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General relativity provides us with some solutions for rotating black holes. However, there are some
problems associated with them: the appearance of singularities, the possibility of violations of the cosmic
censorship conjecture, the existence of regions where the mass acts repulsively, and the violation of
causality. Many authors consider that these problems reveal the existence of certain limits in the
applicability of general relativity. For instance, it is believed that the same existence of singularities in the
classical black hole solutions is a weakness of the theory and that a full quantum gravity theory would
provide us with singularity-free black hole models. In this paper, the generic properties of the interiors of
singularity-free rotating black holes are analyzed. Remarkably, it is shown that they are devoid of any of the
aforementioned problems of the classical solutions.
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I. INTRODUCTION

Most astrophysically significant bodies are rotating. If
a rotating body collapses, the rate of rotation will speed
up, maintaining constant angular momentum. Through
a rather complicated process, the body could finally
generate a black hole, which would be a rotating black
hole (RBH).
Recently, there have been advances in the modeling

of both nonsingular (also known as “regular”) rotating
black holes coming from many different theoretical
approaches (see, for example, some spherically symmetric
models in [1–11] and references therein). Undoubtedly,
the recent observational developments (LIGO-VIRGO-
KAGRA Collaboration, the Event Horizon Telescope,
or, in the near future, the Laser Interferometer Space
Antenna project) and the possibility to probe our theo-
retical predictions have greatly contributed to awakening
interest.
From a classical point of view, the spacetime corre-

sponding to an uncharged rotating black hole is described
by a Kerr solution. Let us now briefly summarize the
characteristics of its interior. (The reader can consult, for
example, [12,13] and references therein for more informa-
tion.) In Boyer-Lindquist (B-L) coordinates ft; r; θ;ϕg, the
Kerr metric takes the form

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

ðadt − ðr2 þ a2ÞdϕÞ2; ð1:1Þ

where

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2mrþ a2;

m is the black hole mass, and a is a “rotation parameter”
that measures the (Komar) angular momentum per unit of
mass [13]. The spacetime is type D if m ≠ 0.
If m ≠ 0, there is a curvature singularity at ðr ¼ 0;

θ ¼ π=2Þ, as can be shown by the divergence of the
curvature invariant RαβγδRαβγδ. Remarkably, for a≠0 and
θ ≠ π=2, a surface defined by t ¼ constant and r ¼ 0,
known as the “disk,” is singularity-free and has metric

ds2Disk ¼ a2cos2θdθ2 þ a2sin2θdϕ2 ¼ dx2 þ dy2;

where the coordinate change x≡asinθcosϕ, y≡asinθsinϕ
has been made to make explicit that the surface is flat.
The disk corresponds to x2 þ y2 < a2, while the curvature
singularity corresponds to the “ring” x2 þ y2 ¼ a2. In this
way, the curves that reach r ¼ 0 with θ ≠ π=2 are reaching a
regular point. In order to continue the curves through the disk,
it is usually argued that an analytic extension of the spacetime
has to be performed. The procedure requires letting the
coordinate r take negative values [14]. The r < 0 extended
spacetime can be seen as an asymptotically flat space-
time with negative mass. Causality violations occur in the
extended spacetime [15].
Several authors have suggested that the existence of

singularities in the solutions of general relativity has to be
considered as a weakness of the theory rather than as a
real physical prediction. The problem of obtaining regular
models for black holes was first approached for spherically
symmetric black holes. However, recently there have
appeared different proposals for regular rotating black hole*ramon.torres-herrera@upc.edu
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spacetimes with their corresponding metrics. Some heu-
ristic proposals can be found in [16–23], where their
regular interiors are analyzed with different procedures.
Some authors, inspired by the work of Bardeen [5],
have taken the path of nonlinear electrodynamics, which
provides the necessary modifications in the energy-
momentum tensor in order to avoid singularities in the
RBH [24–29]. Yet another way of addressing the problem
of singularities is to take into account that quantum
gravity effects should play an important role in the core
of black holes, so that it would seem convenient to directly
derive the black hole behavior from an approach to
quantum gravity. In this way, regular RBHs deduced in
the quantum Einstein gravity approach can be found
in [30,31], in the framework of conformal gravity in
[32], in the framework of shape dynamics in [33], inspired
by supergravity in [34], by loop quantum gravity in [35],
and by noncommutative gravity in [36].
In this article, we show that regular rotating black holes

never need extensions through their disk. In this way, there
is no need for regions with repulsive masses. Furthermore,
causality violations can be naturally avoided.
The article is divided as follows. In Sec. II, the metric

for singularity-free rotating black holes is introduced and
their main features are analyzed. Note that, even if a regular
RBH model could usually come from an approach to
quantum gravity theory, here it is assumed that it can be
reasonably well described by a manifold endowed with its
corresponding metric. In Sec. III, the need for extensions
through r ¼ 0 in Kerr’s solution is contrasted with the
situation for regular RBHs. Section IV is devoted to the
analysis of the (regular) ring, the absence of conical
singularities, and its directional character. In Sec. V, it is
shown how causality problems can be avoided in regular
RBHs. The global structure of these spacetimes, which will
necessarily differ from the maximally extended Kerr’s
solution, is treated in Sec. VI. Finally, Sec. VII is devoted
to the conclusions.

II. KERR-LIKE ROTATING BLACK HOLES

While rotating black holes have been obtained by
different approaches, most of them share a common
Kerr-like form. The general metric corresponding to this
kind of RBH was found by Gürses and Gürsey [37] as
a particular rotating case of the algebraically special Kerr-
Schild metric,

ds2 ¼ ðηαβ þ 2HkαkβÞdxαdxβ; ð2:1Þ

where η is Minkowski’s metric, H is a scalar function, and
k is a lightlike vector both with respect to the spacetime
metric and to Minkowski’s metric. Specifically, in Kerr-
Schild (K-S) coordinates ft̃; x; y; zg the Gürses-Gürsey
metric (2.1) corresponds with the choices

H ¼ MðrÞr3
r4 þ a2z2

ð2:2Þ

and

kαdxα ¼ −
rðxdxþ ydyÞ − aðxdy − ydxÞ

r2 þ a2
−
zdz
r

− dt̃;

ð2:3Þ

where r is a function of the Kerr-Schild coordinates
implicitly defined by

r4 − r2ðx2 þ y2 þ z2 − a2Þ − a2z2 ¼ 0; ð2:4Þ

MðrÞ is known as the “mass function,” and the constant a
is a rotation parameter.
This metric can be written in Boyer-Lindquist-like

coordinates by using the coordinate change defined by

xþ iy ¼ ðrþ iaÞ sin θ exp
�
i
Z �

dϕþ a
Δ
dr

��
;

z ¼ r cos θ;

t̃ ¼ tþ
Z

r2 þ a2

Δ
dr − r;

where now Δ ¼ r2 − 2MðrÞrþ a2. The resulting metric
takes the form

ds2 ¼ −
Δ
Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2θ
Σ

ðadt − ðr2 þ a2ÞdϕÞ2; ð2:5Þ

where, again, Σ ¼ r2 þ a2 cos2 θ. Note that this metric
reduces to Kerr’s solution in B-L coordinates if
MðrÞ ¼ m ¼ constant.
As in Kerr’s solution, for θ≠π=2, the surface t¼ constant

and r ¼ 0 is a flat surface (corresponding to x2 þ y2 < a2)
that will be called the disk. Likewise, the ring corresponds
to θ ¼ π=2 (or x2 þ y2 ¼ a2).
Note also the symmetry fa;ϕg ↔ f−a;−ϕg in this

metric. This allows us, for the sake of simplicity, to assume
a > 0 in this article, since the negative case is covered by
using the trivial coordinate change ϕ → −ϕ.
In order for the model of a RBH to be regular, it should

be devoid of curvature singularities. We say that there is a
“scalar curvature singularity” in the spacetime if any scalar
invariant polynomial in the Riemann tensor diverges when
approaching it along any incomplete curve.
Scalar curvature singularities may appear if Σ ¼ 0 or, in

other words, in ðr ¼ 0; θ ¼ π=2Þ. (We already confirmed
this possibility in the Introduction for the particular case of
Kerr’s solution.) Now, by explicitly computing the com-
plete set of scalars in our case, one directly gets a necessary
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and sufficient condition for the absence of scalar curvature
singularities:
Theorem 1.—Assuming a RBH metric (2.5) possessing a

C3 function MðrÞ, all its second order curvature invariants
will be finite at ðr ¼ 0; θ ¼ π=2Þ if, and only if [38],

Mð0Þ ¼ M0ð0Þ ¼ M00ð0Þ ¼ 0: ð2:6Þ

Many proposals of regular RBHs with mass functions
satisfying the conditions in the theorem have appear in the
literature. Note that any function admitting an expansion
around r ¼ 0 in the formMðrÞ ¼ crn þOðrnþ1Þ, with c a
constant and n ≥ 3, will satisfy the conditions. [This will
be written here also as MðrÞ ¼ OðrnÞ or MðrÞ ∼ rn.]
Consider, for example, the rotating versions [17] of the
Bardeen [5] and Hayward [10] regular spherically sym-
metric black holes with mass functions

MðrÞBardeen ¼
mr3

ðr2 þ l2Þ3=2 ; MðrÞHayward ¼
mr3

r3 þ l3
;

ð2:7Þ

where l is a constant. These mass functions admit the
following expansions around r ¼ 0:

MðrÞBardeen ¼
m
l3
r3 þOðr5Þ;

MðrÞHayward ¼
m
l3
r3 þOðr6Þ:

In order to analyze the general properties of the RBH
spacetime, we will use the following null tetrad frame:

l ¼ 1

Δ

�
ðr2 þ a2Þ ∂

∂t
þ Δ

∂

∂r
þ a

∂

∂ϕ

�
;

n ¼ 1

2Σ

�
ðr2 þ a2Þ ∂

∂t
− Δ

∂

∂r
þ a

∂

∂ϕ

�
;

m ¼ 1ffiffiffi
2

p
ϱ

�
ia sin θ

∂

∂t
þ ∂

∂θ
þ i csc θ

∂

∂ϕ

�
;

m̄ ¼ 1ffiffiffi
2

p
ϱ̄

�
−ia sin θ

∂

∂t
þ ∂

∂θ
− i csc θ

∂

∂ϕ

�
;

where ϱ≡ rþ ia cos θ, ϱ̄≡ r − ia cos θ, and the tetrad
is normalized as follows l2 ¼ n2 ¼ m2 ¼ m̄2 ¼ 0 and
l · n ¼ −1 ¼ −m · m̄.
It can be shown [38] that the RBH metric (2.5) with

MðrÞ ≠ 0 is Petrov type D and that the two double
principal null directions are l and n.
We can also define a real orthonormal basis ft;x; y; zg

formed by a timelike vector t≡ ðlþ nÞ= ffiffiffi
2

p
and three

spacelike vectors: z≡ ðl − nÞ= ffiffiffi
2

p
, x ¼ ðmþ m̄Þ= ffiffiffi

2
p

, and
y ¼ ðm − m̄Þi= ffiffiffi

2
p

. Then, t and z are two eigenvectors of
the Ricci tensor with eigenvalue [38]

λ1 ¼
2a2cos2θM0 þ rΣM00

Σ2
: ð2:8Þ

x and y are two eigenvectors of the Ricci tensor with
eigenvalue

λ2 ¼
2r2M0

Σ2
: ð2:9Þ

In this way, the Ricci tensor can be written as

Rμν ¼ λ1ð−tμtν þ zμzνÞ þ λ2ðxμxν þ yμyνÞ: ð2:10Þ

Even if we are not confined to general relativity, we can
consider the existence of an effective energy-momentum
tensor defined through

Tμν ≡ Rμν −
1

2
Rgμν:

If we take the expression obtained for the Ricci tensor
(2.10), one can explicit the effective energy-momentum
tensor for a RBH as

Tμν ¼ −λ2ð−tμtν þ zμzνÞ − λ1ðxμxν þ yμyνÞ:

Since T diagonalizes in the orthonormal basis ft;x; y; zg,
the RBH spacetime possesses an (effective) energy-
momentum tensor of type I [14]; the (effective) density
being μ ¼ λ2 and the (effective) pressures being px ¼ py ¼
−λ1 and pz ¼ −λ2.
The weak energy conditions [14] require μ ≥ 0 and

μþ pi ≥ 0. In other words, in this case, they require

λ2 ≥ 0 and λ2 − λ1 ≥ 0:

By using this and expressions (2.8) and (2.9), it is easy to
show the following:
Proposition 1.—Assume that a regular RBH has a

function MðrÞ that can be approximated by a Taylor
polynomial around r ¼ 0, then the weak energy conditions
should be violated around r ¼ 0 [38].
Note that for this type I effective energy-momentum

the violation of the weak energy condition (WEC) also
implies the violation of the dominant and the strong
energy conditions.
In this way, no model with normal matter (matter

satisfying the energy conditions) can produce a regular
rotating black hole of the type (2.5). However, the
violation of the WEC around r ¼ 0 is not problematic
since it is well known that quantum effects can violate the
WEC (Casimir effect). Moreover, singularity theorems
require the spacetime to fulfill some energy condition in
order to predict the existence of singularities. In this sense,
the violation of energy conditions just helps to avoid the
existence of singularities.
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III. EXTENSIONS THROUGH THE DISK

As stated in the Introduction, for Kerr’s solution, one
should extend the spacetime through the disk. Now, in
order to analyze the general situation for regular RBHs with
metric (2.1), let us proceed with an analysis similar to the
one usually carried out for the classical RBH case. Consider
the metric component

gtt ¼ −1þ 2MðrÞr3
r4 þ a2z2

: ð3:1Þ

Let us imagine an observer crossing r ¼ 0 moving in the z
axis (x ¼ y ¼ 0). If we choose r to be non-negative,
then (2.4) implies that r ¼ jzj along the trajectory of the
observer, so that along it

gtt ¼ −1þ 2MðjzjÞjzj
z2 þ a2

: ð3:2Þ

The numerator in the fraction indicates that the derivative
of this metric component along the axis, as well as the
Christoffel symbols and the extrinsic curvature of the
surface, can be discontinuous across the disk, depending
on the chosen mass function. As was already mentioned, a
well-known relevant case of this discontinuity occurs if the
mass function is constant: Kerr’s solution.
The differentiability problems in Kerr’s RBH can be

solved by analytically extending the spacetime through
r ¼ 0 with negative values for r. This requires considering
two spacetimes, one with positive r and another with
negative r and properly identifying points in their r ¼ 0
surfaces by a standard procedure, which is illustrated in
Fig. 1 (see, for example, [14]).
At first sight, the situation for general regular RBH looks

much better. Assuming that the regular RBH has a mass
function MðrÞ ∼ rn with n ≥ 3 around r ¼ 0, the metric
component along the trajectory (3.2) will not have differ-
entiability problems in z ¼ 0 (∂zgttðz ¼ 0Þ ¼ 0) (and, in
fact, it will be at least1 Cn). This suggests that the extension
through the disk could not be necessary for regular RBH.

In order to prove this conjecture, one has to go beyond a
particular trajectory intersecting the disk and beyond the
analysis of a single metric component. Let us start by
noticing that while approaching a point in the disk
(x2 þ y2 < a2), according to (2.4), the function r
approaches zero whenever z approaches zero and vice
versa. If one chooses to avoid an extension with r < 0, we
get, solving for r in (2.4), that around z ¼ 0,2

r ≃
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 − ðx2 þ y2Þ
p jzj:

If we introduce this into the metric component (3.1) and
consider a mass function MðrÞ ∼ rn with n ≥ 3 around
r ¼ 0, we see that the metric component takes the form

gtt ≃ −1þ fðx; yÞjzjnþ1

gðx; yÞz2 þ a2
;

where f and g are finite differentiable functions in the disk.
In this way, gtt is differentiable at the disk. [Specifically,
again, ∂zgttðz ¼ 0Þ ¼ 0 and, in fact, gtt is at least Cn at the
disk.] The reader can easily check that a similar situation is
found for the rest of the metric components. Let us only
remark that the metric will not be analytic at the disk
independent of n. This is because not all metric compo-
nents will be infinitely differentiable. For example, even if
the particular metric component (3.1) for odd n is C∞ in the
disk, other metric components like

gxz ¼
2MðrÞr2zðayþ xrÞ
ða2 þ r2Þða2z2 þ r4Þ

are not (gxz is Cn for odd n). Nevertheless, since usually
the metric is required to be at least C2 [14],3 a Cn metric
with n ≥ 3 at the disk is more than enough.

��� ���

����� �����

��c
on

sta
nt

��c
on

sta
nt

r=0 r=0
r=constant>0

r=constant<0

Identify

Identify

z axis z’ axis

x axis x’ axis

FIG. 1. In Kerr’s solution, the extension through r ¼ 0 is obtained by identifying the top of the surface (r ¼ 0; t ¼ constant) in the
hypersurface described by coordinates fx; y; zg, with the bottom of the surface (r ¼ 0; t ¼ constant) in the hypersurface described by
coordinates fx0; y0; z0g, and vice versa. Only the y ¼ 0, y0 ¼ 0 sections of these hypersurfaces are represented here.

1Specifically, it will be Cn if n is even and C∞ if n is odd.

2Note that we assumed a > 0 (at the beginning of this section)
throughout the article. (If not, here we should replace a → jaj.)

3However, many authors consider even this degree of differ-
entiability too high. See, for instance, [39,40] and references
therein.
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In summary, we have arrived at the following result:
Regular black holes (without an extension through

r ¼ 0) have a high degree of differentiability at the disk
(at least Cn, with n ≥ 3). In this way, regular RBHs do not
have differentiability problems at the disk and an extension
through r ¼ 0 with r < 0 is not needed.4

In this way, r would remain non-negative along the
trajectory of an observer crossing through the disk, as
explicitly shown in Fig. 2.

IV. THE RING

The ring itself (z ¼ 0 and x2 þ y2 ¼ a2) requires a
separate analysis. If it is approached with x2 þ y2 ¼ a2

and we avoid extensions with r < 0, then (2.4) implies that
r ≃

ffiffiffiffiffiffiffiffi
ajzjp

around the ring. Consider, for example, a mass
function MðrÞ ¼ mnrn þOðrnþ1Þ. The metric coefficient
(3.1) around the ring behaves as

gtt ≃ −1þmnðajzjÞn−12 :

For a regular RBH, Theorem 1 requires n ≥ 3. In this case,
this metric coefficient is continuous and differentiable at
the ring for n > 3, but it is only continuous for n ¼ 3.

[The reader can check that other metric coefficients in
K-S coordinates have similar (or better) behaviors.]
To study the ring in greater depth, we will now introduce

a set of coordinates that are better adapted to its structure
and that will help us to analyze the directional behavior of
physical magnitudes around the ring: the toroidal coordi-
nates fρ;φ;ψg (see Fig. 3). These coordinates are related to
the Kerr-Schild coordinates through

x ¼ ðaþ ρ cosψÞ cosφ;
y ¼ ðaþ ρ cosψÞ sinφ;
z ¼ ρ sinψ : ð4:1Þ

Note that in these coordinates the ring is defined by ρ ¼ 0.
From the relationship between K-S and B-L coordinates,

it follows that the coordinates fρ;ψg are related to the
Boyer-Lindquist coordinates fr; θg through

r cos θ ¼ ρ sinψ ;

ðr2 þ a2Þ sin2 θ ¼ ðaþ ρ cosψÞ2: ð4:2Þ
If we do not perform an extension beyond r ¼ 0 with

negative r, this implies that around the ring

r ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ cosψÞρ

p
;

cos θ ≃
ρ1=2 sinψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ cosψÞp : ð4:3Þ

Note that the metric (2.1) can be interpreted as consisting
of a Minkowskian part plus a perturbation. With regard to
the perturbation, the behavior of H around the ring in
toroidal coordinates is, from (4.3),

H ¼ MðrÞr3
r4 þ a2z2

≃
Mðρ;ψÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosψ

aρ

s
:

In this way, for a regular RBH with MðrÞ ∼ rn (n ≥ 3)
around r ¼ 0 one has H ∝ ρðn−1Þ=2, which tends to zero as
the ring is approached.
On the other hand, around the ring (2.3) can be written in

toroidal coordinates as

kαdxα ≃ −dtþ adφ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cosψÞ ρ

a

r
dρ

þ ρ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1þ cosψÞp sinψdψ :

As a consequence, the leading order behavior of the
metric around the ring is just the leading order of the
Minkowskian spacetime in toroidal coordinates,

ds2 ≃ −dt2 þ dρ2 þ ρ2dψ2 þ a2dφ2:

���

���

�����

��c
on

sta
nt

r=0

r=constant>0

z axis

x axis

FIG. 2. For regular RBHs no extension through r ¼ 0 is
required. An observer crossing the surface (r ¼ 0; t ¼ constant)
from positive z to negative z following a nongeodesic timelike
curve can stay in its original spacetime. Along the trajectory of the
observer r just decreases until reaching the surface r ¼ 0, where it
increases again. The angular B-L coordinates just jump when
crossing the disk. In the plane shown in the figure: θ → π − θ.
(This is somehow similar to following a trajectory crossing r ¼ 0
in a regular spherically symmetric spacetime equipped with
spherical coordinates.).

4Let us comment that, even if not mathematically needed, the
possibility of extending through r ¼ 0 with negative values of r
exists, in principle, for all regular RBHs. Nevertheless, one finds,
in addition to the problems already commented with this
approach in the classical solutions, new mathematical and
physical problems [31].
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Note that this metric is degenerated at ρ ¼ 0 since
its determinant is zero there. This is expected from
the behavior of the Jacobian determinant of the trans-
formation (4.1) [J ¼ −ρðaþ ρ cosψÞ].
It is interesting to note that a curve around the ring

with ft, ρ ¼ δρ, φg constants describes a circle of
length 2πδρ. Therefore, the ring of a regular RBH is not
a conical singularity, as it is for the singular ring in Kerr
spacetime [41,42].
Let us now analyze the behavior of quantities that are not

dependent on the coordinates: the second order curvature
scalars (computed, by definition, using second order
derivatives of the metric). We know that they are all finite
if the conditions in Theorem 1 are fulfilled. Let us now
analyze their continuity. Consider, for example, the curva-
ture scalar in B-L coordinates,

R ¼ 2ð2M0ðrÞ þ rM00ðrÞÞ
r2 þ a2 cos2 θ

:

If the mass function behaves around the ring as MðrÞ ¼
mnrn þOðrnþ1Þ, then the curvature behaves around the
ring as

R ≃
2mnnð1þ nÞrn−1
r2 þ a2 cos2 θ

;

which in toroidal coordinates can be written as

R ≃mnnð1þ nÞð1þ cosψÞn−12 ðaρÞn−32 :

In this way, for n > 3 the curvature scalar is continuous
(and zero) at the ring; however, for n ¼ 3 it is finite, but not
continuous at the ring, where it has a clear directional
character [R ≃ 24m3ð1þ cosψÞ]. It can be checked that
the same behavior is repeated for all second order scalar
curvature invariants. (An algebraically independent set of
them is listed in [38].)

As stated in Sec. II, the effective density (μ) and
pressures (px, py, and pz) measured by observers with
four-velocity t can be directly obtained from λ1 and λ2. Let
us now analyze their dependence on ρ around the ring for a
mass function MðrÞ ∼ rnðn ≥ 3Þ around r ¼ 0. With the
help of (4.3),

μ ¼ −pz ¼ λ2 ¼
2r2M0

Σ2
∼ ρ

n−3
2 ;

px ¼ py ¼ −λ1 ¼ −
2a2cos2θM0 þ rΣM00

Σ2
∼ ρ

n−3
2 :

In this way, the effective density and pressures vanish
at the ring for n > 3. On the other hand, for n ¼ 3 the
densities and pressures are finite functions of the direction
of approach to the ring ψ . Only, in this case, the density and
pressures are not continuous at the ring. Specifically, for
MðrÞ≡m3r3 þOðr4Þ with m3 > 0 a constant,

μ ¼ −pz ¼ λ2 ¼ 6m3cos4ðψ=2Þ;
px ¼ py ¼ −λ1 ¼ 3m3cos2ðψ=2Þðcosψ − 3Þ: ð4:4Þ

The effective density is non-negative, while the effective
pressures are all negative around the ring. These negative
effective pressures imply that the weak energy conditions
are violated near the ring. Nevertheless, this is not surpris-
ing since all regular RBHs violate the WEC, as shown
in [38]. For both the effective density and pressures, the
value zero is reached in the direction of the disk ψ ¼ π=2
and the maximum absolute value is reached in the opposite
direction ψ ¼ 0. Polar plots of the effective density and
pressures for this particular case are shown in Fig. 4.
It is interesting to note that in the spherically symmetric

case it has been argued that the core of the regular black
hole should be de Sitter–like (see, for instance, [43]
and references therein), admitting an effective energy-
momentum tensor around r ¼ 0 of the type Tμν ≃ −Λgμν
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FIG. 3. A plot of the behavior of the toroidal coordinates with the (regular) ring (ρ ¼ 0) highlighted in black.
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and a mass function MðrÞ ≃ Λ
6
r3. In the rotating case,

some authors call the core of the black hole “de Sitter”
when the mass function is of the orderOðr3Þ around r ¼ 0.
Nevertheless, it should be noted that the effective energy-
momentum would only be strictly de Sitter–like if
λ1 ¼ λ2 ≠ 0. From the definitions of λ1 (2.8) and λ2 (2.9)
and for their expressions around the ring in the case
n ¼ 3 (4.4), it is clear that the disk (and the ring when
approached with ψ ¼ π) can be better described as
Minkowskian (μ ¼ px ¼ py ¼ pz ¼ 0). Only observers
approaching the ring from outside and in the plane x − y
(ψ ¼ 0) would measure λ1 ¼ λ2ð¼ 6m3Þ.

V. CAUSALITY

In general, it seems reasonable to ask a time orientable
spacetime to be absent of closed causal curves since the
existence of such curves would seem to lead to logical
paradoxes. A spacetime devoid of closed causal curves is
said to be “causal” [14]. If, in addition, no closed causal
curve appears, even under any small perturbation of the
metric, the spacetime is called “stably causal.” It is well
known that the Kerr metric with the usual extension allowing
regions with negative r is noncausal. Since the Kerr metric is
a particular case of the metric (2.5), it is natural to ask
whether regular RBH should also be noncausal.
Along the lines in [21], in order to examine this issue we

will use Proposition 6.4.9 in [14], which states that when a
time function f exists in the spacetime such that its normal
n≡∇μfdxμ is timelike, then the spacetime is stably causal
(f can be thought of as the time in the sense that it increases
along every future-directed causal curve). Let us choose
the time coordinate t̃ in Kerr-Schild coordinates as our
time function f. The timelike character of n can be checked
as follows:

n2 ¼ gμν∇μt̃∇ν t̃ ¼ gt̃ t̃ ¼ −1 −
2MðrÞr3
r4 þ a2z2

: ð5:1Þ

Since we would like this to be negative, it trivially follows

Proposition 2.—If rMðrÞ ≥ 0 for all r, then the model
of a RBH with metric (2.1) [or (2.5)] will be stably
causal [21].
Note that for a regular RBH (unextended through r ¼ 0),

it just suffices to guarantee a non-negative mass function
for the spacetime to be stably causal.

VI. GLOBAL STRUCTURE

Since regular RBHs do not need an extension with
regions where r takes negative values, the global structure
of these spacetimes will necessarily differ from the global
structure of the maximally extended Kerr spacetimes.
In order to get the global structure of regular RBHs, we

would need to locate their null horizons. In the general
RBH case, we should solve

Δ ¼ r2 − 2MðrÞrþ a2 ¼ 0: ð6:1Þ

Without the knowledge of a specificMðrÞ, it is not possible
to know the exact position of the horizons. Nevertheless, one
can analyze the general behavior of the horizons by taking
into account the following considerations:

(i) If we assume an asymptotically flat spacetime, at
large distances MðrÞ ≃m ¼ constant, so that one
(approximately) recovers the behavior for the Kerr
solution. Then Δ > 0 and r will be a spacelike
coordinate. This is a usual assumption for black
holes in the absence of a cosmological constant. For
example, one can easily check that this is the case for
the Bardeen and Hayward black holes (2.7).

(ii) For r ≃ 0 (a ≠ 0) a regular RBH hasΔ > 0 thanks to
the effect of the rotation and, again, r will be a
spacelike coordinate. (Note that this already happens
in the classical Kerr solution.)

(iii) If we assume the existence of a RBH and, thus,
the existence of an exterior horizon rþ (solution of
Δ ¼ 0), then the continuity of Δ and the two
previous items imply either a single horizon
(“extreme RBH”), two horizons r− and rþð> r−Þ,
or, in general, an even number of horizons.

(iv) If no solutions of (6.1) exist, then no null horizons
exist and we are in a “hyperextreme” case. The
regular rotating astrophysical object without an
event horizon is not properly a black hole. The
regularity implies that, contrary to the classical case,
there is not a naked singularity.

In practice, the usual regular RBH in the literature has
one or two null horizons, as in the classical case. This is not
surprising if one considers deviations from general rela-
tivity as coming from quantum gravity effects. Then, based
on a simple dimensional analysis, one could expect the
Planck scale to be the most natural scale in which to expect
the departure from general relativity to occur, which would
imply only strong deviations from the classical solution
around r ∼ rPlanck and, thus, only small corrections to the
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FIG. 4. Polar plot of μ̃≡ μ=ð6m3Þ and (minus) p̃x ≡ px=ð3m3Þ
around the ring for the case MðrÞ ∼ r3 around r ¼ 0.
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horizons (at least for RBHs with masses much larger than
the Planckian mass). One also expects that associated with
nonsingular RBHs there would be a weakening of gravity;
an effect that should be very important at high curvature
scales. In this way, comparing with the classical case, it is
usual to obtain bigger inner horizons and smaller outer
horizons. Of course, the Planck scale approach could turn
out to be too naive and bigger deviations from the classical
solutions could be possible, which would be good news for
the observational aspects of RBHs.
Nevertheless, in order to illustrate the global causal

structure of regular RBHs, let us follow the approach of
small perturbations with respect to the classical horizons. In
this way, we can have three possible qualitatively different
causal structures for the black hole spacetime, which are
represented in the Penrose diagrams of Fig. 5 (for the case
with two null horizons) and Fig. 6 (for the extreme case and
the hyperextreme case).
The absence of an event horizon in the hyperextreme

case is interesting, since this implies that an observer could
receive information from the inner high curvature regions

near r ¼ 0. In principle, this could be used to observatio-
nally test the different approaches to quantum gravity. The
problem is whether such RBHs are feasible. In the
framework of general relativity, it does not seem possible
to obtain such high speed RBH (a2 > m2) from a collaps-
ing star and any attempt to overspin an existing black hole
destroying its event horizon has failed, in agreement with
the weak cosmic censorship conjecture [44]. However, for
regular RBHs it has been suggested that it could be possible
to destroy the event horizon [45].

VII. CONCLUSIONS

Under suitable conditions, the collapse of an astrophysi-
cally significant body can generate a black hole. Since one
expects the generator of the black hole to be a rotating body,
the black hole will rotate. General relativity provides us
with solutions for rotating black holes and predicts their
characteristics, which are compatible with current obser-
vations. Nevertheless, the existence of inner singularities in
the classical solutions for RBHs and the fact that general
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relativity is incompatible with quantum mechanics leads us
to search for better singularity-free models for RBHs, often
based in some approach to a quantum gravity theory.
Assuming that a manifold endowed with its correspond-

ing metric is a fairly good approximation for describing
regular RBHs, most of the models in the literature are of
the Gürses-Gürsey type. Remarkably, the analysis of these
regular RBHs lead us to conclude that regular RBHs have
a high degree of differentiability at the disk (at least Cn,
with n ≥ 3). In this way, contrary to the classical Kerr
RBH, regular RBHs do not have differentiability problems
at the disk; Christoffel symbols and the extrinsic curvature
of the disk are well behaved and an extension through
r ¼ 0 is not needed. As a consequence, causality problems
could be avoided simply if the mass function of the regular
RBH is non-negative (which seems a desirable property of
the mass function).
With regard to the ring, it has been shown that it is devoid

of conical singularities. The effective density and pressures
vanish at the ring if MðrÞ ∼ rn with n > 3 around r ¼ 0.

By contrast, in the particular caseMðrÞ ∼ r3 around r ¼ 0

one expects observers to measure a jump in the (finite)
effective density and pressures (with a specific directional
character) while crossing the ring. Note that this is loosely
similar to the situation that an observer detects when
crossing a star’s surface modeled by matching, for instance,
an exterior vacuum field with an interior fluid [40]. There
appears a difficulty in the n ¼ 3 case if one tries to use K-S
coordinates to describe the geodesics that do cross the ring
(due to the lack of differentiability of the metric at the ring in
these coordinates). The good physical behavior at the ring
suggests that the proper study of geodesics crossing the ring
in the n ¼ 3 case needs a coordinate change, presumably
following the procedures in [46] and references therein.
In summary, contrary to classical RBH solutions, regular

RBHs avoid singularities, (consequently) the violation of
the cosmic censorship conjecture [44], the existence of
regions where the mass function acts repulsively, and
causality violations.
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