
Nonlinear dynamics of hot, cold, and bald Einstein-Maxwell-scalar
black holes in AdS spacetime

Qian Chen ,1,* Zhuan Ning ,1,† Yu Tian,1,2,‡ Bin Wang,3,4,§ and Cheng-Yong Zhang5,∥
1School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

2Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
3Center for Gravitation and Cosmology, College of Physical Science and Technology,

Yangzhou University, Yangzhou 225009, China
4Shanghai Frontier Science Center for Gravitational Wave Physics, Shanghai Jiao Tong University,

Shanghai 200240, China
5Department of Physics and Siyuan Laboratory, Jinan University, Guangzhou 510632, China

(Received 8 July 2023; accepted 20 September 2023; published 9 October 2023)

We investigate the dynamical transition processes of an Einstein-Maxwell-scalar gravitational system
between two local ground states and an excited state in the anti–de Sitter spacetime. From the linear
perturbation theory, only the excited state possesses a single unstable mode, indicating the dynamical
instability. Such an instability is associated with the tachyonic instability due to the presence of an effective
potential well near the event horizon. From the nonlinear dynamics simulation, through the scalar field
accretion mechanism, the critical phenomena in the transition process of the gravitational system between
the two local ground states are revealed. The threshold of the accretion strength indicates the existence of a
dynamical barrier in this transition process, which depends on the coupling strength between the scalar and
Maxwell fields. On the other hand, for the unstable excited state, there exists a special kind of critical
dynamics with a zero threshold for the perturbation strength. The perturbations of different signs push the
gravitational system to fall into different local ground states. Interestingly, in an extended parameter space,
there exist specific parameters such that the perturbations of nonzero amplitude fail to trigger the single
unstable mode of the excited state.
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I. INTRODUCTION

The no-hair theorem is crucial to characterize the proper-
ties of steady-state black holes [1,2], but the conditions
under which it holds have been controversial [3]. In
particular, due to the nonminimal coupling between the
scalar field and the spacetime curvature [4–10] or other
matter fields [11–16], such as theMaxwell field, the no-hair
theorem does not apply, which ensures the possibility of the
existence of scalarized black holes. Such a nonminimal
coupling provides the scalar fieldwith an effective tachyonic
mass, which can induce the tachyonic instability leading to
the spontaneous scalarization. Under a perturbation, a black
hole with the tachyonic instability will undergo a strong
gravity phase transition, resulting in a hairy black hole. The
spontaneous scalarization can significantly affect the prop-
erties of compact objects while passing the weak-field tests,
and thus has attracted much attention recently [17–28],

especially for the Einstein-scalar-Gauss-Bonnet (EsGB)
theory. Whether the hairy black hole is energetically
favorable over the general relativity solution depends on
the coupling function and the range of parameters in the
theory. The linear stability of the hairy black hole has been
discussed in many works [29–36].
To disclose the details of the nonlinear dynamics of

spontaneous scalarization, the fully nonlinear evolution has
been done in the EsGB theory. Moreover, the imprint of the
scalar hair in the gravitational radiation and the dynamical
descalarization were studied in binary black hole mergers
[37–39]. For its sibling theory, the Einstein-dilaton-Gauss-
Bonnet (EdGB) theory, the study of gravitational collapse
found tentative evidence that black holes endowed with
scalar hair form [40]. The nonlinear evolution of black
holes under perturbations also shows that a hairy black hole
indeed forms as the end state of scalarization [41–43]. The
equations of motion may not be well posed in the EsGB or
EdGB theory such that these works are limited to small
parameter regions of these theories. In the Einstein-
Maxwell-scalar (EMs) theory, the equations of motion
are always well posed and allow the nonlinear study of
large couplings. The nonlinear dynamics of a single black
hole in the EMs theory shows that a hairy black hole forms
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at the end [12,16–18,44–46]. Differences with general
relativity in binary black hole mergers are only significant
for large charge [47].
In addition to the above tachyonic instability that provides

the dynamical mechanism of scalarizing black holes, the
nonlinear instability of black holes has also been discovered
recently [48–51], suggesting a new scalarizationmechanism.
Whether the source of the scalar field is provided by the
spacetime curvature in the EsGB theory or the electromag-
netic field in the EMs theory, a class of critical scalarization
phenomenaoccurs through the nonlinear accretion of a scalar
field into a central black hole if the coupling function in the
scalar source is dominated by a quartic term. In thedynamical
intermediate process, an unstable critical state that acts as a
dynamical barrier emerges, separating the final bald and
hairy black holes [52]. For the EMs theory in asymptotically
flat spacetime, the finally stable and intermediately unstable
hairy black holes in such a critical scalarization process are
expected to be exactly the hot and cold scalarized black holes
found in [13,14].
However, in the asymptotically anti–de Sitter (AdS)

spacetime, the complete phase diagram structure of the
case where the coupling function is dominated by a quartic
term in the EMs theory is still unknown, although the
related dynamical process indicates that there should be
two branches of hairy black holes. From the AdS=CFT
point of view, the answer to this question will be of great
significance for probing the properties of the holographic
QCD phase diagram. Due to the strong interaction of QCD
matter, the holographic dual [55–58] provides an efficient
research tool by mapping a strongly coupled quantum
system to a classical gravitational system with an extra
dimension. From lattice QCD data, the holographic models
with and without a chemical potential are bottom-up
constructed respectively [59–70], in which a black hole
with a nontrivial scalar field is used to describe a QCD
state. The stability and dynamics of AdS black holes in
such models are crucial for phenomenologically under-
standing the dynamical properties of QCD matter. In this
work, we take the EMs model with a quartic coupling as an
example to systematically study the physical properties of
the black holes in it, from the equilibrium state to the near-
equilibrium state and finally to the far-from-equilibrium
state. These results are expected to shed light on the
research of holographic QCD to a certain extent.
On the other hand, although it can be deduced from the

critical phenomena that the intermediate critical state has
only one unstable mode, direct evidence is still lacking
since the spectrum of the quasinormal modes has not been
revealed. Most importantly, at present, by fine-tuning a
single parameter of the initial value, the critical state can
only briefly appear in the middle of the dynamical process,
and the nonlinear evolution with it as the initial configu-
ration is still pending. Since this model allows for two
stable local ground states (the hot hairy and bald black

holes), the final fate of unstable cold hairy black holes
cannot be predicted until nonlinear evolution is imple-
mented. These questions have motivated us to investigate
further.
In this paper, we study the real-time dynamics on the

local ground and excited states in spherically symmetric
AdS spacetime in the EMs theory, which contains a
nonminimal coupling function between the scalar and
Maxwell fields dominated by a quartic term. By numeri-
cally solving the static field equations, the phase structure
of the model is revealed, which shows that the domain of
existence for black hole solutions consists of two branches
of hairy black holes and one branch of Reissner-Nordström
(RN)-AdS black holes. From the linear perturbation theory,
one branch of hairy black holes (hot hairy black holes) is
linearly stable like RN-AdS black holes, while the other
branch of hairy black holes (cold hairy black holes) with a
single unstable mode is linearly dynamically unstable. For
a gravitational system with fixed energy, the hot hairy and
RN-AdS black holes serve as two local ground states and
the cold hairy black hole acts as an excited state. Through
fully nonlinear numerical simulations, the real-time dynam-
ics based on these states is revealed, and critical phenomena
emerge. For the case where the initial value is a stable local
ground state, we find that a scalar field accretion process of
sufficient strength can induce a dynamical transition from
one local ground state to the other. The occurrence of such a
transition requires the gravitational system to overcome a
dynamical barrier, leading to the existence of a threshold
for the accretion strength. Near the threshold, the system is
excited to an unstable excited state. For the case where the
initial value is an unstable excited state, on the other hand,
the system will fall into one of the two local ground states
under arbitrarily small perturbations. The selection of the
final state of the evolution depends on the specific form of
the perturbation. Scanning the parameter space of the
perturbation, the two local ground states occupy different
regions in the spectrum of the final state with the excited
state as the boundary.
The organization of the paper is as follows. In Sec. II we

give a brief introduction to the EMs model. In Sec. III we
numerically solve the static solutions of the field equations
to obtain the phase diagram structure of the model. In
Sec. IV we reveal the effective potentials and quasinormal
mode spectrums of the three classes of thermal phases. In
Sec. V we study the dynamical transition process of a
gravitational system from one of the two local ground states
to the other by crossing an excited state. In Sec. VI the real-
time dynamics during the transition from an excited state to
a local ground state is further revealed. Finally, we
conclude the paper in Sec. VII.

II. EMs MODEL

We consider four-dimensional EMs gravity with a
negative cosmological constant described by the action
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S ¼ 1

2κ24

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

4
fðϕÞFμνFμν

−∇μϕ∇μϕ −m2ϕ2

�
; ð1Þ

where R;Fμν;ϕ are the Ricci scalar curvature, Maxwell
field-strength tensor, and a real scalar field, respectively.
For convenience, the cosmological constant is set to be
Λ ¼ −3 to work in units of the AdS radius. In what follows,
we take the mass squared of the scalar field m2 ¼ −2 to
respect the Breitenlohner-Freedman bound [71] for defi-
niteness. The interaction between the real scalar field and
the electromagnetic field is governed by a nonminimal
coupling function fðϕÞ.
In this model, the variation of the action (1) with respect

to the metric tensor gμν gives rise to the following Einstein
equation:

Rμν −
1

2
Rgμν ¼ −Λgμν þ TM

μν þ Tϕ
μν; ð2Þ

where the stress-energy tensors of the Maxwell and scalar
fields have the forms

TM
μν ¼

�
1

2
gρσFμρFνσ −

1

8
FαβFαβgμν

�
fðϕÞ; ð3aÞ

Tϕ
μν ¼ ∇μϕ∇νϕ −

1

2
ð∇αϕ∇αϕþm2ϕ2Þgμν: ð3bÞ

On the other hand, the equations of motion for the Maxwell
and scalar fields can be obtained by varying the action (1)
with respect to the corresponding matter fields as follows:

∇ν½fðϕÞFνμ� ¼ 0; ð4aÞ

∇μ∇μϕ ¼ 1

8

dfðϕÞ
dϕ

FμνFμν þm2ϕ: ð4bÞ

In such an EMs theory, the phase diagram structure and
the dynamical properties of the black hole solutions depend
on the specific form of the coupling function. By perform-
ing a small-ϕ expansion of the coupling function,

fðϕÞ ¼ 1þ f1ϕþ f2ϕ2 þ f3ϕ3 þ f4ϕ4 þ oðϕ5Þ; ð5Þ

one can observe from Eq. (4b) that the nonzero coefficient
f1 prohibits the RN-AdS black hole of electrovacuum
solving the above field equations. The corresponding
model, usually referred to as the EM-dilaton model, only
contains solutions for black holes with scalar hair. In this
paper, we expect to reveal the transition process of the
gravitational system between two local ground states, and
so we set f1 ¼ 0. On the other hand, the coefficient f2
contributes to the effective mass of the scalar field, which

can trigger the horizon instability of a near-extremal
RN-AdS black hole leading to spontaneous scalarization.
Such a scalarization process can be induced by an arbi-
trarily small perturbation, which can be viewed as a process
from an excited state to a ground state. The coefficients of
higher-order terms, such as f3 and f4, have no effect on the
stability of RN-AdS black holes at the linear level. In this
case, the RN-AdS black hole with linear dynamical stability
is in a local ground state. Requiring that the Z2 symmetry
ϕ → −ϕ is preserved, we consider a coupling function
dominated by the quartic term. For simplicity and conven-
ience of numerical calculation due to the existence of the
term df

fdϕ in the field equations, the coupling function is
assumed to be an exponential dependence,

fðϕÞ ¼ eαϕ
4

; ð6Þ
with a positive coupling constant α, which has a global
minimum for ϕ ¼ 0. A simpler form, such as fðϕÞ ¼
1þ αϕ4, does not qualitatively change the conclusion of
the paper.
In order to solve the above time-dependent field equa-

tions numerically with the characteristic formulation [72],
which has been widely used to study the nonequilibrium
dynamics of black holes [54,73–82], the ingoing Eddington-
Finkelstein metric ansatz compatible with spherical sym-
metry is adopted,

ds2 ¼ −2Wðt; rÞdt2 þ 2dtdrþ Σðt; rÞ2dΩ2
2; ð7Þ

where dΩ2
2 represents the line element of a unit radius S2 and

t is a null coordinate. Such a form of the metric ansatz is
invariant to the following shift transformations in the radial
coordinate:

r → rþ λðtÞ; ð8aÞ
W → W þ dtλðtÞ; ð8bÞ
Σ → Σ: ð8cÞ

This allows us to fix the radial position of the apparent
horizon during the dynamics. For theMaxwell field, we take
the gauge Aμdxμ ¼ Aðt; rÞdt.
By taking a Taylor expansion of the field equations near

the AdS boundary, the asymptotic behaviors of the field
variables can be obtained as follows:

ϕ ¼ ϕ1r−1 þ ϕ2r−2 þ oðr−3Þ; ð9aÞ
A ¼ μ −Qr−1 þ oðr−2Þ; ð9bÞ

Σ ¼ rþ λ −
1

4
ϕ2
1r

−1 þ oðr−2Þ; ð9cÞ

W ¼ 1

2
ðrþ λÞ2 þ 1

2
−
1

4
ϕ2
1 − dtλ −Mr−1 þ oðr−2Þ; ð9dÞ
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where the constants Q and M are the electric charge and
Arnowitt-Deser-Misner (ADM) mass [83], respectively.
Since we only focus on the properties of the system in
the microcanonical ensemble, without loss of generality,
the electric charge Q is fixed to be 1 in what follows unless
otherwise stated. The parameter μ, which is set to zero in
our work, is a pure gauge whose difference from the value
of the Maxwell field at the horizon AðrhÞ is the chemical
potential. From holography, such a gravity theory is dual to
a strongly coupled conformal field theory on the AdS
boundary. The free parameter ϕ1 is the source of the scalar
field on the AdS boundary, which is set to zero to work with
the source-free boundary condition. The response of the
scalar field ϕ2, whose value can only be determined after
solving the bulk, is proportional to the expectation value of
the scalar operator of the boundary conformal field theory.
The energy density of the boundary system can be extracted
from the Brown-York tensor [81,84–88], which describes
the expectation value of the energy-momentum tensor of
the boundary theory, and the entropy density is defined as
the area element of the horizon. Setting the effective
Newton constant as units κ24 ¼ 1 for convenience and
integrating over the angular coordinates, the energy and
entropy of the gravitational system are denoted as

E ¼ 8πM; S ¼ 8π2Σ2ðrhÞ; ð10Þ

respectively, where rh stands for the radius of the apparent
horizon. On the other hand, in order to describe the
quasilocal mass, we introduce the rescaled Misner-Sharp
(MS) mass [89,90], defined as

MMS ¼ 1

2
Σ
�
−
1

3
ΛΣ2 þ 1 − gμν∂μΣ∂νΣ

�
; ð11Þ

which tends to the ADM mass on the AdS boundary. For a
static solution, the temperature is extracted as

T ¼ 1

2π
drWðrhÞ: ð12Þ

With these boundary conditions in hand, the field equations
can be easily solved numerically. For more details on the
numerical procedures for the static solutions and dynamical
evolution, we refer readers to Sec. III A and the Appendix,
respectively.

III. STATIC SOLUTIONS

In this section, we reveal the complete phase structure of
this model with the coupling function (6) by numerically
solving the static field equations. The results show that the
domain of existence of solutions is composed of three
branches: hot hairy black holes, cold hairy black holes, and
RN-AdS black holes.

A. Numerical procedure

In order to describe the relationship between the physical
quantities of the equilibrium phases, we need to seek out
the static solutions to the field equations. By eliminating the
time dependence in the field equations, the static field
configuration X ¼ fΣ;W; A;ϕg is determined by the
following independent ordinary differential equations:

0 ¼ 2
Σ00

Σ
þ ϕ02; ð13aÞ

0 ¼ W00 þ 2W0 Σ
0

Σ
−
1

4
A02f − ϕ2 − 3; ð13bÞ

0 ¼ 1

2
A00 þ A0

�
Σ0

Σ
þ ϕϕ0 d ln f

dϕ2

�
; ð13cÞ

0 ¼ ðWϕ0Þ0 þ 2Wϕ0 Σ
0

Σ
þ
�
1

4
A02 df

dϕ2
þ 1

�
ϕ; ð13dÞ

where a prime stands for a derivative with respect to
the radial coordinate r. The above system of equations
EðXÞ ¼ 0 can be efficiently solved by the Newton-
Raphson iteration algorithm, which can be thought of as
a linear algebra problem of finding the value ofXiþ1 via its
value in the previous step Xi,

Xiþ1 ¼ Xi −M−1ðXiÞEðXiÞ; ð14Þ

where M ¼ δE
δX is the Jacobian matrix. The procedure is

iterated until the difference XN −XN−1 is small enough,
which is the condition for XN to be considered a static
solution. In addition, the boundary conditions (9) must be
maintained throughout the process.
In order to implement the iteration numerically, we make

a coordinate compactification z ¼ r−1 such that the radial
direction is bounded in z∈ ½0; 1�. Note that the radial
position of the horizon is fixed at rh ¼ 1 using the
reparametrization freedom (8). Discretizing the z coordi-
nate with Chebyshev-Gauss-Lobatto grid points and
replacing the radial derivative with the corresponding
differentiation matrix, Eq. (14) is converted into a series
of algebraic operations, which is conveniently implemented
with a code library such as NumPy.

B. Phase diagram

Due to the confining AdS boundary that restricts the
escape of matter, the electric charge and energy of the
system are conserved during evolution, indicating that such
a dynamics essentially occurs in the microcanonical
ensemble. In this case, the relevant thermodynamic poten-
tial describing the competitive relationship between the
several thermal phases in equilibrium is the entropy, and the
dominant thermal phase is the one with the largest entropy.
Therefore, to a certain extent, the microcanonical phase
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diagram is a key factor in judging the stability of thermal
phases in the asymptotically AdS spacetime.
In this model, the microcanonical phase diagrams with

different values of the coupling constant α are shown in
Fig. 1 as the energy dependence of physical quantities. As
we can see from Fig. 1(a), in addition to RN-AdS black
hole solutions with a trivial scalar field, for a sufficiently
large value of the coupling constant α, there is also a branch
of black hole solutions whose horizon surface is attached
to scalar condensation, which connects to the branch of
RN-AdS black holes at point A representing the extremal
RN-AdS black hole. Fixing a general value of the coupling
constant α, one can observe that the branch of hairy black
holes possesses a turning point B, which represents the

maximum value of energy of hairy black hole solutions and
depends on the coupling constant α. Such a turning point
divides the branch of hairy black holes into two parts. On
the one hand, the AB region directly connected to the
extremal RN-AdS black hole with zero temperature,
usually referred to as the branch of cold hairy black holes,
has not only less scalar condensation, but also a lower
temperature than the other part, as shown in Fig. 1(b). On
the other hand, the region extending from the turning point
B to the over-extremal region with decreasing energy is
called the branch of hot hairy black holes due to the higher
temperature. With the increase of the coupling constant α,
both branches of hairy black holes exhibit the same
decreasing behavior in terms of scalar condensation.

FIG. 1. Value of the scalar field at the horizon (a), the temperature (b), and the difference between the entropy of hairy black holes and
RN-AdS black holes (c) as a function of energy. The black curve represents the branch of RN-AdS black holes. Other curves of different
colors represent branches of hairy black holes with different values of the coupling constant α. (d) Equation of state (solid line) and the
radius of the horizon (dotted line) for hairy black holes with coupling constant α ¼ 500. The blue and orange curves represent the hot
and cold hairy black holes, respectively.
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However, for the temperature, the branch of hot hairy black
holes increases while the branch of cold hairy black holes
decreases as the coupling constant α increases.
In Fig. 1(c), we would like to reveal the competitive

relationship between the above three thermal phases in the
microcanonical ensemble. To make the diagram clearer, on
the vertical axis we actually plot the difference between the
entropy of hairy black holes and RN-AdS black holes. As
we can see, the three branches of solutions form the shape
of a swallowtail, among which the entropy of the branch of
cold hairy black holes is always the smallest. Due to the
second law of black hole mechanics, which requires that
the entropy never decreases during the dynamical process,
the cold hairy black hole, as an excited state of the system,
is expected to be dynamically unstable and spontaneously
evolve to a ground state with greater entropy under
perturbations. For a system with fixed energy, both the
RN-AdS black hole state and hot hairy black hole state
meet the criteria of being the ground state. In a low-energy
region, the state of a hot hairy black hole has the largest
entropy and thus acts as the dominant phase. However, the
entropy of the RN-AdS black hole state gradually exceeds
that of the hot hairy black hole state as the energy of the
system exceeds a critical value, becoming the global
ground state. In fact, both of these local ground states
(RN-AdS black hole and hot hairy black hole) can serve as
the final fate of a dynamically unstable excited state (cold
hairy black hole), independent of which is the dominant
state with maximum entropy. This will be verified from the
perspective of nonlinear dynamics in Sec. VI. In addition,
for an ensemble with a fixed energy, the entropy gap
between the hot and cold hairy black holes increases
significantly with the increase of the coupling constant
α, indicating that the dynamical barrier in the excitation
process of the hot hairy black hole increases with the
parameter α. Interestingly, the entropy gap between the RN-
AdS black hole and the cold hairy black hole decreases as
the coupling constant α increases, indicating that the RN-
AdS black hole is more likely to be excited under the strong
coupling condition. These conclusions are consistent with
the numerical simulation results presented in Sec. V.
In order to compare with the current research on holo-

graphic QCD, we show the equation of state for hairy black
holes with coupling constant α ¼ 500 in Fig. 1(d). Since
the cold hairy black hole is verified to be dynamically
unstable in the next section, the hot hairy black hole with
linear dynamical stability is more suitable to describe a
QCD state. Interestingly, one can find that there exists a
minimum temperature Tm below which no hot hairy black
hole exists. Such a minimum temperature divides the
branch of hot hairy black holes into two parts. The hot
hairy black holes with larger horizon radii reside in the
upper half, and conversely, those with smaller horizon radii
live in the lower half. In addition, the large hot hairy black
holes have a positive specific heat and are therefore

thermodynamically stable, whereas the small hot hairy
black holes are thermodynamically unstable due to the
negative specific heat. Such results are similar to the case of
improved holographic QCD [60,61,67], revealing the
potential application of the EMs models in holographic
QCD. Actually, there is a small region near point B in
which the large hot hairy black holes have a negative
specific heat, and this region becomes more pronounced for
the case of weak coupling.

IV. STABILITY

In this section, we further investigate the linear stability
of the thermal phases obtained in the previous section by
the linear perturbation theory. The corresponding quasi-
normal mode spectra are numerically calculated, which
show that the hot hairy black hole as the local ground state
is linearly stable while the cold hairy black hole as the
excited state is dynamically unstable.
For RN-AdS black holes, the superradiance and near-

horizon instabilities are two important mechanisms leading
to the dynamical transition to hairy black holes. For the
case of a real scalar field in our work, which cannot extract
electric charge from the black hole, the superradiant
instability is suppressed. The near-horizon instability is
quite universal and occurs for black holes with extremal
configurations, which can be triggered by both charged and
neutral scalar fields. For our model here, such an instability
is only possible for a near-extremal RN-AdS black hole in
the large black hole limit rh → ∞, which is not within our
consideration. In what follows, we focus on the linear
stability of hot and cold hairy black holes.

A. Effective potential

From quantum mechanics [91,92], the effective potential
is an important mechanism to characterize the stability of
the system. The emergence of instability requires that the
effective potential be negative in some regions. In this
subsection, we reveal the effective potential of the black
hole solutions in this model along the radial direction to
preliminarily judge their stability. To this end, we take the
following metric ansatz for convenience:

ds2 ¼ −Ñðt; rÞe−2Δ̃ðt;rÞdt2 þ 1

Ñðt; rÞ dr
2 þ r2dΩ2

2: ð15Þ

Considering a time-dependent linear perturbation with
spherical symmetry, the corresponding metric and scalar
fields are assumed to be of the form

Ñðt; rÞ ¼ NðrÞ þ εδNðrÞe−iωt; ð16aÞ

Δ̃ðt; rÞ ¼ ΔðrÞ þ εδΔðrÞe−iωt; ð16bÞ

ϕ̃ðt; rÞ ¼ ϕðrÞ þ εδϕðrÞe−iωt: ð16cÞ
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The Maxwell field is determined by Eq. (4b) as ∂rÃðt; rÞ ¼
Qe−Δ̃

r2fðϕ̃Þ. Here the symbol ε stands for the control parameter of

the infinitesimal expansion, and the complex frequency
ω ¼ ωR þ iωI, also known as the quasinormal mode,
corresponds to the eigenvalue of the perturbative eigenstate
fδN; δΔ; δϕg. The configuration of the leading terms
fN;Δ;ϕg is the static background solution of the field
equations. For a mode with a positive imaginary part
ωI > 0, one can observe from the ansatz (16) that the
time-dependent solution fÑ; Δ̃; ϕ̃gwill exponentially leave
the static field configuration in the form eωI t. Such a mode
is dynamically unstable. Conversely, a mode with a
negative imaginary part ωI < 0 decays exponentially,
failing to trigger instability in the system.
Substituting the ansatz (16) into the equations of motion

for the metric (2) and scalar (4b) fields, the leading order of
the expansion equations gives rise to the following static
field equations:

0¼ðNϕ0Þ0 þ2r−1Nϕ0 þ1

2
rNϕ03þ2ϕþ Q2

4r4f2
df
dϕ

; ð17aÞ

0¼N0 þ1

2
rNϕ02þ r−1N− rϕ2−3r− r−1þ Q2

4r3f
; ð17bÞ

0 ¼ Δ0 þ 1

2
rϕ02; ð17cÞ

where a prime stands for a derivative with respect to the
radial coordinate r. Obviously, hot hairy black holes, cold
hairy black holes, and bald black holes solve the above
equations. At the subleading order, one can find that the
perturbations of the metric fields can be expressed by the
perturbation of the scalar field as

0 ¼ δN þ rNϕ0δϕ; ð18aÞ

0 ¼ δΔ0 þ rϕ0δϕ0; ð18bÞ

indicating that the linear-order Klein-Gordon equation is
decoupled from the perturbation of the metric fields.
Introducing the tortoise coordinate dr� ¼ eΔN−1dr and
defining a new radial function δϕ ¼ r−1Ψ, one can extract a
Schrödinger-like equation for the perturbation of the scalar
field from the subleading order of the Klein-Gordon
equation,

0 ¼ d2

dr2�
Ψþ w2Ψ − VeffΨ; ð19Þ

with the effective potential

Veff ¼
Ne−2Δ

r2

�
ð1þ3r2Þð1−r2ϕ02Þ−N

þm2r2
�
1

2
r2ϕ2ϕ02þ2rϕϕ0−

1

2
ϕ2þ1

�

−
Q2

4r2f

�
1−r2ϕ02þ d2f

fdϕ2
þ2rϕ0 df

fdϕ
−2

�
df
fdϕ

�
2
��

:

ð20Þ

One can observe that such an effective potential vanishes
at both the event horizon and the AdS boundary in the case
of m2 ¼ −2, whereas it diverges at the AdS boundary for
the case of a massless scalar field.
The resulting effective potentials for the cold hairy black

holes, hot hairy black holes, and RN-AdS black holes are
shown in Figs. 2(a)–2(c), respectively. Since the RN-AdS
black hole solutions have a positive-definite effective
potential, they are free from radial instability. However,
for the hairy black hole solutions, it turns out that
the effective potential always has a negative region. The
difference is where the negative region exists. On the one
hand, for solutions in the cold branch, such a negative
region comes into play near the event horizon and gradually
intensifies along the direction of the cold branch from the
connection point with the branch of RN-AdS black holes
(point A representing the extremal RN-AdS black hole) to
the bifurcation point of the branch of hairy black holes
(point B), that is, the direction in which the energy
increases. As the bifurcation point is approached, a positive
region develops near the event horizon. On the other hand,
as the configuration smoothly transitions from the cold
branch to the hot branch through the bifurcation point, the
positive region near the event horizon gradually grows.
Along the direction of the hot branch away from the
bifurcation point, such a positive region is significantly
enlarged and gradually plays a dominant role as the energy
of the system decreases. The negative region can only move
away from the event horizon towards the AdS boundary. As
a result, near the event horizon, a hot hairy black hole
exhibits a potential barrier while a cold hairy black hole
possesses a potential well.
According to the results of quantum mechanics [91], for

a one-dimensional potential, the existence of bound states
capable of triggering instability requires that the integral of
the effective potential over the entire space is negative. To
this end, we introduce the rescaled effective potential
defined as

Ṽeff ¼ rhz−2eΔN−1Veff ; ð21Þ

such that
Rþ∞
−∞ Veffdr� ¼

R
1
0 Ṽeffdz. Without loss of gen-

erality, taking the ensemble with energy E ¼ 7.2π as an
example, the profiles of the corresponding rescaled effec-
tive potential of the three types of black holes are shown in
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Fig. 2(d). It turns out that only the integral of the effective
potential of a cold hairy black hole is negative, and thus is
expected to be dynamically unstable. We have verified that
such an integral is negative for the entire branch of cold
hairy black holes. However, these qualitative analyses still
cannot give definitive evidence of instability. To this end,
one needs to obtain the eigenvalue ω of the linear
perturbation to determine whether there is an unstable
mode with a positive imaginary part.

B. Quasinormal modes

In this subsection, we numerically solve the quasinormal
spectrum to give direct quantitative evidence of instability.
Since the configurations of hairy black holes are obtained

by numerical methods, the generalized eigenvalue method
[93] is used, which is simple and efficient for this case. By
discretizing the field configurations of the static back-
ground solution with a pseudospectrum, this method
converts the solving process of Eq. (19) into a generalized
eigenvalue problem. The complex frequency ω to be
calculated is the corresponding eigenvalue.
The resulting spectra of the quasinormalmodes for the cold

and hot hairy black holes are shown in Figs. 3(a) and 3(b),
respectively. The purple dots represent theAdSmodes,which
dominate in the small black hole limit rh → 0. The blue and
orange dots represent the zero-damped modes, which con-
verge at the origin of the complex plane as a branch point in
the case of an extremal RN-AdS black hole [94–96]. For the
branchofRN-AdSblackholes, all of themodes are located on

FIG. 2. Effective potentials of cold hairy black holes (a), hot hairy black holes (b), and RN-AdS black holes (c) with different energy
densities as a function of the rescaled radial compactified coordinate z̃ ¼ rh=r, where rh represents the radius of the event horizon. The
coupling constant is fixed to α ¼ 500. (d) Rescaled effective potentials of the cold hairy black hole, hot hairy black hole, and RN-AdS
black hole with energy E ¼ 7.2π.
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or below the real axis, indicating dynamical linear stability.
However, along the branch of cold hairy black holes from the
connection point A representing the extremal RN-AdS black
hole to the bifurcation pointB, one of the zero-dampedmodes
gradually climbs upward along the imaginary axis from the
origin, while the others move down to the lower half of the
imaginary axis. Such a mode with a positive imaginary part
represents the occurrence of dynamical linear instability.
After the imaginary part of the single unstablemode reaches a
maximum value, the linear instability of the system gradually
weakens as it decreases. Until the bifurcation point B is
reached, the imaginary part of this single unstable mode
returns to the origin, indicating that the instability completely
disappears. We reveal more clearly in Fig. 3(c) that the

positive imaginary part of the single unstable mode varies
with the energy in this process. Along the branch of hot hairy
black holes from the bifurcation point B to the over-extremal
region, on the other hand, the dominant mode initially moves
downwards from theorigin along the imaginary axis, and then
gradually approaches the real axis again after reaching a
turning point, accompanied by the growth of the real part.
With the approach of the extremal configuration with zero
horizon area, this mode gradually converges to the real axis.
Therefore, from the above results, we can conclude that
only the cold hairy black holes are dynamically linearly
unstable, and there is only a single unstable mode without a
real part. Since we only calculate the quasinormal modes
under the spherical symmetry perturbation, the conclusions

FIG. 3. Trajectories of the first four AdS modes (purple) and the first (blue) and second (orange) zero-damped modes along the
branches of cold (a) and hot (b) hairy black holes. (a) Arrows indicate the direction from the connection point (point A) between the
branches of hairy and RN-AdS black holes to the bifurcation point (point B) of the branch of hairy black holes. (b) Arrows indicate
the direction of decreasing energy from the bifurcation point (point B) to the extremal region. (c) Imaginary part of the unstable zero-
damped mode of the cold branch as a function of the energy of the system.
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on dynamical stability for the RN-AdS black holes and hot
hairy black holes are not complete. To rigorously verify the
stability, the quasinormal modes with nonzero angular
numbers need to be further calculated.

V. DYNAMICS OF THE LOCAL
GROUND STATE

From the results of the linear perturbation theory in the
previous section, the RN-AdS black holes and hot hairy
black holes are dynamically linearly stable, acting as two
local ground states. In this section, by numerically solving
the time-dependent field equations, we simulate the fully
nonlinear accretion process of a scalar field to a central
black hole to reveal the real-time dynamics during the
excitation process of the ground state, where the scalariza-
tion or descalarization phenomenon occurs depending on
the central black hole. The corresponding schematic dia-
gram of such a continuous accretion process is shown in
Fig. 4. Due to the linear stability of the RN-AdS and hot
hairy black holes, the disturbance of the accretion process
of small strength, which can only increase the energy of the
system without changing its essential properties, gradually
dissipates in the background spacetime. Until the accretion
strength exceeds a threshold, the RN-AdS and hot hairy
black holes with nonlinear instability are dynamically
interconverted by crossing a cold hairy black hole with
linear instability. From the microcanonical phase diagram
in Fig. 1, it can be seen that the branch of hot hairy black
holes ends at point B, indicating that the accretion process
with sufficient strength, which brings in enough energy,
can always make the system converge to the state of an
RN-AdS black hole. The real-time dynamics of the above
physical processes will be revealed in detail in the follow-
ing and the corresponding numerical procedure for the
dynamical evolution with gravitational backreaction can be
found in the Appendix.

Among them, it is particularly important to emphasize
the critical dynamics at the strength threshold, near which
the evolved system tends to converge to a certain critical
state in the dynamical intermediate process. In particular, if
such a critical state has only one unstable mode, then we
can obtain it by parametrizing the initial value with a single
parameter and fine-tuning the characteristic parameter to
reach a critical value. At the late time of critical evolution,
the system will enter the linear region of the critical
solution, which can be effectively approximated by

ϕðt; rÞ ≈ ϕ�ðrÞ þ ðp − p�Þe−iω�tδϕðrÞ
þ decayingmodes: ð22Þ

Here ϕ�ðrÞ represents the static configuration of the critical
state and δϕðrÞ is the only unstable eigenmode associated
with the eigenvalue ω�, which has a positive imaginary
part. On the one hand, for the case where the parameter p is
exactly equal to the critical value p�, the only unstable
mode cannot be triggered, causing the system to perma-
nently stay in the critical state. However, on the other hand,
for the case when the parameter p is slightly away from the
critical value p�, such an unstable mode will grow
exponentially in the later stage of evolution and push the
system away from the critical state to reach the final stable
state. Interestingly, when the parameter p leaves the critical
value p� in different directions, the final state often has
distinct essential properties. Furthermore, the time that the
system stays on the critical state during the dynamical
intermediate process satisfies

τ ∝ −Im½ω��−1 lnðjp − p�jÞ; ð23Þ

where Im½ω�� stands for the imaginary part of the eigen-
value ω�. Such a relationship is obtained by requiring that
the coefficient of the unstable mode in Eq. (22) grows to a
finite size, jðp − p�Þe−iω�τj ∼Oð1Þ, which represents the
end point of the linear region of the intermediate critical
solution.

A. Critical scalarization

In this subsection, we focus on the dynamical accretion
process of a scalar field towards a central RN-AdS black
hole with coupling constant α ¼ 500, that is, the physical
process near the critical point pcs in Fig. 4. Without loss of
generality, we choose a seed RN-AdS black hole with
energy E ¼ 6.4π as the initial configuration and impose a
scalar field perturbation of the form

δϕ ¼ pz2ð1 − zÞ2e−wðz−zcÞ2 ; ð24Þ

with the radial compactified coordinate z ¼ r−1. The width
and center position of the Gaussian function are fixed as
w ¼ 50 and zc ¼ 0.5. Since the apparent horizon is fixed at

FIG. 4. Schematic diagram of the continuous accretion process
of the scalar field to a central black hole (BH). The accretion
strength is denoted by the symbol p. The values pcs and pcd
correspond to the critical scalarization and critical descalarization
processes, respectively.
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the radial position zh ¼ 1 by using the reparametrization
freedom (8), this form of perturbation characterizes a
Gaussian-type scalar field distributed outside the central
black hole. The energy of the system increases with the
increase of the perturbation amplitude p, so this process
can be regarded as the accretion process of the scalar field
to a central black hole, with the accretion strength p.
The evolution of the scalar field configuration and the

MS mass during the dynamical accretion process is shown
in Fig. 5. In the early stages of evolution, the system
exhibits similar dynamical behaviors for accretion proc-
esses of different strengths. In the first stage (t < 0.5), the
outgoing scalar field carrying energy propagates towards
the AdS boundary, resulting in a decrease in the local mass
at the position of the wave packet at the initial moment, as
shown in Figs. 5(b) and 5(d). Note that the value of the MS

mass at the radial coordinate r represents the integral of the
energy within radius r. Since the local mass change in
the dynamical process is not significant compared to the
overall energy, we show the difference between the MS
mass at different times and the initial time so that the
energy flow is more obvious. The MS mass at any time
converges to a constant on the AdS boundary, which is
equal to the ADMmass, indicating that the total mass of the
system in the asymptotically AdS spacetime is conserved
during the dynamical process. Then, in the second stage
(0.5 < t < 1), due to the gravitational potential of the AdS
spacetime, the outwardly propagating scalar field is
bounced and clustered around the horizon of the central
black hole, resulting in a significant increase in the local
mass near the horizon. Interestingly, the subsequent fate of
the scalar field depends on the specific accretion strength.

FIG. 5. Profile of the scalar field [(a) and (c)] and the MS mass [(b) and (d)] at different times. The upper and lower panels correspond
to the cases of small disturbance p ¼ 0.5 and large disturbance p ¼ 1.5, respectively. In order to describe the variation of the quasilocal
mass more clearly, we actually show the difference of the MS mass at different moments from the initial moment, where the MS mass
distribution of the initial data is shown in the inset.
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On the one hand, for a weak accretion strength, such as the
accretion process of p ¼ 0.5 shown in Figs. 5(a) and 5(b),
the scalar field is gradually absorbed by the central black
hole in the later stages of evolution (1 < t), leaving a bald
black hole with greater energy. Since the energy carried by
the initial scalar field enters the interior of the central black
hole, the value of the MS mass is most significantly
improved at the horizon compared with the initial value,
and then rapidly decreases at the original wave packet of
the scalar field. Obviously, for a radial position outside the
original wave packet, the MS mass of the initial and final
states remains the same. On the other hand, for a strong
accretion strength p ¼ 1.5, as shown in Figs. 5(c) and 5(d),
the scalar field eventually converges to a nontrivial con-
figuration, leading to the appearance of a black hole with
the scalar condensation attached at the horizon. Such a final
black hole is exactly the hot hairy black hole obtained in
Sec. III B, and it has been proved to be linearly dynamically
stable in Sec. IV B. That is to say, a scalar field accretion
process of sufficient intensity can induce a dynamical
transition from a linearly stable RN-AdS black hole to a
hot hairy black hole. From the distribution of the MS mass
of the final state in Fig. 5(d), it can be seen that most of the
energy still enters the interior of the central black hole,
resulting in a significant increase in the value of the MS
mass at the horizon. The scalar hair also carries part of the
energy, distributed in the bulk.
The above real-time dynamical processes indicate that

there should be a critical value for the accretion strength p
between 0.5 and 1.5 to distinguish two different final states.
A natural question is what kind of dynamical behavior the
system exhibits near the critical value of the accretion
strength pcs. By dichotomy, we keep approaching the
critical value and show the numerical results in Fig. 6.
The evolution of the scalar condensation at the horizon and
the entropy are presented in Figs. 6(a) and 6(b), respec-
tively, from which it can be seen that a critical state appears
in the dynamical intermediate process. All initial values
parametrized by the accretion strength p close to the critical
value pcs are attracted to a critical black hole with scalar
hair, manifested by the convergence of the scalar field to a
static nontrivial configuration. At the same time, the
entropy of the system also stops growing and presents a
plateau. Subsequently, for the dynamical process with the
accretion strength greater than the critical value pcs, the
scalar condensation continues to grow and eventually
converges to another static configuration. The entropy also
increases significantly to another constant. The stable final
state of the process is a hot hairy black hole. The fast
oscillating behavior of the scalar condensation in the later
stages of evolution is caused by the nonzero real part of the
stable dominant mode of the hot hairy black hole. On the
contrary, for the dynamical process with the accretion
strength less than the critical value pcs, the corresponding
scalar condensation decays rapidly after leaving the critical

configuration, indicating that the system eventually evolves
into an RN-AdS black hole. These dynamical processes are
accompanied by a small increase in entropy, which is
guaranteed by the second law of black hole mechanics.
Furthermore, one can observe that the closer the accretion
strength is to the critical value pcs, the longer the system
stays in the critical state during the dynamical intermediate
process. Therefore, it can be inferred that the critical
accretion strength pcs just corresponds to the critical black
hole. After verification, such a critical black hole is exactly
the linearly unstable cold black hole obtained in Sec. III B.
In order to reveal the behavior of the dominant mode in

the dynamical process, we show the evolution of the value
of ln j∂tϕðrhÞj over time in Fig. 6(c). One can observe that
the whole dynamical process can be divided into three
stages. The short-lived first stage describes the process
where the initial values are attracted to a critical black hole,
depending on the form of the disturbance. After that, the
evolution system enters the linear region of the critical
state, at which point it can be approximated by Eq. (22). At
the beginning of the second stage, the dynamical process is
dominated by the decay modes of the critical black hole.
Due to the deviation between the actual accretion strength
and the critical value, the unstable mode will grow
exponentially at later times and gradually takes over the
evolution process, pushing the system away from the
critical state. The growth exponent can be extracted from
the slope in Fig. 6(c), which is equal to the imaginary part
of the unstable mode. In the third stage, the intermediate
solution converges to the RN-AdS black hole in the case of
a subcritical accretion strength and to a hot hairy black hole
in the case of a supercritical accretion strength. From the
quasinormal modes of hot hairy black holes shown in
Fig. 3(b), the dominant stable mode has a small imaginary
part, implying a slow decay rate. Since the critical black
hole (cold hairy black hole) emerging in the dynamical
intermediate process possesses a single unstable mode
shown in Fig. 3(a), the relationship (23) is checked in
Fig. 6(d), where the slope of the red line is exactly the
reciprocal of the imaginary part of the unstable mode.
From the microcanonical phase diagram shown in

Fig. 1(c), due to the reduced entropy gap between the
RN-AdS and cold hairy black holes, one can deduce that
the dynamical barrier for the transition from an RN-AdS
black hole to a hot hairy black hole gradually decreases
with the increase of the coupling constant α. We show in
Fig. 7 the critical accretion strength pcs required to trigger
the dynamical transition of the central RN-AdS black hole
for different values of the coupling constant α, where the
monotonically decreasing behavior of the critical accretion
strength verifies the inference from the phase diagram.
The energy of the gravitational system increases con-

tinuously with the further accretion of the scalar field,
showing a monotonically increasing behavior with the
accretion strength p, as shown in Fig. 8(a). At the first
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threshold of the accretion strength pcs, the value of the final
scalar field at the horizon jumps, as shown in Fig. 8(c),
indicating a dynamical transition from an RN-AdS black
hole to a hot hairy black hole. Subsequently, such a value
gradually decreases with the increase of the accretion
strength, which is consistent with the result shown in
Fig. 1(a) that the scalar condensation attached to the event
horizon of the hot hairy black hole decreases with the
increase of the energy of the system. Since the branch of hot
hairy black holes ends at the bifurcation point B, the system
must return to the branch of RN-AdS black holes when the
energy exceeds that of point B. Interestingly, from the
dynamical results in Fig. 8(c), instead of passing through
the whole branch of hot hairy black holes, the gravitational
system evolves to the branch of RN-AdS black holes
through a critical dynamical transition in advance,

manifested by another jump in the value of ϕðrhÞ at the
second threshold of the accretion strength pc. The energy
corresponding to this threshold pc is between those
corresponding to the first threshold and the bifurcation
point. The real-time dynamics near the second threshold is
similar to the scalar field accretion process towards a hot
hairy black hole, which will be revealed in detail in the next
subsection.
As a conclusion, the accretion process of a scalar field to

a central RN-AdS black hole can trigger its nonlinear
instability. There is a threshold of the accretion strength that
induces the dynamical transition from one local ground
state (RN-AdS black hole) to the other (hot hairy black
hole). Near the threshold, the system stays in an excited
state (cold hairy black hole), which acts as a dynamical
barrier for the transition process. Such a dynamical barrier

FIG. 6. Value of the scalar field at the horizon (a), the entropy (b), and the value of ln j∂tϕðrhÞj (c) as a function of time in the case
where the accretion strength p is close to the critical value pcs. (d) Time τ of the intermediate solution that stays near the cold hairy black
hole with respect to ln jp − pcsj. All of the curves and points of the same color in the figure correspond to each other.
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decreases monotonically with the increase of the coupling
constant α. With the continuous accretion of the scalar
field, due to the upper limit of the energy for the domain of
existence of the hot hairy black holes, a second threshold of
the accretion strength appears, beyond which the gravita-
tional system undergoes a critical dynamical transition and
returns to the state of RN-AdS black hole.

B. Critical descalarization

The dynamical simulation results in the previous sub-
section show that even if a gravitational system is dynami-
cally stable at the linear level, it can still transition to
another linearly stable local ground state under a suffi-
ciently large disturbance. In this subsection, by simulating

the dynamical accretion process of a scalar field to a central
hot hairy black hole, we reveal that the transition process
between local ground states is bidirectional. Without loss of
generality, we take the hot hairy black hole under the same
ensemble with energy E ¼ 6.4π as the initial value and
impose the same form of disturbance (24).
The evolution of the value of the scalar field at the

apparent horizon is shown in Fig. 9(a). It turns out that there
is a threshold pcd for the accretion strength to distinguish
two different stable final states. For the accretion process
whose strength is less than the critical value, the final state
of the evolution is still a hot hairy black hole but with more
energy. On the other hand, for the case where the accretion
strength is greater than the critical value, a dynamical
transition occurs, leading to the descalarization phenome-
non. That is to say, the accretion process of sufficient
strength can also induce the excitation process from the
ground state of the hot hairy black hole to the ground state
of the RN-AdS black hole. Near the threshold pcd, similar
to the critical scalarization phenomenon, the scalar field
gradually converges to a static critical configuration after a
short period of drastic changes. This critical state is a cold
hairy black hole with linear dynamical instability. Similarly,
the time that the critical state exists in the dynamical
intermediate process depends on the difference between the
accretion strength p and the critical value pcd. The
relationship (23) still holds, as shown in Fig. 9(b).
Different from the dynamical transition from an RN-AdS

black hole to a hot hairy black hole, from the phase diagram
in Fig. 1(c), it can be seen that the entropy gap between the
hot and cold hairy black holes increases with the coupling
constant α. That is to say, the dynamical barrier for the
transition from a hot hairy black hole to an RN-AdS
black hole gradually increases with the coupling constant α.
This is consistent with the numerical simulation results

FIG. 8. Energy (a) and the value of the scalar field at the horizon (b) of the final state of the evolution as a function of the accretion
strength.

FIG. 7. Critical value of the accretion strength pcs as a function
of the coupling constant α. The energy of the central RN-AdS
black hole is fixed to be E ¼ 6.4π.
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presented in Fig. 10, which describe the monotonically
increasing behavior of the accretion strength threshold with
the coupling constant α.
Through the above real-time dynamics, we realize the

bidirectional dynamical transition process of a gravitational
system between two local ground states. By fine-tuning the
parameter p that characterizes the disturbance strength, the
gravitational system will stay in a critical excited state with
linear instability in the dynamical intermediate process,
exhibiting critical dynamics. In fact, such critical dynamics
is universal and independent of the disturbance parameters.
That is to say, for the disturbance form described by (24),
by fixing an appropriate value of the parameter p, a similar

critical dynamical process can also be triggered by fine-
tuning the parameter w or zc. In addition, the critical
dynamics is universal to the disturbance form, as long as it
can make the system cross the corresponding dynamical
barrier.

VI. DYNAMICS OF THE EXCITED STATE

In the previous section, we revealed the real-time
dynamics in the case where the initial central black hole
is a linearly stable local ground state, where novel critical
phenomena emerge. In this section, we further investigate
the dynamics in the case where the initial central black hole
is an excited state with linear dynamical instability, in
which the gravitational system exhibits a more interesting
critical behavior. For consistency, we take the cold hairy
black hole in the ensemble with energy E ¼ 6.4π as the
initial configuration, in this case the hot hairy black hole
with maximum entropy as the dominant thermal phase, and
then impose the scalar field perturbation described by (24).
Due to the linear instability of the initial gravitational

system, the dynamical transition can occur under arbitrarily
small perturbations. Interestingly, there are two local
ground states with linear dynamical stability that can serve
as the final state of the dynamical evolution. In the
microcanonical ensemble, the entropy of the system
describes the competitive relationship between thermal
phases in equilibrium. From a thermodynamic point of
view, the system tends to reside in the state of maximum
entropy, that is, the hot hairy black hole. However, from the
dynamics, it turns out that the system does not show a
preference according to the entropy of the state. From the
numerical results in Fig. 11(a), which show the evolution of
the value of the scalar field at the apparent horizon, it can be

FIG. 9. (a) Value of the scalar field at the horizon as a function of time in the case where the accretion strength p is close to the critical
value pcd. (b) Time τ of the intermediate solution that stays near the cold hairy black hole with respect to ln jp − pcdj. All of the curves
and points of the same color in the figure correspond to each other.

FIG. 10. Critical value of the accretion strength pcd as a
function of the coupling constant α. The energy of the central
hot hairy black hole is fixed to be E ¼ 6.4π.
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seen that different values of the perturbation amplitude can
still induce the system to evolve into two different stable
final states. We find that the final fate of the dynamical
process corresponding to the positive perturbation ampli-
tude is an RN-AdS black hole; on the other hand, the
negative perturbation amplitude pushes the evolved system
to a hot hairy black hole. Such a result indicates that the
gravitational system undergoes a special class of critical
dynamics with a perturbation strength threshold of zero
p� ¼ 0. That is to say, in this case the critical state in the
critical dynamical process is the initial state itself. The
corresponding dynamical barrier for the transition is zero.
Similarly, the smaller the perturbation strength, the longer
the system will remain in the unstable initial state. In this
process, the relationship (23) holds, as shown in Fig. 11(b).
Due to numerical errors, even with a perturbation amplitude
that is strictly zero, a dynamical transition still occurs after
long-term evolution, resulting in the values of τ corre-
sponding to the scalarization and descalarization processes
lying on two parallel lines, respectively. Obviously, the
slope of these two lines is equal to the reciprocal of the
imaginary part of the single unstable mode of the initial
cold hairy black hole. The evolution of the dominant mode
in the dynamical intermediate process is similar to that in
Fig. 6(c), with the difference being the lack of the
first stage.
In order to exclude the influence of the thermodynamic

potential of the local ground state on the conclusion, the
real-time dynamics of the cold hairy black hole in the
ensemble with energy E ¼ 8.8π, in which the RN-AdS
black hole possesses the maximum entropy, is also studied.
Similar critical dynamical phenomena occur. The unstable
cold hairy black hole maintains its static configuration in

the absence of perturbation, and evolves to a stable state
through a nonequilibrium process with any small pertur-
bation. The specific configuration of the final state depends
on the sign of the perturbation amplitude. The selection of
the final state is consistent with the case of energy
E ¼ 6.4π: the plus sign corresponds to an RN-AdS black
hole and the minus sign corresponds to a hot hairy black
hole. Such results indicate that the dynamical transition
mechanism from an excited state to a local ground state is
independent of the thermodynamic potential between the
local ground states.
For the case where the initial configuration is unstable, a

zero threshold of the perturbation strength for the critical
dynamics is reasonable. However, the relationship between
the sign of the perturbation amplitude and the final state of
evolution is somewhat puzzling. In fact, we find that such a
correspondence is related to the parameter zc in the
perturbation (24), which characterizes the distance of the
perturbation from the horizon. For the cases of perturba-
tions near the horizon and far away from the horizon, the
corresponding relationship between the sign of the pertur-
bation amplitude and the final state of the evolution is
exactly opposite. Fixing the perturbation amplitude p ¼
þ0.01 without loss of generality, we show the evolution of
the scalar field configuration with time for the cases of
zc ¼ 0.9 and zc ¼ 0.95 in Figs. 12(a) and 12(b), respec-
tively. It turns out that a near-horizon perturbation with a
positive sign leads to the formation of a hot hairy black hole
instead of an RN-AdS black hole. Such a result on the one
hand shows that the selection of the final state is not only
determined by the perturbation amplitude but also depends
on the specific form of the perturbation, and on the other
hand indicates that there should be a critical value for the

FIG. 11. (a) Value of the scalar field at the horizon as a function of time in the case where the accretion strength p is close to zero.
(b) Time τ of the intermediate solution that stays near the cold hairy black hole with respect to ln jpj. All of the curves and points of the
same color in the figure correspond to each other.
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parameter zc such that the gravitational system undergoes
critical dynamics. The critical value z�c, which is a function
of perturbation amplitude p, is obtained by dichotomy,
near which the system exhibits critical behaviors. From
Fig. 12(c), which shows the evolution of the value of the
scalar field at the horizon, it can be seen that the time of the
intermediate solution that stays near the critical black hole
depends on the difference between the parameter zc and the
critical value z�c. Such a dependency satisfies (23), as shown
in Fig. 12(d). Note that in this case the critical black hole
that emerges in the dynamical intermediate process is not
the one in Fig. 11(a), which is exactly the initial state.

With the imposition of a perturbation of nonzero amplitude,
the energy of the gravitational system changes even if the
perturbation amplitude is so small, indicating that the
perturbed system deviates from the original ensemble.
By fine-tuning the perturbation parameter zc, the system
converges to the cold hairy black hole in the new ensemble.
That is to say, such a perturbation is absorbed by the excited
state without triggering its dynamical instability. Certainly,
the energy of the gravitational system is changed. Since the
dynamically unstable excited state can be viewed as a
nonequilibrium configuration at a certain moment in the
evolution process, the realization of the above process

FIG. 12. (a),(b) Profile of the scalar field as a function of time in the cases of zc ¼ 0.9 and zc ¼ 0.95, respectively. The perturbation
amplitude is fixed as p ¼ þ0.01. (c) Value of the scalar field at the horizon as a function of time in the case where the parameter zc is
close to the critical value z�c. (d) Time τ of the intermediate solution that stays near the cold hairy black hole with respect to ln jzc − z�cj.
All of the curves and points of the same color in the figure correspond to each other.
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shows that the critical dynamics is quite universal to the
initial value. In fact, for any nonequilibrium configuration
in a time-dependent process, the critical phenomena will
also appear by applying appropriate perturbations.
The existence of the critical value z�c indicates that

there is another critical value other than zero for the
perturbation amplitude p. Since the combination of param-
eters ðzc ¼ z�c; p ¼ þ0.01Þ corresponds to a critical
black hole, naturally, fixed the parameter zc ¼ z�c, the

gravitational system will also exhibit critical behaviors
around p ¼ þ0.01. In other words, p ¼ þ0.01 is also a
threshold for the perturbation with parameter zc ¼ z�c. In
order to reveal the dependence of the final state of evolution
on the parameters, we scan the parameter space ðzc; pÞ and
display the spectrum of the final state in Fig. 13. It turns out
that the two stable local ground states occupy different
regions of the parameter space, separated by the boundary
representing the excited state. If a one-parameter curve
connects two different local ground states, there must be a
point where it intersects the boundary. This point is the
threshold of critical dynamics. Note that the points on the
boundary p ¼ 0 represent the same state, namely, the initial
excited state. The existence of other boundaries indicates
that for an appropriate form of perturbation, there exists a
series of specific combinations of parameters that fail to
trigger the single unstable mode of the excited state. Such a
perturbation only changes the energy of the unstable
gravitational system without changing its dynamical prop-
erties. Interestingly, there is a region inhabited by the hot
hairy black hole with a negative scalar field, whose
boundary also corresponds to the cold hairy black hole
with a negative scalar field. Although there is degeneracy
among the hot hairy black holes with positive and negative
scalar fields due to the symmetry ϕ → −ϕ, the dynamical
processes from a cold hairy black hole with a positive scalar
field to these two degenerate states are not the same, as
shown in Fig. 14(a). For the perturbation parameters on the
boundary of the blue region, the corresponding perturba-
tions are absorbed by the original excited state with a
positive scalar field and induce a dynamical transition to the
other degenerate excited state with a negative scalar field,
as shown in Fig. 14(b).

FIG. 13. Final states of evolution in the parameter space ðzc; pÞ.
Regions of different colors indicate different stable final states,
among which the gray regions represent RN-AdS black holes, the
orange regions represent hot hairy black holes with a positive
scalar field, and the blue region represents hot hairy black holes
with a negative scalar field. The domain walls between different
regions correspond to unstable cold hairy black holes.

FIG. 14. Value of the scalar field at the horizon as a function of time. The perturbation with parameter zc ¼ 0.5 is imposed at time
t ¼ 10. The blue and orange lines in panel (a) represent the cases where the perturbation amplitude is p ¼ −1.8 and p ¼ þ1.8,
respectively, and the line in panel (b) corresponds to the critical value p� on the boundary of the blue region in Fig. 13.

CHEN, NING, TIAN, WANG, and ZHANG PHYS. REV. D 108, 084016 (2023)

084016-18



VII. CONCLUSION

In the EMs theory, the thermodynamic and dynamic
properties of the gravitational system depend heavily on the
interaction between the scalar and Maxwell fields. For the
case of the quadratic nonminimal coupling, the near-
extremal RN-AdS black hole is dynamically unstable and
can spontaneously scalarize to form a hairy black hole. Since
there is only one excited state and one global ground state,
this dynamical transition process is unidirectional and dull.
Different from that, for the case of the nonminimal coupling
function considered in our paper dominated by a quartic
term, the richer phase structure leads to the emergence of
many exciting dynamical processes.
In order to investigate the real-time dynamics, in the first

step, we revealed the phase structure of the model in the
microcanonical ensemble. The related results show that the
domain of existence of solutions consists of a branch of
RN-AdS black holes and two branches of hairy black holes,
which are called hot and cold hairy black holes, respec-
tively. Among them, the branch of cold hairy black holes is
smoothly connected with the branch of RN-AdS black
holes at the extremal RN-AdS black hole and has an upper
limit of energy. The branch of hot hairy black holes extends
from this upper limit of energy to the over-extremal region.
For a gravitational system with fixed energy, the cold hairy
black hole with the minimum entropy is in an excited state,
and the RN-AdS black hole and hot hairy black hole are in
two local ground states due to the larger entropy.
In the second step, we studied the effective potentials and

the quasinormal modes of these three classes of thermal
phases. For both local ground states, the effective potential
exhibits a potential barrier near the event horizon. However,
for the excited state, there is a negative region in the
effective potential near the event horizon. Such a potential
well is generally associated with tachyonic instability.
From the linear perturbation theory, only the excited state
possesses an unstable mode with an imaginary part greater
than zero, indicating dynamical instability. Both local
ground states are dynamically stable at the linear level.
In the third step, the real-time dynamics based on the two

local ground states were revealed. By simulating the fully
nonlinear accretion process of a scalar field to a central
black hole, we discovered that the gravitational system can
dynamically transition between the two local ground states.
Moreover, there is a dynamical barrier in such a transition
process, which is reflected in the existence of a threshold
for the accretion strength p. For the case when the accretion
strength is less than the threshold, the scalar field disturb-
ance is absorbed by the central black hole, increasing the
energy without changing the essential properties. On the
other hand, the accretion process with the strength greater
than the threshold induces a drastic change in the gravi-
tational configuration and triggers the corresponding tran-
sition process. Near the threshold, the gravitational system
is attracted to an excited state in the dynamical intermediate

process, and the time to maintain it increases continuously
as the accretion strength approaches the threshold.
Interestingly, the dynamical barrier that needs to be over-
come to trigger the transition process of RN-AdS black
holes decreases with the increase of the coupling strength
between the scalar and Maxwell fields, which is just the
opposite of the case of hot hairy black holes.
In the final step, we investigated the real-time dynamics

with the excited state as the initial value. On the one hand,
due to the linear dynamical instability, there exists a special
kind of critical dynamics with a zero threshold for the
perturbation strength. The perturbation amplitudes with
different signs push the gravitational system to fall into
different stable local ground states. The specific selection of
the final state of evolution depends on other parameters of
the perturbation. On the other hand, for the perturbation
with a fixed nonzero amplitude, the parameter zc describing
the position of the perturbation can also induce the critical
phenomenon. Such a result indicates that the perturbation
with the threshold parameters fails to trigger the single
unstable mode of the corresponding excited state, but only
changes its energy after being absorbed by the central
black hole. Further, the spectrum of the final state of
evolution is revealed in the parameter space ðzc; pÞ. The
two linearly stable local ground states occupy different
regions, bounded by the dynamically unstable excited state.
The research on the dynamics of gravitational systems

has formed a standard framework, from the thermodynamic
properties of the equilibrium state, to the linear stability
analysis of the near-equilibrium state, all the way to the
real-time dynamics simulation of the far-from-equilibrium
state. This paper demonstrated this procedure by taking an
EMs gravitational system in AdS spacetime as an example.
Different from the spontaneous process of the unstable
system, the excitation process of the stable ground state
shown in this paper has more practical significance and
observable effects due to the stability of objects in the real
world. Although the EMs model is unlikely to be relevant
to astrophysics, it has important applications to holography
in the AdS spacetime. In the future, in order to more
accurately mimic the equation of state of QCD, the form of
the coupling function needs to be further revised, and the
self-interaction potential of the scalar field must also be
introduced. As for the critical phenomenon with dynamical
barrier, some related dynamical studies at present have
shown that it exists widely in various gravitational systems,
such as gravitational collapse [97–108], EMs [48,49],
EsGB [50], and holographic first-order phase transition
models [53,54,80]. In addition, one can observe that the
phase structure here has certain resemblances to those
between the vacuum black rings and Myers-Perry black
holes in higher-dimensional spacetimes [109–113], and
thus it is expected that there will be similar critical
dynamics phenomena. On the other hand, for a specific
self-interaction potential of a scalar field, there are
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indications of the existence of multiple local ground states
[114,115], leading to the emergence of critical dynamics.
For astronomical observations, the case of a rotating black
hole with nonminimal coupling to gravity is the most
favorable candidate [7–10], and the dynamical behaviors
during the corresponding critical transition process can be
characterized by gravitational waves.
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APPENDIX: NUMERICAL DETAILS
FOR DYNAMICAL EVOLUTION

In this appendix, we systematically give the numerical
procedure for the dynamical evolution, including the
specific form of the field equations, the field redefinitions,
the initial values, and the evolution scheme.
With the metric ansatz (7), the time-dependent field

equations have the following forms.
Einstein equations:

0 ¼ Σ00 þ 1

2
ϕ02Σ; ðA1aÞ

0¼ðΣdþΣÞ0−
1

2

�
3þϕ2−

1

4
fðϕÞA02

�
Σ2−

1

2
; ðA1bÞ

0¼W00 þ2ðdþΣÞ0
Σ

−3−
1

4
fðϕÞA02þϕ0dþϕ−ϕ2; ðA1cÞ

0 ¼ dþdþΣ −W0dþΣþ 1

2
ðdþϕÞ2Σ; ðA1dÞ

Maxwell equations:

0 ¼ ðfðϕÞΣ2A0Þ0; ðA2aÞ

0 ¼ ∂tðfðϕÞΣ2A0Þ; ðA2bÞ

Scalar equation:

0 ¼ ðΣdþϕÞ0 þ ϕ0dþΣþ Σϕþ 1

8
ΣA02 dfðϕÞ

dϕ
; ðA3Þ

where a prime represents a derivative with respect to the
radial coordinate r. To decouple the field equations, the
directional derivative along the outgoing null geodesic
dþ ¼ ∂t þW∂r is introduced. With these preliminaries in
hand, the above ordinary differential equations can be
effectively solved sequentially with appropriate boundary
conditions (9). The specific procedure is as follows.

First, in order to eliminate the divergent behaviors of the
field variables on the AdS boundary so as to diminish the
substantial loss of precision, we redefine the field variables
as follows:

ϕ ¼ r−2ϕ̂; ðA4aÞ

Σ ¼ rþ λþ r−3Σ̂; ðA4bÞ

dþΣ ¼ 1

2
ðrþ λÞ2 þ 1

2
þ r−1ddþΣ; ðA4cÞ

dþϕ ¼ −ϕ2r−1 þ r−2ddþϕ; ðA4dÞ

W ¼ 1

2
ðrþ λÞ2 þ 1

2
þ bW; ðA4eÞ

dþdþΣ ¼ 1

2
ðrþ λÞ3 þ 1

2
ðrþ λÞ þ ddþdþΣ: ðA4fÞ

Note that we do not need to make any adjustments to the
Maxwell field, since the dependence of the field equations
on it can be eliminated directly by solving Eq. (A2),

A0 ¼ Q
fðϕÞΣ2

: ðA5Þ

One can immediately observe from Eq. (A2b) that the
electric charge Q is conserved during the dynamical
process. Substituting the field redefinitions (A4) with
Eq. (A5) into the field equations (A1) and (A3), we obtain
five constraint equations on the redefined field variables.
Next, one needs to construct the initial values (the

redefined scalar field ϕ̂ and the reparametrization freedom
λ) for the dynamical evolution. For an initial RN-AdS black
hole, the configuration of the scalar field is trivial, namely,
ϕ̂ ¼ 0. In addition to the electric charge, the RN-AdS black
hole has one remaining physical degree of freedom, which
can be fixed by the outer horizon radius rþ. As mentioned
before, the position of the apparent horizon is fixed at the
unit by the shift transformations (8). Hence, the initial
horizon position is rh ¼ rþ − λ ¼ 1, from which the value
of λ can be extracted. For an initial hairy black hole, on the
other hand, the values of ϕ̂ and λ can be obtained from the
static field equations (13).
Once given the data for ϕ̂ and λ, due to the nested

structure, the remaining unknown redefined field variables

Σ̂, ddþΣ, ddþϕ, bW, and ddþdþΣ can be obtained by solving
Eqs. (A1a)–(A1d) and (A3) in sequence. During the
solution process, two additional boundary conditions are
required. One of them is the horizon condition

dþΣðrhÞ ¼ 0; ðA6Þ
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which is used to fix the single integration constant in
Eq. (A1b). The other one is the horizon stationarity
condition

WðrhÞ ¼ −
ðdþϕÞ2Σ
2ðdþΣÞ0

����
rh

; ðA7Þ

which provides the single integration constant for solving
the field variable bW through Eq. (A1c). Since the field
variables ddþϕ and bW have been obtained, one can
immediately extract the time derivative of the dynamical
variables ϕ̂ and λ from the definition of the auxiliary field
dþϕ and the asymptotic behavior of the field Ŵ on the AdS
boundary, respectively,

∂tϕ̂ ¼ r2ðdþϕ −Wϕ0Þ; ðA8aÞ

dtλ ¼ − lim
r→∞

bW : ðA8bÞ

By integrating the above equations in time, the dynamical
variables ϕ̂ and λ can be pushed to the next time slice and

will be used as new initial values to solve other unknown
field variables in the new time slice by repeating the above
steps. The procedure is iterated until the entire simulation is
completed. So far, one can find that in such a procedure the

field variable ddþdþΣ is not necessary, making Eq. (A1d)
redundant. Actually, the redundant Eq. (A1d) reduces to the
energy conservation condition dtE ¼ 0 on the AdS boun-
dary, which is used to detect the numerical errors during the
evolution in our work.
For numerical computation, we make a coordinate

compactification z ¼ r−1 such that the radial direction is
bounded in z∈ ½0; r−1h ¼ 1�. Since the computational
domain in the new coordinates is a fixed finite interval,
the compactified coordinate z can be conveniently dis-
cretized with Chebyshev-Gauss-Lobatto grid points.
Replacing the radial derivatives in the equations to be
solved with the corresponding Chebyshev differentiation
matrix, the problem is converted into a series of linear
algebra numerical operations, which can be easily proc-
essed by a computer. For the dynamical evolution
equations (A8a) and (A8b), we integrate over time using
the classic fourth-order Runge-Kutta method.
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