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We present a numerical framework for modeling extended hyperelastic bodies based on a Lagrangian
formulation of general relativistic elasticity theory. We use finite element methods to discretize the body,
then use the semidiscrete action to derive ordinary differential equations of motion for the discrete nodes.
The nodes are evolved in time using fourth-order Runge-Kutta. We validate our code against the normal
modes of oscillation of a hyperelastic sphere, which are known analytically in the limit of small (linear),
slow (Newtonian) oscillations. The algorithm displays second order convergence. This numerical
framework can be used to obtain the orbital motion and internal dynamics of a hyperelastic body of
any shape, for any spacetime metric, and for varying hyperelastic energy models.
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I. INTRODUCTION

The problem of motion in general relativity has a long
history. Einstein was interested in whether the laws of
motion of material points can be derived from the vacuum
field equations. With Grommer, [1] he showed that if a
point particle is treated as a singularity in spacetime, it
follows a geodesic. This gives the motion of point particles
but not extended bodies. The first person to describe an
extended body in general relativity was Mathisson [2].
Mathisson defines a multipole expansion of the body
using the body’s stress-energy momentum (SEM) tensor
with the single pole (monopole) defining the mass and the
dipole and quadrupole defining the “rotation moment”.
Subsequently, many others have worked on this problem
following a similar method, including Papapetrou [3] who
gives the equations of motion of spinning particles to
dipole order. See also Refs. [4,5,6]. These works differ in
the way the multipole moments are defined. In a series of
papers [7–9], Dixon and collaborators provide a more
thorough definition of the multipole moments. The equa-
tions describing the motion of pole-dipole particles are
commonly known as the Mathisson-Papapetrou-Dixon
(MPD) equations. In general, the analysis leaves the
equation of motion of the quadrupole moment unspecified.
In the pole–dipole case, additional equations are needed

to define the center of mass, called spin supplementary
conditions. Several different spin supplementary conditions
have been proposed which lead to different worldlines for
the representative point in the body. In the pole-dipole
approximation, these worldlines lie within the minimal
world tube [10]. Reference [10] gives a list of known spin

supplementary conditions and discusses what they imply
for conserved quantities for the pole-dipole particle.
Reference [11] gives an in-depth discussion of different
spin supplementary conditions.
In this paper, we examine the dynamics of hyperelastic1

bodies as models for extended body motion in general
relativity. Elastic bodies are closer to physical reality than,
for example, rigid bodies. There is difficulty in defining a
rigid body in curved spacetime. If a rigid body is defined as
one that has no deformation, it would be unphysical because
it would require a speed of sound that is greater than the
speed of light. Furthermore, stresses generated in the body
can be important and contribute to the SEM tensor. In
general, it is perhaps simpler to treat extended bodies as
elastic (or fluid). If one wants to model stiff bodies, then the
material properties of the elastic body can be chosen so that
the speed of sound is close to the speed of light.
The motion and deformation of extended bodies in

general relativity is an important topic. The quadrupole
deformation of neutron stars in binary inspirals can be
potentially detected from the observed gravitational
waves [12,13]. These observations should provide crucial
insight into the nuclear equation of state of these objects.
The deformation, spin, and internal structure of the small
body in extreme mass ratio inspirals may have an effect on

1A hyperelastic material is an elastic material whose stress
tensor can be derived from a potential energy function of the
strain tensor. For a hyperelastic material, there is no energy
dissipation or heat conduction. We sometimes refer to such
materials simply as “elastic”.
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the gravitational waves emitted [14]. The planned space
interferometer LISA may be able to detect these effects. In
particular, the spin of the small body is expected to have a
next-to-leading order (i.e., first postadiabatic order) influ-
ence on the phase of these gravitational waves [15]. Except
for specific cases where the tidal field is static [16] or
steady, the deformation of the body cannot be modeled
accurately by simply setting it proportional to the tidal
field. For example, the small body could be spinning too
rapidly to come to equilibrium in response to the tidal
forces or might be immersed in the time-changing tidal
field in an eccentric or inclined orbit. Thus the treatment of
the dynamics of the extended body must expand beyond
MPD to include the dynamics of the quadrupole and higher
moments, moments which are known [17] to affect the
motion.
Relativistic hydrodynamics is a very successful theory

and is widely used to model fluids in strong gravity and at
high Lorentz factors. A major difference between relativ-
istic hydrodynamics and general relativistic elasticity is that
shear stresses are absent in perfect fluid hydrodynamics.
However, it is known that neutron star crusts are solid [18].
Moreover, some (ultramassive) white dwarfs are expected
to have frozen cores with up to 99% of their mass in
crystallized form [19]. As a natural alternative to fluids,
elastic bodies allow for shear stresses.
Numerical works on general relativistic elasticity

are few in number. One such work is found in Ref. [20].
The authors propose an Eulerian formulation of general
relativistic elasticity that can be used for numerical
modeling and can capture shocks. They test their framework
onRiemann problems inMinkowski spacetime. The authors
of Refs. [21,22] used general relativistic elasticity to study
spherically symmetric elastic stars. They proposed that
elasticity might be an important factor for modeling
exotic compact objects. Other works include a set of papers

]23–26 ] that propose a coherent framework for accurately
modeling the solid crust within neutron stars.
In this paper, we are interested in accurately modeling an

extended hyperelastic body in general relativity. Our goal is
to determine how its motion is affected by its finite size and
calculate the changes in its internal structure, including
deformation and spin, due to interactions with the back-
ground curvature. As a first step, for this work we assume
that the extended body’s SEM tensor does not affect the
spacetime curvature. In other words, we ignore self-gravity
and gravitational radiation. In a paper that will immediately
follow, we will show that despite this restriction the system
exhibits interesting radiationless self-force effects beyond
pole-dipole order, with transfers of energy and angular
momentum between an orbit and the body itself. The
present paper details the formalism and the numerical
method. The elastic body is handled with a Lagrangian

scheme, where the mass is broken up into finite elements. A
novel approach to the dynamics is pursued, where the
action for the body is spatially discretized. The discrete
action in turn leads directly to Euler-Lagrange equations for
the finite mass elements as a large set of coupled ordinary
differential equations. The method developed here will be
used in future applications that consider extended body
encounters with massive black holes, which can be
exploited to test MPD and higher-order curvature-coupling
effects.
The outline of this paper is as follows. We begin in

Sec. II by reviewing the general relativistic theory of
hyperelasticity as formulated in Ref. [27]. We explain
our numerical method in Sec. III. In Sec. IV we rederive
and review the normal modes of oscillation for a hypere-
lastic sphere in the linearized, nonrelativistic limits. We test
our code in Sec. V by comparing the numerical and
analytical displacements and velocities corresponding to
a combination of selected normal modes.
Throughout this paper, we use the sign conventions of

Misner, Thorne and Wheeler [28].

II. GENERAL RELATIVISTIC THEORY
OF ELASTICITY

In this section, we give a brief review of hyperelasticity
theory in general relativity using a Lagrangian formulation
as developed in Ref. [27]. We focus on the action and the
stress-energy-momentum tensor.
The earliest work on generalizing elasticity theory

to special relativity is by Herglotz [29]. Subsequently,
DeWitt [30] extended Herglotz’ theory to the general
relativistic domain to describe a “stiff elastic medium”.
He used this structure to aid in the formulation of a
quantum theory of gravity. Later works on general rela-
tivistic elasticity theory include Carter and Quintana [31],
Kijowski and Magli [32], Beig and Schmidt [33,34],
Gundlach, Hawke and Erickson [20] and Beig [35].
Some of these works favor an Eulerian formulation while

the others use a Lagrangian approach. In the Eulerian
approach, the fundamental variables are fields on space-
time. In the Lagrangian approach, the fundamental varia-
bles are time-dependent fields on “matter space”, the space
of material particles that make up the elastic body. The two
approaches are mathematically equivalent. The advantage
of the Lagrangian formulation for numerical modeling is
that it is easier to implement natural boundary conditions
[36] where the surface is free to move. In the Eulerian
formulation the surface is not simply defined and requires
interpolation. Also, since the Lagrangian field equations are
formulated on matter space rather than physical space, the
number of (discrete) equations to be solved is much smaller
in the Lagrangian approach.
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A. World tube, radar metric and Lagrangian strain

Let the four–dimensional spacetime manifold be denoted
by M, with spacetime coordinates xμ and metric gμν. The
matter space, S, is the space of material points with
coordinates ζi for i ¼ 1; 2; 3. (Note that Latin indices
beginning with i; j; k;… should not be confused with
the indices of the spatial subset of spacetime coordinates.)
Let λ be a real parameter. The functions Xμðλ; ζÞ are

maps from R × S to M, see Fig. 1. As λ is continuously
varied, Xμðλ; ζÞ traces the timelike worldline of the material
point ζi. The collection of all worldlines corresponding to
the material points of the body is called the world tube.
The four-velocity of a material point is

Uμ ¼ Ẋμ=α; ð1Þ

where the “dot” denotes ∂=∂λ and

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ẊμẊμ

q
; ð2Þ

is the material lapse function. The radar metric, fμν, defined
inside the world tube is

fμν ¼ gμν þUμUν: ð3Þ

The name “radar” comes from Landau and Lifshitz [37]
who used light signals to find the spatial distance between
two infinitesimally separated events. It is easy to see that
fμνUμ ¼ 0 and that fνμVμ is orthogonal toUμ for any vector
Vν. Hence, fνμ is a “projection tensor” that projects Vμ into
the space orthogonal to Uμ. The radar metric can be
mapped back to the matter space,

fij ¼ Xμ
;ifμνX

ν
;j: ð4Þ

where ; j denotes ∂=∂ζj. The radar metric fij gives
distances between infinitesimally separated material points
such that the distance is measured in the rest frame of the
points in physical spacetime, M. That is, ds2 ¼ fijdζidζj,
is the square of the proper distance between material points.

The Lagrangian strain tensor can be defined in the same
way as in nonrelativistic elasticity,

Eij ¼ ðfij − ϵijÞ=2: ð5Þ

Here, ϵij is the “relaxed metric” on matter space. That is,
ϵijdζidζj is the square of the physical distance between
nearby material points when the body is undeformed.
The deformation gradient gives the amount of strain in

the material and in the relativistic domain it is defined using
the radar metric and the map, Xν

;i,

Fμi ¼ fμνXν
;i: ð6Þ

Another important tensor is the second Piola-Kirchhoff
stress tensor2 defined as the gradient of the energy density ρ
with respect to the Lagrangian strain,

Sij ¼ ∂ρ

∂Eij
: ð7Þ

B. Action and stress-energy momentum tensor

Hyperelastic materials have a stored energy function that
can be specified in terms of the Lagrangian strain Eij. The
energy density per unit of undeformed volume is denoted
by ρðEÞ and is a function of Eij and ϵij. It can also depend
on ζi if the material is not uniform. The dependence on ϵij
and ζ has been omitted in the notation to make it more
compact. The relativistic action for a hyperelastic body
is [27,30,42]

S½X; g� ¼ −
Z

λf

λi

dλ
Z
S
d3ζ

ffiffiffi
ϵ

p
αρ: ð8Þ

This action is a generalization of the action for a continuum
of particles with “nearest neighbor” interactions mediated
by the Lagrangian strain tensor.
The energy density can be written as

ρðEÞ ¼ ρ0 þWðEÞ; ð9Þ

where ρ0 is the rest mass per unit undeformed volume and
W is the potential energy (or interaction energy) per unit
undeformed volume. The interaction energy of the hypere-
lastic body is obtained by using distances computed in the
rest frames of elements of the body.
Let x0 ≡ t ¼ const correspond to spacelike hyper-

surfaces and let xa denote the spatial subset of the
spacetime coordinates, where a ¼ 1; 2; 3. The coordinate

FIG. 1. Xμðλ; ζÞ maps a material point with coordinates ζi in S
and a real parameter λ to the spacetime event xμ inside the world
tube in four-dimensional spacetime, M.

2Various measures of stress in the nonrelativistic domain are
described in works on continuum mechanics, such as Bower [38]
and Kelly [39]. The first and second Piola-Kirchhoff stress
tensors were introduced by Piola [40] and Kirchhoff [41].
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basis vectors ∂=∂xa are spacelike. Because of the gauge
invariance of the action, we can freely choose the parameter
λ along each worldline. Thus, we can choose the para-
metrization λ ¼ x0 ≡ t. Then, Ẋ0 ¼ 1 and X0

;i ¼ 0. With
this gauge choice the action in the λ ¼ t gauge can be
written as

S½X� ¼ −
Z

t00

t0
dt

Z
S
d3ζ

ffiffiffi
ϵ

p
αρðEÞ; ð10Þ

which is a functional of Xaðt; ζÞ.
In this gauge the radar metric and material lapse are

fij ¼ Xa
;iðgab þ γ2VaVbÞXb

;j; ð11aÞ

α ¼ N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VaVa

p
; ð11bÞ

where the “dot” now denotes ∂=∂t. Here, gab is the spatial
metric and

Va ≡ ðẊa þ NaÞ=N ð12Þ

with N ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−1=gtt

p
denoting the spacetime lapse function

and Na ¼ gta denoting the shift vector. The spatial vector
Va is the velocity of the material as seen by observers at rest
in the t ¼ const surfaces. We have also defined the Lorentz
factor γ ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − VaVa

p
. Note that spatial indices are

raised and lowered with the spatial metric.
The stress-energy-momentum (SEM) tensor for matter

fields is obtained from the functional derivative of the
matter action with respect to the metric,

TμνðxÞ ¼ 2ffiffiffiffiffiffi−gp δSmatter

δgμνðxÞ
: ð13Þ

The final form of the SEM tensor is [27]

TμνðXðλ; ζÞÞ ¼ 1

J
½ρUμUν þ SijFμ

i F
ν
j �; ð14Þ

where J ≡ ffiffiffi
f

p
=

ffiffiffi
ϵ

p
. The metric ϵij gives distances between

material points ζi in S when the elastic body is relaxed and
fij gives distances between material points ζi in S when the
elastic body is deformed. Therefore, the factor 1=J converts
energy density per unit undeformed volume to per unit
deformed volume. The SEM tensor satisfies local con-
servation, ∇μTμν ¼ 0.

III. NUMERICAL METHOD

Numerical methods for solving partial differential equa-
tions (PDEs) include finite difference (FD), finite volume
(FV) and finite element (FE) methods. FE methods are
particularly useful in solving elasticity problems. By using
triangular or tetrahedral meshes, they allow boundaries of

elastic bodies to be represented more closely than the
rectangular grids used in FD and FV methods. In FD
methods, the PDEs are discretized directly whereas in FV
methods, the PDEs are integrated over a volume element. In
FE methods, the PDEs are converted to a weak form by
multiplying with a test function that satisfies the boundary
conditions and then integrating over the domain [43].
We discretize the action of the elastic body directly

instead of discretizing the partial differential equations of
motion. This leads to the free surface or natural boundary
condition where variations at the boundary are nonzero, to
be trivially implemented via the variational process. We use
FE methods with tetrahedral elements to model elastic
bodies of any shape such as spheres or ellipsoids. These
models can be used to describe solid astrophysical objects.
We discretize the action in space and not in time and obtain
ordinary differential equations (ODEs) in mass matrix
form. There is a suite of well-tested methods that can be
used to solve such coupled ODEs.
We use Matlab’s partial differential equation tool-

box [44] to generate a linear tetrahedral mesh for three-
dimensional bodies. To utilize computing clusters, we use
the software package Metis [45] to partition the mesh and
parallelize the algorithm. The Message Passing Interface
(MPI) is used to communicate neighbor information.

A. Matter space discretization

The matter space S is divided into nonoverlapping
elements. Let SE for E ¼ 1; 2;… denote the elements,
that is, S is the union of the SE’s. Let n ¼ 1; 2;… label the
nodes throughout the body. Each node in the body has a
unique index number. Let N ðEÞ denote the set of nodes in
element E. An example of N ðEÞ is shown in Fig. 2. Then,
for ζi ∈SE, we have

FIG. 2. Here we are depicting a two-dimensional triangular
mesh instead of a tetrahedral mesh for clarity. This figure shows
node labels, n ¼ f1; 2…; 10g and element labels E ¼
f1; 2…; 11g (boxed). The set of nodes in element, E ¼ 4, is
N ð4Þ ¼ f4; 5; 8g. The ring of node n ¼ 5 is Rð5Þ ¼
f3; 4; 6; 7; 8; 9g.
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Xaðt; ζÞ ¼
X

n∈N ðEÞ
Xa
nðtÞϕE

n ðζÞ; ζi ∈SE; ð15Þ

where the sum is over the nodes contained in the element
SE. Note that the shape functions ϕE

n ðζÞ depend on the node
as well as the element.

B. Semidiscretized action and equations of motion

The action in the λ ¼ t gauge [Eq. (10)] is discretized
using Eq. (15),

S½X� ¼
Z

t00

t0
dt
X
E

Z
SE

d3ζL
� X

n∈N ðEÞ
Xa
nðtÞϕE

n ðζÞ;

X
n∈N ðEÞ

Ẋa
nðtÞϕE

n ðζÞ;
X

n∈N ðEÞ
Xa
nðtÞϕE

n;i

�
; ð16Þ

where the Lagrangian density is defined by LðX; Ẋ; X;iÞ ¼
−

ffiffiffi
ϵ

p
αρðEÞ. The action is a functional of the coordinates of

each node, Xa
nðtÞ.

We select the element type to be linear tetrahedrons with
nodes at the vertices only. A general tetrahedral element SE
is transformed into a unit trirectangular tetrahedron T with
coordinates ηi. Let ζiðαÞ denote the coordinates of the four

nodes, for α ¼ 0; 1; 2; 3. The transformation is linear, with
ζi ¼ Aijηj þ Bi where Aij and Bi are constants in each
element. These constants are given by

Bi ¼ ζið0Þ; ð17aÞ

Ai1 ¼ ζið1Þ − ζið0Þ; ð17bÞ

Ai2 ¼ ζið2Þ − ζið0Þ; ð17cÞ

Ai3 ¼ ζið3Þ − ζið0Þ: ð17dÞ

In the new coordinates, the nodes have coordinates ηið0Þ ¼
ð0;0;0Þ, ηið1Þ ¼ ð1;0;0Þ, ηið2Þ ¼ ð0; 1; 0Þ, and ηið3Þ ¼ ð0; 0; 1Þ.
Figure 3 shows the transformation.
Let αðnÞ map the four node numbers of SE to the set

f0; 1; 2; 3g. The shape function defined in terms of the new
coordinates ηi are

ϕ̄αðnÞðηÞ≡ ϕE
n ðζðηÞÞ: ð18Þ

Explicitly, the linear shape functions are given by [see
Eqs. (3.1.19)–(3.1.22) of Ref. [46]]

ϕ̄0ðηÞ ¼ 1 − η1 − η2 − η3; ð19aÞ

ϕ̄1ðηÞ ¼ η1; ð19bÞ
ϕ̄2ðηÞ ¼ η2; ð19cÞ
ϕ̄3ðηÞ ¼ η3: ð19dÞ

In the new coordinates, the action is

S½X� ¼
Z

t00

t0
dt
X
E

Z
T
d3ηjJEjL

� X
n∈N ðEÞ

Xa
nðtÞϕ̄αðnÞðηÞ;

X
n∈N ðEÞ

Ẋa
nðtÞϕ̄αðnÞðηÞ;

X
n∈N ðEÞ

Xa
nðtÞϕE

n;i

�
; ð20Þ

where jJEj is the determinant of the Jacobian of the
transformation from ζi to ηi for element E. We can pull
jJEj outside the integral since it is independent of ηi. It
should be noted that ϕE

n;i ≡ ∂ϕE
n=∂ζi are constants, inde-

pendent of ηi.
We now replace the integral over ηi in each element with

a quadrature rule,

S½X� ¼
Z

t00

t0
dt
X
E

X
σ

wσjJEjL
� X

n∈N ðEÞ
Xa
nðtÞϕ̄αðnÞðηðσÞÞ;

X
n∈N ðEÞ

Ẋa
nðtÞϕ̄αðnÞðηðσÞÞ;

X
n∈N ðEÞ

Xa
nðtÞϕE

n;i

�
; ð21Þ

for some set of points ηiðσÞ in T . We choose the points to

coincide with the nodes (vertices) of the element, and
choose weights wσ ¼ 1=24 for each node. With this
weighting, the integration of linear functions is exact.
Using the results ϕ̄αðηðσÞÞ ¼ δασ , the discrete action

becomes

S½X� ¼
Z

t00

t0
dt
X
E

X
σ

wσjJEjL
� X

n∈N ðEÞ
Xa
nðtÞδαðnÞσ;

X
n∈N ðEÞ

Ẋa
nðtÞδαðnÞσ;

X
n∈N ðEÞ

Xa
nðtÞϕE

n;i

�
: ð22Þ

FIG. 3. A general tetrahedral element SE in S is transformed
into a unit trirectangular tetrahedron T with a node at origin and
the three other nodes displaced by one unit along the coordinate
axes. It does not matter which node is at the origin.
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For each value of σ in the sum, the only term in the first
argument of L that is nonzero is the one for which
αðnÞ ¼ σ. Likewise for the second argument of L. Thus,
we can write the action as

S½X� ¼ 1

24

Z
t00

t0
dt
X
E

X
n∈N ðEÞ

jJEjL
�
Xa
nðtÞ; Ẋa

nðtÞ;

X
m∈N ðEÞ

Xa
mðtÞϕE

m;i

�
: ð23Þ

Let RðnÞ be the “ring” of n. This is the list of elements
(E values) that have n as one of their nodes. An example of
RðnÞ is shown in Fig. 2. We isolate the terms in the action

that involve the variable Xa
N for some fixed node number N.

Let these terms be denoted by SN,

SN ¼ 1

24

Z
t00

t0
dt

X
E∈RðNÞ

X
n∈N ðEÞ

jJEjLðXa
nðtÞ; Ẋa

nðtÞ;
X

m∈N ðEÞ
Xa
mðtÞϕE

m;iÞ: ð24Þ

Only elements in the ring of N depend on the node Xa
N . In

the sum over nodes for each element, there are two cases.
One case is when the node number n equals N, the other is
when n does not equal N. Therefore, we find

SN ¼ 1

24

Z
t00

t0
dt

X
E∈RðNÞ

jJEj
�
L
�
Xa
NðtÞ;Ẋa

NðtÞ;
X

m∈N ðEÞ
Xa
mðtÞϕE

m;i

�
þ

X
n∈N ðEÞ;n≠N

L
�
Xa
nðtÞ;Ẋa

nðtÞ;
X

m∈N ðEÞ
Xa
mðtÞϕE

m;i

��
: ð25Þ

It should be noted that Xa
N occurs in the third argument of L in both terms.

We now vary SN with respect to Xa
N ,

δSN ¼ 1

24

Z
t00

t0
dt

X
E∈RðNÞ

jJEj
�
∂L
∂Xa

����
N;E

δXa
N þ ∂L

∂Ẋa

����
N;E

δẊa
N þ ∂L

∂Xa
;i

����
N;E

ϕE
N;iδX

a
N þ

X
n∈N ðEÞ;n≠N

∂L
∂Xa

;i

����
n;E

ϕE
N;iδX

a
N

�
; ð26Þ

where the symbol jn;E indicates that the partial derivatives are evaluated at Xa ¼ Xa
n, Ẋa ¼ Ẋa

n, and
Xa
;i ¼

P
m∈N ðEÞ Xa

mðtÞϕE
m;i. The last two terms in δSN can be combined into a single sum over all n∈N ðEÞ. Then

the functional derivative (Lagrange equation) is

0 ¼ δS
δXa

N
¼ 1

24

X
E∈RðNÞ

jJEj
�
∂L
∂Xa

����
N;E

−
d
dt

�
∂L
∂Ẋa

����
N;E

�
þ

X
n∈N ðEÞ

∂L
∂Xa

;i

����
n;E

ϕE
N;i

�
: ð27Þ

Next, we expand the total time derivative,

d
dt

�
∂L
∂Ẋa

����
N;E

�
¼ ∂

2L
∂Ẋb

∂Ẋa

����
N;E

Ẍb
N þ ∂

2L
∂Xb

∂Ẋa

����
N;E

Ẋb
N þ ∂

2L
∂Xb

;i∂Ẋ
a

����
N;E

X
m∈N ðEÞ

Ẋb
mϕ

E
m;i: ð28Þ

Then the equations of motion are

X
E∈RðnÞ

jJEj
∂
2L

∂Ẋb
∂Ẋa

����
n;E|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðMabÞn

Ẍb
n ¼

X
E∈RðnÞ

jJEj
�
∂L
∂Xa

����
n;E

þ
X

m∈N ðEÞ

∂L
∂Xa

;i

����
m;E

ϕE
n;i −

∂
2L

∂Xb
∂Ẋa

����
n;E

Ẋb
n −

∂
2L

∂Xb
;i∂Ẋ

a

����
n;E

X
m∈N ðEÞ

Ẋb
mϕ

E
m;i

�
;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðFaÞn

ð29Þ

where n is replaced by m and N is replaced by n.
For each value of n in Eq. (29), the coefficient of Ẍb

n is a 3 × 3 matrix in the indices a and b. These equations are
rewritten as a system of 6Ntotal first-order ODEs for the variables Xa

n and Va
n ¼ Ẋa

n, whereNtotal is the total number of nodes.
The first 3Ntotal equations are the definitions Va

n ¼ Ẋa
n with a ¼ 1; 2; 3 and n ¼ 1;…; Ntotal. Denoting the coefficient

of Ẍb
n in Eq. (29) as ðMabÞn and the right-hand side as ðFaÞn, the next 3Ntotal first-order ODEs are written in matrix

form as
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2
666666664

ðM11Þ1 ðM12Þ1 ðM13Þ1 … 0

ðM21Þ1 ðM22Þ1 ðM23Þ1 … 0

ðM31Þ1 ðM32Þ1 ðM33Þ1 … 0

..

.

0 … … …

3
777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
massmatrix;M

d
dt

0
BBBBBBBB@

2
666666664

V1
1

V2
1

V3
1

..

.

..

.

3
777777775

1
CCCCCCCCA

¼

2
666666664

ðF1Þ1
ðF2Þ1
ðF3Þ1
..
.

..

.

3
777777775

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
vector; F

: ð30Þ

The mass matrix M is pentadiagonal. We use the
subroutine DGBSV from the Fortran Linear Algebra
Package (LAPACK) which uses lower-upper (LU) decom-
position to solve the linear system of equations (30) and
obtain the time derivatives of Va

n. We then use the fourth-
order Runge-Kutta scheme to evolve Xa

n and Va
n at discrete

values of t.
From numerical experiments we find that the Courant

condition,

Δt ≤ hmin=CL; ð31Þ
must be met for stability. Here, Δt is the time step size, hmin
is the minimum edge length of the tetrahedral elements,
and CL is the longitudinal sound speed [see Eq. (67)
defined below] which is the maximum sound speed in the
material.

IV. TEST MODELS IN THE NONRELATIVISTIC
DOMAIN

Elasticity theory in the nonrelativistic domain has a long
history and many applications. A large body of works make
use of linear elasticity for which exact solutions are known
in some cases. Here we reproduce the exact solutions for
the normal mode oscillations of a free solid elastic sphere.
In Sec. V we use our relativistic, nonlinear code to simulate
the motion of a solid elastic sphere in flat spacetime, and
show that the expected results are obtained in the limit of
small, nonrelativistic oscillations.
Nonrelativistic elasticity theory can be obtained from

general relativistic elasticity theory (Sec. II) by taking the
nonrelativistic limit, as shown in Ref. [27]. The resulting
action, deduced from (10), is

S½X�¼
Z

tf

ti

dt
Z

d3ζ
ffiffiffi
ϵ

p 	
1

2
ρ0ẊaẊa−WðEÞ−ρ0Φ



; ð32Þ

where Φ is the Newtonian gravitational potential. The
index on Ẋa has been lowered with the spatial metric gab
which in this section is taken to be flat. Here, the energy
density is written as

ρðEÞ ¼ ρ0 þWðEÞ; ð33Þ

where ρ0 is the rest mass density per unit undeformed
volume and WðEÞ is the potential energy density per unit
undeformed volume. In this nonrelativistic limit the radar
metric reduces to

fij ¼ Xa
;igabX

b
;j: ð34Þ

The second Piola stress tensor, Sij, is the derivative ofWðEÞ
with respect to the Lagrangian strain,Eij ¼ ðfij − ϵijÞ=2, as
in Eq. (7).

A. Hyperelastic energy models

Elastic materials are materials for which the stress can be
written in terms of the strain at a particular time.Hyperelastic
materials are materials for which the work done by stresses
during the deformation process depends only on the initial
and final configurations. Homogeneous materials are mate-
rials for which portions of the elastic material have the same
mechanical behavior. Isotropic materials are materials for
which the potential energy function, W, depends on the
deformation gradient only through fij and ϵij. Some energy
models [27] for isotropic hyperelastic materials include the
Saint Venant-Kirchhoff, the Mooney-Rivlin [47], the neo-
Hookean and the Ogden models [48].
In this paper we use the Saint Venant-Kirchhoff model

with potential energy function

WðEÞ ¼ λ

2
ðϵijEijÞ2 þ μðϵikϵjlEijEklÞ: ð35Þ

Here, ϵij is the inverse of ϵij and λ and μ are the Lamé
constants. (The Lamé constant λ should not to be confused
with our previous use of λ as a path parameter in Sec. II.)
The bulk modulus, K ¼ λþ 2μ=3, measures resistance to
volume changes. The Saint Venant-Kirchhoff model is not
valid for large strains because the model softens under large
compression.

B. Linear elasticity

Linear elasticity is used when the deformation is the
result of small displacements from some reference con-
figuration, which we denote by Xa

RðζÞ. We also assume that
there is no rotation. We then write
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Xaðζ; tÞ ¼ Xa
RðζÞ þ ξaðζ; tÞ; ð36Þ

where jξaðζ; tÞj is small. Then we have

Ẋaðζ; tÞ ¼ ξ̇aðζ; tÞ; ð37Þ

Xa
;iðζ; tÞ ¼ Xa

R;iðζÞ þ ξa;iðζ; tÞ; ð38Þ

and we also assume that jξa;iðζ; tÞj is small. Choosing flat
space and Cartesian coordinates, the radar metric (also
known as the right Cauchy-Green deformation tensor) and
the relaxed matter space metric become

fij ¼ Xa
;iδabX

b
;j ¼ ðXa

R;i þ ξa;iÞδabðXb
R;j þ ξb;jÞ; ð39Þ

ϵij ¼ Xa
R;iδabX

b
R;j: ð40Þ

From the map xa ¼ Xa
RðζÞ we can define the inverse map

that takes a point in physical space to the matter space label
for the body in its relaxed state,

ζi ¼ Zi
RðxÞ: ð41Þ

Differentiation with respect to ζ yields the useful relations,

Xa
R;iZ

j
R;a ¼ δji ; ð42Þ

Xa
R;iZ

i
R;b ¼ δab: ð43Þ

The following formulas for the matter space metric and its
inverse hold:

ϵij ¼ Zi
R;aδ

abZj
R;b; ð44Þ

δab ¼ Xa
R;iϵ

ijXb
R;j; ð45Þ

δab ¼ Zi
R;aϵijZ

j
R;b: ð46Þ

We can verify these by computing ϵijϵjk ¼ δik and
δabδbc ¼ δac .
We now linearize the Saint Venant-Kirchhoff energy

model by expanding WðEÞ to second order in ξa;i. Insert
Eq. (39) and Eq. (40) into the Lagrangian strain tensor
Eij ¼ ðfij − ϵijÞ=2 to obtain

Eij ¼
1

2

�
ξa;iδabX

b
R;j þ Xa

R;iδabξ
b
;j

�þO2ðξa;iÞ: ð47Þ

Using the identities (42)–(44) above, we find

ϵijEij ¼ Zi
R;aξ

a
;i þO2ðξa;iÞ: ð48Þ

With a slight abuse of notation, we can define ξaðxÞ≡
ξaðZRðxÞÞ so that Zi

R;bξ
a
;i ¼ ξa;b. Then the result (48)

becomes

ϵijEij ¼ ξa;a þO2ðξa;iÞ: ð49Þ

A similar calculation gives

ϵikϵjlEijEkl ¼
1

2
½ξd;eξe;d þ ξd;eξd;

e� þO4ðξa;iÞ: ð50Þ

Then to second order in ξa and its derivatives, we obtain

WðEÞ ¼ λ

2
ðξa;aÞ2 þ

μ

2
ðξd;eξe;d þ ξd;eξd;

eÞ; ð51Þ

for the Saint Venant-Kirchhoff model.

C. Dynamical solution for normal modes
of an elastic sphere

Equation (32) gives the action for an elastic body in
nonlinear elasticity. We specialize to free oscillations by
setting the gravitational potential to zero, Φ ¼ 0. We
specialize to the linear Saint Venant-Kirchhoff model by
using the results of the previous subsection. These results
assume a flat spatial metric with Cartesian coordinates, so
that gab ¼ δab. Then the action becomes

S½ξ� ¼
Z

tf

ti

dt
Z
S
d3ζ

ffiffiffi
ϵ

p 	
1

2
ρ0ξ̇

aδabξ̇
b −

λ

2
ðξa;aÞ2

−
μ

2
ðξd;eξe;d þ ξd;eξd;

eÞ


: ð52Þ

We can transform the matter space integral over d3ζ to a
physical space integral over d3x using the Jacobian of the
transformation j detðXa

R;iÞj ¼ 1=
ffiffiffi
ϵ

p
. Thus, we find

S½ξ� ¼
Z

tf

ti

dt
Z
R
d3x

	
1

2
ρ0ξ̇

aδabξ̇
b −

λ

2
ðξa;aÞ2

−
μ

2
ðξd;eξe;d þ ξd;eξd;

eÞ


; ð53Þ

where R is the spatial extent of the undeformed body.
The variation of the action is

δS ¼
Z

tf

ti

dt
Z
R
d3x½−ρ0ξ̈aδac þ λξa;a;dδ

d
c

þ μðξd;c;d þ ξc;
d
;dÞ�δξc

−
Z

tf

ti

dt
Z
∂R

d3x½λξa;aδdc þ μðξd;c þ ξc;
dÞ�δξcnd; ð54Þ

where nc is the normal to the boundary. In deriving this
result, we have integrated by parts to remove derivatives on
δξa and used the fact that variations vanish at the initial and
final times, ti and tf. Setting δS ¼ 0, we find the bulk
equations

JADOO, BROWN, and EVANS PHYS. REV. D 108, 084020 (2023)

084020-8



−ρ0ξ̈c þ λξa;a;c þ μðξd;c;d þ ξc;
d
;dÞ ¼ 0; ð55Þ

and the equations

λξa;anc þ μðξd;c þ ξc;
dÞnd ¼ 0; ð56Þ

that must hold on the boundary of the body. Since the
physical space is flat and three-dimensional, we can easily
generalize these results to arbitrary spatial coordinates by
replacing partial derivatives with covariant derivatives. The
bulk equation becomes

ρ0 ̈ξc ¼ λ∇c∇aξ
a þ μð∇d∇cξd þ∇d∇dξcÞ ¼ 0; ð57Þ

which simplifies to

ξ̈c ¼
�
λþ μ

ρ0

�
∇c∇aξ

a þ μ

ρ0
∇d∇dξc ¼ 0: ð58Þ

The boundary equation in arbitrary coordinates is

λ∇aξ
anc þ μð∇cξd þ∇dξcÞnd ¼ 0: ð59Þ

The nonrelativistic normal modes of vibration of a solid
elastic sphere were first described in a classic paper by
Horace Lamb [49] in 1881. See also the later treatise by
Love [50]. A modern presentation is given in Thorne and
Blandford [51] (exercise 12.12). These normal modes can
be separated into two classes, the spheroidal and torsional
modes. In this paper, we focus on the spheroidal modes.
The subset of the spheroidal modes with l ¼ 0 are called

the radial modes. Spherical coordinates, xa ¼ fr; θ;ϕg are
used to simplify the problem.
We assume a harmonic time dependence. From [51], the

radial displacement field that satisfies the bulk Eq. (58) is

ξ⃗nðt; rÞ ¼ Anj00ðωnr=CLÞr̂ cosðωntþ ϕnÞ; ð60Þ

where An is the amplitude, ϕn is the phase, and ωn is the
angular frequency. (At this point, the subscript n is
undefined, but will refer subsequently to the discrete modes
once the surface boundary condition is imposed and the
resulting eigenvalue problem is solved.) The spherical
Bessel functions are denoted by jlðxÞ, with j0lðxÞ≡
∂jlðxÞ=∂x. The constant CL ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλþ 2μÞ=ρ0

p
is the longi-

tudinal sound speed.
For l > 0, the general displacement solution satisfying

the bulk Eq. (58) is [51]

ξ⃗nlmðt; r; θ;ϕÞ ¼ AnlmΞ⃗nlmðr; θ;ϕÞ cosðωnltþ ϕnlmÞ;
ð61Þ

with amplitude Anlm, phase ϕnlm and angular frequency
ωnl. (Again values for discrete n are yet to be determined.)
The vector field Ξ⃗nlm is given by

Ξ⃗nlmðr; θ;ϕÞ ¼ fnlðrÞYlmr̂

þ gnlðrÞ
	
∂Ylm

∂θ
θ̂ þ 1

sin θ
∂Ylm

∂ϕ
ϕ̂



; ð62Þ

where Ylm are the real spherical harmonics defined by

Ylm ¼

8>>>>><
>>>>>:

ð−1Þm ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
4π

ðl−jmjÞ!
ðlþjmjÞ!

q
Pjmj
l ðcos θÞ sinðjmjϕÞ; if m < 0;ffiffiffiffiffiffiffiffi

2lþ1
4π

q
Pm
l ðcos θÞ; if m ¼ 0;

ð−1Þm ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ1
4π

ðl−mÞ!
ðlþmÞ!

q
Pm
l ðcos θÞ cosðmϕÞ; if m > 0;

ð63Þ

and Pm
l are the associated Legendre functions. The func-

tions, fnlðrÞ and gnlðrÞ are

fnlðrÞ ¼
αnl
kLnl

j0lðkLnlrÞ þ
βnl
kTnl

lðlþ 1Þ jlðkTnlrÞ
kTnlr

; ð64Þ

gnlðrÞ¼
αnl
kLnl

jlðkLnlrÞ
kLnlr

þ βnl
kTnlr

	
jlðkTnlrÞ

kTnl
þrj0lðkTnlrÞ



;

ð65Þ

where, again, jlðxÞ are the spherical Bessel functions and

kLnl ≡ ωnl

CL
; kTnl ≡ ωnl

CT
: ð66Þ

CL and CT are the longitudinal and transverse sound
speeds,

CL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ0

s
; CT ¼

ffiffiffiffiffi
μ

ρ0

r
: ð67Þ

The constants αnl and βnl that appear in the equations for
fnlðrÞ and gnlðrÞ determine the weights of the longitudinal
and transverse parts of the displacement, with their ratio to
be determined when the eigenvalue problem is solved.
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These solutions to the bulk motion equation are now
subjected to the boundary condition (59), which results in
the aforementioned eigenvalue problem. The eigenvalue
problem has an infinite discrete set of solutions, or modes,
each marked by an integer n. For each unique spherical
harmonic order, these modes differ in their radial depend-
ence and are successively higher-frequency overtones.
Let a denote the undeformed radius of the sphere, and

n̂ ¼ r̂ denote the unit normal to the boundary. Inserting the
l ¼ 0 radial solution (60) evaluated at the surface r ¼ a
into the boundary equation (59) results in the following
relation:

tan ðωna=CLÞ
ωna=CL

¼ 4

4 − ðωna=CTÞ2
: ð68Þ

The roots can be obtained numerically for the mode
frequencies ωn. The first root corresponds to the first value
of n and so on. For example, choosing CL=CT ¼ ffiffiffi

3
p

we
find the solutions for ωna=ðπCLÞ≡ kLn0a=π for n ¼
0; 1; 2; 3 shown in Table I. Using these solutions, the radial
dependence for the l ¼ 0 modes, given by j00ðωnr=CLÞ, is
plotted in Fig. 4.
For l > 0, inserting the bulk displacement solution (61)

evaluated at the surface r ¼ a into the boundary equa-
tion (59) results in two equations,

αnl½2j00lðkLnlaÞ − ððkTnl=kLnlÞ2 − 2ÞÞjlðkLnlaÞ�
þ βnl½2lðlþ 1Þf1ðkTnlaÞ� ¼ 0; ð69Þ

αnl½2f1ðkLnlaÞ�
þβnl½j00lðkTnlaÞþðlðlþ1Þ−2Þf0ðkTnlaÞ�¼0; ð70Þ

where f0ðxÞ≡ jlðxÞ=x2 and f1ðxÞ≡ ∂ðjlðxÞ=xÞ=∂x. The
simultaneous linear equations for αnl and βnl have a
solution if the determinant is zero,

½2j00lðkLnlaÞ − ððkTnl=kLnlÞ2 − 2ÞÞjlðkLnlaÞ�
½j00lðkTnlaÞ þ ðlðlþ 1Þ − 2Þf0ðkTnlaÞ�

− ½2f1ðkLnlaÞ�½2lðlþ 1Þf1ðkTnlaÞ� ¼ 0: ð71Þ

Equation (71) can be expressed in terms of kLnl and the
roots can be obtained numerically. For example, for
CL=CT ¼ ffiffiffi

3
p

, we find the solutions for l ¼ 1; 2; 3 and n ¼
0; 1; 2; 3 shown in Table I. Inserting these solutions in
Eq. (69) gives the ratio of the longitudinal to the transverse
parts shown in Table II. Using these solutions, the depend-
ence of the functions, fnlðrÞ and gnlðrÞ, on r for
l ¼ 1; 2; 3, and n ¼ 0; 1; 2; 3 is plotted in Fig. 5.

V. NUMERICAL TESTS

In this section, we use the analytical solutions for an
elastic sphere in Sec. IV to validate the numerical method
presented in Sec III (in the nonrelativistic limit) and find its
convergence rate.
The numerical method is fully relativistic and is based on

nonlinear elasticity. We set the metric equal to the
Minkowski metric and choose the analytical solution to
be a sum of l ¼ 2 and l ¼ 3 modes with amplitudes A020

and A031 and phase difference ϕ031 − ϕ020 ¼ π=2,

ξ⃗analyticðt; r; θ;ϕÞ ¼ ξ⃗020ðt; r; θ;ϕÞ þ ξ⃗031ðt; r; θ;ϕÞ
¼ A020Ξ⃗020ðr; θ;ϕÞ cosðω02tþ ϕ020Þ
þ A031Ξ⃗031ðr; θ;ϕÞ cosðω03tþ ϕ031Þ:

ð72Þ

We select the material properties of the sphere such that
CL=CT ¼ ffiffiffi

3
p

. The amplitudes A020 and A031 are small

FIG. 4. Radial dependence of the l ¼ 0 modes, including the
n ¼ 0 fundamental and the first three overtones for
CL=CT ¼ ffiffiffi

3
p

. The displacement is zero at the origin for all n
values. For the radial modes, the mode number n coincides with
the number of nodes (places of zero displacement) along the
radial direction. The maximum displacement does not occur
necessarily at the surface.

TABLE I. Numerical solutions for kLnla=π for CL=CT ¼ ffiffiffi
3

p
satisfying the boundary conditions for the first four

l and n values of the normal modes of oscillation. The values of kLnla=π increase with increasing n number.

l kL0la=π kL1la=π kL2la=π kL3la=π

0 0.81596643669775 1.92853458475813 2.95387153514092 3.96577216329668
1 0.62934739815975 1.24440286338649 1.42338683343041 1.96556466385947
2 0.48514540434785 0.89412183542721 1.53070871073100 1.79736223921180
3 0.71972992130588 1.18616009042197 1.78353164657311 2.15894591358743
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compared to a, and the sound speeds are small compared to
the speed of light.
We use Matlab’s [44] mesh generation algorithm to

generate a linear tetrahedral mesh for a sphere of radius
0.5 m. As the mesh is refined, the total volume of tetrahedral
elements converges to Vconv and we find the converged
radius using the converged volume, aconv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Vconv=4π

3
p

≈
0.49881 m. We use aconv as the undeformed radius of the
sphere in computing the analytical solution.
We set Xa for all nodes at the initial time step such that

their displacement from their relaxed value is equal to
Eq. (72) evaluated at t ¼ 0. We also set Ẋa equal to the time
derivative of Eq. (72) evaluated at t ¼ 0. We numerically
evolve the coordinates and velocities in time.
The relativistic terms in the elastic body action are of order

v2=c2 and higher, where v2 ¼ ẊaẊa and c is the speed of
light. The nonlinear elasticity terms in the action are of order
ðξa;iÞ3 and higher. After obtaining the numerical solution we
ensured that the discrepancy between the numerical and

analytical solution is not due to relativistic and nonlinear
elasticity effects by computing maxðv2=c2Þ and maxðjXa

;i −
Xa
R;ijÞ using the numerical solution. We found that

maxðv2=c2Þ ≈ 10−27 and maxðjXa
;i − Xa

R;ijÞ ≈ 10−8, which
makes maxðjXa

;i − Xa
R;ij3Þ about 16 orders of magnitude

smaller than maxðjXa
;i − Xa

R;ijÞ.
We use four mesh refinements with hmax ¼ fa=4;

a=8; a=16; a=32g, where hmax is the maximum edge length
of the tetrahedral elements. Figure 6 shows the analytical
and numerical displacement and velocity of the node
ζi ¼ ð0.1522; 0.2636;−0.3967Þ as a function of time, for
the mesh refinement with hmax ¼ a=8. Figure 7 shows the
displacement and velocity for the node ζi ¼ ð0.1779;
0.4262; 0.1913Þwith hmax ¼ a=16. (The matter space coor-
dinates are Cartesian with metric ϵij ¼ δij. The coordinate
values are reported to four decimal places for brevity.)
We compute the L2-norm of the error in the coordinates

using

FIG. 5. Radial dependence of the functions fnlðrÞ and gnlðrÞ for CL=CT ¼ ffiffiffi
3

p
and for the first four values of n. The top panels show

fnlðrÞ for l ¼ 1; 2; 3 (from left to right) and the bottom panels show gnlðrÞ. For the l ¼ 2 and l ¼ 3 modes, Ξ⃗nlm ¼ 0 at the origin as
fnlðrÞ and gnlðrÞ both vanish. This is not true for the l ¼ 1 mode.

TABLE II. Numerical solutions for the ratio of the longitudinal to the transverse parts, αnl=βnl, for CL=CT ¼ ffiffiffi
3

p
for l ¼ 1; 2; 3 and first four n values of the normal modes of oscillation. The ratios αnl=βnl increase with increasing
l number.

l α0l=β0l α1l=β1l α2l=β2l α3l=β3l

1 −0.39334285456883 0.57828661556718 −0.35961617280979 0.07851036440781
2 −0.68808506569504 −0.95183672540982 0.55915283283423 −1.16213124001178
3 −1.56275090908497 −1.65898880431533 0.68019269841200 −1.71401134238877
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FIG. 6. Analytical and numerical displacement and velocity for the node with matter space coordinates ζi ¼
ð0.1522; 0.2636;−0.3967Þ as a function of time for the mesh refinement with hmax ¼ a=8. The panels on the left show the
displacement in three directions and the panels on the right show the velocity. The analytical solution is the sum of l ¼ 2 and l ¼ 3

modes and the material properties of the sphere are set such that CL=CT ¼ ffiffiffi
3

p
. For the mesh refinement with hmax ¼ a=8, the

discretization consists of 3364 nodes and 17,403 elements.
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FIG. 7. Analytical and numerical displacement and velocity for the node with matter space coordinates ζi ¼ ð0.1779; 0.4262; 0.1913Þ
as a function of time for the mesh refinement with hmax ¼ a=16. The panels on the left show the displacement in three directions and the
panels on the right show the velocity. The analytical solution is the sum of l ¼ 2 and l ¼ 3modes and the material properties of sphere
are set such that CL=CT ¼ ffiffiffi

3
p

. For the mesh refinement with hmax ¼ a=16, the discretization consists of 25,417 nodes and 141,001
elements.
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e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNtotal

n ðXa;num
n − Xa;analytic

n ÞðXnum
an − Xanalytic

an Þ
q

Ntotal
; ð73Þ

and similarly for the velocities. Figure 8 is the log-log plot of
the L2-norm of the errors in the coordinates and velocities at
the last time step as functions ofhmax. The numericalmethod
displays second order convergence.

VI. CONCLUSIONS

We have presented a second-order-convergent finite
element numerical scheme for modeling extended bodies
in curved spacetime using elasticity theory in general
relativity. Finite elements allow a Lagrangian approach
to the elastic body and provide a free surface boundary
condition when formulating the numerical method. The
equations of motion for the body are obtained as coupled
ODEs by taking a novel approach of spatially discretizing
the action. The resulting Euler-Lagrange equations are
explicitly integrated in time with fourth-order Runge-
Kutta, subject to a Courant condition on the time step.
The numerical method can be used for bodies of any shape
described by any hyperelastic potential energy function,
moving through any spacetime.
Reducing to a linearized action for the hyperelastic

body in the nonrelativistic limit, we reproduced the
classic solutions [49,51] for radial and nonradial normal
mode oscillations of an elastic sphere. These modes were

then used to test the numerical code in the linearized,
nonrelativistic limit. By ensuring that relativistic and
nonlinear contributions are negligible, our numerical
results show second-order convergence to the analytical
solutions.
In a paper to follow shortly, we will apply our numerical

framework to model the motion and internal dynamics of a
hyperelastic sphere during tidal encounters with a
Schwarzschild black hole along a quasiparabolic orbit.
Beyond that, the method presented in this paper will allow a
host of investigations to be carried out on extended body
interactions with spacetime curvature, includingMPD spin-
curvature effects on rapidly rotating bodies and effects of
higher-multipole moments. Encounters could be general-
ized to scattering with Kerr black holes. Furthermore, the
technique could be extended to include gravitational
perturbations and radiation reaction effects on the finite-
sized mass.
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FIG. 8. Convergence of the L2-norm of the error. The L2-norm of the error at the end of the numerical evolution is plotted against the
maximum edge length of tetrahedral elements. The left panel shows the L2-norm of the error in the coordinates and the right panel shows
the L2-norm of the error in the velocities. The orange dashed line has slope equal to two. The algorithm displays second-order
convergence.
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