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Charged Dirac fields minimally coupled to gravity have spherically symmetric wormhole solutions
known as Einstein-Dirac-Maxwell (EDM) wormholes. EDM wormholes do not make use of exotic matter
and exist in asymptotically flat general relativity. We construct static spherically symmetric EDM
wormhole configurations in quantum field theory using semiclassical approximations for gravity and the
electromagnetic field. Our framework is able to describe a broader class of EDM wormholes than
previously considered and, being constructed in quantum field theory, puts EDM wormholes on firmer
theoretical ground.
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I. INTRODUCTION

Einstein-Dirac-Maxwell (EDM) wormholes are formed
from charged Dirac fields minimally coupled to gravity
[1–3]. EDMwormholes are particularly noteworthy because
they do not make use of exotic matter and exist in
asymptotically flat general relativity. The original static
solutions found in [1] have some concerning properties [4]
which the asymmetric static solutions found in [3] avoid.
The asymmetric static solutions were numerically evolved
forward in time using a time dependent EDM wormhole
model in [5]. In [6], the time evolution of EDM wormholes
was used as a concrete model for the ER ¼ EPR conjecture
[7]. Additional works on EDM wormholes include [8–11].
These studies of EDM wormholes make use of two

independent Dirac fields and fix the total angular momen-
tum to j ¼ 1=2. If a one-particle restriction is implemented
for each Dirac field, then the fields can be interpreted as
first quantized wave functions, while gravity and the
electromagnetic field are treated classically. This setup
was first used for nonwormhole starlike systems (see, for
example, [12–16]), before being applied to a wormhole
geometry.
In our recent study of the nonwormhole Einstein-Dirac

system [17], we used a single Dirac field minimally
coupled to gravity and constructed starlike configurations
in quantum field theory using the semiclassical gravity
approximation. In place of multiple independent Dirac
fields, we allowed for multiple excitations of a single
quantized field. The starlike configurations were therefore
populated with identical quantum spin-1=2 fermions.
The goal of this paper is to make a similar study of the

EDM wormhole system. With respect to [17], this requires
generalizing the spacetime metric so that it can accom-
modate a wormhole, introducing the electromagnetic field,
and charging the Dirac field. We choose to quantize the

Dirac field in the background of curved spacetime and the
electromagnetic field, which means that we do not quantize
the electromagnetic field. With this simplification, we do
not have to treat the electromagnetic interaction perturba-
tively. We treat gravity and the electromagnetic field
semiclassically by sourcing them with expectation values
of the stress-energy-momentum tensor and the electromag-
netic current.
Our framework improves the theoretical standing of

EDM wormholes. Most wormhole solutions constructed in
the literature depend on exotic matter, make use of
modifications to general relativity, or exist in anti–de
Sitter space. As mentioned above, EDM wormholes are
noteworthy in that they are constructed using standard
matter in asymptotically flat general relativity. That they
can now be described within quantum field theory and with
semiclassical approximations puts EDM wormholes on
firmer theoretical ground, which is advantageous given the
hypothetical nature of wormholes.
Solutions to the system of equations we derive describe

spherically symmetric EDM wormholes. These wormholes
can have multiple values of the quantum numbers n and j
excited, where n counts the number of radial nodes and j
labels the total angular momentum, and can be populated by
particles or antiparticles. Our framework therefore describes
a broader range of EDM wormholes than has previously
been considered.
In Sec. II, after describing the metric and Lagrangian for

our model, we quantize the Dirac field and present the
semiclassical Einstein and electromagnetic field equations.
In Sec. III, we construct spherically symmetric excitations
of the quantized Dirac field, present the stress-energy-
momentum tensor, and evaluate expectation values. In
Sec. IV, we discuss our numerical methods for solving the
system of equations and present example EDM wormhole
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configurations. We conclude in Sec. V. Throughout we use
units such that c ¼ ℏ ¼ 1.

II. EINSTEIN-DIRAC-MAXWELL SYSTEM

We study static spherically symmetric EDM wormholes.
We use the same form for the static spherically symmetric
metric that is used in [5,18],

ds2¼−α2ðrÞdt2þAðrÞdr2þCðrÞðdθ2þ sin2 θdϕ2Þ; ð1Þ

where −∞ < r < ∞. Following [5,18], we define

RðrÞ≡ ffiffiffiffiffiffiffiffiffiffi
CðrÞ

p
ð2Þ

as the areal radius. Since the minimum of the areal radius
occurs at r ¼ 0 for EDM wormholes, we define

R0 ≡ Rð0Þ ð3Þ

as the radius of the wormhole throat and interpret positive
and negative r as the spatial regions for the two sides of the
wormhole. When studying wormholes, it is necessary to
parametrize the metric such that it can accommodate a
nonzero wormhole throat radius. It is for this reason that we
include the metric function CðrÞ in Eq. (1). Including CðrÞ
and allowing r to take positive and negative values are the
principle differences between the metric we use here and the
metric we used in our recent study of the Einstein-Dirac
system in [17], where we set C ¼ r2 and required r ≥ 0.
For the EDM system, we include a single charged Dirac

spinor field, ψ , and the electromagnetic field, Aμ, both
minimally coupled to gravity. The Lagrangian is

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q �
R

16πG
þ Lψ þ LA

�
; ð4Þ

where R is the Ricci scalar, G is the gravitational
constant, and

Lψ ¼ ψ̄γμDμψ −mψ ψ̄ψ ;

LA ¼ −
1

4
FμνFμν;

Dμψ ¼ ∇μψ − ieAμψ ;

Fμν ¼ ∂μAν − ∂νAμ; ð5Þ

where mψ is the Dirac mass parameter, e is the electric
charge, and Fμν is the field strength. Conventions and
details for the spinor field, such as the definitions of the
covariant derivative and the adjoint spinor, are the same as
those in [17], to which we refer the reader. We use the
following vierbein to couple the spinor to spacetime,

γt ¼ γ̃t

α
; γr ¼ γ̃rffiffiffiffi

A
p ; γθ ¼ γ̃θffiffiffiffi

C
p ; γϕ ¼ γ̃ϕffiffiffiffi

C
p

sinθ
; ð6Þ

where the γμ are curved space γ-matrices and the γ̃μ are flat
space γ-matrices defined by

γ̃t ¼ γ̃0;

γ̃r ¼ γ̃1 sin θ cosϕþ γ̃2 sin θ sinϕþ γ̃3 cos θ;

γ̃θ ¼ γ̃1 cos θ cosϕþ γ̃2 cos θ sinϕ − γ̃3 sin θ;

γ̃ϕ ¼ −γ̃1 sinϕþ γ̃2 cosϕ: ð7Þ

We use the Dirac representation for the flat space γ-matrices

γ̃0 ¼ i
�
1 0

0 −1

�
; γ̃j ¼ i

�
0 σj

−σj 0

�
; ð8Þ

where j ¼ 1, 2, 3 and where

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
ð9Þ

are the Pauli matrices. We note that the vierbein in Eq. (6)
differs from the vierbein used in [17] only because the
metrics differ, while the flat space γ̃μ in Eq. (7) and the flat
space γ̃a in Eq. (8) are the same. The flat and curved space
γ-matrices obey

fγμ;γνg¼2gμν; fγ̃μ; γ̃νg¼2ημν; fγ̃a; γ̃bg¼2ηab; ð10Þ

where ημν ¼ ηab ¼ diagð−1; 1; 1; 1Þ is the flat space metric.
In a spherically symmetric spacetime, the angular

components of a spacetime vector must vanish, so that
Aμ ¼ ðAt;Ar; 0; 0Þ. For a static spherically symmetric
spacetime, ψ ¼ ψðt; r; θ;ϕÞ and Aμ ¼ AμðrÞ. We fix the
Uð1Þ gauge such that

Ar ¼ 0: ð11Þ

There is still some residual gauge freedom, which we use
to set

Atð0Þ ¼ 0: ð12Þ

With the gauge choice in (11), the only nonvanishing
components of the field strength are

Ftr ¼ −Frt ¼ −∂rAt: ð13Þ

In the following subsections, we canonically quantize the
charged Dirac field and present the semiclassical equations
of motion for the gauge field and the semiclassical Einstein
field equations.
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A. Dirac

From the Lagrangian in (4), the classical equation of
motion for the Dirac field is the charged Dirac equation,

γμð∇μ − ieAμÞfI −mψfI ¼ 0; ð14Þ

where we have labeled the solution as fI instead of as ψ .
The fI , where I represents some set of quantum numbers,
are classical solutions to the equations of motion. We will
use the fI as mode functions in the expansion of the Dirac
field operator when we quantize the Dirac field below.
It is straightforward to show that if the mode function fI

satisfies the equations of motion, then the charge con-
jugated mode function fcI ≡ γ̃2f�I satisfies the equations of
motion with the opposite sign charge,

γμ½∇μ − ið−eÞAμ�fcI −mψfcI ¼ 0: ð15Þ

In flat space, we can interpret this to mean that if fI
describes a particle, fcI describes the antiparticle. Since our
metric is static, this interpretation continues to hold in
curved space. We can therefore write the equations of
motion as

γμð∇μ ∓ ieAμÞf�I −mψf�I ¼ 0: ð16Þ

In this form, if fþI describes a particle, then f−I describes the
antiparticle.
The equations of motion in (16) may be further rewritten

into the form [17]

Ĥ�f�I ¼ i∂tf�I ; ð17Þ

where

Ĥ� ≡ iαffiffiffiffi
A

p γ̃0γ̃r
�
∂r þ

∂rα

2α
þ ∂rC

2C

�
−

αffiffiffiffi
C

p γ̃rK̂

− iαmψ γ̃
0 ∓ eAt: ð18Þ

The operator K̂ is defined by K̂ ¼ −iγ̃0ðĴ2 − L̂2 þ 1=4Þ,
where Ĵ2 and L̂2 are the standard operators for total and
orbital angular momentum. In Sec. IV of [17], we gave a
detailed description of solving the uncharged Dirac equa-
tion for the corresponding mode functions. Generalizing
this procedure for the metric in (1) and for the inclusion of
the gauge field, the classical solutions to the charged Dirac
equation are

fnjmj�ðt; r; θ;ϕÞ ¼
e∓iωnjtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðrÞCðrÞp

 
Pnj�ðrÞYmj

j∓1=2ðθ;ϕÞ
iP�

nj∓ðrÞYmj

j�1=2ðθ;ϕÞ

!
:

ð19Þ

These mode functions depend on the radial quantum
number n ¼ 0; 1; 2;…, the total angular momentum quan-
tum number j ¼ 1=2; 3=2; 5=2;…, the three-component
of total angular momentum quantum number mj ¼ −j;
−jþ 1;…; j − 1; j, and the quantum number � which
indicates whether the solution describes a particle or an
antiparticle. The ωnj are real constants and the Y

mj

j�1=2 are
two-component spin angle functions given by [19,20]

Y
mj

j−1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþmj

2j

s
Y
mj−1=2
j−1=2

�
1

0

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j −mj

2j

s
Y
mjþ1=2
j−1=2

�
0

1

�
;

Y
mj

jþ1=2 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1 −mj

2jþ 2

s
Y
mj−1=2
jþ1=2

�
1

0

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 1þmj

2jþ 2

s
Y
mjþ1=2
jþ1=2

�
0

1

�
; ð20Þ

where the Yml
l are spherical harmonics. The Pnj� are one-

component radial functions. They obey the radial equations
of motion,

∂rPnj� ¼∓
ffiffiffiffi
A

p

α

�
ðeAt þ ωnj � αmψ ÞP�

nj∓

−
αffiffiffiffi
C

p
�
jþ 1

2

�
Pnj�

�
; ð21Þ

which follow from the equations of motion in (17). The
radial equations of motion do not contain any factors of i.
This indicates that we can take the Pnj� to be purely real,
which we shall do from this point forward. The radial
equations of motion also do not depend on mj and, for this
reason, we take the Pnj� and the ωnj to be independent of
mj. Finally, the charge conjugated mode functions are given
by fcnjmjþ ¼ ið−1Þmjþ1=2fn;j;−mj;−, which differ by an irrel-

evant global phase from fn;j;−mj;−.
The frequencies ωnj depend on the choice of Uð1Þ

gauge. However, if mode function fnjmjþ has frequency
ωnj, then, independent of the gauge choice, mode function
fnjmj− has frequency −ωnj. Classifying the mode functions
as satisfying

ξμ∂μfnjmjþ ¼ ∂tfnjmjþ ¼ −iωnjfnjmjþ ð22Þ

or

ξμ∂μfnjmj− ¼ ∂tfnjmj− ¼ þiωnjfnjmj−; ð23Þ
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where ξμ ¼ ð1; 0; 0; 0Þ is the hyperspace-orthogonal time-
like Killing vector for the metric in (1) [21,22], is then
gauge invariant. In the uncharged case, the classifications
are labeled “positive frequency” and “negative frequency.”
We avoid these labels here since, in the charged case, the
sign of ωnj can be changed with a gauge transformation.
Instead, the quantum number � specifies the classification.
This classification allows us to identify a preferred vacuum
state and to have a natural definition for particle and
antiparticle.
Having found the mode functions, we now quantize the

Dirac field in a background of curved spacetime and an
electromagnetic field [21,23,24]. Neither spacetime nor the
electromagnetic field will be quantized, but they will both
be treated semiclassically, as we explain in the next two
subsections. We introduce an inner product that has the
same form as used in [17], but now the inner product is
defined on the space of solutions to the charged Dirac
equation,

ðfI; fJÞ ¼
Z
Σ
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγijÞ

q
f†I fJ; ð24Þ

where γij is the induced spatial metric on the spatial
hypersurface Σ, detðγijÞ ¼ AC2 sin2 θ, and d3x ¼ drdθdϕ.
Using the mode functions in (19) and the orthonormality of
the spin angle functions,

Z
dθdϕ sin θðYmj

j�1=2Þ†Y
m0

j

j0�01=2 ¼ δj;j0δmj;m0
j
δ�;�0 ; ð25Þ

we have

ðfnjmj�;fn0j0m0
j�0Þ ¼ δj;j0δmj;m0

j
δ�;�0e�iðωnj−ωn0jÞt

×
Z

∞

−∞
dr

ffiffiffiffi
A

p

α
ðPnjþPn0jþ þPnj−Pn0j−Þ:

ð26Þ

When the mode functions have the same sign for
their electric charge, the inner product can be written in
terms of a current, if�I γ

μf�J , which is divergence-free,
∇μðif�I γμf�J Þ ¼ 0. Although the current is no longer
divergence-free when the mode functions have opposite
signs for their electric charge, the inner product in this
case always vanishes, ðf�I ; f∓J Þ ¼ 0. Assuming the mode
functions decay sufficiently fast at spatial infinity, the
inner product is then time independent, as required. The
equations of motion in (17) become the eigenvalue
equations Ĥ�f�I ¼ �ωIf�I , and Ĥ� can be shown to be
Hermitian with respect to the inner product. The inner
product is then orthogonal with respect to the quantum
number n as long as the eigenvalues are distinct for
different values of n.

From (26), the norm of a mode function is given by

N nj ≡ ðfI; fIÞ ¼
Z

∞

−∞
dr

ffiffiffiffi
A

p

α
ðP2

njþ þ P2
nj−Þ: ð27Þ

Since the integrand is positive definite, fI can be scaled
such that the norm is equal to 1. We explain in Sec. IV how
we implement this scaling, and we assume our mode
functions are normalized,

N nj ¼ 1: ð28Þ

We have now established that the mode functions satisfy
the orthonormality conditions

ðfI; fJÞ ¼ δIJ: ð29Þ

Having constructed an orthonormal set of mode func-
tions, the Dirac field can be expanded in terms of them. We
then promote the field to an operator,

ψ̂ðt; x⃗Þ ¼
X
I

h
b̂If

þ
I ðt; x⃗Þ þ d̂†I f

−
I ðt; x⃗Þ

i
: ð30Þ

The momentum conjugate to ψ is given by

π ¼ ∂L
∂ð∂tψÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγijÞ

q
iψ†; ð31Þ

which we also promote to an operator, π̂. We impose equal
time anticommutation relations between the field operators,

fψ̂aðt; x⃗Þ; π̂bðt; y⃗Þg ¼ iδabδ3ðx⃗ − y⃗Þ;
fψ̂aðt; x⃗Þ; ψ̂bðt; y⃗Þg ¼ 0;

fπ̂aðt; x⃗Þ; π̂bðt; y⃗Þg ¼ 0; ð32Þ

where a and b label the Dirac spinor components. Plugging
the field decompositions for ψ̂ and π̂ into the anticommu-
tation relations and using the orthonormality of the mode
functions, we find the standard anticommutation relations
for creation and annihilation operators,

fb̂I; b̂†Jg ¼ δIJ; fd̂I; d̂†Jg ¼ δIJ; ð33Þ

with all other anticommutators vanishing.

B. Maxwell

From the Lagrangian in (4), the classical equations of
motion for the gauge field are Maxwell’s equations,

∇μFμν ¼ jν; jν ¼ ieψ̄γνψ ; ð34Þ

where jν is the classical electromagnetic current. To
incorporate the quantized Dirac field, and in analogy to
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the semiclassical gravity approximation we use in the next
subsection [21,23–25], we use a semiclassical approxima-
tion for the gauge field equations of motion by sourcing
them with the expectation value of the electromagnetic
current,

∇μFμν ¼ hĵνi; ĵν ¼ ie ˆ̄ψγνψ̂ : ð35Þ

The electromagnetic field is described classically by the
left-hand side of the semiclassical equations of motion,
while a quantum description of the Dirac field is used on
the right-hand side.
Inserting the field decomposition for the Dirac field

operator in (30) into the current operator in (35), we find

ĵν ¼
X
I;J

h
jνðfþI ; fþJ Þb̂†I b̂J þ jνðfþI ; f−J Þb̂†I d̂†J

þ jνðf−I ; fþJ Þd̂Ib̂J þ jνðf−I ; f−J Þd̂Id̂†J
i
; ð36Þ

where

jνðfI; fJÞ≡ ief̄IγνfJ: ð37Þ

The expectation value of the electromagnetic current
operator is divergent since the current operator contains
products of the field operator. This divergence must be
regulated and renormalized. Following [17,26], we normal
order the current operator,

∇μFμν ¼ h∶ĵν∶ i; ð38Þ

where

∶ĵν∶ ¼
X
I;J

h
jνðfþI ; fþJ Þb̂†I b̂J þ jνðfþI ; f−J Þb̂†I d̂†J

þ jνðf−I ; fþJ Þd̂Ib̂J − jνðf−I ; f−J Þd̂†Jd̂I
i
; ð39Þ

which leads to finite results. A more sophisticated renorm-
alization scheme would be interesting [21,23,24], but it is
beyond the scope of this work.
With the Uð1Þ gauge condition in (11), the only non-

vanishing gauge field component is At. From (38), the
equations of motion for At work out to

∂
2
rAt ¼

�
∂rα

α
þ ∂rA

2A
−
∂rC
C

�
∂rAt − α2Ah∶ĵt∶ i: ð40Þ

C. Einstein

From the Lagrangian in (4), the classical equations of
motion for gravity are the Einstein field equations,

Gμν ¼ 8πGTμν; ð41Þ

where Gμν is the Einstein tensor and Tμν is the classical
stress-energy-momentum tensor,

Tμν ¼ Tψ
μν þ TA

μν; ð42Þ

where

Tψ
μν ¼ −

1

4

h
ψ̄γμDνψ þ ψ̄γνDμψ − ðDμψ̄Þγνψ − ðDνψ̄Þγμψ

i
;

TA
μν ¼ gαβFμαFνβ −

1

4
gμνFαβFαβ: ð43Þ

To incorporate the quantized Dirac field, we use the
semiclassical gravity approximation [21,23–25] and source
the Einstein field equations with the expectation value of
the Dirac field operator’s contribution to the stress-energy-
momentum tensor while keeping the gauge field’s contri-
bution classical,

Gμν ¼ 8πGðhT̂ψ
μνi þ TA

μνÞ; ð44Þ

where

T̂ψ
μν ¼ −

1

4

h
ˆ̄ψγμDνψ̂ þ ˆ̄ψγνDμψ̂ − ðDμ ˆ̄ψÞγνψ̂ − ðDν ˆ̄ψÞγμψ̂

i
:

ð45Þ

Gravity is described classically by the left-hand side of the
semiclassical Einstein field equations, while a quantum
description of the Dirac field is used on the right-hand side.
Inserting the field decomposition for the Dirac field

operator in (30) into the stress-energy-momentum tensor
operator in (45), we find

T̂ψ
μν ¼

X
I;J

h
Tψ
μνðfþI ; fþJ Þb̂†I b̂J þ Tψ

μνðfþI ; f−J Þb̂†I d̂†J

þ Tψ
μνðf−I ; fþJ Þd̂Ib̂J þ Tψ

μνðf−I ; f−J Þd̂Id̂†J
i
; ð46Þ

where

Tψ
μνðfI; fJÞ≡ −

1

4

h
f̄IγμDνfJ þ f̄IγνDμfJ

− ðDμf̄IÞγνfJ − ðDνf̄IÞγμfJ
i
: ð47Þ

Just as with the electromagnetic current, the expectation
value of Eq. (46) is divergent since Eq. (45) contains
products of the field operator. Again following [17,26], we
use normal ordering,

Gμν ¼ 8πGðh∶T̂ψ
μν∶ i þ TA

μνÞ; ð48Þ

where
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∶T̂ψ
μν∶ ¼

X
I;J

h
Tψ
μνðfþI ; fþJ Þb̂†I b̂J þ Tψ

μνðfþI ; f−J Þb̂†I d̂†J

þ Tψ
μνðf−I ; fþJ Þd̂Ib̂J − Tψ

μνðf−I ; f−J Þd̂†Jd̂I
i
: ð49Þ

The Einstein field equations in (48) lead to the following
equations for the metric fields [18]:

∂
2
rα ¼

�
∂rA
2A

−
∂rC
C

�
∂rαþ 4πGαAðρþ SÞ;

∂
2
rC ¼ Aþ ð∂rAÞð∂rCÞ

2A
þ ð∂rCÞ2

4C
− 8πGACρ;

0 ¼ 1

C
−
ð∂rαÞð∂rCÞ

αAC
−
ð∂rCÞ2
4AC2

þ 8πGSrr; ð50Þ

where

ρ ¼ 1

α2
ðh∶T̂ψ

tt∶i þ TA
tt Þ;

Srr ¼
1

A
ðh∶T̂ψ

rr∶i þ TA
rrÞ;

Sθθ ¼
1

C
ðh∶T̂ψ

θθ∶i þ TA
θθÞ ð51Þ

are the energy density and spatial stress and where
S ¼ Srr þ 2Sθθ is the trace of the spatial stress.

III. SPHERICALLY SYMMETRIC STATES
AND EXPECTATION VALUES

In Sec. II A, we constructed creation and annihilation
operators for the quantized Dirac field. These operators
satisfy the standard anticommutation relations, as can be
see in Eq. (33). Using these operators we can construct
basis states for the Hilbert space,

jNb
I1
; Nb

I2
;…; Nd

J1
; Nd

J2
;…i

¼ � � � ðd̂†J2Þ
Nd

J2 ðd̂†J1Þ
Nd

J1 � � � ðb̂†I2Þ
Nb

I2 ðb̂†I1Þ
Nb

I1 j0i; ð52Þ

where Nb
I and Nd

J are occupation numbers and j0i is the
vacuum state. The vacuum state is normalized and annihi-
lated by the annihilation operators, b̂Ij0i ¼ d̂Jj0i ¼ 0. The
states jNb

I1
; Nb

I2
;…; Nd

J1
; Nd

J2
;…i form an orthonormal

basis for the Hilbert space and are eigenstates of the
number operators,

N̂b
I jNb

I1
;…; Nd

J1
;…i ¼ Nb

I jNb
I1
;…; Nd

J1
;…i;

N̂d
J jNb

I1
;…; Nd

J1
;…i ¼ Nd

J jNb
I1
;…; Nd

J1
;…i; ð53Þ

where

N̂b
I ¼ b̂†I b̂I; N̂d

J ¼ d̂†Jd̂J: ð54Þ

Being fermionic states, the occupation numbers can have
values Nb

I ; N
d
J ¼ 0 or 1.

In Sec. II B, we used a semiclassical approximation and
wrote the gauge field equations of motion in Eq. (38) in
terms of the expectation value of the electromagnetic
current. In Sec. II C, we again used a semiclassical
approximation and wrote the Einstein field equations in
Eq. (48) in terms of the expectation value of the stress-
energy-momentum tensor for the Dirac field and the
classical stress-energy-momentum tensor for the gauge
field. We choose to evaluate the expectation values using
the basis states in (52), for which

h∶ĵν∶ i ¼
X
I

h
Nb

I j
νðfþI ; fþI Þ − Nd

I j
νðf−I ; f−I Þ

i
;

h∶T̂ψ
μν∶i ¼

X
I

h
Nb

I TμνðfþI ; fþI Þ − Nd
I Tμνðf−I ; f−I Þ

i
: ð55Þ

Since we have a spherically symmetric spacetime, we
must use spherically symmetric basis states. Spherically
symmetric basis states have zero total angular momentum.
As shown in [17,26–28], zero total angular momentum is
achieved by exciting all possible values of mj for each
excited j. The expectation values we make use of are then

h∶ĵν∶ i ¼
X
n;j

Nb
nj

Xj
mj¼−j

jνðfnjmjþ; fnjmjþÞ

−
X
n;j

Nd
nj

Xj
mj¼−j

jνðfnjmj−; fnjmj−Þ;

h∶T̂ψ
μν∶i ¼

X
n;j

Nb
nj

Xj
mj¼−j

Tψ
μνðfnjmjþ; fnjmjþÞ

−
X
n;j

Nd
nj

Xj
mj¼−j

Tψ
μνðfnjmj−; fnjmj−Þ: ð56Þ

From the gauge field equations of motion in (40), we
can see that the only component of the expectation value
of the electromagnetic current that we need is h∶ĵt∶i. In a
static spherically symmetric spacetime, the stress-energy-
momentum tensor must be diagonal. Details for how some
of these quantities are computed are given in Appendix B
of [17]. For the electromagnetic current we find

Xj
mj¼−j

jtðf�I ; f�I Þ ¼ −
eð2jþ 1Þ
4πα2C

ðP2
njþ þ P2

nj−Þ; ð57Þ

for the stress-energy-momentum tensor for the Dirac field
we find
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Xj
mj¼−j

Tψ
ttðf�I ; f�I Þ ¼ �ðeAt þ ωnjÞ

2jþ 1

4πC
ðP2

njþ þ P2
nj−Þ;

Xj
mj¼−j

Tψ
rrðf�I ; f�I Þ ¼ �Að2jþ 1Þ

4πα2C

�
−
αð2jþ 1Þffiffiffiffi

C
p PnjþPnj− þ ðeAt þ ωnj − αmψÞP2

njþ þ ðeAt þ ωnj þ αmψ ÞP2
nj−

�
;

Xj
mj¼−j

Tψ
θθðf�I ; f�I Þ ¼ � ð2jþ 1Þ2

8πα
ffiffiffiffi
C

p PnjþPnj−;

Xj
mj¼−j

Tψ
ϕϕðf�I ; f�I Þ ¼ � ð2jþ 1Þ2

8πα
ffiffiffiffi
C

p PnjþPnj−sin2θ; ð58Þ

and for the stress-energy-momentum tensor for the gauge
field, which follows from the bottom equation in (43),
we find

TA
tt ¼

ð∂rAtÞ2
2A

;

TA
rr ¼ −

ð∂rAtÞ2
2α2

;

TA
θθ ¼

Cð∂rAtÞ2
2α2A

;

TA
ϕϕ ¼ Cð∂rAtÞ2

2α2A
sin2θ: ð59Þ

IV. EINSTEIN-DIRAC-MAXWELL WORMHOLES

EDM wormholes are described by self-consistent solu-
tions to the radial equations of motion for the Dirac field
in (21), the normalization requirement in (28), the equations
of motion for the gauge field in (40), and the metric field
equations in (50). The gauge field equations of motion
depend on the expectation value of the electromagnetic
current in Eqs. (56) and (57). The metric field equations
depend on the energy density and spatial stress given in (51)
which depend on stress-energy-momentum tensor equations
in (56), (58), and (59).
For simplicity, we restrict our attention to b-type particles

and set Nd
nj ¼ 0. In this case, the quantum numbers that

distinguish solutions are n and j. For a single value of n and
for j ¼ 1=2, our system of equations is equivalent to the
system of equations in [3,5]. However, these papers main-
tained spherical symmetry by including twoDirac fields, and
the fields were not quantized. In our formalism, we have a
single Dirac field, and we maintain spherical symmetry by
computing expectation values with states formed from
spherically symmetric excitations of the quantized Dirac
field. Further, our formalism allows us to consider multiple
values of n and j and allows for values of j larger than 1=2.
To numerically solve the system of equations, we need to

make a coordinate choice for the metric functions. For
example, a common choice in the study of wormholes is

CðrÞ ¼ R2
0 þ r2, where R0 is the wormhole throat radius

defined in Eq. (3). Another possibility is CðrÞ ¼
R2
0½1 − ðr=R0Þ2�−2, which was used in [3] and which

compactifies the radial coordinate to −R0 < r < R0. We
prefer the coordinate choice [5]

AðrÞ ¼ 1: ð60Þ

This choice sets the radial coordinate equal to the physical
distance from the origin.
Just as in [17], we make use of scaling symmetries to

write the system of equations in terms of dimensionless
variables. In the first scaling, we use the wormhole throat
radius, R0, to define the dimensionless variables

r̄≡ r
R0

; ω̄nj≡R0ωnj; ē≡ R0ffiffiffiffi
G

p e; m̄ψ ≡R0mψ ;

P̄nj�≡
ffiffiffiffiffiffi
G
R0

s
Pnj�; At≡

ffiffiffiffi
G

p
At; C̄≡ 1

R2
0

C: ð61Þ

In the second scaling, we scale variables by αð0Þ, which
helps with specifying boundary conditions, by defining

α̃ðr̄Þ≡ αðr̄Þ
αð0Þ ; P̃nj�ðr̄Þ≡ P̄nj�ðr̄Þffiffiffiffiffiffiffiffiffi

αð0Þp ;

Ãtðr̄Þ≡ Ātðr̄Þ
αð0Þ ; ω̃nj ≡ ω̄nj

αð0Þ : ð62Þ

When written in terms of these variables, G, R0, and αð0Þ
cancel out.
In terms of the dimensionless variables, Eq. (27) for the

norm of a mode function becomes

N nj ¼
�
R0

lP

�
2

N nj; N nj ≡
Z

∞

−∞
dr̄

1

α̃
ðP̃2

njþ þ P̃2
nj−Þ;

ð63Þ

EINSTEIN-DIRAC-MAXWELL WORMHOLES IN QUANTUM FIELD … PHYS. REV. D 108, 084010 (2023)

084010-7



where lP ¼ ffiffiffiffi
G

p
is the Planck length and where we used

the coordinate choice in (60). Imposing the normalization
requirement in (28), we have

R0

lP
¼ 1ffiffiffiffiffiffiffiffiffi

N̄ nj

q : ð64Þ

We find that all N nj must equal the same value and that
solutions are only valid for a single wormhole throat radius,
R0, as given by (64), since only for this value are the mode
functions normalized.
To integrate the system of equations outward, we need

inner boundary conditions at r̄ ¼ 0. The scaled variables
obey

C̄ð0Þ ¼ 1; α̃ð0Þ ¼ 1; Ãtð0Þ ¼ 0; ð65Þ

where the last condition follows from the gauge choice
in (12). Additionally, we will look for solutions that
satisfy [3,5]

C̄0ð0Þ ¼ 0; α̃0ð0Þ ¼ 0; ð66Þ

where a prime indicates a derivative with respect to r̄.
Plugging Taylor series expansions of the fields into the
scaled version of the radial equations of motion, we find

P̃nj�ð0Þ ¼ pnj�; ð67Þ

where the pnj� are undetermined constants. Doing the
same with the scaled version of the bottom equation
in (50), we find

Ã02
t ð0Þ ¼

1

4π

�
1þ

X
n;j

Nb
nj2ð2jþ 1Þ½ðω̃nj − m̄ψ Þp2

njþ

þ ðω̃nj þ m̄ψÞp2
nj− − ð2jþ 1Þpnjþpnj−�

�
: ð68Þ

Inner boundary conditions are parametrized in terms of the
constants pnjþ and pnj−. Without loss of generality, we
use the positive root in Eq. (68); using the negative root is
equivalent to using the positive root but with the sign of e
flipped.
For outer boundary conditions, we require that the energy

density ρ, which is defined in (51), asymptotically heads to
zero at spatial infinity, i.e., ρ → 0 for r̄ → �∞. This is
accomplished by requiring P̃nj�; Ã

0
t → 0 for r̄ → �∞.

Solutions require specification of the constants pnj�,
ω̃nj, ē, and m̄ψ . Further, the solutions must satisfy the
normalization requirement in (64), which in many cases is a
nontrivial constraint.

A. Single-n, single-j examples

Consider a wormhole that has a single value of n and a
single value of j excited. In this case, there is a single N nj,
and the normalization constraint is trivially satisfied by any
solution. To find a solution, we must determine pnjþ, pnj−,
and ω̃nj, along with ē and m̄ψ . One strategy is to specify
pnjþ, ē, and m̄ψ and to use trial values for pnj− and ω̃nj.
Using the shooting method, we can integrate the system of
equations outward from r̄ ¼ 0 and tune pnj− and ω̃nj until
the outer boundary conditions are satisfied. In this case, we
have two shooting parameters. We used this method to find
static solutions in [5]. In Fig. 1, we show example solutions
for the radial functions P̃nj�ðr̄Þ for a single n and a single j
excited. We can see that the quantum number n counts the
number of radial nodes. Values for various parameters for
these example solutions are listed in Table I.
In the top row of Fig. 2, we show additional fields for the

same solution shown in Fig. 1(g) with n ¼ 2 and j ¼ 1=2.
For comparison, in the bottom row of Fig. 2 we show the
same configuration with n ¼ 2 and j ¼ 1=2, but using the
coordinate choice CðrÞ ¼ R2

0 þ r2 instead of A ¼ 1. Notice
that, in both rows of Fig. 2, α̃ reaches relatively large values
as r̄ → �∞. As a consequence, if we would like the metric
to take the standard asymptotically flat form on, say, the
positive side such that αðr → þ∞Þ → 1, then from (62)
αð0Þ ¼ 1=α̃ðr̄ → þ∞Þ and

αðr̄Þ ¼ α̃ðr̄Þ
α̃ðr̄ → þ∞Þ : ð69Þ

This tells us that α is effectively zero around the origin.
Notice also in Fig. 2(h) that the metric function A has a
relatively large peak near the origin.
The collapse of α near the origin and the large peak of A

strongly suggest that the static configuration shown in Fig. 2
wants to collapse to a black hole. Indeed, in [5] we used
n ¼ 0; j ¼ 1=2 and n ¼ 1; j ¼ 1=2 static solutions as initial
data and numerically evolved them forward in time and
showed that they collapse. More specifically, we found that
black holes form on both sides of the wormhole such that the
black holes are connected by the wormhole. We speculate
that all static solutions considered in the current work would
collapse similarly.
In Fig. 3, we display fields that are not the radial functions

for a few different solutions. Notice that these fields are
nearly identical around the origin, but differ at large r̄. On
the other hand, the radial functions differ significantly
around the origin, as can be seen in Fig. 1. Figure 3
suggests that spacetime and the electromagnetic field are
nearly universal in the vicinity of the wormhole, in that they
are effectively independent of the parameters listed in

BEN KAIN PHYS. REV. D 108, 084010 (2023)

084010-8



Table I and the radial functions. In addition to being
interesting in its own right, this observation has beneficial
consequences for finding multi-n, multi-j solutions, as we
explain in the next subsection.

B. Multi-n, multi-j example

We now consider wormholes with two pairs of ðn; jÞ
excited. In this case, solutions require specification of two
pnjþ, two pnj−, and two ω̃nj, along with ē and m̄ψ . Further,
the normalization requirement is no longer trivially sat-
isfied and becomes a nontrivial constraint on solutions. If
we specify ē, m̄ψ , and one of the pnjþ, we still have five
parameters to determine. With five shooting parameters, it
is time consuming for the shooting method to converge to a
solution. However, we found in the previous subsection that
spacetime and the electromagnetic field are nearly universal
in the vicinity of the wormhole. Consequently, the radial
functions for the multi-n, multi-j solution should be
roughly the same as the radial functions for the single-n,
single-j solutions.
In practice, we take the initial trial values for the five

shooting parameters to be the parameter values for the
single-n, single-j solutions. For example, consider the
n ¼ 0; j ¼ 1=2; pnjþ ¼ 0.001 solution listed in Table I.
This solution has R0=lp ¼ 499.0. If we would like the
second excitation to have, say, n ¼ 2; j ¼ 3=2, we first
search for a single-n, single-j solution with n ¼ 2;
j ¼ 3=2; R0=lp ¼ 499.0. We then use the parameter

TABLE I. Parameter values for all example solutions shown in
Fig. 1 with ē ¼ 0.1 and m̄ψ ¼ 0.2. We note that the ω̃nj are gauge
dependent and that the listed values are specific to the gauge
choice in Eqs. (11) and (12).

n, j pnjþ pnj− ω̃nj R0=lP

0; 1=2 0.001 −0.001255 −1.519 499.0
0; 3=2 0.001 −0.001121 −2.510 614.0
0; 5=2 0.001 −0.001079 −3.506 686.3
1; 1=2 0.001 þ0.000709 −2.519 375.3
1; 3=2 0.001 þ0.000796 −3.510 322.5
1; 5=2 0.001 þ0.000827 −4.506 294.2
2; 1=2 0.001 −0.001329 −3.519 392.2
2; 3=2 0.001 −0.001164 −4.510 465.2
2; 5=2 0.001 −0.001110 −5.506 510.6
3; 1=2 0.001 þ0.000695 −4.519 414.2
3; 3=2 0.001 þ0.000786 −5.509 367.6
3; 5=2 0.001 þ0.000819 −6.505 341.0

FIG. 1. Semiclassical EDM wormhole configurations with a single n and a single j excited. Each figure plots the radial functions
P̃nj�ðr̄Þ for pnjþ ¼ 0.001, ē ¼ 0.1, m̄ψ ¼ 0.2, and n and j as indicated.
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values for these two single-n, single-j solutions as the
initial trial values in the five parameter shooting method.
We still tune the five shooting parameters so as to find the
precise multi-n, multi-j solution and to confirm that it is,
in fact, a solution, but the shooting method converges
significantly faster than if we had used arbitrary initial trial
values. We show the radial functions for this example in
Fig. 4. The solid black and green curves are for the multi-
n, multi-j solution. The dashed red and yellow curves are
for the two independent single-n, single-j solutions. We
can see that they match well, as expected.

C. Null energy condition

Last, we consider the null energy condition, which must
be violated for a wormhole to be open [29]. For radial null

vectors dμ ¼ dtð1;�α=
ffiffiffiffi
A

p
; 0; 0Þ, where dt is an arbitrary

constant, the null energy condition is violated if

h∶T̂μν∶ idμdν < 0; ð70Þ

which is equivalent to

ρþ Srr < 0: ð71Þ

We display ρþ Srr in Fig. 5 for the samewormholes shown
in Figs. 2 and 4. As can be seen, ρþ Srr < 0, and these
wormholes violate the null energy condition, as expected.
It is sometimes stated that a wormhole is traversable if

the null energy condition is violated. However, we showed
in [5] that n ¼ 0; j ¼ 1=2 and n ¼ 1; j ¼ 1=2 wormholes

FIG. 2. (a)–(d) display fields for the same solution shown in Fig. 1(g) with pnjþ ¼ 0.001, ē ¼ 0.1, m̄ψ ¼ 0.2, n ¼ 2, and
j ¼ 1=2. (e)–(h) display fields for the same configuration as the top row, except using the coordinate choice R̄2ðr̄Þ ¼ C̄ðr̄Þ ¼ 1þ r̄2

instead of A ¼ 1.

FIG. 3. Ã0
t, α̃, and R̄ are plotted for three solutions. Each solution has ē ¼ 0.1 and m̄ψ ¼ 0.2. The solutions are then defined by

pnjþ ¼ 0.001, n ¼ 0, j ¼ 5=2 (red curves); pnjþ ¼ 0.003, n ¼ 1, j ¼ 3=2 (blue curves); and pnjþ ¼ 0.005, n ¼ 2, j ¼ 1=2 (black
curves). Around the origin these fields are nearly identical, suggesting that spacetime and the electromagnetic field may be universal
near the wormhole.
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collapse sufficiently quickly that any null geodesic that
travels through the wormhole will be caught inside a black
hole and will not be able to travel arbitrarily far on the
opposite side of the wormhole. Violation of the null energy
condition is sufficient for the wormhole to be open, but for
EDM wormholes it is insufficient for the wormhole to be
traversable.

V. CONCLUSION

EDM wormholes are perhaps the only wormhole sol-
utions discovered that do not make use of exotic matter and
exist in asymptotically flat general relativity. Previous
constructions of EDM wormholes used multiple indepen-
dent Dirac fields and treated gravity and the electromagnetic

field classically. In this work, we used a single Dirac field
and constructed EDM wormhole configurations in quantum
field theory with gravity and the electromagnetic field
treated semiclassically. Our framework puts EDM worm-
holes on a more secure theoretical footing and is able to
describe a broader class of wormhole configurations than
previously considered. In particular, our framework can
describe configurations with total angular momentum
j > 1=2 and multi-n, multi-j configurations, examples of
which we presented.
We also showed that spacetime and the electromagnetic

field may have a universal structure in the vicinity of the
wormhole, even though the Dirac field does not. We
speculated that all configurations considered would col-
lapse and form black holes that are connected by the
wormhole, analogously to the collapse studied in [5].

FIG. 5. The null energy condition is violated if ρþ Srr < 0. We
plot (the dimensionless) ρ̄þ S̄rr in (a) for the wormhole shown in
Figs. 2(a)–2(d) and plot ρ̄þ S̄rr in (b) for the multi-n, multi-j
wormhole shown in Fig. 4. In both cases we can see that the null
energy condition is violated, as expected for a wormhole.

FIG. 4. Multi-n, multi-j semiclassical EDM wormhole con-
figuration with ðn; jÞ ¼ ð0; 1=2Þ and ð2; 1=2Þ excited, with
ē ¼ 0.1, m̄ψ ¼ 0.2, and p0;1=2;þ ¼ 0.001. The solid black and
green curves plot the radial functions for the multi-n, multi-j
solution. The dashed red and yellow curves plot the correspond-
ing and independent single-n, single-j solutions, which agree
very well with the multi-n, multi-j solution.
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