by three crease lines for τ > 0. (Only the edges are shown for clarity.)
Upper Middle: Two locally disconnected surfaces, each containing a corner, touch and merge as τ → 0. For τ > 0 the corners have
annihilated and there remain three disconnected crease lines, forming an expanding triangular prism. Lower Middle: Nucleation of two
corners on a crease. The corners are connected by two creases. Bottom: Annihilation of two corners, leaving two locally disconnected
creases for τ > 0.
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pair of corners is present, each with 3 crease lines
emanating from it, with one of these crease lines connecting
the two corners. At τ ¼ 0 this crease line shrinks to zero
size and the corners disappear, leaving a horizon with two
(locally) disconnected crease lines for τ > 0, as depicted in
the bottom row of Fig. 9.

IV. CAUSTIC POINTS

A. Generic wave front singularities

In this section we shall discuss caustics for the class of
horizons defined in Sec. II B with the added assumption of
genericity (stability). A caustic is a singularity of the big
wave frontW (Sec. II B) at which it fails to be an immersed
submanifold. Catastrophe theory aims to classify stable
wave front singularities, i.e., singularities whose qualitative
properties are unchanged by a small perturbation in the
wave front. In our case, the big wave front is uniquely
determined once the metric is fixed. However, we can
perturb the spacetime metric. More precisely, if we have
equations of motion that admit a well-posed initial value
problem then we can perturb the initial data on a Cauchy
surface and ask how this affects properties of the big wave
front. We shall assume that stability with respect to
perturbations of the metric is equivalent to stability with
respect to perturbations of the wave front. Siino and Koike
[14] do not explain how their mathematical notion of
stability relates to either of these notions of stability.11 In
this section we shall discuss a different approach to this
problem based on earlier work in the literature. The reader
uninterested in this issue may wish to skip ahead to Sec. IV
C where we describe the geometry ofH near an A3 caustic.
Recall that W is defined by null geodesics emanating

orthogonally to a late-time cross section of the horizon.
Although W is not smooth, the geodesic flow is smooth in
phase space T⋆M (the cotangent bundle of spacetime).
These null geodesics generate a (d − 1)-dimensional
smooth submanifold W 0 ⊂ T⋆M whose projection to
spacetime is the nonsmooth submanifold W. We call
W 0 the lifted wave front. At generic points, the projection
map restricted to W 0 has maximal rank (d − 1) in
which caseW is locally an immersed submanifold (which
may exhibit self-intersections, at which it fails to be an
embedded submanifold). A caustic is the image of a point

at which the rank of this (smooth) map is less than (d − 1).
Catastrophe theory provides a classification of the pos-
sible behavior near such points, assuming an appropriate
notion of stability.
The classification of wave front singularities is an

application of the classification of stable Legendrian
singularities obtained by Arnol’d and collaborators
(reviewed in [16,17]). There have been several attempts
to apply this classification to caustics in a general curved
spacetime [36–38]. The work of [36,37] aims at a classi-
fication of stable singularities of a big wave front. As we
shall explain, this work has not yet been fully justified
mathematically. The work of [38] provides a classification
of stable singularities of a small wave front. This is on
firmer ground mathematically. Therefore we shall discuss
this work first.
The approach of [38] uses the space of future-directed

null geodesics N . This is obtained from phase space by
taking certain quotients. It can be shown that N is a
contact manifold of dimension 2d − 3. A lifted wave front
gives a smooth Legendrian submanifold W 0 ⊂ N [38].
Conversely, any such Legendrian submanifold is a lifted
wave front. A small wave front is the image of a
Legendrian map from W 0 to a Cauchy surface Σ. The
Arnol’d classification of stable Legendrian singularities
can be used to determine the generic (i.e., stable) behavior
of singularities of a small wave front. For d ¼ 4, this
implies that generically the singularities of this map can
only be those of type A2 (cusp) or A3 (swallowtail) in the
Arnol’d classification. A small wave front with an A3

caustic point and two lines of A2 caustic points is shown
on the left of Fig. 3. Here “generic” should be understood
to include the choice of Σ; there may be special instants of
time at which nongeneric singularities occur; these are
associated with caustic perestroikas. We shall show below
that A2 singularities cannot occur on the part of a small
wave front that corresponds to a horizon cross section (as
on the right of Fig. 3), and therefore a stable singularity of
a horizon cross section must be of type A3.
We now turn to approaches based on the big wave front

[36,37].12 In [36], a contact manifold is obtained by taking
a quotient of the fibers of phase space, giving a projectified
cotangent bundle PT�M. This is a contact manifold whose
base space is the spacetime manifoldM. The big wave front
corresponds to a Legendrian submanifold of this contact
manifold, so one can again apply the classification of stable
Legendrian singularities [36]. However, as noted in [37],
there is a problem; while a wave front lifts to a Legendrian
submanifold of PT�M, a generic Legendrian submanifold
of PT�M does not correspond to a wave front because a
generic point of PT�M corresponds to a non-null covector.
Thus, a “generic” perturbation of the wave front, viewed as

11Evidence that their notion of stability does correspond to
stability with respect to perturbations of the metric (although
without imposing any equations of motion) is provided by results
on the cut locus in Riemannian geometry. Recall Lemma 2 relates
Hend to the cut locus of H⋆. Now for a generic compact 3d
Riemannian manifold it has been proved [35] that the cut locus
(of a point, and presumably also a hypersurface) consists of the
same type of points as listed in Table I. Adding a trivial time
direction gives a class of 4d Lorentzian product manifolds for
which the Lorentzian cut locus has the structure of Table I, and
for which the structure is stable with respect to perturbations of
the spatial metric.

12For a review of how the Arnol’d classification relates to big
wave fronts see [39].
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a Legendrian submanifold, does not give another wave
front. Conversely, perturbations that do remain within
the family of wave fronts are nongeneric from the
Legendrian perspective. In other words, “stable as a wave
front” is a weaker condition than “stable as a Legendrian
submanifold of PT�M,” so a stable big wave front
singularity might correspond to an unstable Legendrian
singularity and therefore lie outside the Arnol’d classifi-
cation.13 However, in flat spacetime one can exploit the
additional symmetries to obtain a classification of stable
big wave front singularities and this is in agreement with
the notion of stability as a Legendrian submanifold [42].
Based on this, and since a curved spacetime is locally flat, it
seems reasonable to expect that the behavior near a generic
big wave front singularity will be qualitatively identical in
curved spacetime and in flat spacetime. Therefore, we shall
proceed on the assumption that stable big wave front
singularities are indeed stable in the Legendrian sense.
For d ¼ 4, the big wave front singularities that are

stable in the Legendrian sense are those of type A2, A3,
A4, andD�

4 in Arnol’d’s classification. An A4 orD�
4 caustic

is pointlike and so does not intersect a generic Cauchy
surface. Therefore caustics on a small wave front generi-
cally will be of type A2 or A3, in agreement with the
discussion above.
In order to relate this discussion to the classification of

Siino and Koike [14], we first note that A3 points are not
isolated but form lines in spacetime (see below). Such a line
can intersect another (smooth) section of H transversally;
this gives a point of type ðA3; A1Þ in the classification of
[14]. If we can show that caustics of type A2, A4, and D�

4

generically cannot occur on H then we recover the results
of [14]. Siino and Koike work with a “Fermat potential”
which is asserted to be minimized on H. So maybe an A2,
A4, or D�

4 caustic corresponds to an extremum of this
potential that fails to be a minimum. The Appendix of [43]
gives a rigorous argument for why a horizon satisfies a
Fermat principle. This argument shows that the minimi-
zation property arises from the achronality of the horizon.
Combining these ideas suggests that we should aim to show
that A2, A4, and D�

4 caustics always violate achronality and
are therefore excluded on a future horizon H.
In Sec. IV B and Appendix Awe shall use the canonical

form of an A2 caustic to demonstrate that indeed achron-
ality is violated near an A2 point on a big wave front, thus
proving that an A2 caustic cannot occur on H. In
Appendix A we show that an A2 singularity on a horizon
cross section would also violate achronality of H. Thus,
achronality excludes A2 caustics on horizons. An A4 or D�

4

caustic point on a big wave front has several 2d sets of A2

points emanating from it. In order for an A4 orD�
4 caustic to

occur on H, these A2 points would have to belong to the

part of the big wave front that is not part of H (as happens
for an A3 caustic; Fig 3). In Appendix B we sketch an
argument showing that this is not possible. Hence achron-
ality excludes A4 and D�

4 caustics on H.
In Sec. IV C we shall study in detail the horizon

geometry near an A3 singularity on a horizon. As men-
tioned above, A3 points form lines in spacetime. Given a
time function τ, generically a Cauchy surface of constant τ
will intersect such a line transversally, which gives a small
wave front with an isolated A3 singularity. However, just as
we saw with creases and corners, there may be a special
value of τ for which the Cauchy surface is tangent to the A3

line. This results in a qualitative change in the features of
the small wave front; either a pair of A3 points that merge,
or the nucleation of a pair of A3 points. Following Arnol’d,
we shall call these processes A3 perestroikas. In Sec. IV D
we shall describe how a generic black hole merger can be
decomposed into a sequence of crease and A3 perestroikas.
In Sec. IV E we shall describe the horizon geometry near

an ðA3; A1Þ caustic and show that there are three possible
perestroikas associated with such a caustic.
We would like to contrast our approach below with that

of Ref. [36], which presents examples of big wave fronts in
Minkowski spacetime exhibiting the various types of
caustics. This work makes use of inertial coordinates,
i.e., the coordinates are adapted to properties of the metric.
In our approach, we consider a general metric and use
coordinates for which the caustic takes its canonical form,
i.e., coordinates are adapted to the form of the caustic rather
than to symmetries of the metric. The fact that the big wave
front is null gives some information about the metric
components in these coordinates. This turns out to be
enough to establish, for example, the results about achron-
ality mentioned above.

B. A2 caustics

Given a big wave front with a generic singularity, one
can apply a diffeomorphism, i.e., choose smooth coordi-
nates, to bring the wave front to a canonical form in a
neighborhood of the singularity (see e.g., Chapter 21 of
[16]). In a (finite) neighborhood of an A2 singularity on a
big wave front we can introduce coordinates ðx; y; zAÞ, A ¼
2;…; d (with d the spacetime dimension), such that the
wave front is the surface given by values ðx; y; zAÞ for
which the cubic polynomial fðpÞ ¼ p3 þ xpþ y has
degenerate roots. This is the surface defined by the map
ðp; zAÞ ↦ ð−3p2; 2p3; zAÞ and the A2 point is (0,0,0).
Since the dependence on zA is trivial, an A2 singularity
is not isolated, instead there is a codimension-2 submani-
fold of A2 points ð0; 0; zAÞ. A cross section of constant zA is
a curve with a cusp at x ¼ y ¼ 0.
We shall now determine some properties of the metric

tensor in these coordinates. We do this by imposing the
condition that the wave front is a null hypersurface. The

13Reference [37] presented a theorem that was claimed to fix
this problem but this claim has been withdrawn [40,41].
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tangent vectors to our wave front are ∂=∂zA and
∂=∂x − p∂=∂y. A covector n is normal to the wave front
if it is orthogonal to these tangent vectors, which implies
nA ¼ 0 and nx ¼ pny. We can set ny ¼ 1 so the normal to
the wave front is n ¼ dyþ pdx. We now impose the
condition that this is null, which is

0 ¼ gyy þ 2pgxy þ p2gxx; ð25Þ

where this equation must hold on the wave front, i.e., at
points of the form ð−3p2; 2p3; zAÞ. The metric and the
coordinates are smooth so the dependence of gμν on
ðx; y; zAÞ must be smooth. We can now expand the above
equation in p. At order p0 and p1 this gives

0 ¼ gyyð0; 0; zAÞ ¼ gxyð0; 0; zAÞ: ð26Þ

Thus, at the caustic ð0; 0; zAÞ we see that dy is null
(it is normal to the wave front there) and dx is orthogonal
to dy. The latter implies that dxmust be either spacelike, or
null and parallel to dy. But dx and dy are linearly
independent so dx cannot be parallel to dy. Hence dx is
spacelike at the caustic. It follows that the caustic set x ¼
y ¼ 0 is a null submanifold. To see this, note that Va is
tangent to this submanifold if and only if V · dy ¼ 0
and V · dx ¼ 0. The former condition implies that V
cannot be timelike but Va ¼ ðdyÞa satisfies both condi-
tions hence there is a null tangent vector. We have
nað0; 0; zAÞ ¼ ðdyÞað0; 0; zAÞ ¼ gAyð∂=∂zAÞa. Since na is
tangent to the null geodesic generators of the big wave
front, it follows that a generator passing through a caustic
point is everywhere tangent to the set of caustic points.
We shall now demonstrate that this big wave front

violates achronality in any neighborhood of an A2 point.
In the tangent space at any A2 point we can consider the
plane with normal dx. Since dx is spacelike, this plane is
timelike. Furthermore, it is spanned by ∂=∂y and ∂=∂zA

since these are clearly orthogonal to dx. Hence at an A2

point ð0; 0; zAÞ there exists a timelike vector of the form
V ¼ a∂=∂yþ bA∂=∂zA. We can assume a ≠ 0 because the
set of timelike vectors is open. By continuity this vector is
also timelike in a neighborhood of ð0; 0; zAÞ. By rescaling
we can set a ¼ 1. Now starting at the point ð−3p2; 2p3; zAÞ
for some p < 0, which lies on the big wave front, we can
follow the integral curve of V a parameter distance 4jpj3 to
reach the point ð−3p2;−2p3; zA0Þ for some zA0. This point
also lies on the wave front. Thus, our integral curve
connects two distinct points of the wave front lying on
opposite sides of the cusp. For small enough jpj this curve
is timelike. This violates achronality. Also, for any neigh-
borhood O of ð0; 0; zAÞ, by taking jpj small enough, this
timelike curve lies entirely in O. It follows that H, viewed
as part of a big wave front, cannot possess an A2 singularity.

This argument was for the big wave front. Similarly we
can show that if there exists an A2 singularity on a small
wave front then the corresponding big wave front cannot be
achronal. This argument is given in Appendix A. The
reason for considering the small wave front separately is
that, as explained above, the classification of singularities
of the small wave front is more rigorously established than
the classification for the big wave front.
We could also consider the possibility of a wave front

that intersects itself, with one sheet of the intersection
possessing an A2 singularity. We consider this from the
perspective of the small wave front. Generically such an
intersection will be transversal and so a line (on the small
wave front) of A2 caustic points will emerge from the
intersection. The above arguments are local so they can
applied to a point on this line to show that the resulting big
wave front cannot be achronal. Thus, such intersections
cannot arise on a cross section of H.

C. A3 caustics

We start by considering an A3 singularity on a small
wave front in d ¼ 4 spacetime dimensions. Consider a
Cauchy surface Σ intersecting the big wave front W, so
the small wave front is W ≡ Σ ∩ W. If W possesses an A3

caustic then there exist (smooth) coordinates ðx; y; zÞ
on Σ such that the A3 point is at (0,0,0) and, in a finite
neighborhood of this point, W is the surface where
the quartic polynomial fðpÞ ¼ p4 − yp2 − xpþ z has
degenerate roots (Chapter 21 of [16]). This can be para-
metrized by ðp; qÞ [taking values in a neighborhood of
(0,0)] as the map

ðp; qÞ ↦ ð4p3 − 2qp; q; 3p4 − qp2Þ: ð27Þ

The A3 point is at the origin (0,0,0), with p ¼ q ¼ 0. The
surface W has the “swallowtail” structure shown on
the left in Fig. 3. The z-axis points downwards in this
figure. The Jacobian ∂ðx; y; zÞ=∂ðp; qÞ has rank 2 except at
q ¼ 6p2 where it has rank 1. For q ¼ p ¼ 0 this gives the
A3 point, for q > 0, p ≠ 0 it gives two lines of A2 points
with coordinates ð−8p3; 6p2;−3p4Þ (p > 0 or p < 0).
The surface W has a transverse self-intersection at
p2 ¼ q=2, corresponding to the line ð0; y; y2=4Þ, y > 0.
The A2 singularities lie beyond this intersection line as
shown in Fig. 3.
We are interested in a big wave front defined in terms of

a future horizon as explained in Sec. II B. In this case, the
horizon cross section H ¼ Σ ∩ H is a subset of the small
wave front W. Horizon generators cannot extend beyond a
self-intersection, and we have seen that H cannot contain
an A2 singularity. ThereforeH is obtained by discarding the
part ofW that lies beyond the self-intersection, i.e., the part
containing the A2 lines. This is the region q > 2p2.
Discarding this region gives the surface shown on the
right of Fig. 3 with a crease (the self-intersection) that ends
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at the A3 point. The angle between the two planar sections
meeting at the crease tends to π at the A3 point.
Locally the surface H is a graph over the ðx; yÞ

plane, i.e., it is given by an equation of the form z ¼
Zðx; yÞ where Z is determined implicitly by the above
equations. Using ðx; yÞ as coordinates on H, the A3 point is
at (0,0) and the crease is ð0; yÞ with y > 0. The function Z
is continuous everywhere and smooth except on the line
ð0; yÞ with y ≥ 0. Away from this line we find dZ ¼
pdxþ p2dy which is continuous at (0,0) because p → 0 as
ðx; yÞ → ð0; 0Þ. Hence Z is a C1 function except along the
crease (where it is not differentiable). A calculation gives

�
∂p
∂x

�
y
¼ 1

12p2 − 2y

�
∂p
∂y

�
x
¼ 2p

12p2 − 2y
: ð28Þ

This shows that p, regarded as a function of ðx; yÞ, is not
differentiable at (0,0). Hence Z is not twice differentiable at
the A3 point. In summary, H is not differentiable at the
crease (as expected) and H is continuously differentiable,
but not twice differentiable at the A3 point.
We shall now discuss the behavior of the big wave front

near an A3 singularity, and deduce the corresponding
behavior of the horizon H. In this case the results of
Arnol’d et al. show that we can introduce smooth coor-
dinates ðw; x; y; zÞ in spacetime such that, in a finite
neighborhood of an A3 singularity, the big wave front
takes the form ðw; p; qÞ ↦ ðw; xðp; qÞ; yðp; qÞ; zðp; qÞÞ,
where ðxðp; qÞ; yðp; qÞ; zðp; qÞÞ are given by (27). Clearly
this is simply a product of a line with the (small wave front)
A3 surface just discussed. However, this product structure
does not extend to the metric tensor. In particular it is not
always correct to interpret w as a time coordinate and
ðx; y; zÞ as spatial coordinates. The A3 point of interest is at
(0,0,0,0) but, since the w-dependence is trivial, the big
wave front possesses a line of A3 points, with tangent ∂=∂w.
Using our results for the small wave front A3 surface, we
can see that the big wave front is differentiable on the A3

line. Hence the results of [2] (see Sec. II A) imply that
exactly one generator enters the horizon at an A3 caus-
tic point.
We can use the fact that the wave front is null to constrain

the form of the metric in these coordinates, just as we did
for an A2 big wave front singularity. The normal to the wave
front is dz − pdx − p2dy (exactly the same calculation as
for the small wave front). Imposing the condition that this is
null on the big wave front gives

gzz−2pgxz−2p2gyzþp2gxxþ2p3gxyþp4gyy¼ 0; ð29Þ

where this equation must hold at points with coordinates
ðw; 4p3 − 2qp; q; 3p4 − qp2Þ. Using the fact that the
coordinates and metric are smooth, we can expand the
above equation in p and equate powers of p. Equating
coefficients of p0 and p1 gives (using y ¼ q)

gzzðw;0;y;0Þ¼0 gxzðw;0;y;0Þ¼−ygzz;x ðw;0;y;0Þ: ð30Þ

Going to order p2 it is easiest to start by setting q ¼ 0 (i.e.,
y ¼ 0), which gives gyz ¼ gxx=2 at ðw; 0; 0; 0Þ. Combining
with the above equations, we learn that on the A3 line
ðw; 0; 0; 0Þ we have

gzz ¼ gxz ¼ 0 gyz ¼ 1

2
gxx: ð31Þ

At higher order in p one obtains further conditions
involving derivatives of the metric components but we
shall not need these. These equations imply that dz is null
on the A3 line. Indeed dz is null, and normal to the big wave
front, in the entire ðw; yÞ-plane. On the A3 line we also have
that dx is orthogonal to dz so dx must be either spacelike,
or null and parallel to dz. But dx and dz are linearly
independent so dx cannot be parallel to dz. Hence dx is
spacelike at the caustic, i.e., gxxðw; 0; 0; 0Þ > 0 and hence
(by the final equation above) gyzðw; 0; 0; 0Þ > 0. On the A3

line we now have

ðdzÞa ¼ gyzð∂=∂yÞa þ gwzð∂=∂wÞa gyz > 0: ð32Þ

This null vector is normal to the big wave front, and must
therefore be tangent to the (unique) generator through
ðw; 0; 0; 0Þ. Since gyz > 0, ðdzÞa points into an A3 point
from the region y < 0 where the big wave front is smooth.
Since we know that our A3 point must be a past endpoint
of a generator of H, it follows that this generator must
have future-directed tangent −ðdzÞa, which points out of
the A3 point towards the smooth region of the big wave
front. We also have 0 ¼ dz · ∂=∂w, hence at an A3 point,
∂=∂w must be either spacelike or null and tangent to ðdzÞa
but Eq. (32) shows the latter is not true hence ∂=∂w must
be spacelike on the A3 line, i.e., this line is spacelike.
(Similarly ∂=∂x is spacelike on the A3 line.) The tangent
plane to the big wave front (orH) at an A3 point is normal
to dz and hence spanned by f∂=∂w; ∂=∂x; ∂=∂yg or,
equivalently, by f∂=∂w; ∂=∂x; ðdzÞag.
Emanating from the A3 line is a section of the crease

submanifold (so A3 points belong to the closure of the
crease submanifold). This is given by points with coor-
dinates ðw; 0; y; y2=4Þ with y > 0. On the big wave front
we also have two 2d submanifolds of A2 points, with
coordinates ðw;−8p3; 6p2;−3p4Þ (p > 0 or p < 0). As
discussed for H, these do not belong to the horizon H,
which is constructed by discarding points lying beyond the
self-intersection ofW. SoH corresponds only to the part of
W with q ≤ 2p2. The set of tangent vectors to the crease set
is spanned by ∂=∂w and ∂=∂yþ ðy=2Þ∂=∂z. In the limit
where we approach the A3 line, this tends to the 2-plane
spanned by ∂=∂w and ∂=∂y or, equivalently, by ∂=∂w and
ðdzÞa, so this limiting 2-plane is null, and tangent to H.
Locally, the union of the A3 line and the crease submanifold

MAXIME GADIOUX and HARVEY S. REALL PHYS. REV. D 108, 084021 (2023)

084021-22



has the structure of a smooth 2d manifold with boundary.
At the A3 line, the tangent plane to this manifold with
boundary is tangent toH. (This has been seen previously in
examples [5].)
We shall now discuss the interpretation of an A3

singularity of H with respect to a time foliation. As usual,
let τ be a time function with Cauchy surfaces of constant τ
denoted as Στ. For a generic value of τ, such a surface will
intersect the A3 line transversally, i.e., ðdτÞw ≠ 0. Without
loss of generality, assume this intersection occurs at
(0,0,0,0) and has τ ¼ 0. By the implicit function theorem,
we can solve the equation τðw; x; y; zÞ ¼ w0 for w for small
values of ðw0; x; y; zÞ. The solution wðw0; x; y; zÞ depends
smoothly on ðw0; x; y; zÞ. We can now change to new
coordinates ðw0; x; y; zÞ. This transformation does not affect
the equations determiningW so all of the above analysis is
still valid with w replaced by w0. Dropping the prime, we
have shown that for this τ we can perform a change of
coordinates that preserves the canonical form of W and
simplifies the time function to τ ¼ w, recovering a result of
[15]. It now follows that, for this τ, the small wave front and
the horizon cross section H have exactly the structure
discussed at the start of this section; on H there is an
isolated A3 point with a crease emerging from it.
This analysis was for generic values of τ. However, just

as we discussed for corners, there will exist special values
of τ for which Στ is tangent to the A3 line. This corresponds
to a qualitative change in the features of the small wave
front. Following the terminology of Arnol’d, we shall refer
to this as an A3 perestroika. We can shift τ so that the
perestroika occurs at τ ¼ 0 and we can choose local
coordinates as above so that the A3 point on Σ0 is at
(0,0,0,0). The fact that Σ0 is tangent to the A3 line implies
that ∂wτ ¼ 0 at (0,0,0,0). Since −ðdzÞa is future-directed
and null at the A3 point and −ðdτÞa is future-directed and
timelike, we must have ð−dzÞ · ð−dτÞ < 0 which [using
(32) and ∂wτ ¼ 0] gives gyz∂yτ < 0 and hence ∂yτ < 0 near
the A3 point. Consider a curve extending from this A3 point
into the crease submanifold. Such a curve can be written
ðwðsÞ; 0; yðsÞ; yðsÞ2=4Þ, where wð0Þ ¼ yð0Þ ¼ 0 and
yðsÞ > 0 for s > 0. At s ¼ 0 we have dτ=ds ¼ ∂yτ < 0.
Hence τ < 0 on the crease set in a neighborhood of this A3

point. In particular, creases are absent near this A3 point for
τ ≥ 0. Thus, an A3 perestroika describes a process in which
a (section of) crease disappears.
Near the origin we can expand14 τ ¼ aixi þ bijxixj þ

2bwiwxi þ bwww2 þ � � � where, xi ¼ ðx; y; zÞ and ay < 0.
Since A3 points have xi ¼ 0 they have τ ¼ bwww2þ
Oðw3Þ. Generically bww ≠ 0. If bww < 0 then no A3 points
are present for τ > 0 (the surface Σ0 “curves up” from the

A3 line). A single A3 point is present at τ ¼ 0. Two A3

points are present for τ < 0, with w ∼� ffiffiffiffiffiffi
−τ

p
so the

distance between them shrinks as
ffiffiffiffiffiffi
−τ

p
. On the horizon

cross section H, emanating from each A3 point is a crease.
There are two possibilities: (1) the A3 points are connected
locally by a single crease; (2) the A3 points are not
connected locally by a single crease. In case (1), the crease
perestroika describes a finite section of crease, with A3

endpoints, which shrinks to zero and vanishes at τ ¼ 0.
This is shown in the top row of Fig. 10. Case (2) would
describe a pair of creases, each with an A3 endpoint, that
merge at the origin to form a single section of crease. But
this is excluded because we showed above that creases are
not present near the origin for τ > 0. If bww > 0 then one
obtains the time reversed versions of (1) and (2). In this
case, it is (1) that is excluded and (2) describes a process in
which a section of crease nucleates a pair of A3 points
which move apart, with separation scaling as

ffiffiffi
τ

p
and no

crease between them (since no crease is present near the
origin for τ > 0). In other words it describes the decay of a
section of crease via A3 nucleation. This is shown in the
bottom row of Fig. 10.
In summary, there are two types of crease perestroika:

one describes the disappearance of a finite section of crease
with A3 endpoints, the other describes the nucleation within
a section of crease of a pair of A3 points, which sub-
sequently move apart, smoothing out the crease. Both types
of perestroika have a smoothing effect on the horizon. For a
wave front in flat spacetime, these perestroikas are well
known in the catastrophe theory literature, see e.g., Fig. 63
of [16] (for a horizon cross section Στ ∩ H we discard the
portions of the figure lying beyond the self-intersection). A
difference in our case is that there is a preferred direction of
time in these perestroikas. This time asymmetry arises
because H is a future horizon.

D. Elements of a black hole merger

We shall now discuss how the various perestroikas that
we have studied arise during the simplest kind of black hole
merger that are generic enough to be described by the
perestroikas discussed in this paper.15 In simple examples
of nonaxisymmetric mergers [7,9,11,12], the crease sub-
manifold is an infinite strip. The two asymptotic regions of
the strip lie on the two separate black hole horizons long
before the merger. The two boundaries of this strip are A3

lines. No corners are present in these simple examples.
Consider a time foliation which describes a merger, i.e.,

Στ ∩ H is topologically a pair of spheres for large negative
τ and a single sphere for large positive τ. For large negative
τ, the intersection of Στ with the crease submanifold is a

14Arnol’d shows that in this case one can change coordinates,
preserving the canonical form ofW, to bring the time function to
the form τ ¼ −y� w2 [15] (if ∂yτ < 0). However we shall not
need to do this.

15This section has significant overlap with Sec. V of Ref. [9].
We have included it in order to highlight the role of perestroikas
in a merger. We believe the observation at the end of this section
is new.
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pair of line segments (creases). The endpoints of these lines
are A3 points. So before merger, each black hole horizon
exhibits a “chisel-like” feature. We’ll now describe the
simplest possibility for what happens next. See Fig. 11,
which shows (schematically) the local structure of a
horizon cross section Στ ∩ H. As τ increases, these
intersection lines move towards each other within the
crease submanifold and eventually a crease perestroika
occurs (top right diagram); the horizon cross section now
becomes connected, so this is the “instant of merger.” After
the merger, the horizon is topologically spherical; there is a
thin “bridge” connecting the two original black holes, and a
finite section of crease runs along each edge of this bridge
(bottom left diagram). These finite sections have A3

endpoints. Each of these sections of crease now shrinks.
First one vanishes in an A3 perestroika, then the second also
vanishes in an A3 perestroika. The horizon is now smooth.
The black hole then settles down to equilibrium.
A different choice of time function can lead to more

complicated behavior. For example, one can choose a time
function so that the crease perestroika occurs close to an A3

line. This implies that the merger point occurs close to an
endpoint of the sharp edge of each “chisel.” A second
crease perestroika can subsequently occur close to the other
A3 line. The result is the formation of a “bridge” with a hole
in it. See Fig. 12. The horizon has toroidal topology, with a

crease running around the inner edge of the hole. There is
also a pair of (very short) finite creases, with A3 endpoints,
running along the two outer edges of the bridge. These
creases subsequently shrink and vanish in A3 perestroikas.
The hole in the torus shrinks and vanishes in an elliptic
crease perestroika, leaving a horizon of spherical topology.
This is the behavior seen in examples of [11,12].
In these processes, the “instant of merger” is always

described by a crease perestroika, never by an A3 pere-
stroika. Indeed, neither of the two possible A3 perestroikas
(Fig. 10) describes a merger of two locally disconnected
sections of horizon. This appears to contradict statements
about some (nonaxisymmetric) examples in the literature
(e.g., in Ref. [7]) where it is asserted that the instant of
merger is a merger of caustic points. We believe that, in
such examples, the crease perestroika occurs very close to
an A3 line, leading to this confusion.

E. ðA3; A1Þ caustics
The ðA3; A1Þ caustic is an isolated caustic point that

arises when a smooth section of a wave front intersects an
A3 line transversally. We can describe the wave front locally
near such a caustic as follows. Introduce coordinates
ðw; x; y; zÞ adapted to the A3 caustic as explained in
Sec. IV C, with the ðA3; A1Þ point at the origin. Now
consider a smooth null hypersurface N passing through

FIG. 10. The two types of A3-perestroika. The creases have been marked by green lines and the A3 caustics by blue points. The figures
show the horizon cross section Στ ∩ H near the perestroika. Top: A section of crease bounded by two A3 points shrinks to zero size as
τ → 0. For τ > 0 the surface is smooth. Bottom: A section of crease nucleates two A3 points at τ ¼ 0, which then move away from each
other, leaving a smooth surface between them. For τ > 0 locally there are now two creases, each bounded at one end by an A3 caustic.
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this point, with equation fðw; x; y; zÞ ¼ 0 where df is null
and fð0; 0; 0; 0Þ ¼ 0. We choose f so that ðdfÞa, which is
tangent to the generators of N , is future-directed.
We now adjust our coordinates to simplify f. Since N

intersects the A3 line transversally, we have ðdfÞw ≠ 0 at
the origin. By the implicit function theorem the equation
fðw; x; y; zÞ ¼ −w0 admits a smooth solution wðw0; x; y; zÞ
for ðw0; x; y; zÞ in a neighborhood of the origin. We then

use ðw0; x; y; zÞ as new coordinates. This does not affect
the canonical form of the A3 surface. Dropping the prime,
we have shown that we can choose coordinates so
that f ¼ −w.
Locally the big wave front is the union of N and the big

wave front of the A3 caustic described in Sec. IV C, with
equation z ¼ Zðx; yÞ. As usual, we construct H from the
big wave front by discarding parts that correspond to

FIG. 11. Merger of two black holes through the formation of a “bridge,”with no holes in it. The horizon cross section Στ ∩ H is shown
“from above,” with the black hole regions to the left and right of the curves in the first diagram. The creases are shown in green. The
endpoints of the creases are A3 caustics (blue points).

FIG. 12. Merger of two black holes through the formation of a “bridge,” with an intermediate stage of toroidal topology. Same color
scheme as Fig. 11. See Fig. 7 of [9] for a similar diagram.
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extending null geodesics to the past beyond an intersection
or caustic. So we start by excluding the part of the A3 big
wave front with q > 2p2, just as in Sec. IV C.
Two generators enter H at the ðA3; A1Þ point; one is the

generator of N through the origin, with tangent vector
Wa ≡ −ðdwÞa and the other is the usual generator that
enters at an A3 point with tangent Va ≡ −ðdzÞa there. Since
0 > W · V we have Wz > 0 and Vw > 0. Hence the “A3

generator” that enters at the origin has increasing w, so it
lies in the region w > 0. Since N is the surface w ¼ 0 we
must discard the region w < 0 of the A3 big wave front
since it lies beyond the intersection with N . Similarly, the
generator of N that enters at the origin has increasing z.
This implies that it has z > Zðx; yÞ. Therefore we must
discard the region z < Zðx; yÞ ofN since it lies beyond the
intersection with the A3 big wave front. We’ve now shown
that, in a finite neighborhood of the ðA3; A1Þ point,H is the
union of fw ¼ 0; z ≥ Zðx; yÞg and fw > 0; z ¼ Zðx; yÞg.
Now we can describe the structure of Hend near an

ðA3; A1Þ point (this is also described in [14]). The ðA3; A1Þ
point is at the origin and has NðpÞ ¼ 2. Emanating from
this is a line of A3-points fðw; 0; 0; 0Þ∶w > 0g which have
NðpÞ ¼ 1. The crease submanifold (NðpÞ ¼ 2) is (locally)
a disjoint union of two connected components. The first
component corresponds to the intersection of N with the
smooth part of the surface z ¼ Zðx; yÞ. This is the set
fð0; x; y; Zðx; yÞÞgnfð0; 0; y; y2=4Þ; y ≥ 0g. The second
component arises from the crease submanifold associated
with the A3 wave front, away from its intersection with N .
This is the set fðw; 0; y; y2=4Þ∶w > 0; y > 0g. Finally we
have the corner submanifold (NðpÞ ¼ 3) which is the
intersection of N with the A3 crease submanifold, i.e.,
the line fð0; 0; y; y2=4Þ∶y > 0g. The structure of Hend is
shown in Fig. 13 where the z-direction is suppressed and
the w-direction is vertical (see also Fig. 4 of [14]). This is,

of course, a local description of Hend near an ðA3; A1Þ
point. For an example of how Hend might behave globally
(with a connected crease submanifold) see Fig. 6 of [14].16

Next we shall describe the different possible perestroikas
associated with an ðA3; A1Þ caustic. Let τ be a time function
with τ ¼ 0 at the origin. First we investigate whether A3

points and corner points occur for positive or negative τ.
For small w we have τðw; 0; 0; 0Þ ≈ ðdτÞww. An A3 point
has w > 0 so such a point is present near the origin for
τ > 0 if ðdτÞw > 0 and for τ < 0 if ðdτÞw < 0. Similarly,
for small y we have τð0; 0; y; y2=4Þ ≈ ðdτÞyy and so a
corner is present near the origin for τ > 0 if ðdτÞy > 0 and
for τ < 0 if ðdτÞy < 0. At the origin we have [using (32)]

0>Vað−dτÞa ¼ðdzÞaðdτÞa ¼ gyzðdτÞyþgwzðdτÞw: ð33Þ

We know from Sec. IV C that gyz > 0 and also
gwz ¼ ð−dwÞ · ð−dzÞ ¼ W · V < 0. Hence we cannot have
both ðdτÞy > 0 and ðdτÞw < 0 so, for generic τ, it is not
possible that a corner but no A3 point is present near the
origin for small τ > 0. This leaves three possible cases:
(1) corner and A3 point present only for τ < 0; (2) corner
and A3 point present only for τ > 0; and (3) corner but no
A3 for τ < 0, A3 but no corner for τ > 0. Drawing in 3
crease lines emanating from each corner and 1 crease line
emanting from each A3 point we obtain Fig. 14; the top row
shows case (1), taking the time reverse of this gives case (2)
and the bottom row shows case (3).
We shall now demonstrate that each of these three cases

is possible by exhibiting a time function that realizes each
case. First consider τ ¼ wþ z. Recall dw is null on N so
gww ¼ 0 at w ¼ 0. Using gwz < 0 we see that −dτ is
timelike and future-directed near the origin so τ is a time
function. Now deform this to τ ¼ wþ zþ ϵy. By continu-
ity this is still a time function (locally) for small ϵ. We
have ðdτÞw > 0 and ðdτÞy ¼ ϵ so by choosing the sign of ϵ
we can realize cases (2) and (3). Next consider τ ¼ z −
ϵy − ϵ2w with ϵ > 0. At the origin this gives ðdτÞ2 ¼
−2ϵgzy þOðϵ2Þ and so ðdτÞa is timelike for small enough
ϵ:V · ð−dτÞ ¼ ð−dzÞ · ð−dτÞ ¼ −ϵgzy þOðϵ2Þ is negative
for small ϵ so ð−dτÞa is future-directed. Hence, τ is a time
function near the origin. It has ðdτÞy < 0 and ðdτÞw > 0 so
we have realized case (1).

V. BLACK HOLE ENTROPY

A. Creases

The Bekenstein-Hawking formula for the entropy of a
horizon cross section H is

FIG. 13. Structure of Hend set near an ðA3; A1Þ point. The A3

line is in blue, the corner submanifold in red and the ðA3; A1Þ
point in black. The remaining (yellow) surfaces form the crease
submanifold.

16This figure shows the crease set, not Hend, so it does not
include A3 points.
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SBH ¼ A
4l2

P
; ð34Þ

where A is the area of H and lP ¼ ffiffiffiffiffiffiffi
Gℏ

p
is the Planck

length. In this section we shall discuss the possibility that a
crease makes an additional contribution to black hole
entropy of the form

Screase ¼
1

lP

Z
crease

FðΩÞdl; ð35Þ

where l is the proper length along the crease and FðΩÞ is a
dimensionless function of the angle Ω between the two
smooth sections of horizon that meet at the crease (Ω
depends on l). We shall discuss the form of F below. Note
that Screase vanishes for a stationary black hole since the
horizon of such a black hole is smooth. Furthermore,
creases do not appear in linearized perturbations of a
stationary black hole and so Screase does not affect the first
law of black hole mechanics.
To motivate this suggestion, we recall the connection

between black hole entropy and the entanglement entropy
See of quantum fields across a black hole horizon [19,20],
as explained in [21]. For an entangling surface of area A,
See exhibits an area-law divergence See ¼ CA=ϵ2 þ � � �
where ϵ is an ultraviolet cutoff and C is a constant

depending on the renormalization scheme. The effective
action for quantum fields in curved spacetime also exhibits
a divergence: there is a term proportional to R whose
coefficient diverges as ϵ−2. When added to the Einstein-
Hilbert action, this implies that the effective Newton
constant is given by 1=G¼ 1=GBðϵÞþ4C=ϵ2 where GBðϵÞ
is the “bare” Newton constant. In a black hole spacetime,
it turns out that this is precisely what is needed to render
the generalized entropy Sgen ≡ SBH þ See well-defined; the
1=ϵ2 terms cancel between the two terms and their sum is
equal to A=ð4l2

PÞ to leading order.
For a smooth entangling surface (in four spacetime

dimensions), See has a subleading divergence proportional
to log ϵ [44]. A similar log ϵ also appears in the quantum
effective action, where it multiplies terms that are quadratic
in curvature. This renormalizes the coefficients of terms in
the gravitational effective action that are quadratic in
curvature. Once again one finds that this implies that the
log ϵ terms in the generalized entropy cancel out, with the
effect that these terms are replaced by the renormalized
couplings [45].
In the presence of a crease, it has been found that See

exhibits a stronger subleading divergence proportional to
1=ϵ [22,23] (earlier work established an analogous result in
3 spacetime dimensions [46,47]). Specifically, for the case

FIG. 14. Perestroikas associated with an ðA3; A1Þ caustic point. Creases are shown in green and A3 points in blue (these are ðA3; A1Þ
points at τ ¼ 0). Top: For τ < 0, the horizon cross section contains a corner with three creases emerging from it, one of which terminates
at an A3 point. As τ → 0−, this crease shrinks, forming an ðA3; A1Þ point at τ ¼ 0. For τ > 0, the two remaining creases have merged and
smoothed out into a single crease. The time-reverse of this process is also possible. Bottom: For τ < 0, three creases meet at a corner.
They smooth out at the ðA3; A1Þ point at τ ¼ 0, and at later times split off into a single crease and another crease emanating from an A3

point. The time-reverse of this process cannot occur on a future horizon.
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of a crease corresponding to the intersection of two planes
in flat space, it is found that See ¼ −fðΩÞl=ϵ where it is
assumed that the dimension along the crease has been
compactified with length l. The function fðΩÞ depends on
the quantum field theory in question. In examples it is
found that f is always positive, has a simple pole at Ω ¼ 0
and then monotonically decreases, vanishing at Ω ¼ π.
Positivity and monotonicity of f are consequences of the
subadditivity property of entanglement entropy [47].
Given that these divergences arise from local short-

distance effects, it seems plausible that for an entangling
surface with a crease whose opening angle Ω varies
along the crease, the entanglement entropy will diverge
as See ¼ −ϵ−1Icrease where Icrease ¼

R
crease fðΩÞdl. In the

case of a black hole horizon, if the 1=ϵ terms are to cancel
out in the generalized entropy then a similar term must be
present in the black hole entropy. The simplest way this
could happen is if there is a term in the bare black
hole entropy proportional to Icrease with coefficient depend-
ing on G ¼ GBðϵÞ in a suitable way. In more detail, note
that ð−4CGBðϵÞÞ−1=2 ¼ ϵ−1½1 − ϵ2=ð4CGÞ�1=2. So, after
expanding in ϵ, to cancel the 1=ϵ term in See we can include
the bare gravitational term ð−4CGBðϵÞÞ−1=2Icrease with the
result that the generalized entropy contains the term
gðϵÞIcrease where gðϵÞ¼ ϵ−1f½1−ϵ2=ð4CGÞ�1=2−1g¼
−ϵ=ð8CGÞþ �� �. This vanishes as ϵ → 0 but it is unclear
whether taking ϵ → 0 is the correct thing to do as it requires a
UV complete theory of gravity. If one keeps ϵ nonzero then
we see that the generalized entropy contains the term (35)
with F ¼ lPgðϵÞf. Note that gðϵÞ < 0 so F is negative.
We shall now discuss whether this term is consistent with

the generalized second law of thermodynamics. We restrict
to the regime of small lP. Classically, the area spanned by
horizon generators cannot decrease. Furthermore, by def-
inition, new generators enter H at a crease. Thus, one
expects that the area of cross sections of H is strictly
increasing when a crease is present. Since lP is small, the
resulting increase in SBH usually dominates any change in
Screase and so the second law is respected. However, the fact
that fðΩÞ has a pole at Ω ¼ 0 implies that Screase might
become become important in a process where Ω → 0. We
have seen that this happens at the pinch point of a crease
perestroika. Consider the “collapse of a hole in the horizon”
perestroika. In this case, we saw that Ω ∼

ffiffiffiffiffiffi
−τ

p
and the

circumference of the crease also scales as
ffiffiffiffiffiffi
−τ

p
. Thus,

Screase remains nonzero as τ → 0− and then jumps dis-
continuously to zero for τ > 0. Since SBH is continuous, the
generalized entropy is also discontinuous. In order for the
discontinuity to respect the second law, the residue of FðΩÞ
at Ω ¼ 0 must be nonpositive, which is consistent with our
argument above that F is negative.
Next consider the “flying saucer nucleation” perestroika.

In this case, Ω ∼
ffiffiffi
τ

p
and the circumference of the crease

also scales as
ffiffiffi
τ

p
. So again Screase changes discontinuously

at τ ¼ 0 but with the opposite sign to before. This suggests

that the generalized second law requires that the residue of
FðΩÞ atΩ ¼ 0 should be non-negative. Combining with the
result of the previous paragraph, this implies that the residue
of this pole must vanish, i.e., there is no pole atΩ ¼ 0. Since
this polewas one of the few specific predictionsmade by this
idea, it seems that these arguments have ruled out the
possibility of a crease term in the generalized entropy.
However, this overlooks the fact that SBH and Screase are just
the first two terms in an expansion in lP so we should also
expect higher-order terms to be present. For a Planck-sized
horizon, these higher-order terms might be important. For
example, there might be a term of the form l2

P=A which is
subleading for a large black hole but not for a Planckian
sized flying saucer. So flying saucer nucleation cannot be
used to rule out a term of the form (35).

B. Gauss-Bonnet term

In an effective field theory (EFT) approach to gravity, one
adds higher derivative corrections to the gravitational
Lagrangian. The leading corrections are terms quadratic in
curvature (herewe assume a parity symmetry) so the action is

I ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
−2Λþ Rþ αl2R2 þ βl2RabRab

þ 1

2
γl2LGB þ…

�
; ð36Þ

where l is a length scale associated with UV physics, α, β, γ
are dimensionless constants and LGB is the Euler-density
associated with the Gauss-Bonnet invariant:

LGB ¼ δabcdefghRab
efRcd

gh: ð37Þ

In vacuum, the R2 and RabRab terms can be eliminated via a
field redefinition so we focus on the Gauss-Bonnet term. In
4d this term is topological, i.e., it does not affect the equations
of motion. Nevertheless, various arguments indicate that this
term does make a contribution to black hole entropy [24,25].
This contribution is

SGB ¼ γ

Z
H
d2x

ffiffiffi
μ

p
R½μ�; ð38Þ

whereH is a cross section ofH, with inducedmetric μAB and
R½μ� is the induced Ricci scalar. Here, and henceforth, we
have taken the UV scale l to be the Planck length lP ¼ffiffiffiffiffiffiffi
Gℏ

p
. The total entropy is then given by adding the

Bekenstein-Hawking term,17

17This section is intended to be independent of the suggestion
of the previous section so we shall not include the term (35) in the
entropy. If we did include this term then its scaling with lP
suggests that it would dominate SGB when creases are present,
which would only strengthen our arguments below that SGB
cannot be excluded using the second law.
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S ¼ A
4l2

P
þ SGB; ð39Þ

where A is the area of H. We shall discuss two ways of
interpreting this formula. The first is to treat it as an exact
expression, with no other terms present.We shall call this the
“pure GB” interpretation, a candidate for the entropy of a
black hole in Einstein gravity with a Gauss-Bonnet term but
nohigher-order terms, and neglecting any possible additional
contributions to black hole entropy from matter fields. The
second interpretation, motivated by EFT, is to regard the
termswritten above as just the first two terms in a series, with
the next terms having coefficients proportional to l2

P. (In this
sectionwe shall ignore the possibility of a crease term (35) in
the entropy.)
For a smooth 2-manifold, the integral in (38) evaluates to

4πχ where χ ¼ 2 − g is the Euler number with g the genus
of H. Hence for a smooth horizon cross section we have

SGB ¼ 4πγχ smooth horizon: ð40Þ

Consider a black hole formed in spherically symmetric
gravitational collapse. In this case, a smooth horizon forms
immediately and so (40) holds. χ jumps from 0 to 2 at the
instant the horizon forms. If γ < 0 then (39) would exhibit
an Oð1Þ discontinuous decrease at the instant the horizon
forms. In the “pure GB” interpretation, this violates the
second law so the second law requires γ ≥ 0 [26]. In the
EFT interpretation this argument seems less reliable
because it is sensitive to the form of the higher-order
corrections to (39). If these become Oð1Þ for a Planckian
sized black hole then the argument no longer works.18

Now we discuss (39) for more general dynamical
processes. We have seen that, generically the horizon is
not smooth in a dynamical process (it is not even differ-
entiable at a crease). Therefore it is not obvious how to
make sense of the rhs of (38). One approach is to “regulate”
SGB, defining it by taking a limit of smooth surfaces that
converge toH [26]. With this definition, (40) holds even for
nonsmooth horizons. One can then argue as follows that
SGB violates the second law of black hole mechanics if
γ > 0 [26].
Consider a merger of two topologically spherical black

holes to form another topologically spherical black hole. At
the instant of merger, χ jumps from 4 to 2 so to avoid a
discontinuous decrease in entropy, γ must be nonpositive.
This argument works for both the “pure GB” interpretation
and the EFT interpretation. In the latter case the argument
assumes that we can neglect higher-order corrections to
(39) if the black holes are large enough. The conclusion is
that the second law implies γ ≤ 0. In particular, for the
“pure GB” interpretation, we’ve already seen that γ ≥ 0 so

the only possibility compatible with the second law is
γ ¼ 0, i.e., the Gauss-Bonnet terms is apparently excluded
by the second law.
This argument relies on assuming that (40) is valid for

nonsmooth horizons, which was justified by regulating SGB
by taking a limit of smooth surfaces. However, as briefly
noted in [26], it is possible that nonsmooth features of the
horizon may play an important role. We shall now argue
that this is indeed the case. The new idea is that, by looking
at the various types of nonsmooth behavior that the horizon
can exhibit, we shall see that SGB does not need regulating.
Without regulating, it is not topological (for nonsmoothH).
This implies that, in a black hole merger, it does not exhibit
the discontinuous behavior just discussed, and so the above
argument that it violates the second law when γ > 0 no
longer applies.
When we say that SGB does not need regulating, what we

mean is that the integral on the rhs of (38) exists as an
improper Riemann integral. To justify this claim, we shall
discuss each of the different types of generic nonsmooth
behavior that H can exhibit. Here we assume that the black
hole belongs to the class defined in Sec. II B, in particular
that the horizon is smooth at late time.
First consider a crease or corner. Here the horizon cross

section is locally piecewise smooth, so there is no difficulty
defining the integral in (38); R½μ� is discontinuous but the
discontinuity is bounded, so the integral converges as a
Riemann integral. Second consider a caustic point on H.
We know that a generic caustic point is of type A3 (or the
closely related ðA3; A1Þ). We calculate the intrinsic and
extrinsic curvature of H near such a point in Appendix C.
We find that R½μ� diverges at an A3 point on H. However,
we show that this divergence is integrable: if we excise a
small region around the A3 point and the crease emanating
from it then the integral (38) converges as the size of this
region is shrunk to zero. In other words, this integral exists
as an improper Riemann integral. This holds both for A3

points on a generic horizon cross section, and for the pinch
point associated with an A3 perestroika (as studied in
Sec. IV C). Therefore, generically, the integral (38) exists
without any need to regulate it.
As an example, consider the nucleation of a “flying

saucer” horizon, as described in Sec. III B, see Fig. 2. H is
topologically spherical and looks like the intersection of
two smooth surfaces. R½μ� is smooth on each section and
remains bounded as τ → 0þ (where τ is a time function
with the nucleation occuring at τ ¼ 0). Thus, SGB scales in
the same way as the area of the surface, i.e., it is OðτÞ. In
particular it is continuous at τ ¼ 0, unlike the ‘regulated”
version of SGB. The Bekenstein-Hawking entropy is also
proportional to τ but accompanied by the very large factor
l−2
P . Hence, in the EFT interpretation of (39), the first term

dominates SGB and one cannot deduce anything about the
sign of γ from flying saucer nucleation. The same applies
to the crease perestroika describing the closing up of a

18See also [48] which explains why another argument against
(39) fails in EFT.
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hole in the horizon (note that both of these processes
increase χ).
Another interesting (but nongeneric) case to consider is

an axisymmetric merger of two nonspinning black holes.
We described the behavior around the instant of merger in
Sec. III B, see the lower row of Fig. 7. The black hole
horizons before the merger exhibit conical singularities.
(Recall that these are caustics, but of a nongeneric type.) A
compact 2-manifold that is smooth except at conical
singularities satisfies [49]Z

d2x
ffiffiffi
μ

p
R½μ� ¼ 4πχ þ 2

X
i

ðθi − 2πÞ; ð41Þ

where θi is the angle at the ith conical singularity (i.e., the
ratio of circumference to radius for a small circle around the
singularity). We can now substitute the above result in (38).
Before the merger, each black hole has a single conical
singularity and from Sec. III B we know that θ ∼

ffiffiffiffiffiffi
−τ

p
(where τ is a time function, and the merger occurs at τ ¼ 0).
Hence, for each black hole, just before the merger, the
above expression evaluates to 4π þOð ffiffiffiffiffiffi

−τ
p Þ and so the

sum of the contributions from each black hole approaches
8π as τ → 0−. This matches precisely with the contribution
8π of the smooth black hole that exists just after the merger.
Hence SGB is continuous at the merger, unlike what
happens for the regulated version of SGB. [A similar
argument applies to the nucleation of “spindle” sections
of the horizon as discussed in Sec. III B. In this case each
section of spindle has two conical singularities so the above
formula evaluates to Oð ffiffiffi

τ
p Þ for small positive τ. So again

we have continuity at τ ¼ 0.]
We have shown that SGB is continuous in an axisymmetric

merger. However, for γ > 0 it is rapidly decreasing, as
ffiffiffiffiffiffi
−τ

p
as τ → 0−. One might worry that, for a very short time, this
rapid decrease might dominate over the slower increase in
entropy coming from the Bekenstein-Hawking term. If so
then onewould have a violation of the second law for γ > 0.
Balancing A=l2

P against
ffiffiffiffiffiffi
−τ

p
and assuming Ȧ ¼ Oð1Þ, one

sees that (39) decreases for jτj ∼ l4
P, and the size of this

decrease is of order l2
P. Thus, for the “pure GB” interpre-

tation this argument implies that, even without regulation,
SGB violates the second law if γ > 0. However, since the
decrease in the entropy is comparable to the size of the
higher-order Oðl2

PÞ terms in (39) this argument is incon-
clusive if we adopt the EFT interpretation of (39).
In summary, previous arguments that including SGB

leads to a violation of the second law are based on the
“regulated” version of Eq. (38), i.e., Eq. (40). We have
argued that Eq. (38) does not actually require regulating. If
one does not regulate then, in the “pure GB” interpretation,
a more refined argument still leads to the conclusion that
(39) violates the second law unless γ ¼ 0. However, in the
(more physical) EFT interpretation of (39), the arguments
that SGB leads to a violation of the second law are
inconclusive (for either sign of γ).

C. Extrinsic curvature terms in entropy

If one chooses not to eliminate the R2 and RabRab terms
in (36), or one considers properties of entanglement
entropy, then various arguments [44,50–52] indicate that
the black hole entropy should contain terms quadratic in the
extrinsic curvature kij of the horizon cross section H,
viewed as a submanifold of the Cauchy surface Σ. There are
two independent terms:

S1 ¼
Z
H
d2x

ffiffiffi
μ

p
kiik

j
j S2 ¼

Z
H
d2x

ffiffiffi
μ

p
kijkij; ð42Þ

where, as in the previous section, μAB is the induced metric
on H and indices i, j are raised with hij, the inverse of the
metric hij on Σ.
Are these terms well-defined on a nonsmooth horizon?

As for the Gauss-Bonnet term, there is no problem in
defining the above integrals in the presence of a crease or
corner; the horizon is locally piecewise smooth near such
structures and kij is smooth on each smooth piece. In
Appendix C we calculate kij near an A3 point on H, for a
generic Cauchy surface Σ. We show that, although kij
diverges, the above integrals still exist as improper inte-
grals. However, in the case where Σ is a special Cauchy
surface associated with the A3 perestroika describing the
disappearance of a section of crease with A3 endpoints (top
row of Fig. 10), we find that the divergence is nonintegrable
and the above integrals are both proportional to log τ as
τ → 0þ (with the perestroika at τ ¼ 0). The combination
S1 − S2 is finite; by the Gauss-Codacci equation (C10) this
combination can be written in terms of SGB and an integral
involving curvature components of the smooth metric hij.
In summary, on a generic nonsmooth horizon the

quantities S1 and S2 will diverge at an A3 perestroika.
Only the combination S1 − S2 remains finite. For the theory
(36), the R2 term makes a contribution to the entropy
proportional to the integral of R (the spacetime Ricci scalar)
over H [50]. Since R is smooth, this contribution is finite.
However, the RabRab term gives a contribution involving S1
and S2 [51,52] and this is not in the combination S1 − S2 so
it diverges at the A3 perestroika. Hence the formulas of
[51,52] do not work for a generic nonsmooth horizon. This
is not necessarily a problem since, e.g., the analysis of [52]
applies only to linear perturbations of stationary black
holes. For the case of entanglement entropy [44], the
coefficients of the terms S1 and S2 are proportional to
log ϵ where ϵ is a UV cutoff. The divergence at the A3

perestroika may indicate that for suchH there is a new term
in the entanglement entropy, intermediate between log ϵ
and the 1=ϵ behavior associated with a crease.

VI. DISCUSSION

Given that the crease submanifold is (generically) the
“most important” part of Hend, it would be interesting to
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study its properties in greater detail. For example: are there
any constraints on its topology? Does it have finite area?
The latter question can be easily answered in a situation
where the black hole area theorem holds; given a horizon
cross section H lying to the future of the crease submani-
fold, consider the map from H to the crease submanifold
obtained by following the generators of H. By definition,
this map is two-to-one so its inverse image is a pair of
disjoint setsH1; H2 ⊂ H. Following the generators through
H1, the area theorem gives Acrease ≤ A1 where Acrease is the
area of the crease submanifold and A1 the area of H1.
Similarly Acrease ≤ A2. Hence 2Acrease ≤ A1 þ A2 ≤ AH
where AH is the area of H. (This is a special case of the
“weighted” area theorem of [27].) So we see that indeed the
crease submanifold has finite area. It would be interesting
to know what physical significance can be attached to this
area. This result is perhaps related to an observation about
axisymmetric black hole mergers, where Hend is a line of
caustic points. In examples, this line has been found to have
finite length [8,10].
A possible role for the crease submanifold is in the

Bousso entropy conjecture [53]. This is an upper bound on
the entropy crossing a light sheet; a nonexpanding null
hypersurface generated by a family of geodesics emanating
orthogonally from a 2d spacelike surface Σ. A version of
this conjecture was proved by Flanagan, Marolf and Wald
[54]; assuming that the entropy of matter is described by an
entropy current obeying certain bounds in terms of the
energy-momentum tensor, they showed that

S ≤
A − A0

4Gℏ
; ð43Þ

where S is the entropy of matter crossing a light sheet
extending from Σ to another 2d spacelike surface Σ0 and A,
A0 are the areas of Σ and Σ0. If one does not introduce a
second surface Σ0 then it is natural to terminate the light
sheet emanating from Σ where it intersects the null cut
locus of Σ, which is essentially the proposal of [55]. At the
end of Sec. II B we explained how to define a crease
submanifold for a general null cut locus. A simple
modification of the arguments of [54] now gives

S ≤
A − 2Acrease

4Gℏ
; ð44Þ

where Acrease is the area of the intersection of the light sheet
with the crease submanifold of Σ.19 So the crease

submanifold plays a role in bounding the amount of
entropy that can cross the light sheet.
We have introduced the notion of a normal corner point

and shown that such points form a submanifold. However,
we are unaware of any physically relevant examples of
black hole solutions (numerical or otherwise) of the
Einstein equation that exhibit horizons with corners. It
would be interesting to construct such examples.
We have reviewed the classification of Siino and Koike

of endpoints of the horizon generators of a generic black
hole (Table I). In Sec. IV we explained why it is unclear
whether or not the notion of genericity used in this
classification is the same as genericity with respect to
perturbations of the metric. We described an alternative
approach towards such a classification. This places the
classification on a firmer footing if one restricts to a horizon
cross section but for the full horizon the genericity issue
remains an open problem. A Lorentzian analogue of the
Riemannian results of [35] would go some way towards
addressing this problem. This might be possible for a
generic globally hyperbolic spacetime. However ideally
one would like results for a generic solution of suitable
equations of motion which looks more challenging.
We used properties of entanglement entropy to motivate

the possibility of a crease contribution to black entropy.
One could similarly use properties of entanglement entropy
(see e.g., [56]) to motivate the possible existence of a corner
contribution to black hole entropy. It might be interesting to
study this possibility further.
Higher derivative theories of gravity typically lead to

higher-derivative terms in black hole entropy. We have
considered the possible 2-derivative terms in black hole
entropy (in 4d), namely the “Gauss-Bonnet” term and terms
quadratic in extrinsic curvature. We showed that the former
is well-defined on a generic horizon but the latter diverge at
an A3 perestroika. This raises the question of what kinds of
higher-derivative contributions to black hole entropy can
“make sense” (i.e., remain finite) on a generic dynamical
black hole horizon. A large class of possible terms are those
that can be written in terms of components of the (smooth)
curvature of spacetime. For example, in fðRÞ theories the
entropy density depends only on the spacetime Ricci scalar
[50] and so the entropy is well-defined on a nonsmooth
horizon. However, in more typical higher derivative the-
ories, extrinsic curvature terms are required if the second
law is to be respected by linear [52] or quadratic [57]
perturbations of a stationary black hole. So there is a
tension between what is required perturbatively and what
makes sense in a fully nonlinear situation.
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APPENDIX A: A2 CAUSTIC ON A SMALL
WAVE FRONT

For the small wave front, we interpret the canonical
coordinates xi ≡ ðx; y; zAÞ, A ¼ 1;…; d − 3, of Sec. IV B
as coordinates on a Cauchy surface Σ. The small wave front
is the surface ð−3p2; 2p3; zAÞ lying within Σ. The A2 points
are at p ¼ 0. Now the generators of the corresponding big
wave front must depend smoothly on the wave front
parameters ðp; zAÞ. In particular pμ ¼ gμνdxμ=dλ depends
smoothly on p where λ is an affine parameter along the
generators. Projecting to Σ we see that pi must depend
continuously on p. But pi is normal to the small wave front,
which is proportional to �ðdyþ pdxÞ. Continuous
dependence on p implies that the � cannot change sign
at the cusp p ¼ 0. Thus, pi is a nonzero multiple of ni
where n≡ dyþ pdx. Without loss of generality we
assume it is a positive multiple. By rescaling the affine
parameter we can set pi ¼ ni on Σ. Now we introduce
Gaussian normal coordinates ðt; xiÞ such that the metric
near Σ is

g ¼ −dt2 þ gijðt; xkÞdxidxj ðA1Þ

with Σ the surface t ¼ 0. The metric depends smoothly on
these coordinates.
Fix a point q on the small wave front with parameters

ðp; zAÞ where p > 0. We shall construct a timelike curve
from q to the generator with parameters ð−p; zAÞ, so the big
wave front is not achronal. To do this, consider following
this generator affine parameter distance λ > 0 to reach a
point r. Let Pμ be the future-directed tangent to this
generator at Σ. This is

Pi ¼ gijð0;−3p2;−2p3; zAÞnjð−p; zAÞ
Pt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijð0;−3p2;−2p3; zAÞPiPj

q
: ðA2Þ

The point r has coordinates

xμr ¼ ð0;−3p2;−2p3; zAÞ þ λPμ þOðλ2Þ: ðA3Þ

Consider the straight line (in these coordinates) from q to r.
This has tangent

Vμ ≡ xμr − xμq ¼ ð0; 0;−4p3; 0Þ þ λPμ þOðλ2Þ: ðA4Þ

We set λ ¼ Cp3 where C > 0. For small p we have

gμνVμVν ¼ 16p6gyy − 8Cp6Py þ oðp6Þ
¼ 8p6ð2gyy − CÞ þ oðp6Þ; ðA5Þ

where, to leading order, it does not matter at which point
along the line gyy is evaluated. By takingC large enough we
ensure that Vμ is timelike. Hence this line is timelike so the
big wave front is not achronal. To exclude an A2 singularity
on a cross section ofH, when we apply the above argument
note that r is obtained by following a generator of the big
wave front to the future of the caustic, and hence coincides
with a generator ofH, so rmust belong toH, in violation of
achronality of H.

APPENDIX B: A4 AND D�
4 CAUSTICS

In this appendix we shall sketch an argument that the
presence of an A4 or D�

4 caustic on H would violate
achronality and so such caustics cannot arise as endpoints
of horizon generators. The basis of the argument is the
presence of A2 caustics arbitrarily close to the A4 and D�

4

points, in such a way that they cannot be removed by
discarding the parts of the big wave front lying behind
creases (as is done for an A3 caustic). Since achronality is
violated arbitrarily near to an A2 caustic, it must also be
violated by A4 and D�

4 caustics. Note that A4 and D�
4

caustics are isolated points in spacetime.
It is easiest to see the presence of these A2 singularities

through diagrams of small wave fronts (i.e., cross sections
of the big wavefront). A diffeomorphism can be used to
bring a time function τ to a canonical form [15]. Sketches of
the (constant τ) small wave front near caustic points are
depicted in Fig. 63 of Arnol’d et al. [16]. These cross
sections exhibit crease lines and lines of A2 points. It is
clear that there exist A2 singularities in any neighborhood
of an A4 or D

þ
4 point, and that it is not possible to choose a

section (bounded by creases) of each small wave front that
does not contain A2 caustics. Thus, unlike the A3 case, we
cannot eliminate the A2 caustics by discarding part of the
big wave front lying beyond a crease.
For the D−

4 caustic, Fig. 63 of [16] shows that, for τ > 0
or τ < 0, the small wave front exhibits a section that is
bounded by three A2 lines in a triangular configuration. The
triangle shrinks to zero size as τ → 0. We aim to show that
there is a unique horizon generator entering at the D−

4

caustic point, and this generator belongs to this triangular
section of wave front. Hence if there is a D−

4 caustic on H
then this section of wave front also belongs to H and so
there are A2 singularities onH, a contradiction. Rather than
attempting to prove this in full generality we shall dem-
onstrate this for a D−

4 singularity in Minkowski spacetime.
(Since in four dimensions this caustic is a point, we expect
that the behavior of the wave front in curved spacetime
should be locally similar to that in flat spacetime.) Take the
following big wave front discussed in Sec. 4.7 of [58],
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ðt; x; y; zÞ ¼
�
2p3 − 2pq2 þ r;−3p2 þ q2 þ pr; 2pq

þ qr; r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2 − q2

q �
; ðB1Þ

which has a D−
4 point at (0,0,0,0). The parameter r is an

affine parameter along the generators of the wave front.
There is a unique generator through the D−

4 point, which
has p ¼ q ¼ 0. Hence, if the D−

4 point occurs on H, then
this must be the horizon generator entering at the D−

4 point.
One can also solve for the A2 caustics by finding the
subspace of the wave front where the Jacobian of the map
ðp; q; rÞ ↦ ðt; x; y; zÞ given by (B1) drops by one. For
simplicity, we may take the time function τ ¼ t. We find
that for small t > 0, the generator lies inside the triangular
region of A2 lines, as illustrated in Fig. 15, so a D−

4

singularity cannot occur on an event horizon.

APPENDIX C: CURVATURE NEAR A3 CAUSTIC

Let H ¼ Σ ∩ H be a generic cross section of the horizon
with an A3 caustic point. In this section we shall determine
the behavior of the extrinsic and intrinsic curvature near
this point.
As explained in Sec. IV C we can introduce coordinates

xi ≡ ðx; y; zÞ on Σ so that the A3 point is at (0,0,0) and H is
given by Eq. (27). ðx; yÞ can be used as coordinates on H.
In these coordinates, the A3 point is at (0,0) and the crease is
ð0; yÞ with y > 0. If we remove the subset ð0; yÞ with y ≥ 0
then we obtain a smooth manifold on which ðp; qÞ can be
used as coordinates, with q < 2p2. In terms of ðp; qÞ, the
crease corresponds to p ≠ 0; q → 2p2 and the A3 point is
ðp; qÞ → ð0; 0Þ. If we write ðp; qÞ in terms of ðx; yÞ then we
have q ¼ y and pðx; yÞ is continuous at (0,0) but discon-
tinuous (changing sign) across the crease.

The tangent vectors to the smooth part of H are

∂

∂p
¼Δ

�
∂

∂x
þp

∂

∂z

�
∂

∂q
¼−2p

∂

∂x
þ ∂

∂y
−p2

∂

∂z
; ðC1Þ

where we define

Δ ¼ 12p2 − 2q: ðC2Þ

This quantity is positive everywhere on H (including the
crease) except at the A3 point, where it vanishes. Using the
above expressions we can determine the unit normal to H,

n ¼ αñ ñ ¼ dz − pdx − p2dy; ðC3Þ

where α > 0 is chosen to make n a unit vector with respect
to the induced metric hij on Σ. Note that ñ and α are
continuous, but not differentiable, at the A3 point.
Let X be tangent to the smooth part ofH. From X · n ¼ 0

we have Xz ¼ pXx þ p2Xy. We can also write X ¼
Xp

∂p þ Xq
∂q so plugging in the above expressions for

∂p and ∂q gives

Xx ¼ΔXp−2pXq; Xy ¼Xq; Xz¼pΔXp−p2Xq:

ðC4Þ

Now let kij be the extrinsic curvature of H viewed as a
surface in Σ and let X, Y both be tangent to H. We have

XiYjkij ¼ XiYjDinj ¼ αXiYjDiñj

¼ αXiYj
∂iñj − Γk

ijX
iYjnk; ðC5Þ

where Di is the covariant derivative defined by hij on Σ.
The Christoffel symbols are smooth and so the final term is
continuous at the A3 point. Substituting our expression for
ñ gives

XiYjkij ¼ −αYxXi
∂ip − αYyXi

∂ip2 þ…

¼ −αXpðYx þ 2pYyÞ þ…; ðC6Þ

where the ellipses indicate terms depending smoothly on
ðp; qÞ. Such terms are continuous at the A3 point and
bounded at the crease. Finally, using (C4) to write Xp in
terms of Xx, Xy gives

XiYjkij ¼ −
α

Δ
ðXx þ 2pXyÞðYx þ 2pYyÞ þ… ðC7Þ

and so we have isolated the part of kij that diverges at the A3

point:

kij ¼ −
α

Δ
mimj þ…; m ¼ dxþ 2pdy: ðC8Þ

FIG. 15. Small wave fronts near a D−
4 caustic in Minkowski

spacetime. The time function is the standard Minkowski time t.
The red dot represents the generator through the D−

4 point. At
t ¼ 0, there are no A2 singularities. For t > 0, a triangular
configuration of A2 lines develops (blue), within which lies
the generator through D−

4 .
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Note that m is continuous at the A3 point. We now have
(raising indices with hij)

kijkij ¼
α2

Δ2
ðmimiÞ2 þOð1=ΔÞ

kiik
j
j ¼

α2

Δ2
ðmimiÞ2 þOð1=ΔÞ: ðC9Þ

The Ricci scalar of the induced metric μAB on H is
determined by the Gauss-Codacci equation:

R½μ� ¼ R − 2Rijninj þ kiik
j
j − kijkij; ðC10Þ

where Rij and R are the Ricci tensor and Ricci scalar
of hij. Since these are smooth and ni is continuous we
obtain

R½μ� ¼ Oð1=ΔÞ: ðC11Þ

Thus, the divergence in R½μ� at the A3 point is milder than
that in kijkij and kiik

j
j. Now let us examine the volume

element using ðp; qÞ as coordinates on the smooth part of
H. Since ∂p ¼ OðΔÞ, the induced metric on H is

μpp¼ hð∂p;∂pÞ¼OðΔ2Þ; μpq¼OðΔÞ; μqq¼Oð1Þ;
ðC12Þ

and hence μ≡ det μAB ¼ OðΔ2Þ. Combining these results
we see that

ffiffiffi
μ

p
R½μ� extends continuously to the A3 point,

and has a finite discontinuity at the crease. Thus, we can
define the integral (38) by removing from H a small region
surrounding the A3 point and crease, and then taking the
limit as the size of this region is shrunk to zero, i.e., the
integral exists as an improper Riemann integral.
The terms

ffiffiffi
μ

p
kijkij and

ffiffiffi
μ

p
kiik

j
j diverge as 1=Δ at the A3

point. However, this divergence is integrable:

Z
dp

Z
2p2

qmin

dq
1

12p2−2q
¼
Z

dp

�
−
1

2
logð12p2−2qÞ

�
2p2

qmin

∼
Z

dp log jpj ¼ finite ðC13Þ

(recall we are only interested in integrability near the A3

point p¼ q¼ 0). Hence
R
H d2x

ffiffiffi
μ

p
kijkij and

R
H d2x

ffiffiffi
μ

p
kiik

j
j

are also well-defined.
These results hold for a horizon cross section Στ ∩ H for

a generic value of τ. However, we saw in Sec. IV C that for
special values of τ an A3 perestroika will occur. Assume
this happens at τ ¼ 0. Arnol’d shows that one can use a
diffeomorphism that preserves (27) to bring the time
function to the form τ ¼ −y� w2 [15] (here we used
the result from Sec. IV C that ∂yτ < 0 at the A3 point to fix
the sign of the y term). As explained in Sec. IV C we can
use ðw; x; zÞ as coordinates on Στ. We can use ðp; rÞ as
parameters on H where w ¼ r and eliminating y ¼ q gives
q ¼ qðτ; rÞ ¼ −τ � r2 (still with q ≤ 2p2). xðp; rÞ and
zðp; rÞ are given by substituting q ¼ qðτ; rÞ in (27). We
now have tangent vectors

∂

∂p
¼Δ

�
∂

∂x
þp

∂

∂z

�
;

∂

∂r
¼ ∂

∂w
∓ 4pr

∂

∂x
∓ 2p2r

∂

∂z
;

ðC14Þ
with

Δ ¼ 12p2 − 2qðτ; rÞ: ðC15Þ
Repeating the calculations above now leads to

kij ¼ −
α

Δ
mimj þ…; m ¼ dx� 4prdw: ðC16Þ

We now have R½μ� ¼ Oð1=ΔÞ and μ ¼ OðΔ2Þ exactly as
above, so

ffiffiffi
μ

p
R½μ� is continuous at the A3 point and

bounded at the crease and so its integral is well-defined.ffiffiffi
μ

p
kijkij and

ffiffiffi
μ

p
kiik

j
j still diverge as 1=Δ but now this

divergence is not integrable at τ ¼ 0. For example, choose
the lower sign and take τ > 0. The range of r is unrestricted
(as creases are absent for τ > 0 in this case) and we have
Z

dpdrΔ−1 ¼
Z

dpdr
12p2 þ 2r2 þ 2τ

∼
Z
R≥0

RdR
R2 þ τ

∼ log τ

ðC17Þ
which diverges as τ → 0þ.
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