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José Jaime Terente Díaz and Mindaugas Karčiauskas
Departamento de Física Teórica, Universidad Complutense de Madrid, E-28040, Madrid, Spain

(Received 6 June 2023; accepted 13 October 2023; published 31 October 2023)

In the context of FðϕÞR models of gravity, the conformal invariance of the curvature perturbation on
uniform-field slices has been already demonstrated in several publications. In this work, we study the
curvature perturbation R defined on hypersurfaces that comove with the effective fluid, whose energy-
momentum tensor is covariantly conserved. We derive the expressions ofR at first order in perturbations in
the Jordan and Einstein frames and relate the two. Generically, R is not conformally invariant, but it is on
sufficiently large scales during slow-roll inflation. Using our results, we also rederive the expressions for
inflation observables in the Jordan frame.
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I. INTRODUCTION

Over the last decades, mostly since the discovery of the
accelerating expansion of the Universe [1,2], many theories
of modified gravity have become an essential framework
to explore the early and late history of the Universe, the
primary example of the former being the paradigm of
inflation [3–6]. Scalar-tensor theories, in particular, are
among the most frequently used gravity models that have
been applied to study inflation [7–13]. These theories lead
into the notion of conformal frames [14] and raise the
question of how to interpret them physically [15–20].
In addition to those models of modified gravity, the

inflation paradigm has strengthened the development of the
theory of cosmological perturbations [21–23]. Not in vain,
one of its most striking predictions is the evolution of
classical perturbations from quantum vacuum fluctuations
into the large scale structures in the Universe [24]. An
important quantity in the inflationary cosmology is the
curvature perturbation, often formulated on comoving or
uniform-density time slicings. The perturbation defined on
those slicings has been shown to become constant once the
corresponding modes leave the horizon if the nonadiabatic
pressure vanishes [25]. This was proven to hold non-
perturbatively in Ref. [26], even when modifications of
Einstein’s gravity are included.1 These modifications may
generally be moved to the rhs of the metric field equations
and interpreted as contributions to an effective energy-
momentum tensor T̃μν [27,28]. The metric field equations
take on the form of the Einstein ones in general relativity
(GR), and the effective energy-momentum tensor is cova-
riantly conserved by virtue of Bianchi’s identity [29].
In the context of scalar-tensor theories, cosmological

perturbations have been extensively examined in the Jordan

frame [30–34], which is the frame where the gravitational
sector of the action includes a non-minimal coupling to
gravity and the matter sector couples to gravity only
minimally. This analysis has been also performed in
the post-inflationary universe, in the presence of matter
fields [35]. In those and other works [31,32,36–38] it is
usually claimed that the curvature perturbation is confor-
mally equivalent on comoving slicings [35–37]. This has
been shown to be exactly true (on all length scales and at
any expansion rate as we emphasise later, in Eq. (68) on
uniform-field slicings for single scalar field models. Those
are the slicings that comove with the scalar field fluid [see
e.g. Eq. (A.20) in Ref. [36], and Eq. (2.10) in Ref. [37], or
discussion in the paragraph below Eq. (2.3) in the same
reference].
One can also define the curvature perturbation on slices

that comovewith the effective fluid.We call this perturbation
R. It is to this perturbation that the results of Ref. [26] apply
directly. With this definition of the comoving slicing it does
not generally coincide with the uniform-field slicing. This
was clearly demonstrated in Ref. [37] in the case of fðRÞ
gravity. The same conclusion holds forFðϕÞR gravity, as we
show it explicitly in thiswork. Indeed, the presence of gravity
modifications in the effective energy-momentum tensor
prevents the off-diagonal components T̃0

i (the momentum
density) from vanishing when the perturbations of the non-
minimally coupled scalar fieldϕ (orF≡ f;R infðRÞ gravity)
are set to zero. Since all the perturbations defined on the
uniform-field slicing are conformally invariant [37], R will
not be equivalent in different conformally related frames.
Given the relevance of the comoving curvature pertur-

bationR in relating observations of the Cosmic Microwave
Background (CMB) and the Large Scale Structure (LSS)
with the properties of inflation [39,40], we address the issue
of its conformal invariance in FðϕÞR theories of gravity
at first order in perturbation theory, and derive the exact1Assuming the separate universes approach holds.
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conformal relation between R in Jordan and Einstein
frames (the latter being the frame in which the gravitational
sector of the action corresponds to the Einstein-Hilbert
action of GR). When applying the results of this analysis to
slow-roll inflation, we use some of the results from our
previous work [41], where we derived the slow-roll
approximation [42] in the Jordan frame.
In the present work, we use geometrical units, where

c¼ℏ¼MPl ¼ 1, MPl ¼ ð8πGÞ−1=2, and G is the Newton’s
gravitational constant. We also adopt the “mostly positive”
signature of the metric.

II. CONFORMAL FRAMES AND LINEAR
PERTURBATIONS

Conformal frames are naturally applied in scalar-tensor
theories of gravity. In this section, we review the action of a
field ϕ nonminimally coupled to gravity and introduce the
conformal transformation of themetric that allows us towrite
the action in themore familiar Einstein frame form.We begin
by discussing homogeneous manifolds and move to linear
perturbations about a spatially flat Friedman-Lemaître-
Robertson-Walker (FLRW) metric. To properly introduce
the comoving curvature perturbation at first order in pertur-
bation theory in the next sections, we reexamine how the
scalar perturbations of the energy-momentum tensor (the
scalar momentum in particular) and of the metric transform
under gauge transformations. Finally, we summarize the
formulas developed in Ref. [41] for the FðϕÞR theory of
gravity needed to analyse the conformal relation between the
linear comoving curvature perturbation in Jordan and
Einstein frames during slow-roll, as well as the correspond-
ing approximations.

A. The conformal transformation

To begin with, we consider a four-dimensional spacetime
manifold that is being foliated by a family of spacelike
hypersurfaces. Such a foliation or slicing is performed by
adopting a coordinate time t on the manifold [43]. While t
is kept fixed, the proper time τ depends on the metric,

dτ≡N dt; ð1Þ
whereN is the lapse function, which relates the coordinate
time to the physical time τ measured by some fiducial
observer [43].
We now assume FLRW spacetime manifolds, meaning

that the slices are homogeneous and isotropic. The thread-
ing is chosen so that the shift vector vanishes, which
simplifies the expressions. The resulting spatially flat
FLRW metric is

ds2 ¼ −N 2dt2 þ a2ðtÞδijdxidxj; ð2Þ

where aðtÞ refers to the scale factor that parametrizes the
relative variation of the proper volume element δV ∝ a3 of

the spacelike hypersurfaces over time. The volume expan-
sion rate is given by the Hubble parameter [41],

H ≡ 1

3δV
dδV
dτ

; ð3Þ

which is equal to −1=3 of the trace of the extrinsic
curvature tensor associated with the constant time hyper-
surface. In terms of the coordinate time,

HðtÞ ¼ ȧðtÞ
N aðtÞ ; ð4Þ

where overdots denote derivatives with respect to the
coordinate time.
We can use the same notation for the time derivative, i.e.,

the overdot, irrespective of the frame (metric) as we keep the
coordinates of the homogeneous manifold fixed. However,
themetric coordinate components (the lapse function and the
scale factor) are altered by a transformation of themetric, and
the proper time and proper volume shall differ in different
frames. A particular transformation of the metric, which
results in a rescaling of the lapse function and the scale factor,
is the conformal one [14],

ĝμνðxÞ ¼ Ω2ðxÞgμνðxÞ; ð5Þ

where Ω2ðxÞ is the conformal factor. When applied to the
homogeneous and isotropic metric (2), the conformal trans-
formation yields

N̂ ¼ ΩN ; ð6Þ

â ¼ Ωa; ð7Þ

where Ω ¼ ΩðtÞ. Although the slicing of the spacetime or,
equivalently, the choice of the time coordinate, is arbitrary,
for conveniencewe fix the slicingof theunperturbeduniverse
such that N ¼ 1 in the Jordan frame (without the loss of
generality), following Ref. [41]. The expressions are then
simplified in that frame, which we shall introduce later. This

implies that N̂ ¼ Ω.
When it comes to perturbations, we turn our attention to

the scalar ones about the spatially flat FLRW background
metric in particular. The metric is perturbed such that the
full one is

gμνðxÞ ¼ ḡμνðtÞ þ δgμνðxÞ; ð8Þ

δgμν denoting the linear perturbation of the metric and ḡμν
the background metric. From now on, we do not use bars
to denote the background components as we will not write
the full metric explicitly, and there is no risk of mixing
them up.
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Given ds2 ¼ ðgμν þ δgμνÞdxμdxν, we can write the line
element containing only the scalar part of the metric
perturbation as [24]

ds2 ¼ −N 2ð1þ 2AÞdt2 − 2∂iBdxidt

þ a2½ð1 − 2ψÞδij þ 2∂i∂jE�dxidxj; ð9Þ

where AðxÞ is the linear perturbation of the lapse function,
∂iBðxÞ the shift vector perturbation, ψðxÞ the intrinsic
curvature perturbation, and ∂i∂jEðxÞ the anisotropy in the
spatial metric. Under the conformal transformation (5),
we obtain the linear perturbation components of the metric
in the “hatted” frame,

δĝμν ¼ Ω2

�
δgμν þ 2

δΩ
Ω

gμν

�
; ð10Þ

where Ω2 denotes the background conformal factor. The
same expression in Eq. (8) applies to the frame with carets.
Thus, using Eq. (10), the line element in that frame is

dŝ2¼−
�
1þ2Aþ2

δΩ
Ω

�
Ω2N 2dt2−2Ω2

∂iBdxidt

þΩ2a2
��

1−2ψþ2
δΩ
Ω

�
δijþ2∂i∂jE

�
dxidxj; ð11Þ

and we identify the following perturbation variables in the
new frame,

Â≡ Aþ δΩ
Ω

; ð12Þ

B̂≡ Ω2B; ð13Þ

ψ̂ ≡ ψ −
δΩ
Ω

; ð14Þ

Ê≡ E: ð15Þ

B. Gauge transformations

In addition to the conformal transformations we intro-
duced in the previous section, we consider linear gauge
transformations [39],

xμ → xμ þ ξμðxÞ; ð16Þ

where the gauge transformation vector is parametrized as

ξμðxÞ ¼ ðαðxÞ; ∂iβðxÞÞ; ð17Þ

for scalar fluctuations. Under these gauge transformation,
the perturbations of the metric (9) transform as

A → A − α̇ −
Ṅ
N

α; ð18Þ

B → B −N 2αþ a2β̇; ð19Þ

ψ → ψ þHN α; ð20Þ

E → E − β: ð21Þ

These represent gauge transformation rules, see, e.g.,
Refs. [24,29,34], that we generalized to include a generic
lapse function N .
Besides the metric, another important tensor is the

energy-momentum one. The scalar components of the
linear perturbation of Tμ

ν are [24]

δT0
0 ¼ −δρ; ð22Þ

δT0
i ¼ ∂iΨ; ð23Þ

δTi
j ¼ δPδij þ Πi

j; ð24Þ

where Πi
j is the traceless part of δTi

j known as anisotropic
pressure [39]. ρ and P are the homogeneous energy density
and isotropic pressure, respectively, and δρ and δP are their
corresponding linear perturbations. Ψ is the linear scalar
momentum perturbation. It can be shown that these
perturbations transform as [39]

δρ → δρ − ρ̇α; ð25Þ

Ψ → Ψþ ðρþ PÞα; ð26Þ

δP → δP − Ṗα; ð27Þ

Πi
j → Πi

j; ð28Þ

when subject to the gauge transformations.

C. Scalar-tensor theory

Having reviewed both the conformal and gauge trans-
formations, we now proceed to introduce the specific model
of modified gravity; that is, FðϕÞR gravity.
For a canonical scalar field ϕ that couples nonminimally

to gravity, the action in the Jordan frame is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðϕÞR −

1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð29Þ

where VðϕÞ is the potential of the field and FðϕÞ the
coupling function. In this frame, the gravitational sector
of the action includes a scalar degree of freedom ϕ. This
action can be brought into the Einstein frame form by
performing a conformal rescaling of the metric [see Eq. (5)]
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and choosing the conformal factor such that [44] (remem-
ber that M2

Pl ¼ 1 so that F is dimensionless)

Ω2 ¼ FðϕÞ: ð30Þ

The Ricci scalar transforms as [14]

R ¼ F
�
R̂þ 3

F

�b□F −
3

2F
ĝμν∂μF∂νF

��
; ð31Þ

where b□≡ ĝμνb∇μ
b∇ν is the d’Alembert operator and b∇μ the

covariant derivative with Levi-Civita connection associated
with the rescaled metric ĝμν. Then, the action in the Einstein
frame reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

2
R̂ −

1

2
ĝμν∂μφ∂νφ − UðφÞ

�
; ð32Þ

where the potential U is given by

UðϕÞ ¼ VðϕÞ
F2ðϕÞ ; ð33Þ

and φ is the canonical scalar field of the Einstein frame
related to ϕ by [36]

�
dφ
dϕ

�
2

¼ K≡ 1

F

�
1þ 3F2

;ϕ

2F

�
: ð34Þ

We see that the gravitational sector of the action in this
frame resembles that of the Einstein-Hilbert one of GR, and
the scalar field is minimally coupled to gravity.
The Jordan frame action yields the following metric field

equations:

Gμ
ν ¼ T̃μ

ν; ð35Þ

where Gμ
ν ≡ Rμ

ν − 1
2
δμνR is the divergence-free Einstein

tensor and Rμ
ν the Ricci tensor. The covariantly conserved

(by virtue of Bianchi’s identity: ∇μGμ
ν ¼ 0 [29]) effective

energy-momentum tensor T̃μ
ν reads

T̃μ
ν¼

1

F

�
∂
μϕ∂νϕþ∇μ

∂νF−δμν

�
1

2
gαβ∂αϕ∂βϕþVþ□F

��
;

ð36Þ

where □≡ gμν∇μ∇ν. From the Einstein frame action, we
obtain instead

Ĝμ
ν ¼ T̂μ

ν; ð37Þ

where T̂μ
ν is given by

T̂μ
ν ¼ ∂

μφ∂νφ − δμν

�
1

2
ĝαβ∂αφ∂βφþ U

�
; ð38Þ

indices being raised with ĝμν. Ĝμ
ν ≡ R̂μ

ν − 1
2
δμνR̂ is the

Einstein tensor in the frame with carets, and it is diver-

gence-free with respect to b∇μ; i.e., b∇μĜ
μ
ν ¼ 0. This means

that T̂μ
ν is covariantly conserved in that frame.

Before we define the linear comoving curvature pertur-
bationR and obtain the conformal relation betweenR and
R̂ in Jordan and Einstein frames, respectively, we outline
the expressions and approximations of Ref. [41] at back-
ground level. We will review those required for an eventual
examination of such a relation during slow-roll inflation.

D. Slow-roll inflation in the Jordan frame

We now introduce the Hubble-flow (HF) parameters and
define them as the relative change of the Hubble parameter
[see Eq. (4)] as measured by the comoving observer,

ϵiþ1 ≡ 1

Hϵi

dϵi
dτ

; ð39Þ

where i ¼ 1; 2;… and

ϵ1 ≡ −
1

H2

dH
dτ

: ð40Þ

As we pointed out below Eq. (7), we choose such a
spacetime slicing that coordinate time equals the proper
one in the Jordan frame, i.e., N ¼ 1. Consequently, given
the Hubble parameter defined in Eq. (4), this will read

H ¼ ȧ
a
; ð41Þ

in the Jordan frame, while the HF parameters in that frame
become

ϵiþ1 ≡ ϵ̇i
Hϵi

; ð42Þ

where i ¼ 1; 2;… and ϵ1 ≡ −Ḣ=H2.
Besides H, we have a further time-dependent back-

ground scale in FðϕÞR gravity, which is
ffiffiffiffi
F

p
(in GR,ffiffiffiffi

F
p ¼ MPl, or

ffiffiffiffi
F

p ¼ 1 using the geometrical units adopted
in this work). We then present a second hierarchy of
parameters,

θiþ1 ≡ θ̇i
Hθi

; ð43Þ

where i ¼ 1; 2;… and θ1 ≡ Ḟ=ð2HFÞ. Moreover, the
equations derived in this frame are more compact if one
introduces the following parameters:
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γiþ1 ≡ γ̇i
Hγi

; ð44Þ

where i ¼ 1; 2;… and γ21 ≡Kϕ̇2=ð2H2Þ, and the approxi-
mations clearer if these are used in place of the HF
parameters of Eq. (42). A useful relation for future purposes
derived in Ref. [41] is the one between ϵ1 and γ21,

γ21 ¼ ðϵ1 þ θ1Þð1þ θ1Þ − θ1θ2: ð45Þ

Equation (39) applies to the HF parameters of the
Einstein frame as well, but with carets,

ϵ̂iþ1 ≡ 1

Ĥϵ̂i

dϵ̂i
dτ̂

; ð46Þ

where i ¼ 1; 2;…. The Hubble parameter in the Einstein
frame, Ĥ, can be related toH of Eq. (41) by [see Eq. (4) and
remember that, given the choice of the spacetime slicing,

N̂ ¼ ffiffiffiffi
F

p
in the Einstein frame],

Ĥ ¼
˙̂affiffiffiffi
F

p
â
¼ Hffiffiffiffi

F
p ð1þ θ1Þ: ð47Þ

We can write the HF parameters of the Einstein frame
that are relevant at first order in the slow-roll approximation
(i.e., ϵ̂1 and ϵ̂2 [42]) as

ϵ̂1 ¼
γ21

ð1þ θ1Þ2
; ð48Þ

ϵ̂2 ¼
2

1þ θ1

�
γ2 −

θ1θ2
1þ θ1

�
; ð49Þ

such that they are expressed in terms of the γ and θ
parameters of the Jordan frame. Slow-roll inflation in the
Einstein frame demands ϵ̂1 ≪ 1 and jϵ̂2j ≪ 1 [42], and
following on from this, it can be shown that jθ1j ≪ 1,
jϵ1j ≪ 1, and γ21 ≪ 1 [41]. Then, the slow-roll equations in
the Jordan frame read

3H2 ≃
V
F
; ð50Þ

3Hϕ̇ ≃
2VF;ϕ − FV;ϕ

F2K
: ð51Þ

These and previous formulas will be important when
deriving the conformal relation of the comoving curvature
perturbation, that we introduce in the next section, and to
study this relation on different horizon scales and during
slow-roll inflation.

III. THE COMOVING CURVATURE
PERTURBATION

In view of Eqs. (20) and (26), we may define the
following gauge-invariant quantity:

R≡ ψ −
HN
ρþ P

Ψ ¼ ψ −
ȧ
a

Ψ
ρþ P

; ð52Þ

which is the linear curvature perturbation on comoving
slicings (known as “comoving curvature perturbation”);
i.e., those where δT0

i ¼ 0 [33,37,45] or, from Eq. (23),
Ψ ¼ 0 (the homogeneous value of Ψ vanishes by
construction).

A. R in Jordan and Einstein frames

In the Jordan frame, δT̃0
i is given by [see Eq. (36)]

δT̃0
i ¼

1

F
∂ið−ϕ̇δϕ − ˙δF þHδF þ ḞAÞ≡ ∂iΨ̃: ð53Þ

One can slice the spacetime in such a way that Ψ̃ ¼ 0. This
is what we call the comoving slicing in this work. It is
important to observe that, generically, comoving slices do
not coincide with the uniform field ones.2 As was pointed
out in Ref. [37], perturbation quantities defined on uniform
field slices are conformally invariant. It follows then that
perturbations defined on the comoving slices are not
generically conformally invariant.
Replacing the momentum perturbation in Eq. (52) with

the above expression (and given our choice of homo-
geneous slicing such that in the Jordan frame N ¼ 1), the
linear comoving curvature perturbation reads

R ¼ ψ þ H=F

ρ̃þ P̃
ðϕ̇δϕþ ˙δF −HδF − ḞAÞ; ð54Þ

where the homogeneous energy density and isotropic
pressure of the effective energy-momentum tensor are ρ̃≡
−T̃0

0 and P̃≡ T̃i
i=3, respectively. The sum of the two is

ρ̃þ P̃ ¼ 1

F
ðϕ̇2 −HḞ þ F̈Þ: ð55Þ

On the hypersurfaces that comovewith the effective fluid
in the Jordan frame, it can be shown that the curvature
perturbation is conserved on large scales whenever the
perturbation of the effective pressure is adiabatic [26] (a
result similar to what GR prescribes). To that end, we write
the momentum conservation equation (∇μT̃μi ¼ 0),

2In the case of fðRÞ gravity, an analogous mismatch is
mentioned in Ref. [37], where the uniform-F slicing does not
necessarily coincide with the comoving one, F being defined
as F≡ f;R.
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˙̃Ψþ 3HΨ̃þ δP̃þ ðρ̃þ P̃ÞA ¼ −
2

3
a−2∂i∂iσ; ð56Þ

where σ is the contribution from the anisotropic
pressure [33],

σ ≡ δF − Ḟχ
F

; ð57Þ

χ ≡ Bþ a2Ė being the shear potential of worldlines
orthogonal to the spacelike hypersurfaces [39]. We consider
the momentum constraint equation too (G0

i ¼ T̃0
i) [33],

HAþ ψ̇ ¼ −
1

2
Ψ̃: ð58Þ

Using these two equations, and taking the time derivative of
R (54), we obtain

Ṙ ¼ H

ρ̃þ P̃

�
δP̃nad þ

˙̃P
˙̃ρ
δρ̃Ψ þ 2

3
a−2∂i∂iσ

�
: ð59Þ

δP̃nad is defined as

δP̃nad ≡ δP̃ −
˙̃P
˙̃ρ
δρ̃; ð60Þ

i.e., as the pressure perturbation on uniform-density slicings
(or nonadiabatic pressure [24,39]); while δρ̃Ψ,

δρ̃Ψ ≡ δρ̃ − 3HΨ̃; ð61Þ

is the energy density perturbation on comoving slicings. The
energy constraint equation (G0

0 ¼ T̃0
0) allows us to replace

δρ̃Ψ by gradients,

δρ̃Ψ ¼ 2a−2∂i∂iψχ ; ð62Þ

ψχ being the curvature perturbation on shear-free slicings
(χ ¼ 0),

ψχ ≡ ψ þHχ; ð63Þ

which is gauge-invariant given that χ transforms as χ →
χ − α under gauge transformations [see Eqs. (19) and (21)
and the definition of χ below Eq. (57)]. Equation (59) then
becomes

Ṙ ¼ H

ρ̃þ P̃

�
δP̃nad þ 2a−2∂i∂i

�
1

3
σ þ

˙̃P
˙̃ρ
ψχ

��
: ð64Þ

The reason why we obtain an equation for Ṙ similar to
the one from GR (which can be found in Ref. [25], for
example) is because the fluid that is chosen to define the
comoving slicing is the one whose energy-momentum

tensor is covariantly conserved (the effective fluid) [26].
In the Einstein frame, this effective fluid corresponds to that
of the canonical scalar field φ [see Eq. (38)]. From Eq. (38),
we calculate δT̂0

i, which is

δT̂0
i ¼ −

1

F
φ̇∂iδφ≡ ∂iΨ̂: ð65Þ

The comoving curvature perturbation in this case is
(remember that N̂ ¼ ffiffiffiffi

F
p

)

R̂ ¼ ψ̂ þ Ĥ
dφ=dτ̂

δφ; ð66Þ

where we have used the fact that ρ̂þ P̂ is

ρ̂þ P̂ ¼ −T̂0
0 þ T̂i

i=3 ¼ φ̇2=F: ð67Þ

B. The conformal equivalence of R

As can be seen from Eq. (65) above, the comoving
curvature perturbation coincides with the curvature pertur-
bation on uniform-φ slicings in the Einstein frame ψ̂ δφ (i.e.,
if the perturbation of the canonical scalar field is set to zero,
δφ ¼ 0, then the scalar momentum perturbation vanishes:
δT̂0

i ¼ 0). This coincidence is due to the fact that the
covariantly conserved, effective energy-momentum tensor
in this frame is that of the canonical scalar field φ, as was
mentioned above. Given Eq. (66), we easily verify that ψ̂ δφ

is invariant under the conformal transformation and the
field redefinition of Eq. (34) [36],

R̂ ¼ ψ̂ δφ ¼ ψ̂ þ Ĥ
dφ=dτ̂

δφ

¼ ψ −
δF
2F

þH

ϕ̇
ð1þ θ1Þδϕ ¼ ψ þH

ϕ̇
δϕ ¼ ψδϕ; ð68Þ

whereEq. (14)was used to replace ψ̂ byψ, andwe remind the
reader that the Einstein frame is obtained by settingΩ2 ¼ F
(see Sec. II C). Also, δφ ¼ ffiffiffiffi

K
p

δϕ [see Eq. (34)] and
δF ¼ F;ϕδϕ. Equation (68) is generic, valid at all scales
and irrespective of how the background spacetime behaves.
However, in the Jordan frame, an observer that comoveswith
the canonical scalar field ϕ does not observe vanishing
effective momentum perturbation. The exact relation
betweenR and ψδϕ can be derived from Eqs. (54) and (58),

R ¼ ψδϕ þ θ1
ϵ1ð1þ θ1Þ

ψ̇ δϕ

H
: ð69Þ

The second term is the direct consequence of the fact that
uniform-field slices, where δϕ ¼ 0, do not coincide with
comoving slices, as it was discussed below Eq. (53). Since
the perturbed quantities defined on the uniform-field slices
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are conformally invariant (see Ref. [37]), it is not surprising
to find that R ≠ R̂.
We then proceed to derive the corresponding relation

between R and R̂ for a generic FðϕÞR gravity theory at
linear order and check if the invariance may be true under
certain conditions. We begin by writing the comoving
curvature perturbation in the Jordan frame as [see Eq. (54)]

R ¼ H=F

ρ̃þ P̃
ðϕ̇δϕψ þ ˙δFψ −HδFψ − ḞAψÞ; ð70Þ

where we defined the following gauge-invariant quantities
in that frame:

δϕψ ≡ δϕþ ϕ̇

H
ψ ; ð71Þ

δFψ ≡ δF þ Ḟ
H
ψ ; ð72Þ

Aψ ≡ Aþ
�
ψ

H

�
•

; ð73Þ

and used Eq. (55). From the momentum constraint equation
[Eq. (58)], we obtain Aψ ,

Aψ ¼ 1

2HF
ϕ̇δϕψ þ ˙δFψ −HδFψ

1þ θ1
: ð74Þ

Hence,

R¼H

ϕ̇

1

1þθ1

1

ϵ1

�
½ϵ1ð1þθ1Þþθ1ðθK−γ2Þ�δϕψ þθ1

˙δϕψ

H

�
;

ð75Þ

where we used δF ¼ F;ϕδϕ and introduced the parameter,

θK ≡ K̇
2HK

: ð76Þ

We have used ρ̃þ P̃ ¼ −2Ḣ too [which can be derived
from the homogeneous metric field equations (35)], and the
first HF parameter ϵ1 from Eq. (42). Since R̂ ¼ ψ̂ δφ ¼ ψδϕ

[see Eq. (68)], we have

R ¼ R̂
�
1þ θ1

ϵ1ð1þ θ1Þ
�
θK − γ2 þ

˙δϕψ

Hδϕψ

��
: ð77Þ

Now, given that

δϕψ ¼ ϕ̇

H
ψδϕ ¼ ϕ̇

H
R̂ ¼ −

ϕ̇

Hẑ
û ¼ 1þ θ1

a
ffiffiffiffiffiffiffi
FK

p û; ð78Þ

such that û≡ −ẑ R̂, where ẑ is the Mukhanov variable in
the Einstein frame [39], defined by

ẑ≡ −
â

Ĥ

dφ
dτ̂

; ð79Þ

then,

˙δϕψ

Hδϕψ ¼ −1 − θ1 − θK þ θ1θ2
1þ θ1

þ
˙̂u

Hû
: ð80Þ

So we arrive at

R ¼ R̂
�
1 −

θ1
ϵ1

�
1þ 1

2
ϵ̂2 −

1

Ĥ û

dû
dτ̂

��
; ð81Þ

where we used Eqs. (47) and (49) too.
As we argued at the end of Sec. II D, slow-roll inflation

demands that ϵ̂1; jϵ̂2j ≪ 1, and from these, it can be
obtained that jθ1j ≪ 1. Hence, during slow-roll, Eq. (81)
can be written as

R ≃ R̂
�
1 −

θ1
ϵ1

�
1 −

1

Ĥ û

dû
dτ̂

��
; ð82Þ

and H ≃
ffiffiffiffi
F

p
Ĥ as jθ1j ≪ 1 [see Eq. (47)]. û obeys the

Mukhanov-Sasaki equation in Fourier space during slow-
roll [39],

û00k þ
�
k2 −

2

η2

�
ûk ¼ 0: ð83Þ

Primes in this equation are used to denote derivatives with
respect to the conformal time, defined as

dη≡N
a
dt: ð84Þ

We see that the conformal time is invariant under conformal
transformation given Eqs. (6) and (7). Also, the comoving
wave number k is invariant as well because the spatial
coordinates are not affected by the conformal rescaling of
the metric.
The solution to Eq. (83) is [39]

ûkðηÞ ¼
e−ikηffiffiffiffiffi
2k

p
�
1 −

i
kη

�
; ð85Þ

once the Bunch-Davies vacuum has been imposed as initial
condition [39,46].
The conformal time η is related to the conformal Hubble

parameter in the Einstein frame, Ĥ≡ â Ĥ, by η ≃ −1=Ĥ if
slow-roll holds [39].3 Hence,

3Strictly speaking, the equality holds only for exact de Sitter
(constant Ĥ). However, given that the usual assumption is that
slow-roll is close to de Sitter (quasi-de Sitter), this relation can
still be used.
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1 −
1

Ĥûk

dûk
dτ̂

¼ 1 −
û0k
Ĥûk

¼ k2

Ĥ2

1

1 − ik=Ĥ
: ð86Þ

Equation (82) becomes

Rk ≃
1 − ik=Ĥ − ωðk=ĤÞ2

1 − ik=Ĥ
R̂k; ð87Þ

in Fourier space, where

ω≡ θ1
ϵ1

¼ −
d ln

ffiffiffiffi
F

p

d lnH
; ð88Þ

ϵ1 and θ1 being defined after Eqs. (42) and (43), respec-
tively. ω measures how large the variation of lnH and
ln

ffiffiffiffi
F

p
is relative to each other over the number of e-folds

N ≡ ln a. If jωj < 1, lnH varies faster than ln
ffiffiffiffi
F

p
, while

jωj > 1means that the rate of change of lnH is slower than
that of ln

ffiffiffiffi
F

p
. We emphasize again that H and

ffiffiffiffi
F

p
are the

two time-dependent background scales of the theory in the
Jordan frame. Notice that if ω ¼ 0 (because θ1 ¼ 0, as in
GR), then Rk ¼ R̂k for all k, as expected.
On the superhorizon regime (k=Ĥ ≪ 1), we have

Rk≪Ĥ ≃
�
1 − ω

�
k

Ĥ

�
2
�
R̂k≪Ĥ; ð89Þ

and the equivalence of the two linear comoving curvature
perturbations in Jordan and Einstein frames is valid up to a
term quadratic in gradients. We notice that this equivalence
implies that the comoving and uniform-ϕ slicings coincide
whenever jωjk2=Ĥ2 ≪ 1 in slow-roll [see Eq. (68)],

ψδϕ

jωjk2≪Ĥ2 ¼ ψ̂ δφ

jωjk2≪Ĥ2 ¼ R̂jωjk2≪Ĥ2 ≃Rjωjk2≪Ĥ2 : ð90Þ

For subhorizon modes instead (k=Ĥ ≫ 1),

Rk≫Ĥ ≃
�
1 − iω

k

Ĥ

�
R̂k≫Ĥ; ð91Þ

and the equivalence between R and R̂ in the two frames
does not hold. However, due to the additional factor ω,
the length scales on which R can be considered to be
conformally invariant depends on the time dependence of F
and H. For models with very small ω such an invariance
already holds on subhorizon scales. For very large ω, it
holds only long after such scales exit the horizon.
When discussing the superhorizon and subhorizon

regimes, we delineated them by the magnitude of the
k=ðaHÞ ratio. However, the equalities k ¼ aH and k ¼ â Ĥ
are satisfied on two different homogeneous slices, as can be
seen from Eq. (47) (see also Ref. [41]),

â Ĥ ¼ aHð1þ θ1Þ: ð92Þ

Fortunately, since the analysis performed in this section
relies on the slow-roll approximation, where jθ1j ≪ 1, the
difference between those two slices is immaterial. Notice
that this implies the equivalence between the conformal
Hubble parameters in the two frames,H ≃ Ĥ, during slow-
roll, where H≡ aH in the Jordan frame [Ĥ was defined
after Eq. (85)].

C. Conformal invariance in generalized
induced gravity models

As we mentioned in Sec. II D, the γ parameters make
approximations clearer if they replace the HF parameters of
the Jordan frame. Assuming the slow-roll approximation,
Eq. (45) may be written as

γ21 ≃ ϵ1 þ θ1; ð93Þ

where we have considered jθ2j ≪ 1 for simplicity, although
it was pointed out in Ref. [41] that the slow-roll assumption
still permits jθ2j ∼ 1. Given the slow-roll relation between
γ21 and ϵ1, ω can be written as

ω ≃
θ1

γ21 − θ1
¼

�
γ21
θ1

− 1

�−1
¼

�
Kϕ̇

H
F
F;ϕ

− 1

�−1
: ð94Þ

Now, two different regimes are in order: either K ≃ 1=F
because F2

;ϕ ≪ F; or K ≃ 3F2
;ϕ=ð2F2Þ as F2

;ϕ ≫ F. We
explored both possibilities in Ref. [41]. The latter yields

ω ≃ ð3θ1 − 1Þ−1 ≃ −1; ð95Þ

so ω ∼Oð1Þ [i.e., the evolution rate of both scales, H andffiffiffiffi
F

p
, is similar; see Eq. (88)]. On the other hand, F2

;ϕ ≪ F
yields

ω ≃
�

ϕ̇

HF;ϕ
− 1

�−1
≃
�
1 −

FV;ϕ

F;ϕV

�
−1
; ð96Þ

where the slow-roll equations, Eqs. (50) and (51), were
used. ω would be larger than unity if

F;ϕ

F
≃
V;ϕ

V
: ð97Þ

This is viable given that

1

2

�
V;ϕ

V

�
2

≪
1

F
; ð98Þ

must be satisfied if ϵ̂1 ≪ 1 (see Ref. [41] for more details),
and if we insert Eq. (97), we obtain F2

;ϕ ≪ F, which
is precisely the condition we had imposed in this case.
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For generalized models of induced gravity inflation4 how-
ever, it was shown in Ref. [41] that those cases, in which
F2
;ϕ ≪ F, do not fall within the 2σ region of the latest

BICEP/Keck results [50], in contrast to those satisfying
F2
;ϕ ≫ F. Therefore, for this class of models, ω ∼Oð1Þ,

and the comoving curvature perturbation is invariant under
the conformal transformation for a few e-folds after horizon
crossing [see Eq. (89)].

D. Inflation observables

In Sec. III B, we have shown the conformal invariance of
the linear perturbation R on sufficiently large scales in
slow-roll using the conformal transformation. Now we are
going to check the consistency of that conformal invariance
by doing all the calculations in the Jordan frame. We will
calculate the inflation observables in that frame and
compare them with those obtained in Ref. [41], where
we considered the Einstein frame expressions in the first
place and then applied the conformal transformation.
We begin with the exact relation between R and ψδϕ at

linear order (69). ψδϕ can be written as

ψδϕ ¼ H

ϕ̇
δϕψ ≡ −

u
z
; ð99Þ

where we defined u and z as

u≡
ffiffiffiffiffiffiffi
FK

p

1þ θ1
aδϕψ ; ð100Þ

z≡ −a
ffiffiffiffiffiffiffiffiffiffi
2Fγ21

p
1þ θ1

; ð101Þ

respectively. Hence, Eq. (69) may be rewitten as

R ¼ −
u
z

�
1 −

ω

1þ θ1

�
1 −

u0

Hu
þ θ1 þ γ2 −

θ1θ2
1þ θ1

��
;

ð102Þ

where ω was defined in Eq. (88) and z0=z is

z0

z
¼ H

�
1þ θ1 þ γ2 −

θ1θ2
1þ θ1

�
: ð103Þ

u can be shown to satisfy an equation similar to Mukhanov-
Sasaki equation [33],

u00k þ
�
k2 −

z00

z

�
uk ¼ 0; ð104Þ

in Fourier space, where

z00

z
¼ H2

�
ð1þ θ1 þ γ2Þ

�
2þ θ1 þ γ2 − ϵ1 − 2

θ1θ2
1þ θ1

�

þ γ2γ3 þ
θ1θ2
1þ θ1

�
θ1 þ ϵ1 − θ2 − θ3 þ 2

θ1θ2
1þ θ1

��
:

ð105Þ

During slow-roll, assuming that all the parameters are
negligible, we have z00=z ≃ 2=η2, and we can use the same
solution for uk as that in Eq. (85). Then [see Eq. (86)],

1 −
u0k
Huk

¼ k2

H2

1

1 − ik=H
: ð106Þ

Hence,whenever jωjk2=H2≪1,Rjωjk2≪H2≃−ujωjk2≪H2=z¼
ψδϕ
jωjk2≪H2 during slow-roll.

Given that result, we may write the power spectrum of
the linear comoving curvature perturbation, As, as [39]
(we drop “jωjk2 ≪ H2” for simplicity)

As ≡ k3

2π2
jRkj2 ≃

k3

2π2
jukj2
z2

≃
H2

8π2Fγ21
≃

V
24π2F2γ21

: ð107Þ

In the last equality, one of the two slow-roll equations,
Eq. (50), shown in Sec. II D, was used.
Another important inflation observable is the scalar

spectral index ns, which can be written as [39]

ns − 1≡ d lnAs

d ln k
: ð108Þ

To calculate the spectral index, we use the chain rule
first [39],

d
d ln k

¼ dN
d ln k

d
dN

¼ 1

1 − ϵ1

d
dN

; ð109Þ

where we have used the horizon-crossing relation, k ¼ aH,
N ≡ ln a or dN ¼ Hdt being the number of e-folds as
defined below Eq. (88). Hence (given that jϵ1j ≪ 1 during
slow-roll),

ns − 1 ≃
d lnAs

dN
≃ 2

d lnH
dN

−
d lnF
dN

−
d ln γ21
dN

≃ −2ðϵ1 þ θ1 þ γ2Þ; ð110Þ

where we inserted As from Eq. (107) and in the last
equality, we used the definition of γ2 that can be inferred
from Eq. (44). We may replace ϵ1 þ θ1 by γ21 given
Eq. (93). Hence,

4See Refs. [32,47–49] for more details about the initial
development of the induced gravity inflationary model.
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ns − 1 ≃ −2ðγ21 þ γ2Þ: ð111Þ

Finally, the tensor-to-scalar ratio r is defined as

r≡ At

As
; ð112Þ

where At is the power spectrum of linear tensor perturba-
tions with polarization p,

At ≡ k3

2π2
X
p

jhpk j2: ð113Þ

Defining

vpk ≡ a
2

ffiffiffiffi
F

p
hpk ; ð114Þ

we have an equation for tensor perturbations in FðϕÞR
gravity similar to the Mukhanov-Sasaki equation [33,39],

vp
00

k þ
�
k2 −

z00

z

�
vpk ¼ 0; ð115Þ

where z is now given by

z≡ a
2

ffiffiffiffi
F

p
: ð116Þ

Hence,

z00

z
¼ H2ð1þ θ1Þ

�
2þ θ1 − ϵ1 þ

θ1θ2
1þ θ1

�
: ð117Þ

During slow-roll, we have z00=z ≃ 2=η2 again, and the
solution to Eq. (115) will resemble that of uk. Therefore, on
superhorizon scales,

At ¼
k3

2π2
X

p¼þ;×

jhpk j2 ¼
k3

2π2
X

p¼þ;×

jvpk j2
z2

≃
2

π2
H2

F
; ð118Þ

where we summed over the two polarization states “þ”
and “×.”
Plugging Eqs. (107) and (118) into Eq. (112), we obtain

r ≃ 16γ21: ð119Þ

Notice that

At ≃
2

π2
H2

F
≃

2

π2
Ĥ2; ð120Þ

where we used Eq. (47) and the fact that, during slow-roll,
jθ1j ≪ 1. This is nothing but the expected amplitude of

linear tensor perturbations in GR during slow-roll inflation
(see, e.g., Ref. [39], where At is calculated in GR or,
equivalently, the Einstein frame, and remember that
M2

Pl ¼ 1). Moreover, it can be shown that the tensor
perturbations are conformally invariant in general to fully
nonlinear order [37].
The expressions in Eqs. (107), (111), and (119) are the

same in Eqs. (96)–(98) in Ref. [41], respectively [except for
the θ1θ2 term in Eq. (97) because we took jθ2j ≪ 1 here]. In
that reference, those equations were obtained by using the
Einstein frame expression of As, ns, and r, applying the
conformal transformation and using the slow-roll approxi-
mation. Here, on the other hand, we have arrived at the
same results by starting with the analogue of the
Mukhanov-Sasaki equation in the Jordan frame and then
using the slow-roll approximation, without resorting to the
conformal transformation. This confirms the conformal
invariance of the linear comoving curvature perturbation
and hence, the equivalence between the comoving and the
uniform-field slicings on scales sufficiently large such that
jωjk2=H2 ≪ 1 in slow-roll [or jωjk2=Ĥ2 ≪ 1 given that
Ĥ ≃H during slow-roll as explained below Eq. (92)].

IV. SUMMARY AND CONCLUSIONS

The curvature perturbation is a central object in cosmo-
logical perturbation theory and plays an essential role in the
inflationary cosmology. Although the conformal invariance
of the curvature perturbation has been proved, at all scales
and irrespective of the expansion rate, on the uniform-field
slicing in FðϕÞR gravity or, equivalently, on hypersurfaces
comoving with the scalar field fluid, the same is not exactly
exhibited on the slicing that comoves with the effective
fluid of that theory, whose energy-momentum tensor is
covariantly conserved.
We first make it clear that the comoving and uniform-

field slicings do not coincide in general. We define the
comoving curvature perturbation at linear order in pertur-
bation theory in any frame, assuming an observer that
comoves with the effective fluid, which includes the gravity
modifications in the Jordan frame, and derive the conformal
relation between this curvature perturbation in Jordan and
Einstein frames. This relation is determined on super-
horizon scales up to a term which is quadratic in gradients
during slow-roll [see Eq. (89)]. It is noticed that the
equation includes a term proportional to θ1=ϵ1. This ratio
reflects the relative variation of the two time-dependent
background scales of the theory: H and

ffiffiffiffi
F

p
[see Eq. (88)],

and it is found to be of order 1 for the generalized induced
gravity inflation models that match observations, discussed
in Ref. [41]. This means that for this class of models at
least, the conformal equivalence between the Jordan and
Einstein frames is ensured shortly after horizon crossing.
This result agrees with the one showed in Ref. [37]
nonperturbatively given that the uniform-ϕ and comoving
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slicings coincide on superhorizon scales during slow-roll
inflation, as we clarified in this work. Such an equivalence
cannot be asserted on the subhorizon regime however
[see Eq. (91)].
Lastly, the same expressions for the inflation observables

of Ref. [41] are obtained in Sec. III D using the linear
comoving curvature perturbation of the Jordan frame [see
Eqs. (96)–(98) in that paper], and an equation analogous to
Mukhanov-Sasaki’s in GR [see Eq. (104) and Ref. [33]]. To
arrive at those expressions in this work, we assume the
superhorizon regime and the slow-roll approximation only.
No conformal rescaling of the metric is carried out, in
contrast to the strategy followed in Ref. [41], where we
started with the Einstein frame expressions and performed
the conformal transformation to write them in terms of the
Jordan frame variables. We then find it is possible to

formulate those inflation observables using the comoving
curvature perturbation at first order in perturbation theory
in Jordan and Einstein frames. This serves as a demon-
stration of the conformal invariance of the linear comoving
curvature perturbation on superhorizon scales during slow-
roll inflation.
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