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In this paper, we investigate the gravitational effects of a global monopole that couples nonminimally to
gravity. Considering a coupling parameter of arbitrary strength, we have obtained an analytical solution for
the field equations of the model in the asymptotic region outside the monopole’s core, thus generalizing
previous results. Within the weak coupling regime, we have also analyzed how this matter-geometry
interplay affects some physical properties of the monopole, such as its radius and the mass enclosed in its
core, which are explicitly computed and expressed in terms of the parameter of the theory. Using the
Hahari-Loustó toy model, we have also found that the modification of general relativity (GR) may render a
positive sign to the monopole mass, which means a global monopole able to exert attractive gravitational
force on matter particles surrounding it. Next, we have studied some properties of a hairy black hole
carrying such a global monopole charge. In this vein, we verified that the deviation from GR may provide
such a spacetime with both event and Cauchy horizons, thus emulating a Reissner-Nordström framework.
Finally, we have performed a study of the geodesic motion of timelike particles around this black hole by
setting the conditions for stable circular orbits. We also examined the gravitational bending experienced by
photons traveling through this geometry, taking into account finite-distance corrections on the deflection
angle. Additionally, we make an order-of-magnitude estimate for this extra contribution considering the
light bending caused by Sagittarius A*.

DOI: 10.1103/PhysRevD.108.084002

I. INTRODUCTION

Topological defects are ubiquitous in condensed matter
physics: magnetic systems, elastic solids, and liquid
crystals are some of the physical systems where one
usually comes across different types of such interesting
structures [1–4]. In all these cases, these defects arise as
result of a symmetry breaking triggered by previous phase
transitions underwent by the system [5,6]. The possible
existence of these configurations in the cosmological realm
is one of the most relevant predictions of the grand unified
theories. Like their condensed matter counterparts, these
cosmic objects would be the consequence of processes of
spontaneous symmetry breaking induced by the several
phase transitions experienced by the early Universe [7].
According to the Kibble mechanism [5], the type of
symmetry that is broken down would determine the specific
topological defect to be produced. For instance, the break-
ing of an SOð3Þ symmetry gives rise to a pointlike
topological defect called a global monopole, whose gravi-
tational effects were first analyzed in a seminal paper
published in 1989 by Barriola and Vilenkin [8]. In that
article, the authors discussed many remarkable features
related to the gravitating global monopole in the context of

general relativity (GR). One of these aspects that we could
mention is the solid deficit angle that characterizes the
spacetime surrounding this defect. On one hand, they have
shown that for a negligible monopole mass such a solid
angle deficit precludes the global monopole to exert
Newtonian force on timelike particles moving around it.
On the other hand, it is shown that such a nontrivial
topology does affect any light geodesics traveling through
the monopole’s vicinity. Just after this pioneer work, Hahari
and Loustó went further by discussing possible impacts that
gravity may have on some physical properties that shape
the monopole’s inner structure [9], like its mass and the size
of its core. In this regard, they have obtained by both
analytical and numerical techniques the radius of the
monopole’s core and the mass contained in it. One note-
worthy point of their results is certainly the negative sign
for such a mass, which was interpreted as a repulsive
gravitational potential emerging around the defect, as a
result of the de Sitter–like nature of its interior solution.
More discussion concerning this monopole’s mass issue
may be found in Refs. [10,11]. Global monopoles were also
extensively studied within other models of gravity, with
different implications of its gravitational effects being
explored [12–21].
Despite all the recognized achievements of GR in

describing properly the majority of the known gravitational*trpcarames@id.uff.br
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phenomena, there are still some open issues putting the
Einstein theory at a challenging crossroad. The appearance
of singularities in some of the most important GR solutions,
notably, the cosmological and the black holes ones, may be
indicating that this theory needs to be modified to some
extent, especially when one deals with high energy
regimes. Some authors claim that an accurate answer for
this pathological property could emerge within a quantum
representation of Einstein gravity (see [22] and the refer-
ences therein). However, the implementation of this quan-
tum description encounters serious difficulties due to the
nonrenormalizable character of GR [23].
Furthermore, the late dynamics of the observed large

scale Universe shows a current speedup of the cosmic
expansion. The standard cosmological model (Λ cold dark
matter), which has GR as its underlying gravitational
theory, is just capable to explain such a behavior by
considering a cosmological constant (Λ) as part of the
Einstein equations. In this case, such a new term would
behave as a negative pressure fluid that would produce at
large scales the repulsive gravity necessary to account for
the observed cosmic acceleration. Nonetheless, the pres-
ence of cosmological constant in the theory brings an
inconsistency between cosmological observations and the
predictions of the quantum field theory when one gives toΛ
the standard interpretation of a vacuum energy density. This
is the so-called cosmological constant problem [24–26].
For these reasons, we have seen in the recent decades an

increased search for alternative theories of gravity, each of
them proposing different paths to modify the GR. In the
most common proposals, the existence of scalar degrees of
freedom is assumed through the introduction of some
dynamical scalar field in the gravitational action. This
happens with the scalar-tensor models, mainly the wide
class of Horndeski theories and, consequently, some of
their typical particular cases, such as Brans-Dicke and fðRÞ
gravity, for example [27]. However, other modified theories
follow a bolder recipe, by assuming that some premises of
GR may be relaxed. This is the case of the gravitational
theory under consideration in this work. It is well known
that the principle of minimal matter-curvature coupling is
one of GR’s cornerstones, which has as one of its main
consequences the covariant conservation of the energy-
momentum tensor, which also means that the free matter
particles follow geodesic paths. Consequently, it is clear
that the breaking of the minimal coupling assumption also
leads to violation of the equivalence principle [28,29].
In this paper, we work within the nonminimally coupled

gravity theory proposed in [30]. As the literature shows us,
this theory was widely explored in different branches. It
was proposed as a potential way out for the dark matter
problem [31,32], to model stellar equilibrium [33], and as a
possible ingredient responsible for the current cosmic
acceleration [34]; it also produced interesting results in
the context of the cosmological perturbations [35],

gravitational waves [36], inflationary scenarios [37], and
energy conditions [38]. We must also mention the studies of
observational constraints coming from these theories
at the Solar System [39,40] and cosmological background
levels [41], as well as the bounds imposed by ocean
experiments [42].
In the present article, we consider a new model of

gravitating global monopole in which the monopole cou-
ples nonminimally to the spacetime curvature. This non-
minimal coupling is modeled through the presence of a
mixing between matter and geometric sectors. This mixing
term is implemented in the generalized gravitational action
by means of an arbitrary function of the Ricci scalar. The
form of this function is chosen in such a manner that we are
left with the simplest version of this nonminimally coupled
gravity. Moreover, we also discuss other criteria to justify
our choice on the basis of what has been usually adopted in
the literature. It is shown that this novel aspect brings new
contributions to previous studies within the global mono-
pole physics, as we shall see throughout this work.
This paper is organized as follows. In Sec. II, we

introduce the basic ingredients of a global monopole model
within a nonminimally coupled gravity. In Sec. III, we
present an analytical solution for the gravitational field of
this nonminimal global monopole within the outside-the-
core approximation, first assuming an arbitrary magnitude
for the coupling parameter, then by considering the weak
coupling case, for which the solution takes a much simpler
form. In Sec. IV, we investigate the inner solution of the
global monopole, analyzing how the nonminimal matter-
curvature coupling affects its inner structure, in particular,
its mass and the size of its core. In Sec. VII, we study the
gravitational field of a hypothetical black hole endowed
with a nonminimal global monopole charge, by discussing
the appearance of (extra) event and Cauchy horizons in
such a spacetime. Next, in Sec. VIII, we have performed a
study of the geodesic motion of timelike particles, showing
that the model admits the arising of both new stable and
unstable orbits in this background. In Sec. VII, we have
examined the consequences of the nonminimal coupling on
the light bending phenomenon, where we have provided an
order-of-magnitude estimate of the correction on the
deflection angle. Finally, in Sec. VIII, we summarize the
main results of this work and leave our concluding remarks.

II. THE MODEL

A. The nonminimally coupled gravity

A theory of gravity with nonminimal matter-curvature
coupling may be modeled in different ways. We use here
the one proposed in [30], where the authors depart from the
following gravitational action:

S ¼
Z �

1

2
f1ðRÞ þ ½1þ αf2ðRÞ�Lm

� ffiffiffiffiffiffi
−g

p
d4x; ð1Þ
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where Lm is the matter Lagrangian, whereas f1ðRÞ and
f2ðRÞ are arbitrary functions of the Ricci scalar. The
parameter α encodes the information of how strong is
the nonminimal coupling.
The variation of (1) with respect to the metric tensor

provides the set of field equations below,

ðF1 þ 2αF2LmÞRμν −
1

2
f1gμν

¼ ð∇μ∇ν − gμν□ÞðF1 þ 2αF2LmÞ þ ð1þ αf2ÞTμν; ð2Þ

where one defines Fi ≡ dfi
dR. Notice that the GR case is

recovered when f1ðRÞ ¼ R
κ and α ¼ 0. Furthermore, it is

obvious that the vacuum solutions of both theories must be
the same at the limit f1ðRÞ ¼ R

κ , since in this situation there
is no matter-curvature coupling and this modified gravity
coincides with GR. In this theory, the energy-momentum
does not respect the usual conservation law; it is instead
subject to a nontrivial condition given by

∇μTμν ¼
αF2

1þ αf2
½gμνLm − Tμν�∇μR; ð3Þ

with the extra term on the right-hand side describing the
energy-momentum exchange between matter and curva-
ture. In this study, we shall assume the simplest non-
minimally coupled gravity model, where the functions
f1ðRÞ and f2ðRÞ are given by

f1ðRÞ ¼
R
κ

and f2ðRÞ ¼ R; ð4Þ

where κ ¼ 8πG
c4 is the gravitational coupling constant. Notice

that the model above resembles GR, except for the non-
minimal interaction between the matter and geometric
sectors represented by the factor αRLm. The choice (4)
is particularly interesting since it enhances such a non-
minimal coupling: by leaving f1ðRÞ as the usual Einstein-
Hilbert Lagrangian, we ensure that all the new effects
arising in this scenario are an exclusive result of the
nontrivial interplay between matter and geometry. There
is, however, a discussion in the literature about the suitable
form for f2ðRÞ. As we can see in [41], in the cosmological
domain, the proper ansatz is a power law f2ðRÞ ∝ Rn with
n < 0, as it fits very well observational datasets, describing
correctly the evolution of the observed Universe. On the
other hand, the linear choice (4) reveals to be appropriate on
small scales or at high matter density contexts. This
includes several gravitational phenomena comprising geo-
physical, Solar System, and astrophysical scales. Since in
this study we are interested in phenomena that are relevant
at most on the astrophysical environment, the choice
f2ðRÞ ¼ R is adequate to fulfill the aims of this work.
A possible experimental limit on the linear models

f2ðRÞ ¼ R has been considered in Ref. [43], where the

authors have used nuclear physics to impose on the
parameter α a stringent upper bound of jαj < 5 × 10−12 m2.
However, as it is argued in [40], this result stems from a
strong suppression at the high density environment of the
nuclear physics scale as a consequence of a screening
mechanism. Since we are not dealing with systems char-
acterized by such high matter densities, like those ones
verified in the interior of astrophysical bodies, for example,
this upper bound will not be taken into account in our study.
Using (4) in (2) we arrive at

ð1þ 2ακLmÞRμν −
1

2
gμνR ¼ 2ακð∇μ∇μ − gμν□ÞLm

þ ð1þ αRÞκTμν: ð5Þ

Additionally, it is useful to obtain the trace of the field
equations (5),

R ¼ −κT þ 6ακ□Lm

1 − 2ακLm þ ακT
; ð6Þ

from which the GR relation R ¼ −κT is promptly recov-
ered when α ¼ 0.

B. The global monopole spacetime

We are interested in specializing the gravitational equa-
tions above to the case of a gravitating global monopole. It
is known that the Lagrangian density associated with this
configuration is

Lm ¼ −
1

2
∂μϕ

a
∂
μϕa −

1

4
λðϕaϕa − η2Þ2; ð7Þ

which shows clearly the breaking of the SOð3Þ group to
Uð1Þ that leads to the formation of the monopole. The
parameter λ is the self-coupling constant of the Higgs field,
whereas η means the energy scale of the symmetry break-
ing. Moreover, the Higgs field ϕa consists of an isotriplet of
scalar fields whose form is given by the so-called hedgehog
ansatz,

ϕa ¼ ηhðrÞx̂a; ð8Þ

with the index a ¼ 1, 2, 3 and

x̂a ¼ fsin θ cosφ; sin θ sinφ; cos θg: ð9Þ

Additionally, the radial function hðrÞ is subject to the
following boundary conditions:

hð0Þ ¼ 0; hðr → ∞Þ ¼ 1: ð10Þ

Given the symmetry obeyed by a global monopole, let us
analyze it by means of the spherically symmetric line
element below,
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ds2 ¼ −BðrÞdt2 þ AðrÞdr2 þ r2dθ2 þ r2sin2θdφ2: ð11Þ

Using (8) and (11) in (7) we obtain

Lm ¼ −
1

2

η2h02

A
−
η2h2

r2
−
λη4

4
ðh2 − 1Þ2: ð12Þ

Additionally, it is well known that the energy-momentum
tensor is defined in terms of the matter Lagrangian as

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð13Þ

Using the equations given above, we may find the non-
vanishing components of the energy-momentum tensor as
follows:

T0
0 ¼ −η2

�
h02

2A
þ h2

r2
þ λ

4
η2ðh2 − 1Þ2

�
;

T1
1 ¼ −η2

�
−
h02

2A
þ h2

r2
þ λ

4
η2ðh2 − 1Þ2

�
;

T2
2 ¼ T3

3 ¼ −η2
�
h02

2A
þ λ

4
η2ðh2 − 1Þ2

�
; ð14Þ

as well as its trace

T ¼ −
η2h02

A
−
2η2h2

r2
− λη4ðh2 − 1Þ2: ð15Þ

From (3) it is possible to determine the dynamical
equation governing the Higgs field behavior for the back-
ground metric (11), which is

h00 þ
�
2

r
þ1

2

�
B0

B
−
A0

A

��
h0−

2Ah
r2

−λη2Ahðh2−1Þ¼ αR0h0

1þαR
:

ð16Þ

Outside the monopole’s core, the Higgs field behaves as
h ≈ 1, which leads to a quite simpler form for the
components (14),

Tν
μ ≈ diag

�
−
η2

r2
;−

η2

r2
; 0; 0

�
; ð17Þ

whereas the Lagrangian Lm and the trace T are reduced to

Lm ≈ −
η2

r2
ð18Þ

and

T ≈ −
2η2

r2
; ð19Þ

respectively.
The outside-the-core assumption refers to a region far

from the defect’s lump, where the Higgs field reaches its
vacuum expectation value and is convenient for the purpose
of this work for a couple of reasons. First of all, it is the
regime in which the Barriola-Vilenkin solution has been
obtained, which makes this choice useful for a suitable
comparison between the standard global monopole and the
nonminimal one under consideration in this study. Second,
due to the smallness of the monopole’s width, it is expected
that the condition h ≈ 1 applies for most of the physically
relevant situations, especially those ones in the astro-
physical context.
Another useful quantity is□Lm, which can be computed

from (11) and (18) giving

□Lm ¼ −
2η2

Ar4
þ 1

A

�
B0

B
−
A0

A

�
η2

r3
: ð20Þ

In [8] the approximation (17) has been used to first
explore the gravitational effects of a global monopole.
The obtained solution is given by the following metric
functions:

BðrÞ ¼ AðrÞ−1 ¼ 1 − κη2 − 2GM=r: ð21Þ

In that study, the authors offered a twofold interpretation for
the integration constant M. The first one considers it as the
mass of the monopole’s core itself, whereas the second one
takesM as the mass of a black hole that swallowed a global
monopole, thus inheriting the defect’s charge, κη2. In their
work, Barriola and Vilenkin discuss only the first possi-
bility, although they eventually throw awayM, arguing that
it is negligible on the astrophysical scale. Thereafter, a
change of variable in the solution (21) turns the monopole’s
charge into the so-called solid deficit angle term,

ds2 ¼ −dt2 þ dr2 þ ð1 − κη2Þr2dΩ2: ð22Þ

III. SOLVING THE FIELD EQUATIONS

Let us now write the main geometric quantities necessary
to obtain the field equations in their explicit form. We are
dealing with a spherically symmetric problem, in which the
line element (11) is taken as a starting point. For such a
metric, the nonzero Christoffel symbols are the following:
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Γ0
01 ¼

B0

2B
; Γ1

00 ¼
B0

2A
; Γ1

11 ¼
A0

2A
;

Γ2
12 ¼ Γ3

13 ¼
1

r
; Γ3

32 ¼ cot θ; Γ1
22 ¼ −

r
A
;

Γ1
33 ¼ −

r
A
sin2θ; Γ3

23 ¼ − sin θ cos θ: ð23Þ

On the other hand, the nonzero components of the Ricci
tensor associated with the metric (11) are

R0
0 ¼

1

2

�
B02

2B2A
þ B0A0

2BA2
−
B00

BA
−

2B0

BAr

�
;

R1
1 ¼

1

2

�
B0A0

2BA2
þ 2A0

rA2
−

B00

BA
þ B02

2B2A

�
;

R2
2 ¼ R3

3 ¼
A0

2rA2
−

B0

2rBA
−

1

r2A
þ 1

r2
: ð24Þ

We may express the scalar curvature in terms of the
matter configuration by means of (6). From this relation,
we find

R ¼ 2κη2

r2
þ 12ακ2η4

r4
−
6ακη2

Ar3

�
B0

B
−
A0

A

�
; ð25Þ

where we have used the quantities (18)–(20).
With the equations above at hand, we are now ready to

construct the field equations for a global monopole in
nonminimally coupled gravity. Since we are searching for a
solution very far from the monopole’s core, we will
substitute (18) and (19) into Eq. (5). This provides the
following set of equations of motion:

−
�
1 −

2ακη2

r2

�
R0
0 þ

R
2
¼ −

2ακη2

r3
B0

AB
þ 2ακ□Lm

þ ð1þ αRÞ κη
2

r2
; ð26Þ

�
1 −

2ακη2

r2

�
R1
1 −

R
2
¼ −

12ακη2

Ar4
−
2ακη2

r3
A0

A2

− 2ακ□Lm − ð1þ αRÞ κη
2

r2
; ð27Þ

�
1 −

2ακη2

r2

�
R2
2 −

R
2
¼ 4ακη2

Ar4
− 2ακ□Lm: ð28Þ

In what follows, let us obtain the solution for the system
of nonlinear equations above. Our first step is to combine
(26) and (27) to get the relation

AðrÞBðrÞ ¼ c0e

	
6ακη2

r2



;

or

AðrÞBðrÞ ¼ e

	
6ακη2

r2



; ð29Þ

by choosing the integration constant c0 ¼ 1.
Equation (28) provides the second independent field

equation, which is given by the first order ordinary differ-
ential equation below,

ðr2 − 12αΔÞf0ðrÞ þ 18αΔ
r

�
1þ 4αΔ

r2

�

× fðrÞ þ 2αΔ − ð1 − ΔÞr2 ¼ 0; ð30Þ

where the following definitions were used:

Δ≡ κη2; ð31Þ

and

fðrÞ≡ r
A
: ð32Þ

Equation (30) admits the following analytical solution:

AðrÞ−1 ¼
�
1 −

12αΔ
r2

�
−1
�
1 − Δþ c1

r
e−

3αΔ
r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
3παΔ

p

3r
e−

3αΔ
r2 Erfi

� ffiffiffiffiffiffiffiffiffi
3αΔ

p

r

��
: ð33Þ

Having (33) at hand, the metric function BðrÞ can be obtained with the help of the relation (29), which gives

BðrÞ ¼
�
1 −

12αΔ
r2

�
−1
e
6αΔ
r2

�
1 − Δþ c1

r
e−

3αΔ
r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
3παΔ

p

3r
e−

3αΔ
r2 Erfi

� ffiffiffiffiffiffiffiffiffi
3αΔ

p

r

��
; ð34Þ

where ErfiðzÞ≡ 2ffiffi
π

p
R
z
0 e

x2dx is the imaginary error function [44]. Equations (33) and (34) represent an entirely new result in

the literature, which is the outside-the-core solution for a gravitating global monopole nonminimally coupled to gravity that
is modeled by the choice (4). The integration constant present in this solution can be set to c1 ¼ −2GM, in order to recover
the Newtonian regime in the appropriate limit. This assumption makes it possible to retrieve the traditional Barriola-
Vilenkin solution (21) when the coupling parameter vanishes.
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It is worth mentioning the interesting works [45,46], in
which the authors also investigate global monopoles that
are nonminimally coupled to gravity. In these studies, the
authors introduce by hand a specific nonminimal coupling
in the form ∝ ϕaϕaR, as an attempt to approach the
Galactic rotation curves problem.

A. The weak coupling case

In order to better interpret some consequences of the
solution given by (33) and (34), we shall consider from now
on a tiny coupling between matter and gravity, so that
αf2ðRÞ ¼ αR < 1, which enables us to retain in the
obtained solution only the first order terms in the parameter
α, with all its nonlinear contributions being neglected.
Since α has a unit of L2, its smallness in the weak coupling
context is defined in comparison with some typical length
scale l0 associated with the problem under analysis, so that
in this limit the condition α < l20 holds. For global mono-
pole physics, it is inevitable to regard the radius of the core,
δ ∼ ð ffiffiffi

λ
p

ηÞ−1, as such length scale. Whereas, when the
global monopole shows up as a charge of a black hole of
mass M, one expects that l0 ∼ GM. In the present work,
both cases will be investigated, so that in each one the
assumed weak matter-curvature coupling will be deter-
mined with respect to these two characteristic length scales.
Thus, the weak coupling assumption implies

�
1 −

12αΔ
r2

�
−1

¼ 1þ 12αΔ
r2

þOðα2Þ; ð35Þ

e−
3αΔ
r2 ¼ 1 −

3αΔ
r2

þOðα2Þ; ð36Þ

Erfi

� ffiffiffiffiffiffiffiffiffi
3αΔ

p

r

�
¼ 2ffiffiffi

π
p

ffiffiffiffiffiffiffiffiffi
3αΔ

p

r
þOðα3=2Þ: ð37Þ

This leads to the approximated solution below,

AðrÞ−1≈1−Δ−
2GM
r

þ2αΔð7−6ΔÞ
r2

−
18αΔGM

r3
; ð38Þ

and

BðrÞ≈ 1−Δ−
2GM
r

þ 2αΔð10− 9ΔÞ
r2

−
30αΔGM

r3
: ð39Þ

So, the weak coupling hypothesis turns the analytical
solution given by (33) and (34) into a more tractable form.
Additionally, such an assumption is also useful to preserve
the attractive character of gravity within this modified
theory, since it helps us to ensure positiveness for the
effective gravitational constant without any further restric-
tion on the choice of f1ðRÞ and f2ðRÞ [38].
Before studying in more detail the solution represented

by (38) and (39), it is convenient to adopt some further

approximations. It is expected that the scale of symmetry
breaking is quite below the Planck scale. Since G ∼ 1=M2

pl,
it is suitable to assumeGη2 < 1 [7]. This allows us to retain
only the leading terms in the parameterΔ ¼ 8πGη2. Taking
this assumption into account, the metric functions AðrÞ and
BðrÞ become

AðrÞ−1 ≈ 1 − Δ −
2GM
r

þ 14αΔ
r2

−
18αΔGM

r3
; ð40Þ

and

BðrÞ ≈ 1 − Δ −
2GM
r

þ 20αΔ
r2

−
30αΔGM

r3
: ð41Þ

Using the solution above in (25), we find the following
approximated solution for the Ricci scalar:

RðrÞ ≈ 2Δ
r2

−
24αΔGM

r5
: ð42Þ

As it was previously pointed out in Sec. II, in the
global monopole model there are two possible inter-
pretations for the mass term present in the solution above.
In the next sections, we will explore different facets of
both cases.

IV. ON THE INNER STRUCTURE OF THE
MONOPOLE

A. Computing the mass and the core radius

Here we are interested in analyzing the potential changes
that nonminimally coupled gravity may cause on physical
properties that constitute the inner structure of the mono-
pole. In [9] the authors use a simple analytical model to
compute both the radius and the monopole’s mass. In that
simplified model, they assume that the monopole configu-
ration consists of a pure false vacuum inside the core and a
true vacuum outside. In other words, this means that the
Higgs field behaves as follows:

hðrÞ ¼
�
0 if r < δ;

1 if r > δ;
ð43Þ

where δ denotes the radius of the monopole’s core. The
field equations (5) for r < δ provide the de Sitter–like
solution below,1

BðrÞin ¼ AðrÞ−1in ¼ 1 −
κλη4

6ð2 − ακλη4Þ r
2: ð44Þ

Notice that the term in brackets introduces in the solution
above contributions of higher order in κη2. Then, because

1For convenience, in this section we have opted for using the
original notation, namely, in terms of κ, η, α, and λ.
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of our approximative assumptions these can be neglected,
which will result in the known GR solution [9],

BðrÞin ¼ AðrÞ−1in ¼ 1 −
κλη4

12
r2: ð45Þ

The exterior solution is the one we have already obtained
in the last section, given by Eqs. (38) and (39). However,
before proceeding to the next step, some considerations are
in order. Let us recall that, as seen in [8], the monopole’s
core mass is Mc ∼ η, while the weak coupling approxima-
tion when applied to the gravitational field of an isolated
global monopole would constrain the parameter of the
theory to α≲ η−2. So, if M is now the mass inside the
monopole’s core and r > δ (external metric), it is easy to
verify that the exterior solution should respect

ακη2GMc

r3
< ðGη2Þ2; ð46Þ

which is negligible, since η ≪ Mpl. Therefore, we can
ignore the contribution of these terms in the metric
components (38) and (39), so that the exterior solution
gets reduced to

AðrÞ−1out ¼ 1 − κη2 −
2GMc

r
þ 14ακη2

r2
; ð47Þ

and

BðrÞout ¼ 1 − κη2 −
2GMc

r
þ 20ακη2

r2
: ð48Þ

The inner and outer solutions shall match at r ¼ δ, which
means to assume continuity across the boundary for the
metric and its first derivative with respect to r. Imposing
these requirements to the component g00ðrÞ ¼ BðrÞ, we
have

Binðr ¼ δÞ ¼ Boutðr ¼ δÞ; ð49Þ

and

dBinðrÞ
dr

����
r¼δ

¼ dBoutðrÞ
dr

����
r¼δ

: ð50Þ

These two conditions give rise to the set of algebraic
equations below,

κλη4

12
δ4 − κη2δ2 − 2GMcδþ 20ακη2 ¼ 0;

−
κλη4

6
δ4 − 2GMcδþ 40ακη2 ¼ 0; ð51Þ

which can be solved for δ and Mc. For the core radius, we
find the following pair of solutions:

δþ ¼
ffiffiffi
2

p
ffiffiffi
λ

p
η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 20α̃
pq

; ð52Þ

and

δ− ¼
ffiffiffi
2

p
ffiffiffi
λ

p
η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20α̃

pq
; ð53Þ

where we define the dimensionless parameter α̃≡ αλη2.
This duplicity in the solution for the radius core is a novel
aspect arising due to the nonminimally coupled gravity. As
will be seen in this section, we shall impose to the parameter
α̃ a range that assures real values for (52) and (53). For α̃ ¼ 0
both δ’s above coincide with the GR one,

δþjα¼0 ¼ δ−jα¼0 ¼ δGR ≡ 2ffiffiffi
λ

p
η
: ð54Þ

Let us simplify the notation by adopting the parameter
ϵ ¼ þ1 or −1 which carries the signs that distinguish (52)
and (53). Additionally, let us write it in terms of δGR,

δ ¼ δGR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ ϵ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 20α̃

pr
: ð55Þ

The expression above tells us that with respect to δGR each
one of the effective core radii may be enlarged or shrunk
depending on the magnitude and the sign of the non-
minimal coupling parameter. However, let us notice that in
order to ensure δ∈R the radicand in (55) must obey
α̃ > −1=20.
On the other hand, for Mc we also obtain two solutions,

each of them associated with the two core radii found
above. By writing it in terms of the corresponding GR
expression, MGR ¼ − 16πη

3
ffiffi
λ

p , we shall have

Mc¼−jMGRj
8<
:
�
1

2
þ ϵ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ20α̃

p �
3=2

−
15α̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
þ ϵ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ20α̃

pq
9=
;:

ð56Þ

B. Discussion

It is shown in [9] that the same steps followed above using
the GR (exterior and interior) solutions yield a negative
monopole mass, which is easily confirmed by taking α̃ ¼ 0
in (56). The main consequence of that is an emergence of a
repulsive gravitational potential around the monopole. This
peculiar character of the monopole mass was verified by the
authors, not only by an analytical approach based on (43),
but also through numerical techniques. In the present work,
we shall concentrate on this same analytical procedure to
examine this issue. A more complete analysis of the model
requires the employment of a numerical treatment, whichwe
shall leave for a future work.
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In Fig. 1 shows the profile of the ratio Mc=jMGRj as a
function of the nonminimal matter-curvature coupling, α̃.
The cases ϵ ¼ þ1 and ϵ ¼ −1 correspond to the red and
blue curves, respectively. We focus on small values of α̃, in
agreement with the weak coupling assumption, so that our
analysis encompasses the range jα̃j < 1. Nevertheless, it is
clear by looking at these two curves that the massMc is not
defined to all α̃∈R in that range anyway. As we have
previously pointed out for the case of δ, from the radicand
in (56) it is possible to set a condition for Mc ∈R, which
implies in a restriction on the domain of the function
Mc

jMGRj ðα̃Þ to fα̃∈Rjα̃ > −1=20 ¼ −0.05g. As the plot

shows us, in both ϵ cases the effective value of the
monopole mass is quite sensitive to the intensity of the
nonminimal coupling. The dashed line sets a threshold
above (below) which the mass increases (decreases) in
comparison with its GR counterpart as an effect coming
directly from the nonminimal matter-curvature exchange.
Although the case ϵ ¼ −1 allows for different magnitudes
of the mass in comparison with GR, its sign remains
negative for all the permitted values of α̃. However, the case
ϵ ¼ þ1 leads to an interesting result, in which the mono-
pole mass may acquire a positive sign, as long as
α̃ > 3=20 ¼ 0.15. This means that, contrary to the GR
global monopole, the nonminimal one may exert attractive
gravitational force on the material particles moving around
it. This is an original contribution of this work.
Notice that a positive mass becomes a possibility, even

though we had found for the interior solution the same de
Sitter–like structure as the standard Hahari-Loustó metric.
In the context of GR, this de Sitter–like character of the

interior solution is usually presented as intrinsically related
to the negative sign for the defect’s mass since as such it
would come up as a repulsive gravity effect. This fact
attests to the central role of the here obtained exterior
solution in defining the sign of the monopole’s mass in
our model.
In Fig. 2, we also plot the variation of δ=jδGRj with

respect to α̃. In the case ϵ ¼ −1, the function δ
jδGRj ðα̃Þ has

domain fα̃∈Rj − 1=20 ¼ −0.05 ≤ α̃ ≤ 0g. Moreover, it is
clear that, for such a choice of ϵ, all the permitted values of
α̃ leads to δ=jδGRj < 1, meaning that the nonminimal
coupling to gravity implies a shrinkage of the core’s size.
On the other hand, the case ϵ ¼ þ1, whose domain is
given by fα̃∈Rj − 1=20 ¼ −0.05 ≤ α̃ ≤ 0g, admits both
decrease or increase of the nonminimal monopole’s core in
comparison with the Barriola-Vilenkin solution. It is worth
recalling that the model given by (43) is only a toy model
and as such does not show all the aspects present in the
global monopole physics in its stringent details, although it
is a model that shares most of the key features of the true
scenario.

V. ON THE BLACK HOLE WITH
MONOPOLE CHARGE

Henceforth, we shall study a system consisting of a
Schwarzschild black hole carrying a global monopole that
is nonminimally coupled to the spacetime curvature. In this
case, the mass term appearing in the solution is the mass of
the black hole itself, so that we shall denote it asM, in order
to distinguish it from the monopole’s mass presented in the
previous section.

A. The event horizons

From (42) we notice that the Ricci scalar diverges for
r ¼ 0. Since RðrÞ is a scalar quantity, this fact reveals to us

FIG. 1. Variation of the ratio Mc=jMGRj with the parameter α̃
for both ϵ ¼ þ1 and ϵ ¼ −1 cases. The range of α̃ is restricted to
jα̃j < 1 in order to respect the weak coupling approximation.
For the case ϵ ¼ −1, the mass is always negative (blue curve).
Whereas, for ϵ ¼ þ1, the nonminimal coupling parameter
may render positive mass to the global monopole for
α̃ > 3=20 ¼ 0.15. The dashed line represents the increased/
decreased threshold for the mass of the nonminimal global
monopole compared with the GR one.

FIG. 2. Variation of the ratio δ=jδGRj with the parameter α̃ for
both ϵ ¼ þ1 and ϵ ¼ −1 cases.
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the presence of a curvature singularity at the origin, such as
is verified in the usual Schwarzschild solution. If the global
monopole is treated as an extended object, endowed with a
finite core as it was in the previous section, we have seen
that one has actually a regularity at origin, instead of a
singularity. However, if the monopole shows up as a charge
of a black hole of mass M, so that the core’s mass is
Mc ≪ M, the singularity at r ¼ 0 stems from the fact that
we are now approximating the defect as a pointlike object,
devoid of any inner structure.
In the Schwarzschild case, such a central singularity is

surrounded by an event horizon represented by the surface
rh ¼ 2GM. For a Schwarzschild black hole hosting a
global monopole inside it, the radius of such a surface
becomes rh ¼ 2GM

1−Δ . In this subsection, we intend to analyze
how this event horizon radius is affected by the presence of
a nonminimal global monopole.
Before proceeding with this analysis, it is convenient to

introduce the new set of dimensionless variables below,

x≡ r=GM; and σ ≡ α

G2M2
: ð57Þ

Furthermore, let us recall that, since we are now dealing
with a black hole carrying a monopole charge, the r−3-term
in the exterior metric shall not be neglected as it was in the
previous section; in the present case, the weak coupling
assumption takes as reference a different length scale, as
well as the fact that the mass M is not the mass of the core
Mc anymore, but the mass of the black hole itself. These
two features enhance the impact of such a term, so that it
will be kept in the equations.
Thus, in terms of the variables (57), the solution encoded

in (40) and (41) may be rewritten as

AðxÞ−1 ¼ 1 − Δ −
2

x
þ 14σΔ

x2
−
18σΔ
x3

; ð58Þ

and

BðxÞ ¼ 1 − Δ −
2

x
þ 20σΔ

x2
−
30σΔ
x3

: ð59Þ

As it is well known, the radial position of the event horizon
rh associated with a given static solution may be found
through g11ðrhÞ ¼ 0. For the metric functions above, this
involves solving the algebraic equation AðxhÞ−1 ¼ 0,
whose roots shall give the corresponding horizons radii
of the solution.
An alternative way to depict the occurrence of these

horizons is by plotting the graph of the function AðxÞ−1 for
different σ values, so that we can identify the corresponding
zeros and examine how the horizon locations are changed
by the nonminimal coupling. This is done in Fig. 3, where
the behavior of the metric function AðxÞ−1 is displayed for
negative and positive values of σ. As we did before, in all
these curves the solid angle deficit has been fixed as
Δ ¼ 0.3. In both panels, we verify that, in the reference
case σ ¼ 0, only one horizon appears at xh ¼ 2=ð1 − ΔÞ, in
accordance with what is expected for the standard Barriola-
Vilenkin metric.
In Fig. 3(a), the influence of a negative σ is portrayed.

Contrary to the GR case, where only one event horizon
shows up, we see here that even small deviations from GR
lead to the appearance of pairs of horizons: outer horizons
(xþ), which are the event horizons in the usual sense, and the
inner ones, the so-called Cauchy horizons (x−). The plot
shows us that, by increasing the nonminimal coupling
(within the weak coupling assumption), one shifts this pair
of horizons farther and farther from the central singularity.
However, it is clear that, while the nonminimal coupling
exerts a strong impact on the location of the Cauchy horizon,
its influence in shaping the event horizon is considerably
diminished. This is an already expected result, since the

FIG. 3. The metric function A−1ðxÞ for different magnitudes of the nonminimal coupling parameter, considering the illustrative value
of Δ ¼ 0.3. (a) The AðxÞ−1 curves for the σ < 0 cases. (b) The profile of this metric function for σ > 0 values. The zeros of this function
correspond to the locations of the horizons.
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contributions of the x−2 and x−3 terms in (58) become
significant for small x. Furthermore, let us notice that these
two surfaces split the spacetime into three distinct regions:

(i) xþ < x, where the metric functionA−1ðxÞ is positive,
so the coordinate t is timelike while r is spacelike;

(ii) x− < x < xþ, where A−1ðxÞ is negative and hence
t and r turn into spacelike and timelike, respec-
tively; and

(iii) x < x−, where the sign of A−1ðxÞ becomes positive
again, so that the coordinates t and r reacquire the
original nature they had in region (i).

In this vein, this solution clearly mimics what happens in
the Reissner-Nordström (RN) spacetime, except that in the
present case one does not find any naked singularity as long
as the nonminimal coupling remains restricted to the weak
coupling condition jσj < 1 that must be indeed obeyed by
the here studied metric [given by (58) and (59)]. As it
occurs in the RN case, the presence of this extra inner
horizon shall also change the nature of the central singu-
larity, while it is spacelike for σ ¼ 0, it becomes timelike
for jσj ≠ 0.
In the context of GR, the appearance of Cauchy horizons

in solutions like RN spacetime represents a potential loss of
the predictability of the theory. On the other hand, some
results indicate instabilities of these horizons against small
perturbations involving test massless fields [47] and also a
blueshift instability, which means a divergence in the
flux of radiation received by an observer crossing this
horizon [48], leading to a formation of a “mass-inflation”
singularity at such a surface [49]. However, other authors
show that such instabilities may be circumvented or at least
alleviated by considering a RN spacetime plus a cosmo-
logical constant [50] or assuming that the black hole
experiences an accelerated motion [51]. In a future study,
it would be interesting to revisit these aspects within the
context of the solution presented in this work.
As it is exhibited in Fig. 3(b), for σ > 0 we verify a

repetition of the same behavior that is seen in the σ ¼ 0
case, in which a single event horizon forms. However, in
contrast to the submodel σ < 0, here the event horizon
surfaces become closer and closer to the central singularity
as σ is increased. Nonetheless, let us notice that it occurs in
a quite mild manner, showing that this property is just
slightly sensitive to the nonminimal coupling parameter.
On the other hand, it is evident that the nontrivial topology
encoded in the parameter Δ has a more decisive role in
determining the size of the horizon, as it is demonstrated by
the gap that we see betweenΔ ¼ 0 (Schwarzschild) and the
remaining Δ ≠ 0 cases.

VI. GEODESIC MOTION OF TEST PARTICLES

Now, we will be interested in examining the motion of
test particles in the surroundings of such a hairy black hole.
It is known that such a geodesic motion in a given geometry
may be studied through the Lagrangian Lg below,

Lg ¼ gμν
dxμ

dτ
dxν

dτ
¼ k; ð60Þ

where k ¼ 0 or −1 denotes massless and massive particles,
respectively. In this section, we are going to discuss the
motion of massive particles around the aforementioned
black hole and in this case the affine parameter τ will
coincide with the proper time for such a particle traveling
along timelike geodesics. It is convenient to fix the motion
on the equatorial plane θ ¼ π

2
, which makes (60) assume the

following form:

Lg ¼ −BðrÞ
�
dt
dτ

�
2

þ AðrÞ
�
dr
dτ

�
2

þ r2
�
dφ
dτ

�
2

; ð61Þ

given the metric (11). The Lagrangian above contains
clearly two cyclic coordinates, t and φ, which leads to
the arising of the conserved quantities below,

E≡ BðrÞ dt
dτ

and L≡ r2
dφ
dτ

; ð62Þ

where E and L mean, respectively, the total energy and
angular momentum per unit of mass of the test particle.
Using these variables in (61) and setting k ¼ −1 we get the
following orbital equation:

AðrÞBðrÞ
2

�
dr
dτ

�
2

þ VeffðrÞ ¼ E; ð63Þ

where E ≡ E2

2
and the effective potential being given by

VeffðrÞ≡ BðrÞ
2

�
L2

r2
þ 1

�
: ð64Þ

Using (29) in (63), we may express (63) as follows:

1

2
e

	
6αΔ
r2


�
dr
dτ

�
2

þ VeffðrÞ ¼ E: ð65Þ

It is evident from the equation above that it describes a
motion subject to the condition E − VeffðrÞ > 0. Moreover,
the radial positions for which E ¼ VeffðrÞ represent the
turning points of the motion. With (65) at hand, we are able
to investigate the possible orbits to be followed by material
test particles. In particular, we shall be interested in stable
circular motion around our hairy black hole. It is well
known that, given an effective potential associated with a
certain spacetime through Eq. (65), any stable circular orbit
must fulfill the following conditions:

(i) ṙ ¼ 0;
(ii) ∂Veff=∂r ¼ 0; and
(iii) ∂

2Veff=∂r2 > 0,
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where the dot means derivative with respect to the proper
time. The first condition implies in E ¼ Veff , what fixes the
energy that a test particle must have at a given orbit. The
second condition tells us that for a stable circular orbit the
effective potential must be a critical point and it gives us a
polynomial equation whose roots indicate the radial posi-
tions of the orbits. However, this is a necessary but not
sufficient condition for stable circular orbits. It is well
known that the nature of these critical points depends on the
sign of the second derivative: they will be either minimum
or maximum points, depending on the positive or negative
sign of the second derivative of VeffðrÞ, respectively. The
former shall provide stable orbits, whereas the latter will
result in unstable ones. In this vein, the third condition
provides the final requirement that stable circular orbits
have to obey. According to what we have learned from
classical mechanics, in stable orbits the orbiting particle
tends to return to its original orbit whenever its motion is
slightly perturbed. Whereas for unstable orbits, even a
small perturbation is enough to make the particle to depart
further from its original orbit.

A. The innermost stable circular orbit

In the context of GR, stable circular orbits are not
possible at arbitrarily small radii, contrary to what is
predicted in the Newtonian gravity, where these orbits
may exist for all radial positions. In Einstein gravity,
considering the standard Schwarzschild spacetime, the
minimum radius at which these orbits are possible is
rISCO ¼ 6GM [52–54], where ISCO denotes the innermost
stable circular orbit. This parameter is useful in the study of
accretion disks, as it represents the inner edge of the disk
[55] and its value is usually affected by intrinsical proper-
ties of the central mass around which the orbit takes place,
for instance, the spin of the black hole or the equation of
state of the neutron star [56,57]. It is possible to show that
an orbiting particle at the ISCO has angular momentum
and energy given by LISCO ¼ 2

ffiffiffi
3

p
GM and EISCO ¼ ffiffiffiffiffiffiffiffi

8=9
p

.
In GR, the occurrence of the ISCO takes place at a
intermediate condition between ∂

2Veff=∂r2 > 0 and
∂
2Veff=∂r2 < 0, in which one has the so-called marginally
stable orbit, where ∂

2Veff=∂r2 ¼ 0.
All these ISCO parameters are slightly modified if the

Schwarzschild black hole under analysis is endowed with a
global monopole charge. For this case, the black hole
mass is rewritten as M → M=ð1 − ΔÞ, thus changing the
quantities rISCO and LISCO, whereas E turns out to be
E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ΔÞ8=9p

[58]. So, it is helpful to use the scaled
ISCO parameters above as a starting point of our study
about how the nonminimal matter-curvature coupling
influences a given orbital motion.
In addition to the variables (57), let us introduce the

redefinition l≡ L=GM. For convenience, we will express
the results of this section in terms of these dimensionless

variables. So, at leading order in Δ and α the effective
potential will be expressed in terms of such variables as

ṼeffðxÞ ¼
1

2

�
1 − Δ −

2

x
þ 2½10σΔþ 6ð1þ ΔÞ�

x2

−
3½10σΔþ 8ð1þ 2ΔÞ�

x3
þ 240σΔ

x4
−
360σΔ
x5

�
;

ð66Þ

where we have used

l2 ¼ 12

ð1 − ΔÞ ; ð67Þ

when going from (64) to (66), which corresponds to the l at
ISCO, rescaled by the global monopole term.

B. Discussion

In Fig. 4, the behavior of the effective potential (66) and
its first derivative as functions of x is shown, for different
values of the nonminimal coupling parameter. In Fig. 4(a),
one compares the ṼeffðxÞ for different cases. The green
curve is the effective potential associated with the usual
Schwarzschild black hole, for which Δ ¼ 0 and σ ¼ 0,
with the black dot indicating the ISCO position at x ¼ 6.
For the sake of illustration, for the remaining cases the
global monopole parameter is fixed as Δ ¼ 0.3. The black
curve is the Barriola-Vilenkin black hole, which corre-
sponds to the Schwarzschild metric with a standard global
monopole charge. From this plot, we verify that increasing
values of σ give rise to maximum points in the ṼeffðxÞ
curve, corresponding to higher and higher values of this
function. This signals the appearance of a potential barrier
that an arbitrary test particle traveling from the infinity has
to overcome in order to reach the central singularity. So, the
strength of the nonminimal coupling contributes to increase
more and more of such a barrier. Additionally, one also
verifies that the size of the gap between the green curve and
the bundle of curves below is related to the difference
between Δ ¼ 0 (assumed at the green curve) and Δ ¼ 0.3
(valid at the black, blue, and red ones). So, the larger the
parameter Δ is, the wider will be this gap.
Figure 4(b) allows us to locate the position of possible

unstable or stable orbits, by examining the position of the
critical points of the effective potential, i.e., the zeros of
equation dṼeff=dx. This plot help us to understand more
clearly the nature of the critical points. Notice that, in the
Schwarzschild case, the derivative of the effective potential
has only one zero in a point in which there is no change of
sign for dṼeff=dx. This aspect characterizes what is known
by a marginally stable orbit existing at the ISCO radius.
On the other hand, for the remaining non-Schwarzschild
cases, we verify changes of sign for the function dṼeff=dx
when its respective zeros are reached. For those sign
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changes in which one goes from positive (negative) to
negative (positive) sign, we have the presence of a
maximum (minimum) point there.
Looking closely at the effective potential curves, one

sees this emergence of either new maxima and minima
points for each σ’s value in a more evident way. In Fig. 5(a),
the maxima points for different intensities of the non-
minimal coupling are shown. There, we notice that growing
values of σ lead to the appearance of possible unstable
orbits closer and closer to the center of the black hole. On
the other hand, Fig. 5(b) shows that the larger σ is, the
farther is the position at which the new minima will arise.
These minima will correspond to the ISCO radii for this
hairy black hole and their occurrence will have conse-
quences on the matter accretion around such compact
objects. As we have mentioned before, the ISCO radius

encloses the inner border of the accretion disk by separating
the surface of the disk itself from the plunging region where
the matter falls almost freely (with negligible torque) into
the central black hole. It is known that the energy flux and
the temperature, as well as the luminosity of an accretion
disk depend on the ISCO position, so the results depicted in
Fig. 5 constitute a potential observational signature for this
black hole studied here [59,60]. This issue will deserve
proper attention from us in the future.
We finish our analysis by examining the σ < 0 cases. In

Fig. 6, we represent the curves for the effective potential as
well as its first derivative in order to discuss its capability in
engendering stable orbits, as we did for the previous case.
The first difference that is immediately realized between the
present case and the previous one is the formation of an
infinite “centrifugal” barrier on the left. That barrier shall

FIG. 5. The arising of new possible orbits for a material particle subject to (66). (a) The left panel shows how the nonminimal coupling
dictates the appearance of unstable orbits around the central black hole. (b) On the other hand, the right panel illustrates the emergence of
stable orbits for different values of σ.

FIG. 4. Behavior of the effective potential with respect to the reparametrized distance x. (a) Choices in which Δ > 0 make the Ṽeff

curves to be shifted downward, while the nonminimal coupling parameter gives rise to new critical points for Ṽeff, both maxima and
minima. (b) Makes clear such a new critical points’ appearance by showing the profile of the first derivative of Ṽeff .
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prevent a test particle coming from the infinity with the
angular momentum (67) to reach the central singularity,
regardless of the energy it has.
In Fig. 6(a), in addition to the ṼeffðxÞ profile, we also use

two dots to indicate the positions of both the Cauchy and
event horizons for the respective curves, with which it is
possible to see that, for the analyzed σ values, the ṼeffðxÞ
has minima located between both horizons. In principle,
this would point to the possibility of the existence of stable
orbits in this region; however, we have to rule them out of
our model since, as mentioned in the previous section,
when a particle traverses the event horizon, its radial
coordinate turns into a timelike one. As such, it will
inevitably decrease toward the central singularity, in a
progressive infall that only finishes when the particle
crosses the Cauchy horizon. So, this reinforces the fact
that, despite what the Ṽeff curves tell us, such a interme-
diary region is not suitable for the existence of stable
orbits.2

On the other hand, the right panel illustrates the possible
appearance of both stable and unstable orbits in the region
outside the event horizon, as the zeros of the function
dṼeff=dx show us. We can see that, for σ ¼ −0.05, we will
have an unstable orbit at the point where the derivative
changes its sign from “þ” to “−” (maximum point) and an
outer stable one at the point where the opposite sign change
occurs (minimum point). This second orbit will correspond
to the ISCO one for the case σ ¼ −0.05, located at
xISCO ≈ 8.62. It is instructive to compare this result with
the xISCO ≈ 10.30 obtained for σ ¼ 0.05, as it is portrayed
in the blue curve of the Fig. 5(b). This evinces the crucial

role of the σ sign in defining how the orbital motion will be
structured. Moreover, as demonstrated by the evolution of
the curves with growing values of σ, when the nonminimal
coupling is increased, such orbits in the region external to
the horizon cease to exist.

VII. THE GRAVITATIONAL LIGHT BENDING

At last, we shall discuss the effects such a black hole may
exert on light rays traversing its surroundings. As we shall
see, there will be combined effects coming from both the
nonminimal matter-curvature coupling and the nontrivial
topology induced by the global monopole. The orbital
equation obtained from the null geodesic associated with
the background (11) is found by taking k ¼ 0 in (60),
which gives

e

	
6αΔ
r2




r4

�
dr
dφ

�
2

þ BðrÞ
r2

¼ 1

b2
; ð68Þ

where b≡ L=E is the impact parameter of the light ray
trajectory. As we are working within the weak coupling
framework, it is convenient to expand the exponential term
in (68) for a small α, so that this equation now becomes

1

r4

�
1þ 6αΔ

r2

��
dr
dφ

�
2

þ BðrÞ
r2

¼ 1

b2
: ð69Þ

This equation allows us to obtain the characteristic length
of the light bending physics, which is the so-called closest
approach distance of the light ray with respect to the central
mass, denoted by r0. In Newtonian gravity, one does not
assume any gravitational light deflection, so that the
quantities b and r0 actually coincide. However, in the
context of GR, r0 deviates from b by means of relativistic
corrections, typically proportional to GM powers. In an

FIG. 6. Behavior of the effective potential Ṽeff for the σ < 0 submodel. The dots in both panels indicate the location of the horizons
(Cauchy and event ones). (a) The arising of an infinite barrier for the effective potential felt by a particle endowed with the angular
momentum here analyzed. (b) Displays the critical points’ appearance by showing the profile of the first derivative of Ṽeff .

2Nevertheless, it is worth mentioning the interesting Ref. [61],
which discusses the viability of orbits (even for the development
of life) in the innermost region, inside the Cauchy horizon of
charged or rotating black holes.
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extended gravity, like the one we are handling, one expects
that new corrections appear on the expression for r0.
By definition, r0 is the distance at which the light
experiences a turning point in its motion, so dr

dφ ¼ 0. By
imposing this condition in (68), we find following algebraic
equation for r0:

r50−b2ð1−ΔÞr30−2GMb2r20þ20αΔb2r0−30GMαΔ¼0:

ð70Þ

Fortunately, for our purposes, it is not necessary to solve
exactly the above quintic equation. We may instead obtain a
tractable expression for r0 by solving (70) to the leading
order in GM and α. As we shall see in this section, taking
these two quantities as parameters in a perturbative expan-
sion reveals to be fully compatible with the premises we
will assume in our study of the light bending. Solving (70)
along these lines, one finds the following approximated
solution:

r0 ⋍ b
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
−

GM
1 − Δ

þ 10αΔ
bð1 − ΔÞ3=2 : ð71Þ

For reasons that will become clear later, we shall be
interested in the quantity 1=r0, whose expression can be
obtained from (71),

1

r0
⋍

1

b
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p þ GM
b2ð1 − ΔÞ2 −

10αΔ
b3ð1 − ΔÞ5=2 : ð72Þ

It is usual to redefine the radial coordinate as u ¼ r−1. In
terms of such variable, the equation of motion (69) can be
recast as follows:

ð1þ 6Δαu2Þ
�
du
dφ

�
2

þ u2ð1 − ΔÞ − 2GMu3

þ 20αΔu4 − 30GMαΔu5 ¼ 1

b2
: ð73Þ

An important consideration about the angle variable φ is
in order. It is assumed that the black hole we are studying
here carries a global monopole charge, possibly after
having swallowed it, as we have mentioned previously.
Notice that, even without such interaction, the global
monopole may affect the geodesic motion of light particles
in its spacetime due to the solid deficit angle that emerges
around it from the parameter Δ. Hence, it is useful to
redefine the variable φ so that the residual influence of the
solid deficit angle is taken into account. This leads us to
introduce a new angle variable φ̄, which comes from the
original φ as follows:

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
φ → φ̄; ð74Þ

which can be inferred directly from (22), considering θ at
the equatorial plane, θ ¼ π

2
. Such a redefinition for the angle

variable due to the presence of a solid deficit angle has
already been adopted in the literature, as one can see in
Ref. [62]. In terms of this new variable, we will have
uðφðφ̄ÞÞ ¼ ūðφ̄Þ and Eq. (73) turns out to be

ð1þ 6Δαū2Þð1 − ΔÞ
�
dū
dφ̄

�
2

þ ū2ð1 − ΔÞ − 2GMū3

þ 20αΔū4 − 30GMαΔū5 ¼ 1

b2
: ð75Þ

We can obtain a second order differential equation from
(75) by taking its derivative with respect to φ̄,

2ð1þ6Δαū2Þð1−ΔÞ
�
d2ū
dφ̄2

�
þ12αΔūð1−ΔÞ

�
dū
dφ̄

�
2

þ 2ūð1−ΔÞ−6GMū2þ80αΔū3−150GMαΔū4¼0:

ð76Þ

As it is well known, an orbital equation like (76) may be
solved by means of a perturbative treatment, in which we
consider only up to first order accuracy inGM and α. In this
procedure, the function ūðφ̄Þ is split into its zeroth and first
order parts as follows:

ū ¼ ū0 þ ū1: ð77Þ

In our approach, we will consider that the global monopole
contributes both to the zeroth and first perturbative orders.
While its solid angle deficit is treated as a background
property, its nonminimal coupling to gravity is assumed as
a first order effect. That is why we take the global
monopole parameter Δ as a background quantity, of the
same order as ū0. With this choice, we intend to look more
closely at the effects coming from the nonminimal coupling
by enhancing the influence of the α parameter on the
gravitational light bending.
Using (77) in (76) one finds the zeroth and first order

solutions for the respective differential equations, so that
the general solution up to first order in GM and α reads

ūðφ̄Þ ¼ sin φ̄
R0

þ 3αΔð9þΔÞ
2R3

0ð1−ΔÞ φ̄ cos φ̄−
αΔð7þ 3ΔÞ
8R3

0ð1−ΔÞ sinð3φ̄Þ

þ GM
2R2

0ð1−ΔÞ cosð2φ̄Þ þ a0 sin φ̄þ 3GM
2R2

0ð1−ΔÞ ;

ð78Þ

where R0 and a0 are integration constants to be determined
with the aid of the initial conditions

ūðφ̄ ¼ π=2Þ ¼ 1=r0 and
dū
dφ̄

����
φ̄¼π=2

¼ 0: ð79Þ
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Using them in (78) and then comparing it with (70), we find
the expressions for R0 and a0, which are

R0 ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
and a0 ¼ −

αΔð87þ 3ΔÞ
8b3ð1 − ΔÞ5=2 : ð80Þ

So, the final form of the general solution to the leading
order in GM and α gives

ūðφ̄Þ ¼
�

1

b
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p −
αΔð87þ 3ΔÞ
8b3ð1 − ΔÞ5=2

�
sin φ̄

þ 3αΔð9þ ΔÞ
2b3ð1 − ΔÞ3=2 φ̄ cos φ̄ −

αΔð7þ 3ΔÞ
8b3ð1 − ΔÞ5=2 sinð3φ̄Þ

þ GM
2b2ð1 − ΔÞ2 cosð2φ̄Þ þ

3GM
2b2ð1 − ΔÞ2 : ð81Þ

Now, we are ready to compute the magnitude of the light
deflection caused by this black hole. The approach to be
used to obtain this result depends crucially on the nature of
the spacetime under consideration. For asymptotically flat
geometries, like the Schwarzschild one, it is possible to
assume the light coming from a far source located at
infinity, so that the light trajectory is initially a straight line
that is gradually bent as the light approaches the surround-
ings of the spherical distribution of mass. After the light
reaches the distance of closest approach with respect to the
central mass, it is deflected and then continues its motion
toward an observer at infinity, thus resuming progressively
its former aspect of a straight line trajectory. The deflection
angle is defined as the angle between the two asymptotes
that encompass the full path of the light, before and after it
is deflected by the central mass. As it is well known, for a
Schwarzschild metric, the magnitude of such an angle is
given to the leading order in GM by δdef ¼ 4GM

c2b . However,
notice that the spacetime given by the metric (11) is not
asymptotically flat in the usual sense, which recommends
us to adopt an alternative procedure to study the gravita-
tional light deflection. For this purpose, we will make use
of the method proposed by Rindler and Ishak [63]. In that
approach, the authors analyze the light bending associated
with a Schwarzschild–de Sitter (SdS) spacetime by intro-
ducing the variableΨ, which is the angle between the radial
direction and the light trajectory at a certain point
Pðr; rðφÞÞ. Given the metric (11), one may verify that Ψ
must obey the following relation:

tanΨ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½AðrÞ�−1

q ���� drdφ
����
−1
: ð82Þ

In Ref. [64], the reader may find a very intuitive and purely
geometrical way to understand the relation above.
Additionally, as discussed in [65], we can also use the
orbital equation (68) to rewrite (82) in a more convenient
form, namely,

tan Ψ̄ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2Bðr0Þ
r2
0
BðrÞ − 1

r ; ð83Þ

where, similar to what we did for φ, we have incorporated
the deficit angle property in a new definition forΨ given by
Ψ → Ψ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − Δ
p

Ψ. For r ≫ r0, one expects the angles Ψ̄
and φ̄ to be very small, which implies tan Ψ̄ ∼ Ψ̄ as well
as sin φ̄ ∼ φ̄ and cosð2φÞ ∼ 1. So, using this assumption
in (81) and (83), we are left with the following expressions
for Ψ̄ and φ̄, to the leading order in GM and α:

Ψ̄¼ r0
r
−

GMr0
r2ð1−ΔÞþ

10αΔr0
r3ð1−ΔÞþ

GM
rð1−ΔÞ−

10αΔ
rr0ð1−ΔÞ;

ð84Þ

and

φ̄ ¼ r0
r
þ GM
rð1 − ΔÞ −

10αΔ
rr0ð1 − ΔÞ −

2GM
r0ð1 − ΔÞ ; ð85Þ

respectively.
As it is well known, the strength of the gravitational light

deflection may be assessed by the one-sided bending angle
ϵ, which consists of the angle between the tangent to the
light trajectory at the point ðr;φÞ and the polar axis. For our
case, this angle is3

ε≡ Ψ̄ − φ̄ ¼ 2GM
r0ð1 − ΔÞ −

GMr0
r2ð1 − ΔÞ þ

10αΔr0
r3ð1 − ΔÞ : ð86Þ

Let us recall that the distance of closest approach r0 is
coordinate dependent and not a measurable quantity. For
this reason, it is suitable to express the bending angle in
terms of the apparent impact parameter b, which is in fact a
coordinate independent variable. So, using (70) and (71) in
the equation above, we can rewrite it as

ε¼ Ψ̄− φ̄¼ 2GM

bð1−ΔÞ3=2 −
GMb

r2
ffiffiffiffiffiffiffiffiffiffiffi
1−Δ

p þ 10αΔb
r3

ffiffiffiffiffiffiffiffiffiffiffi
1−Δ

p : ð87Þ

In calculations of the bending angle in the context of
asymptotically flat geometries, one usually considers
observer and source located at infinity by taking the limit
r → ∞ in the orbit equation. This assumption, however, is
not proper within nonasymptotically flat metrics. For
example, the SdS spacetime is endowed with the de
Sitter horizon at a finite radial distance r ≈

ffiffiffiffiffiffi
3Λ

p
, making

the procedure of taking the limit r → ∞ in the orbit
equation totally meaningless. In fact, since all observed
stars and galaxies are located at a finite distance from us,
any realistic scenario should take into account the role of

3Based on the definitions adopted by Rindler and Ishak [63].
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finite-distance corrections on the bending angle expression.
In this work, we are interested in assessing the influence of
such contributions. So, following the procedure adopted in
Refs. [65,66] we may rewrite the result above in terms of
the positions both of the source (rs, φs) and the observer
(robs, φobs) with respect to the central mass. So, when the
contributions at source and observer positions are consid-
ered, the total bending is

ϵtotal ¼ ðΨ̄s þ Ψ̄obsÞ − ðφ̄s þ φ̄obsÞ; ð88Þ

from which we will find the explicit form of the total
deflection angle ϵtotal,

ϵtotal ¼
4GM

bð1 − ΔÞ3=2 −
GMbffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
�
1

r2s
þ 1

r2obs

�

þ 10αΔbffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
�
1

r3s
þ 1

r3obs

�
: ð89Þ

The first term of (89) is promptly identified as the usual GR
result for the deflection angle caused by a spherical
distribution of mass, rescaled by the presence of the
monopole charge through the term ð1 − ΔÞ3=2. Whereas,
the second and third terms on the right-hand side of (87)
correspond to finite-distance corrections that shall be
important to the light bending phenomenon only if the
finite positions of the source and observer with respect to
the central mass need to come into play.
One may also note that forΔ ¼ 0 Eq. (89) coincides with

Eq. (25) of [66] for Λ ¼ 0, as it is expected. In Ref. [67],
using the Gauss-Bonnet theorem, the authors examine the
impact of finite-distance corrections on the bending of light
for two nonasymptotically flat backgrounds, namely, the
SdS spacetime as well as an exact solution of the Weyl
conformal gravity.
Finite-distance effects on the bending of light shall be

significant in situations where the source is near enough,
such as in planned astrometric missions like the Laser
Astrometric Test of Relativity mission [68], designed to
probe the deflection of light by the solar gravity by means
of laser interferometry between two microspacecrafts
whose lines of sight pass close by the Sun.

A. Estimating the contribution of the nonminimal
monopole term to the deflection angle

InRef. [69] is analyzed the observational consequences of
such finite-distance terms on the gravitational lensing
caused by both the Sun and Sagittarius A* (Sgr A*). In
that paper, the authors estimate how much such corrections
affect the bending of light for these two gravitating systems.
Let us follow a similar route by considering the hypo-

thesis in which the Sgr A* black hole at the Galactic Center
carries a nonminimal global monopole charge. In this case,
we will be interested in making a rough estimate about the

contribution of the third term of (89), here denoted by δϵ, to
the deflection angle. For this purpose, we assume that the
light coming from a given source gets deflected by Sgr A*
and reaches an observer at Earth. With this premise, it
becomes reasonable to neglect the term 1=r3obs, since robs is
far larger than the impact parameter, while a source star
may be in the bulge of the Galaxy. For this reason, we may
consider that the most relevant finite-distance contribution
comes from the term proportional to 1=r3s , so that

δϵ ∼
10αΔbffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
r3s
: ð90Þ

For a typical grand unification scale, one has Δ ¼ 8πGη2 ∼
10−5 [7], which puts

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
quite close to unity.

Moreover, let us suppose that the light source is the star
S2, which was tracked during its May 2018 closest
approach to Sgr A* [70]. The observations showed that
such a pericenter approach was given by rs ¼ 1400GM,
in which the mass of the central black hole is
M ¼ 4 × 106M⊙. Within the weak deflection limit, where
the impact parameter b ≫ GM, we shall assume
b ¼ 103GM. Additionally, let us rewrite (90) in terms of
the dimensionless parameter σ introduced in (57). So, we
are left with

δϵ∼10σ

�
8πGη2

10−5

��
b

103GM

��
1400GM

rs

�
3

μarcsec: ð91Þ

As it is expected, the impact of such a correction on the
deflection angle depends crucially on the strength of the
nonminimal coupling. Since we are adopting the weak
coupling hypothesis, the values of the parameter σ will be
restricted to σ < 1. If the model is marginally inside the
weak coupling regime with σ ∼ 10−1, the corresponding δϵ
would be of the order of 1 μarcsec, which is 1 order of
magnitude beyond the current sensitivity achieved by the
Event Horizon Telescope [71–76]. However, the improve-
ment of this accuracy up to a submicroarcsecond level is
among the prospects of astrometric space missions over the
next decades [77].
On one hand, considering that the enhancement of δϵ as

seen above is greatly favored by the special conditions
created by the advent of the closest approach of the star
S2, one might expect that the observational signature
yielded by the nonminimal coupling of the global mono-
pole to gravity will be, in general, beyond the sensitivity
of the present observational techniques for the majority of
the cases of stars orbiting Sgr A*. On the other hand, δϵ
shows up as a better observational signature in compari-
son with the light deflection caused by a standard global
monopole, minimally coupled to gravity, for which the
corrections on the bending appear through the square and
cubic roots of ð1 − ΔÞ, whose effect on the bending angle
is negligible.
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VIII. CONCLUDING REMARKS

In this work we have studied a gravitating global
monopole that couples nonminimally to gravity. We ana-
lyzed several consequences of this nonminimal coupling on
the study of this topological defect and compared our
findings with the known results for the standard Barriola-
Vilenkin monopole. Considering a specific gravitational
action by which such a matter-curvature interplay is mod-
eled, we managed to find an analytical solution for the
respective field equations describing the model in the zone
outside the monopole’s core. Next, we assumed this non-
minimal coupling is small enough, so that all the nonlinear
contributions in the coupling parameterwere neglected. This
assumption provided a significant simplification for the
problem, allowing us to reach a clearer interpretation of the
results. Then, by assuming a globalmonopole endowedwith
a inner structure, we have provided the interior solution of
the system within the weak coupling regime. By using the
Hahari-Loustó analytical model alongwith propermatching
conditions, we were able to determine some of the main
properties of this inner structure, namely, the core radius and
the mass contained in it, which were expressed in terms of
the parameter of the theory. We have analyzed the range of
values of this parameter capable to ensure physically
acceptable values for the radius of the core. Additionally,
we have shown that, contrary to what is seen in GR, the
nonminimal coupling with gravity may provide a positive
mass to the global monopole, although the interior metric
obeys the same de Sitter–like structure as the Barriola-
Vilenkin monopole.
In the second half of our study, we focused on some

features of a hypothetical nonrotating black hole carrying a
nonminimal global monopole charge. The first aspect we
examined was the potential appearance of both event and
Cauchy horizons for this spacetime induced by nonzero
coupling parameters. In the aftermath, we finished this work
by studying the geodesic motion both of time- and lightlike
particles in this scenario. For material particles, we discuss
the requirements for the existence of stable circular orbits,
showing the possible arising of both stable and unstable
circular orbits. In the analysis of the light bending, we
computed the deflection angle, by expressing it in terms of
the finite positions of the source and observer. This hypo-
thesis has a purpose of giving amore realistic character to the
study of the light deflection, since all potential sources in the
Universe are effectively located at a finite distance from
the receiver. On the other hand, weverified that such assump-
tion is crucial to enhance the effect of the nonminimalmatter-
curvature coupling on the light bending phenomenon.
In addition to the original contribution of this work per se,

we believe it gives rise also to promising perspectives to be
explored in forthcoming opportunities. The collection of
new results here obtained reveals an interesting global
monopole model which is, furthermore, free of the negative
mass plaguing the standard Barriola-Vilenkin framework.

However, this model has been constructed by appealing to
the outside-the-core approximation, which exempted us
from using Eq. (16) along with the field equations, which
would form a system of nonlinear coupled differential
equations, only solvable by numerical techniques. So, only
a full numerical treatment of this set of field equations might
confirm if the positiveness of themass is ensuredwithin such
a more general version of this model.
It is also expected that the emergence of event andCauchy

horizons of different radii in the spacetime of the here
investigated hairy black hole may bring consequences for
the thermodynamics of this configuration, since all relevant
quantities of the black hole thermodynamics are affected by
the size of the event horizon radius, as it is well known.
Likewise, this may impact the analysis of quantum phenom-
ena that can take place near the event horizon, thus
motivating future studies on this issue within the framework
of a semiclassical gravity. Furthermore, the arising of
Cauchy horizons in such a geometry suggests that studies
focused on the analysis of stability of such a surfaces against
small perturbations may be a interesting possibility for
future efforts.
Moreover, the novel features arising in the investigation

of the geodesic motion indicates potential observational
prospects, whether for time- or lightlike particles.
For the material particles motion, our study pointed out
possible signatures to be seen in the accretion disks
phenomenon by means of changes in the rISCO position
induced by the nonminimal global monopole. While for
the light geodesics, the extra term in the deflection angle
related to the nonminimal coupling corresponds to
an r−3 dependence upon the source and observer posi-
tions, which may be distinguished from the remaining two
terms in measurements with high enough precision. In this
vein, we have provided an order-of-magnitude estimate
considering Sgr A* as the central black hole responsible
for the light deflection, taking as the light source the star
S2 in its most recent pericenter approach.
The light bending study has demonstrated that the model

under scrutiny seems to indicate that the property of non-
minimal coupling between matter and gravity may perhaps
contribute for the increasing of the detectability of topo-
logical defects. At which extent would this be confirmed by
a detailed analysis involving other observables on an
astrophysical scale? The answer for this intriguing question
raised by the present work deserves to be pursued in future
investigations considering both other cosmic defects and
even other models of nonminimally coupled gravity.
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