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In this paper, we discuss a fully nonlinear mechanism for the formation of scalarized rotating black holes
in Einstein-scalar-Gauss-Bonnet gravity, where Kerr black holes are linearly stable, but unstable against
nonlinear scalar perturbations. With the help of the pseudospectral method, we obtain a spectrum of
nonlinearly scalarized rotating black hole solutions with multiple scalarized branches. Moreover, we
investigate the thermodynamic properties of nonlinearly scalarized rotating black holes and find the phase
transition between Kerr and these scalarized black holes.
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I. INTRODUCTION

As a consequence of the “no-hair theorems,” the general
relativity black holes are described by three observables
of mass M, electric charge Q, and rotation parameter a ¼
J=M [1,2]. It rules out a black hole with conformal scalar
hair in asymptotically flat spacetimes when accounting
for the divergence of a scalar field on the horizon [3–5].
Therefore, the no-hair theorems gradually become a major
obstacle to our physical hopes of discovering new funda-
mental fields that interact with the curved black hole
spacetimes.
Nevertheless, one may circumvent no-hair theorems by

violating some of their underlying assumptions. For in-
stance, Damour and Esposito-Farese [6,7] first discovered
a mechanism of spontaneous scalarization in scalar-tensor
theory when studying neutron stars. Recently, Doneva and
Yazadjiev [8] constructed realistic scalarized neutron star
solutions in Einstein-scalar-Gauss-Bonnet (EsGB) gravity
with a nontrivial coupling of a scalar field ϕ to the Gauss-
Bonnet (GB) curvature term R2

GB. Similar discussions
have been also extended to the black holes. Doneva and
Yazadjiev [9] found that the spontaneous scalarization may
take place around Schwarzschild black holes, due to a
tachyonic instability triggered by the coupling of a scalar
field to the GB term, which is analogous to that inside

relativistic stars triggered by the coupling of a scalar
field to the matter field. Below a certain mass, the
Schwarzschild solution becomes unstable and a new branch
of solutions with nontrivial scalar field bifurcates from the
Schwarzschild one. In particular, Antoniou et al. [10]
asserted that a regular scalarized black hole can arise as
the result of the synergy between only the scalar field
function fðϕÞ and the GB term in the EsGB theory, by
evaluating the asymptotic forms of the energy-momentum
tensor near the horizon and at infinity. Then, existing no-
hair theorems are easily evaded. Until now, the phenome-
non of black hole spontaneous scalarization has received a
lot of attention in EsGB gravity [10–12]. These theories
possess black holes with scalar hair, whose properties have
been investigated in great detail [13–16]. In addition, in
Ref. [17] it was pointed out that, under radial perturbations,
the scalarized black holes are unstable for a quadratic
coupling, whereas it is stable for an exponential form in the
EsGB theory. Motivated by current and future gravitational
wave observations from black hole mergers, the axial [18]
and polar [19] perturbations of scalarized black holes have
been investigated to obtain the quasinormal modes (QNMs)
in the EsGB theory since QNMs could describe the
ringdown after merging.
Recently, the phenomenon of spontaneous scalarization

of spinning black holes has been attractive to readers.
Dima et al. [20] first discovered that the high rotation
can induce tachyonic instability of Kerr black holes for a
positive coupling by evaluating the (1þ 1)-dimensional
scalar evolution equation in EsGB theory. When choosing a
negative coupling, an upper a bound (a=M ≥ 0.5) comes
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out as the onset of scalarization for Kerr black holes, but the
low rotation (a=M < 0.5) is supposed to suppress sponta-
neous scalarization. Shortly afterward, the critical rotation
parameter ða=MÞc ¼ 0.5 for Kerr black holes was com-
puted analytically [21] and numerically [22–24] in the
EsGB theory with negative couplings. In this direction,
spin-induced scalarized black holes have been also con-
structed numerically in the EsGB theory with positive
coupling [25–27]. Zou andMyung [28] have also discussed
spontaneous scalarization of Kerr black holes by including
two different coupling functions. These imply that the
rotation parameter a and the coupling parameter α are key
factors for achieving spontaneous scalarization of spinning
black holes.
It is interesting to point out that the most studied driving

mechanism leading to spontaneous scalarization in the
EsGB theory is a tachyonic instability due to an effective
negative mass squared [μ2eff ∼ F00ðϕÞR2

GB] for the scalar
field. Recently, Doneva and Yazadjiev [29] found that,
when the coupling function is chosen such that the effective
mass is zero, such coupling functions take the form

F1ðϕÞ ¼
1

4κ
ð1 − e−κϕ

4Þ; F2ðϕÞ ¼
1

6κ
ð1 − e−κϕ

6Þ: ð1Þ

Schwarzschild black holes always hold stable under linear
scalar field perturbation. However, the Schwarzschild black
holes become unstable against nonlinear scalar perturba-
tions if the amplitude of the perturbations is large enough.
Moreover, the scalarized phases obtained in this way
are not continuously connected to the Schwarzschild
black hole. Depending on the parameter κ in the coupling
functions, three branches of scalarized phases can exist and
the stable scalarized phase has the largest entropy among
all the branches of hairy black holes. Also, one of two
nonlinearly scalarized black holes is stable against the
radial perturbations [30]. Later, Doneva et al. [31] further
discovered that, in the EsGB theory, the Kerr black hole is
stable under linear perturbations, but it is unstable against
larger nonlinear perturbations. By evolving in time the
nonlinear scalar field equation on the Kerr background, it
turns out that there is a threshold amplitude of the scalar
perturbation above which the Kerr black hole loses the
linear stability, and scalarized rotating black holes could
form. The scalarization of charged black holes has been
also studied in the Einstein-Maxwell-scalar gravity coupled
with a nontrivial coupling of a scalar field function fðϕÞ ¼
1þ αϕ4 to the Maxwell term FμνFμν [32]. Inspired by
these works, we will further derive the solutions for
nonlinearly scalarized rotating black holes in the EsGB
theory. Moreover, the full nonlinear and self-consistent
analysis of these black holes will show the existence of a
spectrum of solutions with multiple scalarized black hole
branches. Importantly, we will investigate the thermody-
namic property for nonlinearly scalarized rotating black

holes to explore a phase transition between Kerr and these
black holes.
The plan of our work is as follows. In Sec. II, we mention

briefly the nonlinearized scalar perturbation on the Kerr
black hole in the EsGB theory. By making use of the
pseudospectral method, we will construct numerical sol-
utions of nonlinearly scalarized rotating black holes in
Sec. III. Section IV is devoted to investigating physical and
thermodynamic properties of these black holes. Finally, we
close the paper with a discussion and conclusions in Sec. V.

II. NONLINEAR INSTABILITY
OF KERR BLACK HOLES

The action of Einstein-scalar-Gauss-Bonnet gravity
reads as

SEsGB ≡
Z

d4x
ffiffiffiffiffiffi
−g

p
L ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2∂μϕ∂

μϕ

þ λ2FðϕÞR2
GB

�
; ð2Þ

where FðϕÞ is the coupling function and λ is a scalar
coupling parameter to the Gauss-Bonnet term as

R2
GB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ: ð3Þ

Varying the action (2) with scalar ϕ and metric gμν, one
obtains two field equations,

□ϕþ λ2

4
F0ðϕÞR2

GB ¼ 0; ð4Þ

Eμν ¼ Rμν −
1

2
Rgμν þ Γμν − Tϕ

μν ¼ 0; ð5Þ

where

Γμν ≡ −2R∇ðμϕνÞ − 4∇σϕ
σ

�
Rμν −

1

2
Rgμν

�
þ 4Rμσ∇σϕν

þ 4Rνσ∇σϕμ − 4gμνRσρ∇σϕρ þ 4Rσ
μρν∇ρϕσ; ð6Þ

Tϕ
μν ¼ 2∇μϕ∇νϕ − ð∇ϕÞ2gμν; ð7Þ

with ϕμ ≡ λ2F0ðϕÞ∇μϕ.
Notice that the EsGB gravity in Eq. (2) admits the Kerr

black hole solution with a vanishing scalar (ϕ ¼ 0) and the
coupling function Fð0Þ ¼ 0. Early works [20–24] pointed
out that μ2eff ¼ − λ2

4
F00ð0ÞR2

GB can be regarded as an
effective mass squared of scalar perturbation on a fixed
background (Kerr black hole). It might trigger a tachyonic
(linear) instability when either F00ð0Þ < 0 or F00ð0Þ > 0.
This process is named the spontaneous scalarization for a
Kerr black hole. However, if the coupling function FðϕÞ
takes the form
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FðϕÞ ¼ 1

4κ
ð1 − e−κϕ

4Þ; ð8Þ

we have the properties

Fð0Þ ¼ 0; F0ð0Þ ¼ 0; F00ð0Þ ¼ 0: ð9Þ

Here κ is regarded as a coupling parameter. The linearized
scalar equation around the Kerr black hole background
leads to

□Kδϕ ¼ 0; ð10Þ

which is a massless scalar equation. It implies that there is
no tachyonic instability anymore for the Kerr black hole
because of μ2eff ¼ 0. Interestingly, Ref. [31] has pointed out
that the Kerr black hole becomes unstable against nonlinear
scalar perturbations if a large initial perturbation is imposed
and the nonlinear instability can lead to the formation of
nonlinearly scalarized rotating black holes. In other words,
a newly nonlinear scalarization occurs, being distinct from
spontaneous scalarization of the Kerr black hole [20–24].
In the following sections, we turn to solve a fully nonlinear
coupled system of field equations by using the pseudo-
spectral method and obtain a clear picture of fully nonlinear
scalarization for Kerr black holes in the EsGB gravity.
Note that we choose the coupling parameter λ ¼ 1 in the
numerical results presented below.

III. NONLINEARLY SCALARIZED ROTATING
BLACK HOLES

First of all, we introduce the stationary and axisymmetric
metric ansatz written in quasi-isotropic coordinates [33]

ds2QI ¼ −fN2dt2 þ g
f

�
hðdr2 þ r2dθ2Þ

þ r2sin2θ

�
dφ −

W
r
ð1 − NÞdt

�
2
�
; ð11Þ

where the three spatial coordinates range over the intervals

r∈ ½rH;∞�; θ∈ ½0; π�; φ∈ ½0; 2π�: ð12Þ

The full configuration of the black hole is therefore
described by the functions of ðr; θÞ: f, g, h, and W.
Assuming the line element (11) to be a solution to the

theory of gravity at hand, the functions f, g, h,W and scalar
field ϕ should satisfy a set of coupled partial differential
equations (PDEs) when substituting the metric ansatz (11)
into Eqs. (4) and (5). In the next sections, we will solve
the four combinations of the Einstein equation that diag-
onalize the Einstein tensor with respect to the operator
(∂2r þ r−2∂2θ),

Eμ
μ − 2Et

t −
2WrH
r2

Eφ
t ¼ 0;

Eφ
t ¼ 0;

Er
r þ Eθ

θ ¼ 0;

Eφ
φ −

2WrH
r2

Eφ
t − Er

r − Eθ
θ ¼ 0; ð13Þ

and Klein-Gordon equation

□ϕþ λ2

4
F0ðϕÞR2

GB ¼ 0: ð14Þ

In order to perform the numerical integration of Eqs. (13)
and (14), we introduce a new radial coordinate for
convenience,

x≡ 1 −
2rH
r

; ð15Þ

which maps r∈ ½rH;∞� to x∈ ½−1; 1�. Moreover, the
suitable boundary conditions should be imposed. At the
event horizon x ¼ −1, we adopt the boundary conditions
with

f − 2∂xf ¼ 0; gþ 2∂xg ¼ 0;

∂xh ¼ ∂xϕ ¼ 0; W − ∂xW ¼ 0: ð16Þ

For asymptotically flat solutions, one requires

f ¼ g ¼ h ¼ 1; ϕ ¼ 0; ∂xW þ jð1þ ∂xfÞ2 ¼ 0

ð17Þ

at x ¼ 1, where the dimensionless spin j is given by
j≡ J=M2 ¼ a=M. For the axis boundary conditions, the
axial symmetry and regularity impose the following boun-
dary conditions on the symmetry axis:

∂θf ¼ ∂θg ¼ ∂θh ¼ ∂θW ¼ ∂θϕ ¼ 0; for θ ¼ 0;
π

2
;

ð18Þ

because all solutions found in this work are symmetric with
respect to a reflection on the equatorial plane at θ ¼ π=2.
Therefore, it is sufficient to confine the range θ∈ ½0; π=2�.
Additionally, the absence of conical singularities implies

h ¼ 1; for θ ¼ 0;
π

2
: ð19Þ

With the above boundary conditions, the system of
coupled PDEs (13) and (14) can be numerically solved
to obtain the nonlinearly scalarized rotating black hole
solutions through the spectral method [33]. Now, we briefly
describe the steps. We first decompose the five functions to
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be solved (F ¼ ff; g; h;W;ϕg) into radial and angular
parts, together with a suitable spectral expansion

F ðkÞ ¼
XNx−1

i¼0

XNθ−1

j¼0

αðkÞij TiðxÞ cosð2jθÞ; ð20Þ

where TiðxÞ is the Chebyshev polynomial, and Nx and Nθ

denote the resolutions in the radial and angular directions.
Plugging the spectral expansions (20) into the coupled field
equations (13) and (14), we can calculate the resulting
equations at each Gauss-Chebyshev point defined by

xk ¼ cos
�ð2kþ 1Þπ
2ðNx − 2Þ

�
; k ¼ 0;…; Nx − 3; ð21Þ

θl ¼
ð2lþ 1Þπ

4Nθ
; l ¼ 0;…; Nθ − 1: ð22Þ

Together with the boundary conditions, we end up with a
nonlinear system of equations consisting of NF × Nx × Nθ

equations with respect to the spectral coefficients fαðkÞij g,
where NF ¼ 5 is the number of the functions to be solved.
Finally, the nonlinear system of equations can be numeri-
cally solved through the Newton-Raphson method. More
details are presented in the Appendix.
With these numerical solutions, the physical quantities

of black holes such as mass M, angular momentum J,
and scalar charge Qs can be expressed in terms of the
coordinate x as

M ¼ rHð1þ ∂xfÞjx¼1; ð23Þ

J ¼ −r2H∂xWjx¼1; ð24Þ

Qs ¼ −2rH∂xϕjx¼1: ð25Þ

In Ref. [29], Doneva and Yazadjiev discovered two branches
for fully nonlinear scalarization of a Schwarzschild black

hole in EsGB gravity. For scalarized rotating black holes,
we find the existence of three branches, being different
from the static case. The scalar charge Qs is plotted as a
function of mass M for the static and rotating scalarized
black holes with parameter κ ¼ 400 in Fig. 1. As shown
in Fig. 1(a), branch 2 in the static case is now divided
into two subbranches for the rotating case, and the
orange solid, red dashed, and red dotted curves are called
branch 1, branch 2a, and branch 2b, respectively. More-
over, branch 1 and branch 2a are connected at finite
mass M ¼ 0.0811.
In addition, there are three breakpoints in the curve of

the rotating scalarized black holes compared to the static
case. The numerical process no longer converges as it
approaches the three breakpoints of the orange and red
curves in Fig. 1(a), while we do not observe a singular
behavior in the vicinities of these breakpoints. Actually,
this phenomenon is quite common in EsGB models
[27,34,35], and the black hole solutions corresponding to
the breakpoints are called critical solutions in the literature.
An explanation is based on the horizon expansions of the
field equations [36,37] with

ϕðx; θÞ ¼ ϕ0ðθÞ þ ϕ2ðθÞðxþ 1Þ2 þ � � � : ð26Þ

One can find a quadratic equation of ϕ2,

ϕ2
2 þ pϕ2 þ q ¼ 0; ð27Þ

where the coefficients p and q depend on the values of
the metric functions and their derivatives at the horizon.
Therefore, a regular solution exists only if Δ¼p2−4q>0.
When the critical solution is exceeded, Δ becomes negative
and the regular hairy solution no longer exists. In Fig. 1(b),
we further show the rotating scalarized black holes
with spin parameter j ¼ 0.4 and κ ¼ 100, 400, and 1000.
We find that rotating scalarized black holes with larger
values of κ possess smaller scalar charge Qs and mass M.
However, the curves of physical quantities for these
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FIG. 1. (a) Scalar charge Qs as function of black hole mass M for static (j ¼ 0) and scalarized rotating (j ¼ 0.4) black holes with
κ ¼ 400. (b) Scalar charge Qs as a function of black hole mass M for other scalarized black holes with κ ¼ 100, 400, and 1000.
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scalarized black holes with different κ are very similar.
Therefore, we will mainly consider the case of κ ¼ 400 in
the following sections.
Considering κ ¼ 400, we plot the scalar charge Qs as a

function of mass M for different values of spin parameter j
in Fig. 2(a). We observe that the higher the rotation
parameter j, the smaller the range in M. This is in contrast
to the result obtained in the decoupling limit [31], which
states that the larger the rotation parameter j, the larger the
range in M is for the same coupling function. Moreover,
we discuss the j dependence of Qs and rH. Figure 2(b)
illustrates the comparison of the horizon radius rH of the
scalarized rotating black holes and the Kerr black holes
with same j ¼ 0.4. We find that (a) the horizon radius of the
scalarized black hole is smaller than that of the Kerr black
hole with the sameM and j, (b) branch 1 and branch 2a are
connected at finite mass M ¼ 0.0811, and (c) branch 2b
and the Kerr black hole come closer together as mass
decreases.
Choosing the parameters j ¼ a=M ¼ 0.7, rH ¼ 0.02 of

the black hole, we present the newly scalarized rotating
black hole solutions with κ ¼ 400 in Figs. 3 and 4, where
the left column shows 3D plots and right column displays
2D plots of the corresponding functions in terms of the
radial variable for three different values of the angular
coordinate. Here, the axes for the 3D plots are X ¼ r sin θ
and Z ¼ r cos θ (with r ≥ rH). With the horizon radius
rH ¼ 0.02, a scalarized rotating black hole with M ¼
0.0626, j≡ J=M2 ¼ 0.7, and Qs ¼ 0.0152 is obtained
numerically. Holding the same rH and j, the solution
deviations between the scalarized rotating black hole and
Kerr black hole are also presented in these figures. We
observe from Figs. 3 and 4 that our nonlinearly scalarized
rotating black hole solution represents an asymptotically
flat rotating black hole with scalar hair and clear θ
dependence for h and ϕ.

IV. THERMODYNAMIC PROPERTIES

Now, we further discuss the thermodynamic properties
of scalarized rotating black holes. The surface gravity is
defined as ζ2 ¼ − 1

2
ð∇μχνÞð∇μχνÞ. Then, the Hawking

temperature of black holes takes the form

TH ¼ ζ

2π
¼ 1

2πrH

fffiffiffiffiffi
gh

p
				
x¼−1

: ð28Þ

The comparison of the Hawking temperature TH of the
scalarized rotating black holes and the Kerr black holes
with the same j ¼ 0.4 is shown in the left panel of Fig. 5.
The Hawking temperature of the scalarized black hole is
higher than that of the Kerr black hole with same M.
Moreover, the stationary and rotational symmetry metric
(11) possesses two Killing vector fields

ξ ¼ ∂t; η ¼ ∂φ ð29Þ

and its linear combination

χ ¼ ξþΩHη; ð30Þ

where the angular velocityΩH is determined by the horizon
value of the metric function

ΩH ¼ −
ξ · η
η · η

¼ −
gφt
gφφ

				
x¼−1

¼ 1

rH
Wjx¼−1: ð31Þ

Let us compute the entropy of scalarized rotating black
holes. In the EsGB gravity, the black hole entropy is not
given by the Bekenstein-Hawking formula. Concerning the
horizon properties, we note that the induced metric on the
horizon is given by

* *
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FIG. 2. Left: scalar charge Qs as function of the black hole mass M for several different j. Here the black star denotes the scalarized
black hole solution shown in Figs. 3 and 4. Right: comparison of the horizon radius rH of the scalarized rotating black holes and the Kerr
black holes with same j ¼ 0.4.
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FIG. 3. Metric functions f, g, and h for scalarized rotating black hole solutions with the parameters j ¼ a=M ¼ 0.7, rH ¼ 0.02 (dotted
black line), and κ ¼ 400. The deviations between the scalarized rotating black hole and the Kerr black hole are described by
Δf ¼ f − fKerr, Δg ¼ g − gKerr, and Δh ¼ h − hKerr. Left: 3D graphs. Right: 2D graphs.
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dΣ2 ¼ γijdxidxj ¼ r2H
g
f
ðhdθ2 þ sin2θdφ2Þjx¼−1: ð32Þ

The horizon area is obtained as

AH ¼
Z
H

ffiffiffi
γ

p
dθdφ ¼ 2πr2H

Z
π

0

dθ sin θ
g

ffiffiffi
h

p

f

				
x¼−1

: ð33Þ

We plot the comparison of the horizon area AH of the
scalarized rotating black holes and Kerr black holes with
same j ¼ 0.4 in the right panel of Fig. 5. The horizon area
of the scalarized black hole is smaller than that of the Kerr
black hole with the same M and the branches of the
scalarized black hole have similar behavior as in the left
panels of Figs. 4 and 5.

FIG. 4. Metric functionW and scalar field ϕ represent the nonlinearly scalarized rotating black hole solution with the same parameters
as in Fig. 3. The solution deviations between the scalarized rotating black hole and the Kerr black hole are described by ΔW ¼
W −WKerr and Δϕ ¼ ϕ − ϕKerr. Left: 3D graphs. Right: 2D graphs.
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FIG. 5. Left: comparison of the Hawking temperature TH of the scalarized rotating black holes and Kerr black holes with same
j ¼ 0.4. Right: comparison of the horizon area AH of the scalarized rotating black holes and Kerr black holes with the same j ¼ 0.4.
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Then, the entropy defined by the Iyer-Wald formalism is

S ¼ −2π
Z
H

δL
δRμναβ

ϵμνϵαβdAjon−shell; ð34Þ

where ϵμν is the binormal vector to the horizon surface. In
Fig. 6, we plot the comparison of the entropy S of the
scalarized rotating black holes and Kerr black holes with
the same j ¼ 0.4. The curves of branch 1 and the Kerr
black hole have an intersection at finite mass and the
entropies of branches 2a and 2b are always smaller than that
of branch 1 with the sameM. This suggest that the entropic
preference of branch 1 and the Kerr black hole undergo a
shift, while branch 1 is always entropically favored over
branches 2a and 2b. Moreover, the branches of the
scalarized black hole have similar behavior as in the
previous figures.
Based on these physical quantities of the scalarized

rotating black holes, we can further check the Smarr
relation. Actually, the Smarr relation plays an important
role when studying numerical solutions, since it provides a
test bed to the code that relates physical quantities obtained
on the horizon to those obtained asymptotic regions, and
also allows us to estimate the accuracy of our numerical
method. This relation is given by

M þMs ¼ 2THSþ 2ΩHJ; ð35Þ

where Ms is a bulk (outside the horizon) integral along a
spacelike hypersurface Σ [33,38,39],

Ms ¼ −
1

2π

Z
d3x

ffiffiffiffiffiffi
−g

p FðϕÞ
F0ðϕÞ□ϕ; ð36Þ

and can be related to the scalar charge Qs of scalarized
rotating black holes. We present several discrete values
of these thermodynamic quantities Ms, J, TH, S, and
ΩH for scalarized rotating black holes to test the Smarr
relation, as shown in Table I. We check that these thermo-
dynamic quantities obey the Smarr formula with high
precision.
Finally, we note that the Helmholtz (on shell) free energy

H ¼ M − THS as a function of temperature is important to
check a phase transition between scalarized rotating and
Kerr black holes in canonical ensembles [40]. With fixed
j ¼ 0.4, we plot the free energy of black holes in Fig. 7.
We see that the free energy of the Kerr black hole without
scalar hair is always lower than that of the scalarized
rotating black hole for TH < Tc, it crosses the critical point
at TH ¼ Tc ≈ 0.589, and then it becomes higher than that
for the scalarized rotating black hole for TH > Tc. In other
words, for TH < Tc, the Kerr black hole is more favorable

Kerr BH, j=0.4

branch 1, j=0.4

branch 2a, j=0.4

branch 2b, j=0.4

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.02

0.04

0.06

0.08

0.10

M

S

FIG. 6. Comparison of the entropy S of the scalarized rotating
black holes and Kerr black holes with the same j ¼ 0.4.

TABLE I. Six discrete values of thermodynamic quantities Ms, J, TH , S, and ΩH for scalarized rotating black
holes are displayed for testing the Smarr relation with fixed mass M ¼ 0.0818.

j Ms TH S ΩH J Smarr

0 0.00239 0.506 0.0833 0 0 5.23 × 10−6

0.0485 0.00238 0.505 0.0832 0.157 3.25 × 10−4 5.26 × 10−6

0.118 0.00233 0.503 0.0830 0.380 7.87 × 10−4 5.07 × 10−6

0.179 0.00226 0.501 0.0826 0.582 0.00120 5.08 × 10−6

0.235 0.00215 0.497 0.0821 0.765 0.00157 4.83 × 10−6

0.289 0.00197 0.492 0.0814 0.943 0.00193 4.53 × 10−6

hairy BH, j=0.4
Kerr BH, j=0.4

0.50 0.55 0.60 0.65 0.70
0.025

0.030

0.035

0.040

0.045

TH

H

FIG. 7. Free energy H versus Hawking temperature TH curves
for scalarized rotating and Kerr black holes with j ¼ 0.4
and κ ¼ 400.
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than the scalarized rotating black hole, while for TH > Tc,
the scalarized rotating black hole is thermodynamically
more favorable than the Kerr black hole. This means that,
for TH < Tc, the ground state is a Kerr black hole, whereas
for TH > Tc, the ground state is given by the scalarized
rotating black hole. It implies that a first order phase
transition may occur between Kerr and scalarized rotating
black holes in EsGB gravity. Moreover, we note that the
critical temperature Tc increases with increasing spin j (see
Table II). In particular, when j ≳ 0.69, the temperature of
the black hole is always less than the critical temperature.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have discussed the nonlinear scalariza-
tion of rotating black holes in EsGB gravity, markedly
different from the conventional spontaneous scalarization
for black holes. We have considered the quartic coupling
functions FðϕÞ in (8), for which the Kerr black hole is still a
linearly stable solution of the field equations, but for certain
ranges of the parameters, nonlinearly scalarized phases of
the Kerr black hole appear. This is because, even though the
Kerr black hole is stable against small (linear) perturba-
tions, this linear stability can be lost for larger amplitudes of
the scalar perturbations that will bring us to the nonlinear
regime.
In order to obtain a full spectrum of scalarized rotating

black holes including the unstable ones, we have solved the
fully nonlinear coupled system of reduced field equations
by using the pseudospectral method. We have obtained
multibranches of scalarized rotating black hole solutions
for different values of parameter κ in the coupling functions
[Eq. (8)]. Moreover, we focused on the stable branch of
scalarized rotating black holes with the specific value of
κ ¼ 400 and further studied the thermodynamic properties
for these scalarized rotating black holes in detail. We found
these thermodynamic properties of these black holes obey
the Smarr relation, which allows us to check the accuracy of
our numerical method. Finally, we have investigated the
phase transition of two black holes by evaluating the free
energy for Kerr and scalarized rotating black holes. It is
clear that the free energy of scalarized rotating black holes
is always higher than that of Kerr black holes without scalar
hair for TH < Tc, it crosses the critical point at TH ¼ Tc,
and then it becomes lower than that for Kerr black holes for
TH > Tc. This implies that a first order phase transition
may occur between Kerr and scalarized rotating black holes
in EsGB gravity.

As a general extension of this work, it is interesting to
explore the dependence of these nonlinearly scalarized
black holes on various forms of coupling functions. In
addition, it would be better to study the effect of spin on the
dynamical stability of nonlinearly scalarized black holes.
How to relate its properties to astronomical observations is
also an important issue. Moreover, we found that the stable
scalarized phase has the largest entropy among all the
branches of hairy black holes. It also has larger entropy
than the Kerr phase for most of the parameter range,
making it thermodynamically preferred. We have reasons to
believe that their solutions would possibly be the end point
of the scalarization. The stability analysis for these scalar-
ized rotating black holes is also a feasible way to check
the conjecture in the future. These plans for the next work
will contribute to a better understanding of the nonlinear
scalarization mechanism.

ACKNOWLEDGMENTS

We appreciate Eugen Radu and Hyat Huang for helpful
discussion. This research is supported by the National Key
Research and Development Program of China under Grant
No. 2020YFC2201400. M. Y. L is also supported by the
Jiangxi Provincial Natural Science Foundation (Grant
No. 20224BAB211020) and the Science and Technology
Program of Guangxi, China (Grant No. 2018AD19310).
D. C. Z acknowledges financial support from the Initial
Research Foundation of Jiangxi Normal University.

APPENDIX: NUMERICAL SCHEME

In this appendix, we briefly present the calculation
details of numerical solutions of rotating scalarized black
holes by using pseudospectral and Newton-Raphson
methods.
Considering a compactified radial coordinate and sym-

metries of our problem, a suitable spectral expansions for
four black hole metric functions and scalar field (collec-
tively denoted by F ¼ f; g; h;W;ϕ) are given by

FðkÞ ¼
XNx−1

i¼0

XNθ−1

j¼0

αðkÞij TiðxÞ cosð2jθÞ; ðA1Þ

where Nx and Nθ denote the resolutions in the radial and
angular coordinates. We note that the angular boundary
conditions are automatically satisfied by this expansion.
As mentioned previously, we will use the Kerr metric

itself to set our initial guess when working with EsGB
gravity. Thus, we need the spectral coefficients expressed
in terms of interpolation of a two-dimensional function
uðx; θÞ,

αij ¼
4

NxNθ

XNx−1

k¼0

XNθ−1

l¼0

uðxk; xθÞTiðxkÞ cosð2jθlÞ; ðA2Þ

TABLE II. The discrete values of the critical temperature Tc for
different spin j.

j 0 0.1 0.2 0.3 0.4 0.5 0.6

Tc 0.560 0.562 0.568 0.577 0.589 0.600 0.614
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where xk and θl are given by

xk ¼ cos

�ð2kþ 1Þπ
2N

�
; θl ¼

ð2lþ 1Þπ
4N

;

k; l ¼ 0;…; N − 1; ðA3Þ

respectively. At this stage, it would be better to summarize
our numerical approach briefly. To solve the field equa-
tions, some preliminary work must be done. First, we
employ the metric ansatz of Eq. (11) which includes five
unknown functions, f, g, h,W, and ϕ. Plugging this metric
ansatz into the field equations (13) and (14) leads to a set
of nonlinear coupled PDEs that depend on the functions
and their first and second derivatives ðF; ∂rF; ∂2rF; ∂θF;
∂
2
θF; ∂rθFÞ.
The set of field equations is then expressed in terms of

the compactified coordinate x defined in Eq. (15) and put
in residual form [Rðx; θ; ∂FÞ ¼ 0]. We do the same thing
for the appropriate boundary conditions. This part of the
process could be usually done when resorting to a computer
algebra system by Mathematica. The residuals (and appro-
priate Jacobian) are then exported to a coding file to solve
the problem by using the developed numerical infra-
structure.
Each function is expanded in a spectral series given by

Eq. (A1) and the input parameters are then specified
(depending on the chosen boundary conditions for the
function W). To solve the field equations successfully, a
good initial guess must be provided to our Newton solver.
For this purpose, we interpolate the functions for the known
Kerr solution using Eq. (A2) and obtain appropriate
spectral coefficients that are provided as a good initial
guess. If new fields are present, we take advantage of
perturbative solutions typically and interpolate them as a
guess. Convergence is achieved once the norm difference
between spectral coefficients of two successive iterations is
less than a certain prescribed tolerance. To speed up the
solver, the values of our basis functions and their first
and second derivatives are calculated at all grid points and
stored, so that no repeated evaluations are performed.
Another optimization is to store the values on the grid
of the trigonometric functions that appear in the residuals,
sin θ and cos θ.
As an example, the spectral coefficients αij of the metric

function f of a black hole are plotted in Fig. 8 with different
Nx and Nθ, where the parameters of the black hole are
rH ¼ 0.01 and j ¼ 0.2. As can be seen in Fig. 8, the
absolute values of the coefficients decrease exponentially

as i or j increases, which indicates the convergence of the
numerical scheme. Thus, the value of f depends mainly
on the first few terms of the coefficients αij. Even if the
values of ðNx; NθÞ are increased from (40,8) to (44,10)
and (48,12), the values of the original coefficients do not
change and the added coefficients are neglectable.
Considering the numerical accuracy and computational
resources, we mainly use the setting of Nx ¼ 40 and
Nθ ¼ 8 in the computations in the present paper.
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FIG. 8. The absolute values of the spectral coefficients αij of the
metric function fðx; θÞ with different Nx and Nθ.
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