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We measure the three-dimensional cross-power spectrum of galaxy density and intrinsic alignment (IA)
fields for the first time from the spectroscopic and imaging data of SDSS-III BOSS galaxies, for each of the
four samples in the redshift range 0.2 < z < 0.75. In the measurement we use the power-spectrum
estimator, developed in our previous work, to take into account the line-of-sight dependent projection of
galaxy shapes onto the sky coordinate and the E=B-mode decomposition of the spin-2 shape field. Our
method achieves a significant detection of the E-mode power spectrum with the total signal-to-noise ratio
comparable with that of the quadrupole moment of the galaxy density power spectrum, while the measured
B-mode power spectra are consistent with a null signal to within the statistical errors for all the galaxy
samples. We also show that, compared to the previous results based on the two-dimensional projected
correlation function, our method improves the precision of the linear shape bias parameter estimation by up
to a factor of two thanks to the three-dimensional information. By performing a joint analysis of the galaxy
density and IA power spectra in the linear regime, we constrain the isotropic and anisotropic local
primordial non-Gaussianities (PNGs) parameters, fs¼0

NL and fs¼2
NL , simultaneously, where the two types of

PNGs induce characteristic scale-dependent biases at very large scales in the density and IA power spectra,
respectively. We do not find any significant detection for both PNGs; the constraints fs¼0

NL ¼ 57þ30
−29 and

fs¼2
NL ¼ −67þ285

−269 (68% credible interval), respectively. Our method paves the way for using the IA power
spectrum as a cosmological probe for current and future galaxy surveys.
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I. INTRODUCTION

The Λ Cold Dark Matter (ΛCDM) model has established
as the standard cosmological model to describe various
cosmological datasets such as cosmicmicrowave background
radiation (CMB) e.g., [1–3], type-Ia supernovae e.g., [4], and
large-scale structure (LSS) probes e.g., [5–10]. In the standard
ΛCDM scenario, the primordial perturbations, which seeded
cosmic structure formation, are assumed to follow an adia-
batic, Gaussian and nearly scale-invariant perturbations as
predicted by standard (single-field, slow-roll) inflationary
cosmology [11–13] (see also Ref. [14]). Statistical properties
of such aGaussian field are completelydescribed by its power
spectrum (or two-point correlation function).
Hence, an exploration of primordial non-Gaussianity

(PNG), which refers to any deviation from Gaussianity of
the primordial perturbations, is a crucial test of the standard
cosmological model. If any PNG is detected at a significant
level, it would give a transformative advance in our

understanding of the nature of physical processes involved
in the generation of primordial perturbations in the early
Universe (see e.g., [11,15,16]). In particular, the so-called
local PNG, which has large amplitudes in the squeezed
configuration of the bispectrum, has been well-studied in
the literature [17]. Any detection of flocalNL , a parameter to
characterize local PNG, would rule out single-field infla-
tion e.g., [11,15,18–20] and thus detection or improved
limits on flocalNL would give crucial information on the nature
of multifield inflation e.g., [21–29]. The CMB bispectrum
has been used to obtain tight constraints on local PNG e.g.,
[1,30–33]. After the pioneer work in Ref. [34], which found
that local PNG induces characteristic scale-dependent
modulation in the linear bias of LSS tracers such as
galaxies and quasars, the LSS datasets have also been
used to constrain flocalNL e.g., [35–43] (see also [44,45] for
the recent constraint further using the galaxy bispectrum).
As a generalization of local PNG, one can consider

anisotropic or directional-dependent local PNG with addi-
tional angular dependence in the primordial bispectrum
expanded in terms of the Legendre polynomials [46].*toshiki.kurita@ipmu.jp
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The usual local PNG corresponds to the isotropic or
monopole component of this generalized bispectrum.
Several inflationary scenarios predict generation of the
anisotropic local PNG; the solid inflation e.g., [47–51], the
existence of gauge vector fields e.g., [52–54], primordial
magnetic field e.g., [55,56] (also see [46] for a review), and
higher-spin fields e.g., [57–59]. Such dipolar and quad-
rupolar PNGs have been constrained by the Planck CMB
bispectrum [32,33].
As predicted by Ref. [60], in analogy with isotropic local

PNG, anisotropic local PNG induces a quadrupolar modu-
lation in the local power of short-mode matter fluctuations,
i.e., induces a coupling between the local tidal field and the
long-wavelength tidal field. The LSS tidal field can be
probed via “intrinsic” galaxy shapes, more precisely by
measuring large-scale correlations of galaxy shapes with
the surrounding tidal field of LSS—the so-called intrinsic
alignments (IA) e.g., [61–63]. Hence one can realize
an importance consequence of such anisotropic local
PNG; in a very similar way to the effect of isotropic local
PNG on galaxy density field, anisotropic local PNG
induces a scale-dependent bias of the large-scale tidal field
traced by intrinsic galaxy shapes on very large scales (see
also [60,64–67]).
The IA effect has been mainly considered as one of the

most important systematic effects in weak lensing cosmol-
ogy [68] (also see [69–72] for reviews). In contrast there
has been increasing interest in the use of the IA effect as a
cosmological probe e.g., [60,64,65,67,73–85] (see [86] for
the recent, actual cosmological application). While stan-
dard cosmology analysis of galaxy clustering is done
treating galaxies as “point” distribution, where the galaxy
density field is a scalar field, the galaxy shape field carries
information on vector and tensor perturbations of LSS in
addition to scalar perturbations [78,87]. Hence, the IA
cosmology can open up a new direction, or at least play a
complementary role to the standard density analysis, for
cosmology.
Hence the purpose of this paper is to constrain the

anisotropic local PNG from measurements of the IA power
spectrum from the spectroscopic and imaging SDSS galaxy
catalogs. To do this, we use the power-spectrum measure-
ment method, developed in our previous work [87], to take
into account the line-of-sight dependent projection of
galaxy shapes onto the sky coordinate and the E=B-mode
decomposition of the spin-2 galaxy shape field. Compared
to the two-dimensional (projected) correlation function that
has been commonly used in previous works [88–97], our
power spectrum analysis enables one to extract the full
information of IA effects at a two-point statistics level;
however, see [86,98] for the use of 3D IA correlation
functions. For the model template used in parameter
inference, we employ the linear alignment model [68],
including the survey window convolution [87], integral
constraint (IC), and weak lensing contamination. For the

covariance matrix that describes statistical errors of the IA
power spectrum, we use an analytic method by extending
the method for the covariance matrix of galaxy density
power spectrum [99]. By performing joint likelihood
analyses of the measured galaxy clustering and IA power
spectra, we will estimate the linear shape bias (AIA) and
obtain constraints on the amplitudes of the isotropic and
anisotropic (quadrupolar) local PNGs. Our work using the
IA effect as a PNG probe is the first of its kind to be
performed for the actual galaxy survey dataset.
The structure of this paper is as follows. In Sec. II, we

describe the galaxy samples constructed from the SDSS-III
BOSS catalog. In Sec. III, we describe the method to
measure the galaxy and IA power spectra. In Sec. IV, we
first describe the theoretical template based on the linear-
alignment model with local PNGs including observational
effects such as the window convolution, the IC, and weak
lensing contamination. Next we describe an analytic
method to compute the covariance of the IA power
spectrum derived in this work, and then describe the
parameters and priors used in the likelihood analysis. In
Sec. V, we show the measured IA power spectrum and
constraints on the local PNG parameters. We will give our
conclusions in Sec. VI.
Throughout this paper, we use the following abbreviations:Z

x
≡
Z

dx;
Z
k
≡
Z

dk
ð2πÞ3 :

We also use notations for the Fourier and inverse Fourier
transforms as

fðkÞ≡
Z
x
fðxÞe−ik·x; fðxÞ≡

Z
k
fðkÞeik·x:

We quote the mode of 1D posterior for the central value of a
parameter and the 68% credible interval for the parameter
uncertainties, unless otherwise stated.

II. DATA

A. Density sample

We use the publicly available large-scale structure
catalog of SDSS-III BOSS data release 12 (DR12), named
CMASSLOWZTOT galaxy sample,1 provided by Ref. [100].
We call this sample as the density sample throughout this
work. In our analysis, we divide the full sample into two
redshift bins, “low-z” (0.2 < z < 0.5) and “high-z”
(0.5 < z < 0.75) for each disjoint footprint, Northern
Galactic Cap (NGC) and Southern Galactic Cap (SGC),
following previous galaxy power spectrum analyses e.g.,
[8–10,101]. Thus, we simultaneously analyze the four
nonoverlapping data chunks in this work. To remove

1https://data.sdss.org/sas/dr12/boss/lss/.
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observational, apparent fluctuations and obtain unbiased
estimates of the galaxy density field, each galaxy in the
BOSS catalog is assigned the total incompleteness weight,

wc;i ≡ wsys;iðwfc;i þ wrf;i − 1Þ; ð1Þ

where wsys ≡ wstarwsee is the angular systematic weight
defined as the product of the stellar-density and seeing
weights, and wfc and wrf are the nearest neighbor weights
responsible for fiber collision and redshift failure, respec-
tively [100,102,103]. Using this weight, we define the

weighted number of galaxies as N0
g ≡PNg

i¼1 wc;i where Ng

is the unweighted number of galaxies. In addition, we adopt
the so-called FKP weight [104],

wFKP;gðzÞ≡ 1

1þ n̄0gðzÞP0

; ð2Þ

where n̄0g ¼ wcn̄g is the weighted number density of the
density sample with P0 ¼ 104 ðh−1MpcÞ3, which has been
commonly used in the standard cosmological analysis of
the galaxy spectrum e.g., [101]. Using these weights, we
define the effective redshift for each sample as

zeff ≡
PNg

i¼1 wc;iwFKP;iziPNg

i¼1 wc;iwFKP;i

; ð3Þ

and use this value to compute the model prediction of
power spectrum in our analysis.
For the random particles, we use the random catalog file,

named random0, corresponding to the CMASSLOWZTOT
sample, which includes 50 times larger number of particles
than that of galaxies in order to represent the redshift and
angular distributions of the data. We call it the density
randoms.
In Table I, we summarize the properties of our samples.

B. Shape sample

To measure the three-dimensional intrinsic alignment
(IA) power spectrum, we need information on shape for
each galaxy in addition to the spectroscopic redshift. In this
work, we utilize the shape catalog of SDSS galaxies created

and validated in Refs. [105–107]. By cross-matching the
shape catalog with the CMASSLOWZTOT catalog, we define
our shape sample that is a subsample of the density sample,
where each galaxy has spectroscopic redshift and the
precisely measured ellipticities. After this selection, 67.3
(62.4) percent of galaxies survive for NGC low-z (high-z)
shape sample, whereas 31.9 (30.6) percent for SGC low-z
(high-z) shape sample. Note that the significant degradation
of the number of available galaxies in the SGC shape
sample is mainly due to the r-band magnitude cut due to the
galactic extinction [see Ref. [105], for details]. To assign
the weighted mean number density for each galaxy in the
shape sample, we first compute the averaged redshift
distribution of the two samples, pg;γðzÞ, and then use the
ratio to assign n̄0γ;i ≡ n̄0g;i × pγðziÞ=pgðziÞ where n̄0g;i ≡
n̄0gðziÞ to the ith galaxy in the shape sample. Notice that
we use the same incompleteness weight wc even for the
shape sample assuming that the shape measurement failure
is independent of the other systematics included in Eq. (1).
Figure 1 shows the angular and redshift distributions of

the density and shape samples used in our analysis. Since
there are nonuniform differences between the distributions
of two samples, we need to generate a random catalog that
properly mimics the three-dimensional distribution of the
shape sample, and will then use the random catalog to
compute window convolutions and covariance estimates of
the IA power spectrum as we will describe later in detail.
With the definition of our shape sample in mind, we define
the shape randoms from a subsample of the density
randoms using the acceptance-rejection method as follows.
To address the angular distribution, we first assign each
galaxy in both the density and shape samples to the equal-
area pixels on the sky using HEALPix code2 [108] with
Nside ¼ 64, and compute the ratio between the number
counts of the two samples for each pixel “p”:

rp ≡PNγ

i∈ pixp wc;i=
PNg

i∈ pixp wc;i. After that we perform
the same assignment for the density randoms, denoting

the number counts of each pixel as Nr;p ≡PNr;g

i∈ pixp 1, and
then randomly sample rpNr;p particles from the whole Nr;p

particles. The resultant random sample reproduces the

TABLE I. Basic characteristics of our density (as denoted by subscript “g”) and shape (“γ”) samples in each disjoint region. We list the
effective redshift (zeff ), the unweighted and weighted numbers of galaxies (Nβ and N0

β), and the ratio of the weighted galaxy number to
random particle number (αβ) for both samples β∈ fg; γg. We also show the rms of shear of galaxies defined in Eq. (6) for shape samples.

Sample

Density (g) Shape (γ)

zeff Ng N0
g αg Nγ N0

γ αγ σγ

NGC low-z
0.38

429182 445261 0.0206 290328 299697 0.0241 0.1626
SGC low-z 174819 182677 0.0212 56301 58358 0.0330 0.1666

NGC high-z
0.61

435741 467502 0.0205 273573 291536 0.0241 0.1780
SGC high-z 158262 169907 0.0212 49744 52021 0.0323 0.1806

2http://healpix.sourceforge.net/.
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angular distribution of the shape sample, but still obeys
pgðzÞ, not pγðzÞ, in the redshift direction. Thus, to next
obtain the sample drawn from the desired distribution
pγðzÞ, we further perform the rejection sampling so that
the particles in the resultant sample reproduce the redshift
distribution of the shape sample, pgðzÞ. In this way we
obtain the random sample, i.e., shape randoms, for the
galaxy shape sample.

III. ESTIMATORS

A. Density/shape fields

To perform the Fourier space analysis using FFT
algorithm, we define the grid-based galaxy density field
and galaxy shape field. We use the three-dimensional
comoving box centered at the observer with Lbox ¼
3750 h−1Mpc on a side, which entirely covers the survey
volume for each of the four samples, i.e., the low-z/high-z
samples in the NGC/SGC field. We determine the number
of grids such that the Nyquist frequency satisfies
kNy ≃ 1 hMpc−1, i.e.,N3

grid ¼ 11933. By assigning galaxies
and randoms in the density sample to grid points using the
cloud-in-cell (CIC) interpolation scheme [109], we make
the weighted galaxy density field as

F̂gðxÞ≡ wFKP;gðxÞ½n0gðxÞ − αgnr;gðxÞ�; ð4Þ

where n0g and nr;g are the weighted number density field of
the density sample and randoms, respectively, and αg ≡
N0

g=Nr;g is the ratio of the weighted number of galaxies
and randoms. We adopt flat ΛCDM cosmology with
Ωm ¼ 0.31, as a reference cosmology, to convert the
angular position and the redshift of galaxy to the comoving
coordinates throughout this paper.
Similarly, we construct the galaxy shape field as

F̂γðxÞ≡ wFKP;γðxÞn0γðxÞγðxÞ; ð5Þ

where we adopt a complex representation for the shear of
galaxy shapes, γ ≡ γ1 þ iγ2. The shear is estimated from
the measured ellipticities ðe1; e2Þ via the shear responsivity
R≡ 1 − e2rms [110],

ðγ1; γ2Þ≡ 1

2R
ðe1; e2Þ; ð6Þ

where erms is the rms ellipticity of intrinsic shapes of
galaxies in the shape sample. The indices 1 and 2
correspond to the ellipticity that has major axes along

FIG. 1. The angular distribution (top) and redshift distribution (bottom) of SDSS-III BOSS DR12 galaxy sample in the NGC (left
column) and SGC (right). The density sample (blue dots/lines) is constructed from the large-scale structure CMASSþ LOWZ
combined catalog, and we overplot the shape sample (orange) which is a subsample of the density sample that is obtained by making a
cross-matching with the shape catalog constructed from the imaging data. To compute the weighted number density in the bottom
panels, we assume flat ΛCDM cosmology with Ωm ¼ 0.31.
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the directions of coordinate axes (RA, DEC) and the
directions rotated by 45° from coordinate axes, respectively.
According to Ref. [93], we set R ¼ 0.87. n0γ ≡ wcnγ is the
weighted number density of the shape sample. We also use
a weight for each galaxy in the shape sample,

wFKP;γðzÞ≡ 1

σ2γ þ n̄0γðzÞPIA
0

; ð7Þ

where σγ is the rms intrinsic ellipticity of galaxy shapes in
terms of γ that is computed from erms taking into account
the shear responsivity above. This weight can be derived for
the IA power spectrum estimation by employing the same
assumption as that in Ref. [104] for the density power
spectrum estimation, wFKP;g, which was designed to min-
imize the statistical errors in the power spectrum meas-
urement balancing sample variance and shot noise
contributions. Hence, we call wFKP;γ as “FKP” weight
for IA power spectrum here.3 We set PIA

0 ¼ 1 ðh−1 MpcÞ3
taking into account a typical amplitude of the monopole IA
autospectrum.
Note thatwedonot use furtherweights such as the inverse-

variance weight considering both erms and the shape meas-
urement error for each galaxy, σe; wiv;i ≡ ðe2rms þ σ2e;iÞ−1,
which is often used in the weak lensing analysis. Galaxies in
the shape sample, after matching with the spectroscopic
density sample, tend to be brighter than typical galaxies in the
original catalog based on the imaging data, so the shape
measurement error is small and the shape weight is effec-
tively uniform over the entire shape sample [93,98].
Also notice that we do not perform any subtraction with

the shape randoms (nr;γ) when making the shape field
unlike the density field because the isotropic condition,

γ̄ ¼ PNγ

i¼1 γ
i=Nγ ¼ 0, holds well for the average of all

galaxy shapes in each shape sample (low-z or high-z in the
NGC or SGC field). Nevertheless, we will use it to compute
the normalization factor (see below).

B. Power spectrum estimators

For the autopower spectrum of the galaxy density field,
we employ the local plane-parallel (LPP) estimator, so-
called Yamamoto estimator [111], with the endpoint
approximation [112–114],

P̂ðlÞ
gg ðkbÞ≡ 2lþ 1

Igg

Z
k̂b

F̂ðlÞ
g ðkÞF̂gð−kÞ − S; ð8Þ

where

F̂ðlÞ
g ðkÞ≡

Z
x
F̂gðxÞe−ik·xLlðk̂ · x̂Þ; ð9Þ

and we have introduced an abbreviated notation for the
binned average over the bth spherical shell,Z

k̂b

≡ 1

Nb

X
k∈ binb

; kb ≡
Z
k̂b

jkj; ð10Þ

with Nb is the number of Fourier modes within the bth bin.
In this work we employ the linearly equal spacing from 0 to
0.25 hMpc−1 with 50 bins, i.e., Δk ¼ 0.005 hMpc−1. We
have also introduced notation for the normalization con-
stant and window function,

Iαβ ≡
Z
x
Wα

11ðxÞWβ
11ðxÞ;

with

Wα
ijðxÞ≡ n̄iαðxÞwj

tot;αðxÞ;

where α; β∈ fg; γg is the label of the galaxy density or
shape field, n̄ is the mean number density,and wtot ≡
wcwFKP is the total weight for each galaxy. In practice,
we compute it by taking the r → 0 limit of the window-
autocorrelation function monopole Q0ðrÞ estimated by the
random catalog (see Sec. IVA 2 for details about the
window function) as suggested in Ref. [115], not by
replacing the integral,

R
x n̄

0ðxÞ � � �, with the summation
over the random particles, α

PNr
i¼1 � � �. We employ the FFT-

based method proposed in Refs. [112,113] to efficiently
compute Eq. (9) by decomposing the Legendre polyno-
mials into the sum of the products of x̂ and k̂. We calculate
the Poisson noise S in the monopole moment that arises
from the discrete nature of galaxies and randoms,

S≡XNg

i¼1

w2
c;iw

2
FKP;g;i þ α2g

XNr;g

i¼1

w2
FKP;g;i: ð11Þ

For the IA-galaxy cross-power spectrum, we measure
the multipole moments in terms of the associated Legendre
polynomials, Lm¼2

L ðL ≥ 2Þ, by using the LPP power
spectrum estimator for IA recently developed in
Ref. [87]. This choice is convenient when both measuring
the power spectrum multipoles and evaluating the window
convolution on the theoretical model with FFT-based
implementations. The estimator is given by

3Exactly speaking, Eq. (7) becomes an optimal weight when we
use only IA autopower spectrum in the analysis, i.e., in absence of
galaxy clustering signal, since it only balances the shape noise and
the diagonal component of IA autocovariance. Ifwe analyzegalaxy
clustering and IA simultaneously, there is a non-negligible cross-
covariance term and then optimal weights should be different even
for the density sample in general. Nevertheless since the FKP
weight for the density sample [Eq. (2)] has already been well-
established in the literature of galaxy clustering analyses, in this
work we keep Eq. (2) unchanged for consistency with previous
works and use Eq. (7) for the shape sample although it becomes a
suboptimal choice for our joint analysis.
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P̂ðLÞ
γg ðkbÞ ¼

2Lþ 1

Iγg

ðL − 2Þ!
ðLþ 2Þ!

Z
k̂b

F̂ðLÞ
γ ðkÞF̂gð−kÞ; ð12Þ

where

F̂ðLÞ
γ ðkÞ≡

Z
x
F̂γðxÞe−2iϕk̂;x̂e−ik·xLm¼2

L ðk̂ · x̂Þ

≡
�Z

x
F̂γðxÞ2e�ijðx̂Þe−ik·xL̃m¼2

L ðk̂ · x̂Þ
�
k̂ik̂j: ð13Þ

e−2iϕk̂;x̂ is the phase factor that is needed to rotate the shape
field on the plane perpendicular to the LOS direction x̂ in
Fourier space and to obtain the coordinate-independent
quantities, i.e., E and B modes. In the second line we have
used the definition, e−2iϕk̂;x̂ ≡ 2e�ijðx̂Þk̂ik̂j=ð1 − ðk̂ · x̂Þ2Þ,
with the complex conjugate of the polarization tensor e�ij.
Here we have also defined the scaled associated Legendre
polynomials with the projection factor 1 − μ2, L̃m¼2

L ðμÞ≡
Lm¼2
L ðμÞ=ð1 − μ2Þ. Since Eq. (13) also takes the form of

products of x̂ and k̂, we can compute it by using FFTs as in
the density case [Eq. (9)]. Note that although there is no
shot noise or shape noise terms in the estimated IA-galaxy
cross spectrum due to the isotropy hγi ¼ 0, we will see that
its statistical errors are dominated by these noise terms in
Sec. IV B.

IV. ANALYSIS METHOD

In this section we describe theoretical templates to model
the multipole moments of density autopower spectrum and
density-IA cross-power spectrum that we use for the
cosmological analysis, and describe details of the cosmol-
ogy inference method.

A. Model

1. Linear theory with local PNGs

For the theoretical templates, we employ the linear
theory based model due to the following reasons: (i) The
linear theory of structure formation gives an accurate model
that can be safely applied to any clustering observable, at
least in k bins in the linear regime; (ii) There is no well-
validated model of the IA power spectrum including the
effect of redshift space distortion (RSD) effect [116] on
scales beyond the linear regime. Note that the cosmological
analysis using the IA power spectrum in this paper is the
first of its kind to be performed, and the previous works
focused on the projected correlation function of the IA
effect, often denoted as wgþðrpÞ where rp is the projected
comoving separation; (iii) The main focus of this paper is to
constrain the local PNGs from the measured density and IA
power spectra, which induces scale-dependent modifica-
tions in the power spectra at very small k, such as k−2,
where the linear theory is valid. Nevertheless, we still want

to use the power spectrum information up to relatively high
k, just before the quasinonlinear regime, in order for us to
have a sufficient constraining power of the linear density
and shape bias parameters that are needed to constrain the
PNG parameters (see later for details). Hence, we will
below make a careful choice of the k range used for the
parameter inference.
The local PNG we focus on is characterized by its

bispectrum,

BΦðk1;k2;k3Þ
¼ 2

X
l¼0;1;2;���

fs¼l
NL ½Llðk̂1 · k̂2ÞPϕðk1ÞPϕðk2Þ þ 2 perms:�;

ð14Þ

whereΦ is the primordial non-Gaussian potential field, ϕ is
the Gaussian field and fs¼l

NL is an amplitude parameter for
each order l.4 In this work we consider the lowest two
components, s ¼ 0 and s ¼ 2, which have large amplitudes
in the squeezed limit.
The isotropic component, s ¼ 0, has been well studied in

the literature e.g., [34,117]. This type of bispectrum can be
realized by the nonlinear transformation in configuration
space,

ΦðxÞ ¼ ϕðxÞ þ fs¼0
NL ðϕ2ðxÞ − hϕ2iÞ: ð15Þ

In the presence of this local PNG, a modulation in the local-
matter power spectrum due to the mode coupling between
the long-mode primordial potential field and the small-
scale density fluctuation leads to a change of the local
number density of galaxies. As a result, the linear galaxy
bias has an additional scale-dependent term given by

b1ðk; fs¼0
NL Þ ¼ b1 þ bϕfs¼0

NL M−1ðk; zÞ; ð16Þ

wherewe denote the response of galaxynumber density to the
PNG as bϕ (PNG bias parameter), andMðk; zÞ is the transfer
function which relates the matter density to the primordial
potential in the linear regime as δmðkÞ ¼ Mðk; zÞΦðkÞ,
where Mðk; zÞ≡ ð2=3Þk2TðkÞDðzÞ=ðΩmH2

0Þ, with TðkÞ
andDðzÞ denoting the transfer function and the linear-growth
factor, respectively. Since TðkÞ → k0 at k ≪ keq, where keq is
the wave number corresponding to the horizon scale of
matter-radiationequality, this PNG induces a scale-dependent
modification given by k−2 at very small k scales.
Based on the above background, we adopt the linear

model of galaxy power spectrum with the local PNG,

4Our amplitude parameters of PNG are related to the Planck
convention e.g., [33,46] as 2fs¼l

NL ¼ cL¼l for any l. Note that
the “NL” parameter in Ref. [33] is thus different from ours.
For example, fs¼2

NL ðthis workÞ ¼ −8fL¼2
NL ðthe Planck paperÞ for

l ¼ 2.
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Pggðk; μÞ ¼ ½b1ðk; fs¼0
NL Þ þ fμ2�2PðkÞ þ cnp

n̄
; ð17Þ

where f ≡ d lnD=d ln a is the linear growth rate, PðkÞ is
the linear matter power spectrum, and cnp is a parameter to
model the residual shot noise.
The anisotropic component, s ¼ 2, also can be realized

by the nonlinear transformation [67] in a similar way to
Eq. (15),

ΦðxÞ ¼ ϕðxÞ þ 2

3
fs¼2
NL

X
i;j

½ðψ ijÞ2ðxÞ − hðψ ijÞ2i�; ð18Þ

with the traceless auxiliary function ψ ij ≡ 3=2ð∂i∂j=∂2 −
δKij=3Þϕ. This PNG also modulates the local matter power
spectrum, but in an anisotropic (quadrupolar) way, pro-
ducing a modulation in the quadrupolar shape of objects.
Thus the linear shape bias has a scale-dependent term in
this case [60,67],

bKðk; fs¼2
NL Þ ¼ bK þ bψfs¼2

NL M−1ðkÞ; ð19Þ

where we denote the response of shapes to the anisotropic
PNG as bψ .

5 Hence, our linear model of the IA-galaxy
cross-power spectrum is given by

Pγgðk; μÞ ¼
1 − μ2

2
bKðk; fs¼2

NL Þ½b1ðk; fs¼0
NL Þ þ fμ2�PðkÞ:

ð20Þ

The geometrical factor, ð1 − μ2Þ, arises from the fact that
we can measure only the projected shapes to the plane
perpendicular to the line-of-sight direction, leading the
power spectrum to arise from Fourier components that are
perpendicular to the line-of-sight direction. In simpler
words, for Fourier modes with μ� 1 that correspond to
the modes parallel to the line-of-sight direction, the above
power spectrum is vanishing, while Fourier modes with
μ ¼ 0, the modes perpendicular to the line-of-sight direc-
tion, maximize the power spectrum amplitude in a given
kð¼ jkjÞ bin.
Note that the shape field estimated by Eq. (5) becomes a

densityweighted field asnγðxÞγðxÞ¼ n̄γðxÞð1þδγðxÞÞγðxÞ.
Since the corrections due to the density weighting should
be higher-order effects, ∼OðδγÞ and we only focus on the
signals in the linear regime in our analysis, we ignore this
effect hereafter.

2. Window convolution

The measured power spectra with the estimators in
Eqs. (8) and (12) are affected by the window effects due

to finite survey volume and spatially varying weights. To
implement the window convolutions on the theoretical
power spectrum models, we employ the rapid and precise
method based on pair-counting approach developed in
Refs. [101,118] for galaxy clustering, and extended to
IA in Ref. [87]. The main steps of the strategy are as
follows:

(i) Precompute the multipole moments of the window
correlation functions for the samples α; β∈ fg; γg,

Qαβ
l00 ðrÞ≡ ð2l00 þ 1Þ

Z
dΩr̂

4π

Z
x
Wα

11ðxÞWβ
11ðxþ rÞ

× Ll00 ðr̂ · x̂Þ;
by counting random particle pairs in the catalog(s).
We show the measured window functions for each
data chunks in Fig. 2. Notice that the r → 0 limit of
the monopole corresponds to the normalization
factor in Eq. (11). We use this limit value as Iαβ
to normalize the measured power spectrum to keep a
consistency with the theory side.

(ii) Compute the correlation function multipoles ξðl
0Þ

αβ by
the inverse Hankel transforms of model power

spectrum multipoles Pðl0Þ
αβ with the spherical Bessel

functions jl0 ,

ξðl
0Þ

αβ ðrÞ ¼ il
0
Z

∞

0

k02dk0

2π2
jl0 ðk0rÞPðl0Þ

αβ ðk0Þ:

(iii) Multiply Qαβ
l00 and ξðl

0Þ
αβ together and sum up them

with the coefficients cαβll0l00 for the target multipole l,

ξ̃ðlÞαβ ðrÞ≡
X
l0;l00

cαβll0l00Q
αβ
l00 ðrÞξðl

0Þ
αβ ðrÞ;

where

cαβll0l00 ≡ ð2lþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mαβÞ!
ðlþmαβÞ!

ðl0 þmαβÞ!
ðl0 −mαβÞ!

s

×

�
l00 l l0

0 0 0

��
l00 l l0

0 mαβ −mαβ

�
;

with mgg ¼ 0 and mγg ¼ 2, respectively. The 2 × 3

matrix form represents the Wigner 3j symbol. Note
that cggll0l00 is the same coefficient used in the
clustering analyses [8,115].

(iv) Perform the Hankel transform of order l to obtain
the window-convolved power spectrum multipole as

P̃ðlÞ
αβ ðkÞ ¼ 4πð−iÞl

Z
∞

0

r2drjlðkrÞξ̃ðlÞαβ ðrÞ:

We use the public code CAMB [119] to compute the linear-
matter power spectrum (more exactly, the transfer function)

5In this work we adopt a different notation of the PNG-induced
shape bias bψ from that of Ref. [67] by a factor of 12.
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for a given cosmological model. To evaluate the (inverse)
Hankel transforms, we use the publicly available FFTLog
code [120].

3. Integral constraint

Since we always define the density fluctuation using the
total number of galaxies observed within a finite survey
region, the IC is imposed on the measured galaxy corre-
lation function and power spectrum,Z

Vs

ξ̂obsgg ðrÞdr ¼ 0 ⇔ P̂obs
gg ðk → 0Þ ¼ 0: ð21Þ

Therefore, we must impose this condition on the theoretical
model used in the analysis. We correct for the integral
constraint in the model prediction of power spectrum by
subtracting the DC mode from the naive power spectrum
estimator (also see [118,121]),

P̃ðlÞ
gg;IC-correctedðkÞ¼ P̃ðlÞ

gg ðkÞ− QlðkÞ
Q0ðk→ 0Þ P̃

ð0Þ
gg ðk→ 0Þ; ð22Þ

where QlðkÞ is the lth-order Hankel transform of QlðrÞ.

Note that this correction is usually small enough and also
cause no numerical problem in the case of the usual ΛCDM
cosmological analyses with the Gaussian initial condition
because theunderlyingpower spectrum(Pgg ∝ kns at smallk)
already satisfies IC and then the DC limit of the window-

convolved monopole power spectrum P̃ð0Þ
gg ðk → 0Þ is finite

and sufficiently small for a large-volume survey. However,
the situation is different in the presence of the local PNG.
The local PNG is imprinted on the galaxy number fluctuation
as the scale-dependent bias, which causes the additional
terms proportional to fs¼0

NL kns−2 and ðfs¼0
NL Þ2kns−4 at small k

for thegalaxy power spectrum as inEq. (17). In particular, for
the latter, its inverse Fourier transform leads to an IR
divergence: ∝

R
j0ðkrÞ × kns−2dk. Although the observatio-

nal IC imposed as the subtraction in Eq. (22) ensures the
exact cancellation of this divergence [122], the numerical
implementation should be carefully done because the results
might easily depend on the choice of the minimum wave
number of the k-integral, kthmin. We checked that our model
predictions after the IC correction are consistent at sub-
percent level in the k-range of interest (k > 0.01 hMpc−1)
even if we change kthmin by an order of magnitude, compared
to our fiducial choice of kthmin ¼ 3 × 10−5 hMpc−1.

FIG. 2. Window functions measured from the random catalogs for the different regions. The blue (solid) line is for the window
function of the galaxy power spectrum Qgg

l and the orange (dot-dashed) line is for that of the IA power spectrum Qγg
l . The thick,

medium, and thin lines correspond to the multipole moments l ¼ 0, 2, 4, respectively.
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4. Weak lensing effects

The observed spatial fluctuation of the galaxy number
density is affected by weak lensing effect due to the
foreground large-scale structure along the same line-of-
sight direction to the BOSS galaxies, the so-called mag-
nification bias. The observed ellipticity of galaxy image is
also distorted from its original shape by the weak lensing
distortion due to the same foreground structure. The
leading-order contributions of these weak lensing effects,
which we hereafter label as “WL”, can be written, to a good
approximation in the weak lensing regime, as

δobsg ðxÞ ¼ δgðxÞ þ δWL
g ðxÞ; ð23Þ

γobsðxÞ ¼ γIAðxÞ þ γWLðxÞ; ð24Þ

with δWL
g ≡ 2ðαmag − 1ÞκWL. κWL and γWL are the weak

lensing convergence and shear fields given by

ðκWLðxÞ; γWLðxÞÞ≡ 1

2
ð∇2; ð2ÞϕWLðxÞ; ð25Þ

where ∇2 is the Laplacian on the sphere, ð2 ≡ 2eijðx̂Þ∇̂i∇̂j

with eij being the polarization tensor, and ϕWL is the
lensing potential. αmag is defined with the slope of the
cumulative galaxy number counts for galaxies brighter than
magnitude m,

αmag ≡ 5

2

dlnNð<mÞ
dm

;

and αmag depends on the selection function of galaxy
sample (we will discuss this issue later).
The two-point correlations of the observed fields

Eqs. (23) and (24) then have the following three WL-
related correlations in general in addition to the intrinsic
galaxy-galaxy and galaxy-IA correlations:

hδobsg δobsg i¼hδgδgiþhδgδWL
g iþhδWL

g δgiþhδWL
g δWL

g i; ð26Þ

hγobsδobsg i ¼ hγIAδgi þ hγWLδgi þ hγIAδWL
g i

þ hγWLδWL
g i: ð27Þ

The second and third terms arise due to the finite radial
width of our galaxy samples, i.e., the breakdown of the thin
redshift shell approximation, and the last term is for the
pure weak lensing autocorrelation arising from the fore-
ground structures at different redshifts from those of BOSS
galaxies. The weak lensing effects on the galaxy density
power spectrum [Eq. (26)] have been derived and discussed
by e.g., Refs. [123,124]. In this work, we derive the weak
lensing terms on the density-shape power spectrum
[Eq. (27)] in a similar way including the actual survey
window effects by developing the rapid convolution

method. We show the full derivation and window con-
volution method for the WL-related power spectrum in
Appendix B. We find that the WL contributions are not
negligible for the IA power spectrum and thus we add them
[Eqs. (B10), (B15), and (B16)] to the model template of the
IA power spectrum as

P̃ðLÞ
γobsgobs

ðkÞ ¼ P̃ðLÞ
γIAgðkÞ þ P̃ðLÞ

γWLgðkÞ þ P̃ðLÞ
γIAgWLðk; αmagÞ

þ P̃ðLÞ
γWLgWLðk; αmagÞ: ð28Þ

The estimation of αmag for our galaxy samples is not
straightforward because the magnitude and multicolor
dependent cuts, used for targeting BOSS galaxies [125],
make it difficult to estimate the true slope of the num-
ber counts as a function of the absolute magnitude.
Reference [126] carefully estimated the magnification bias
for the exactly same galaxy sample (CMASSLOWZTOT) and
redshift binning definition (0.2 < z < 0.5, 0.5 < z < 0.75)
as ours by using realistic mock data built from the MICE2
simulation [127–129]. They obtained αlow-zmag ¼ 1.93� 0.05

and αhigh-zmag ¼ 2.62� 0.28, which were used in the Kilo-
Degree Survey (KiDS-1000) cosmological inference of
the joint weak lensing and galaxy clustering analysis
[130,131]. In this work, we adopt these estimations as
the prior information of αmag. Since the final result almost
does not depend on whether we use the normal distribution
or fix it at the best-fit values because of small error bars, we
report the results with fixed αmag throughout this paper.

B. Covariance

As far as we know, there currently does not exist a suite
of realistic and well physically motivated mock catalogs for
galaxy IA unlike the galaxy clustering such as the
MultiDark-Patchy mock catalogs (hereafter Patchy mocks)
[132]. Therefore in this work, we derive an analytic
covariance for IA power spectrum, following Ref. [99]
who derived and validated the analytic covariance for
galaxy power spectrum. Since we only use the measured
power spectrum in the linear regime, we only consider the
Gaussian and shot/shape noise terms with the survey
window effects, and ignore other higher-order non-
Gaussian terms such as the beat-coupling and local-average
effects. In Appendix A, we show the detail derivation,
numerical implementation, and validation tests for our
covariance. We here summarize the formulas and show
the results. The full covariance matrix of our analysis is

C ¼
�
Cov½Pγg; Pγg� Cov½Pγg; Pgg�
Cov½Pgg; Pγg� Cov½Pgg; Pgg�

�
≡

�
CII CIG

tCIG CGG

�
;

where each component has the continuous part (cont) and
the shot/shape noise-related part (SN),
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CXY ≡CXYðcontÞ þ CXYðSNÞ;

with X;Y∈ fG; Ig. The results of galaxy-autocovariance
CGG was derived in Ref. [99] as

CGGðcontÞ
l1l2

ðk1; k2Þ
¼

X
l0
1
;l0

2

P
ðl0

1
Þ

gg ðk1ÞPðl0
2
Þ

gg ðk2ÞWGGð1Þ
l1;l2;l01;l

0
2
ðk1; k2Þ; ð29Þ

CGGðSNÞ
l1l2

ðk1; k2Þ
¼

X
l0

½Pðl0Þ
gg ðk1ÞWGGð2Þ

l1;l2;l0
ðk1; k2Þ þ ðk1 ↔ k2Þ�

þWGGð3Þ
l1;l2

ðk1; k2Þ; ð30Þ

where the window functions WGGðiÞ
l1;l2;��� (i ¼ 1, 2, 3) are

defined in Eqs. (A3), (A6), and (A7). The indices
i ¼ 1, 2, 3 represent the continuous (P × P), continuous-
shot noise (P × 1=n̄) and shot noise-shot noise (1=n̄ × 1=n̄)
terms, respectively. Similarly, we derive the IA autocovar-
iance CII,

CIIðcontÞ
L1L2

ðk1;k2Þ
¼
X
l0
1
;l0

2

P
ðl0

1
Þ

Eg ðk1ÞPðl0
2
Þ

Eg ðk2ÞWIIð1;AÞ
L1;L2;l01;l

0
2
ðk1;k2Þ

þ
X
l0
1
;l0

2

½Pðl0
1
Þ

gg ðk1ÞPðl0
2
Þ

EE ðk2ÞWIIð1;BÞ
L1;L2;l01;l

0
2
ðk1;k2Þþðk1↔k2Þ�;

ð31Þ
CIIðSNÞ

L1L2
ðk1; k2Þ

¼
X
l0

½fPðl0Þ
gg ðk1ÞWIIð2;shapeÞ

L1;L2;l0
ðk1; k2Þ

þPðl0Þ
EE ðk1ÞWIIð2;shotÞ

L1;L2;l0 ðk1; k2Þg þ ðk1 ↔ k2Þ�
þWIIð3Þ

L1;L2
ðk1; k2Þ; ð32Þ

where the window functions WIIðiÞ
L1;L2;��� (i ¼ 1, 2, 3) are

defined in Eqs. (A14), (A20), and (A23)–(A24). ‘(2,shape)’
and ‘(2,shot)’ are the continuous-shape noise (Pgg × σ2γ=n̄)
and the continuous-shot noise (PEE × 1=n̄) terms,
respectively.
We also derive the IA-galaxy cross covariance CIG:

CIGðcontÞ
L1l2

ðk1;k2Þ
¼
X
l0
1
;l0

2

½Pðl0
1
Þ

gg ðk1ÞPðl0
2
Þ

Eg ðk2ÞWIGð1Þ
L1;l2;l01;l

0
2
ðk1;k2Þþðk1↔k2Þ�;

ð33Þ
CIGðSNÞ

L1l2
ðk1; k2Þ

¼
X
l0

½Pðl0
2
Þ

Eg ðk2ÞWIGð2Þ
L1;l2;l0

ðk1; k2Þ þ ðk1 ↔ k2Þ�; ð34Þ

where the window functionsWIGðiÞ
L1;l2;��� (i ¼ 1, 2) are defined

in Eqs. (A26) and (A27).
Since each window function WXY, which is the quartic

function of W11, has a multidimensional integrationR
k̂1;k̂2;x1;x2

� � �, the direct evaluation by the sum of the
random particles would be computationally expensive. In
this work, we employ the grid-based implementation to
utilize FFTs as proposed by Ref. [99] (see Appendix A for
numerical implementation and validation test).
Figure 3 shows the fractional error of each power

spectrum, which is defined by the diagonal elements of
the covariance matrix divided by the square of the power
spectrum. The contribution from the Gaussian component
is similar among the three power spectra because its
fractional amplitudes are almost determined by the number
of independent Fourier modes with the cancellation of the
absolute amplitude (of linear bias) of the power spectrum.
On the other hand, the error of IA power spectrum is
dominated by the shape noise component at all scales
unlike the galaxy power spectrum due to the lower number
density of the shape sample (see Sec. II) and the smaller
amplitude of the IA correlation: b2KPmðkÞ ≪ σ2γ=n̄.
Figure 4 shows the corresponding correlation matrices of

our analytic covariance defined by rij ≡Cij=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
for

each galaxy sample. Since we adopt the analytic approach
with the Gaussian and the shot/shape noise terms, the
nonzero off-diagonal elements of each submatrix arise from
the pure window smearing of the BOSS survey footprints,
δk≲ 0.03 hMpc−1 ∼ 1=Rsurvey. Hence all the other ele-
ments beyond δk are zero. This approximation would be
valid for our linear-scale analysis. Actually, we checked our
analytic covariance of the galaxy power spectrum is in good
agreement with the covariance computed from the Patchy
mocks up to kmax ¼ 0.05 hMpc−1. Since the covariance of
the IA power spectrum is dominated by the shape noise and
the non-Gaussian corrections should be subdominant even
at quasinonlinear scales, we adopt our “linear” covariance
up to kmax ¼ 0.1 hMpc−1 for the IA power spectrum in our
analysis. Note that this kmax ¼ 0.1 hMpc−1 corresponds to
the acceptable maximum wave number for our linear model
in the analysis to obtain an unbiased constraint on the fs¼2

NL
parameter based on the results of the validation test
described in Appendix C.

C. Parametrization and Priors

In this work, we consider four types of analyses for
different purposes as follows. We summarize the param-
eters and priors for each case in Table II:

(i) Gaussian analysis (Sec. V B): We set fsNL ¼ 0
(s ¼ 0, 2) in this analysis. The main motivation is
to determine the linear shape bias bK (or AIA) of our
galaxy samples and check consistency with the
previous work [93].
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(ii) PNG analysis without bias relations (Sec. V C):
We explore the presence of PNGs, however, we
do not impose any assumption on the PNG-
induced linear bias parameters; we constrain a direct

observable of the PNG effect, i.e., the parameter
combinations, ðbϕfs¼0

NL Þ and ðbψfs¼2
NL Þ. Although

we cannot constrain the amplitude of the PNG
parameter alone (fsNL) in this case, this analysis

FIG. 3. Relative error of the IA power spectrum (left panel) and of the monopole (middle) or quadrupole (right) moment of the galaxy
density power spectrum, respectively. For the galaxy power spectra, we use the mean power spectra of the Patchy mocks instead of the
linear model. We use the monopole power spectrum as the denominator in the case of the quadrupole to avoid the zero crossing. The
blue, orange and green curves correspond to the Gaussian term, SN-related term and total covariance as indicated by legend. The upper
(lower) panel is for the NGC (SGC) and the solid (dashed) line is for the low-z (high-z), respectively.

FIG. 4. Correlation coefficients of the covariance matrix, defined as rij ≡ Cij=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
. Here we show only the elements for

the IA power spectrum Pð2Þ
Eg ð0.01 ≤ k < 0.1 hMpc−1Þ and the galaxy power spectra Pð0Þ

gg and Pð2Þ
gg ð0.01 ≤ k < 0.05 hMpc−1Þ for the

NGC (left plot) and SGC (right plot). In each plot the upper-left elements are for the low-z sample and the lower-right elements are for
the high-z sample, respectively. The red (blue) color indicates positive (negative) correlation.
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can tell us a significance of the positive or null
detection.

(iii) PNG analysis with bψðbKÞ (Sec. V D): We constrain
fs¼2
NL assuming the relation between the linear shape

bias bK and the PNG shape bias bψ . We adopt
bψðbKÞ ¼ 2.04bK obtained in Ref. [67] for dark
matter halos. For the isotropic PNG fs¼0

NL , on the
other hand, we keep the combination ðbϕfs¼0

NL Þ
unchanged to constrain fs¼2

NL based on the minimum
assumption. This analysis corresponds to our base-
line analysis.

(iv) PNG analysis with bϕðb1Þ and bψðbKÞ (Sec. V E):
We constrain fs¼0

NL and fs¼2
NL simultaneously by

assuming the relation between the linear galaxy bias
b1 and the PNG bias bϕ as well as the relation
bψðbKÞ assumed in the previous analysis setup. We
adopt bϕðb1Þ ¼ 2δcðb1 − pÞ with δc ¼ 1.686 and
p ¼ 0.55 suggested by Ref. [133].

Except the fs¼0;2
NL parameters, we fix other cosmological

parameters to the values that are consistent with the Planck
CMB data [3]: Ωm ¼ 0.3153, ωb ¼ 0.02237, ωc ¼ 0.1200,
ns ¼ 0.9649, and lnð1010AsÞ ¼ 3.044.

D. Likelihood analysis

We estimate the parameters based on the Bayesian
inference,

pðpjdÞ ∝ LðdjpÞπðpÞ; ð35Þ

where p is the posterior distribution of the model param-
eters p, π is the prior distribution described in Sec. IV C,
and LðdjpÞ is the likelihood of the data vector d given the
model that is specified by a set of parameters (p). We
assume the Gaussian likelihood,

−2 lnLðdjpÞ ¼ t½d −mðpÞ�C−1½d −mðpÞ�; ð36Þ

where mðpÞ is the model prediction that is given by p and
C is the covariance matrix defined in Sec. IV B. We omit
the normalization factor. Note that we ignore the cross-
covariance among four different galaxy samples.
We include the lowest-order multipole of the IA power

spectrum, Pð2Þ
Eg , and the monopole and quadrupole of the

galaxy power spectrum, Pð0Þ
gg and Pð2Þ

gg , over kmin < k <
kmax with kmin ¼ 0.01 hMpc−1 for all the power spectra,
kmax ¼ 0.1 hMpc−1 for the IA power spectrum, and kmax ¼
0.05 hMpc−1 for the galaxy power spectrum, respectively.
As we employΔk ¼ 0.005 hMpc−1 for the k-bin width, the
dimension of data vector is ndata ¼ ð18þ 2 × 8Þ ¼ 34 for
each sample. Hence, we have 136 data points of the power
spectra in total for the four samples. In Appendix C, we
give a validation test to determine a conservative choice of
kmax for our linear IA model to obtain an unbiased
constraint on the fs¼2

NL parameter by using the mock data
of IA halo power spectrum that is computed for the halo
sample in N-body simulation.
We adopt the nested sampling algorithm MultiNest

[134–136] to obtain the posterior distributions. We make
the plots and calculate the statistics of the marginalized
posterior distributions by using the public python package
GetDist [137].

V. RESULTS

We show the results of the measurements and the
systematic tests (Sec. VA) and the various likelihood
analyses in Secs. V B–VE (while we summarize the setups
in Sec. IV C).

A. Measurements

Figure 5 shows the measured IA power spectra (E-mode
and B-mode cross-power spectra) for the four samples. We
multiply all the measurements by minus one for illustrative
purpose. The negative sign of the E-mode power spectrum
means that the major axis of galaxy shape tends to align
with the minor axis of the surrounding LSS which
corresponds to the stretching axis or the direction of the
filament structure.
Figure 6 shows the cumulative SNR of the spectra that is

defined by the square root of the chi-square statistics
assuming a null-signal hypothesis (therefore this gives a
significance to exclude a null signal), S=N ≡ ffiffiffiffiffi

χ20
p

with

χ20¼
Xkmax

b;b0
P̂ðlÞ
αβ ðkbÞCov−1½PðlÞ

αβ ðkbÞ;PðlÞ
αβ ðkb0 Þ�P̂ðlÞ

αβ ðkb0 Þ: ð37Þ

We clearly detect the E-mode spectra for all the samples; the
total S=N ¼ 48.7, for kmax ¼ 0.25 hMpc−1. We find that the
S=N of the IA power spectrum is comparable with that of

TABLE II. Model parameters and priors used in each of our
analysis setups (whose results are given in Secs. V B–V E,
respectively, as indicated in the table header). The mark “✓”
means that the parameter is included in the parameter inference of
the corresponding setup. Uða; bÞ denotes a flat prior with range
½a; b�, while N ðμ; σÞ denotes a Gaussian prior with mean μ and
width σ.

Parameter Prior

Analysis (Section)

V B V C VD V E

b1 Uð1; 4Þ ✓ ✓ ✓ ✓
bK Uð−0.2; 0.2Þ ✓ ✓ ✓ ✓
cnp N ð0.0; 0.1Þ ✓ ✓ ✓ ✓

bϕfs¼0
NL Uð−2500; 2500Þ ✓ ✓

bψfs¼2
NL Uð−500; 500Þ ✓

fs¼0
NL Uð−500; 500Þ ✓

fs¼2
NL Uð−1000; 1000Þ ✓ ✓
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the quadrupole moment of the galaxy power spectrum for
each sample except for theSGChigh-z sample partly because
of larger rms ellipticity σγ (see Table I) and relatively small
amplitude (bK) of IA (see the next section for our fit).
For the systematic tests, we use the B-mode spectrum

which is expected to be zero at all scales from the
symmetry. As shown in Fig. 5, we have a null detection
of the B-mode signal with 41.5 < χ20 < 51.6, with 48 bins
for each sample, giving p-values within 0.33 < p < 0.74.
In Table III, we summarize the S=N and the null tests for
our measurements.

B. Gaussian analysis

In this analysis, we assume the linear model including the
linear galaxy biasb1, the linear shape biasbK and the residual
shot noise cnp for each galaxy sample. The reduced chi-
square of our model for the E-mode signal at the maximum
a posteriori (MAP) is χ2=Ndof ¼ 125.57=ð136 − 12Þ ¼
1.013 corresponding to p-value with p ¼ 0.444, which

implies that our model is acceptable to the data. This model
is shown in Fig. 5, together with the measurements. We
summarize the results in Table IV. Note that previous studies
on IA and WL have often used the parameter AIA for
convention to characterize the linear IA amplitude which
is linearly related to our bK as

AIA ¼ −
D̄ðzÞ

2C1ρcriΩm
bK; ð38Þ

where D̄ is the linear growth factor normalized to unity at
z ¼ 0 and we set C1ρcri ¼ 0.0134 following Ref. [91]. In
Table IV, we also show our estimations of AIA.
Here we check consistency of our measurement and

analysis with the previous studies. In Ref. [93], they
measured the projected correlation function of IA, often
denoted as wgþ, from BOSS LOWZ galaxy sample
(0.16 < z < 0.36) and reported the estimation of AIA and
the linear density parameter b1 as AIA ¼ 4.6� 0.5 and
b1 ¼ 1.77� 0.04 (see Table 2 in their paper). To compare

FIG. 5. Measurements of the E-mode (blue) and B-mode (orange) IA power spectra for each sample. The blue line denotes the best-fit
model prediction at the maximum a posteriori (MAP) of the Bayesian parameter inference for our “Gaussian” analysis setup (Sec. V B),
where we assume the linear shape bias parameter and the Gaussian initial condition for the flat ΛCDM model and include the measured
power spectrum up to kmax ¼ 0.1 hMpc−1 (vertical dashed line) in the parameter inference.
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with this result, we make an additional subsample “LOWZ”
with redshift-cut of 0.16 < z < 0.36 for our galaxy sample
(CMASSLOWZTOT) and do the same analysis in this
section, i.e., generating the randoms for this sample by
using the rejection method described in Sec. II, measuring
the IA power spectrum and fitting our linear model to the
signal. Although our low-z sample is constructed from the
combined sample of BOSS CMASS and LOWZ, galaxies
within 0.16 < z < 0.36 almost belong to the original
LOWZ sample. Note that our LOWZ sample used in this

section is very similar, but not exactly the same as that in
Ref. [93], because we used the BOSS DR12 sample
compared to the DR11 sample in Ref. [93].
Figure 7 shows the measured power spectrum from

our “LOWZ” sample and the comparison of our MAP
model and the linear model with the bias parameters
estimated in Ref. [93]. Our measured power spectrum is
in good agreement with the result of Ref. [93] to within a 1σ
level. The 1D posterior of each parameter gives bK ¼
−0.0426þ0.0041

−0.0040 (or equivalently AIA ¼ 4.34þ0.42
−0.40 ) and

FIG. 6. Cumulative SNR of the IA power spectrum (blue) for each sample as a function of the maximum wave number (kmax) up to
which we include the power spectrum information in the SNR calculation. We also show the two estimations of SNR for the quadrupole
moment of the galaxy power spectrum using the analytic covariance (orange-solid) or covariance estimated from the Patchy mocks
(orange-dashed) for comparison purpose.

TABLE III. Summary of the SNR estimation for the E-mode
power spectrum and a significance of null-signal hypothesis for
the B-mode power spectrum (see text for details). We set the
minimum wave vector as kmin ¼ 0.01 hMpc−1 for both and
kmax ¼ 0.25 hMpc−1 for the null test. The reduced chi-square
is defined as χ2red ¼ χ20=Nbin with Nbin ¼ 48 for each sample.

Sample

E-mode SNRðkmaxÞ B mode

0.1 hMpc−1 0.25 hMpc−1 χ2red p-value

NGC low-z 16.6 34.6 0.865 0.733
SGC low-z 8.1 18.4 0.907 0.656

NGC high-z 12.7 26.2 1.074 0.336
SGC high-z 6.4 12.3 0.944 0.583

Total 23.3 48.7 0.948 0.687

TABLE IV. Results of the “Gaussian” analysis (Sec. V B). We
show the central value (mode) and 68% credible interval (C.I.) of
the 1D posterior distribution for each bias parameter (bK and b1)
including marginalization over other parameters. The result for
AIA, an alternative convention to characterize the IA amplitude, is
computed from the result of bK using Eq. (38).

Sample
bK × 102 AIA b1
68% C.I. 68% C.I. 68% C.I.

NGC low-z −5.14þ0.31
−0.31 4.97þ0.30

−0.30 2.03þ0.03
−0.03

SGC low-z −4.90þ0.74
−0.70 4.74þ0.72

−0.67 2.08þ0.04
−0.05

NGC high-z −4.67þ0.36
−0.42 4.02þ0.31

−0.36 2.17þ0.04
−0.04

SGC high-z −4.26þ1.06
−0.96 3.66þ0.92

−0.83 2.17þ0.05
−0.05

TOSHIKI KURITA and MASAHIRO TAKADA PHYS. REV. D 108, 083533 (2023)

083533-14



b1 ¼ 1.85þ0.04
−0.05 , respectively. Note that the slightly different

values of b1 and bK between our results and Ref. [93]
are probably due to the different analysis setups: (i) theBOSS
DR12 and DR11 galaxy samples, and (ii) the FKPweighting
scheme employed in this work.Hencewe conclude that there
is no systematic uncertainty in our Fourier-space analysis.
Although we use the linear-scale signal only up to
k < 0.1 hMpc−1, the fractional error of bK is improved;
bK=σðbKÞ ¼ 10.5 compared to¼ 9.2 inRef. [93], even if the
previous work includes the information of the projected
correlation function (wgþ) down to R ¼ 6 h−1Mpc,
which is in the quasinonlinear regime. This implies that
the three-dimensional IA correlation function, the power
spectrum in our case, indeed contains more information on
the IA amplitude parameter than in the projected correlation
function. If we include PEg information down to k ¼
0.2 hMpc−1 (still keeping the same information of Pgg up
to k ¼ 0.05 hMpc−1), we find further improvements in
the parameters as given by bK ¼ −0.0459þ0.0026

−0.0026 (and
b1 ¼ 1.85þ0.04

−0.04 ), yielding bK=σðbKÞ ≃ 17.7. This corre-
sponds to an about twofold improvement in bK=σðbKÞ
compared to the projected correlation function. The reduced
chi-square value for the MAP model χ2=Ndof ¼
47.27=ð54 − 3Þ ¼ 0.927, meaning that the MAP model is
still acceptable (the p-value is 0.623). In summary our
method using the three-dimensional IA power spectrum
gives a promising route to constraining the IA amplitude for a
given galaxy sample.

C. PNG analysis without bias relations

From this section, we explore whether the BOSS spectra
exhibit the isotropic and anisotropic local PNGs charac-
terized by fs¼0

NL and fs¼2
NL . Here we do not assume any

additional relation between the linear bias (b1; bK) and the
PNG bias (bϕ; bψ ), that is, we regard the combinations
ðbϕfs¼0

NL Þ or ðbψfs¼2
NL Þ as one parameter. Hence, the analysis

here gives a significance of the PNG signal, if exists. We
show the 2D posterior distributions of ðbϕfs¼0

NL Þ and
ðbψfs¼2

NL Þ for each sample in Fig. 8 and summarize the
results in Table V. Note that bψ should be different among
the sample like bK , we cannot obtain a unified constraint on
the combination ðbψfs¼2

NL Þ by combining the constraints
for the different galaxy samples. We find no significant
evidence for both types of PNG.

FIG. 7. To compare our power spectrum analysis with the
previous work, we also measure the IA power spectrum for
the different galaxy sample, from our fiducial sample, where
the different one is constructed from BOSS galaxies at
0.16 < z < 0.36. The black line shows the best-fit model
prediction computed at MAP for the Gaussian analysis. For
comparison, the red-dashed line shows the best-fit model of
Ref. [93], which used the projected correlation function wgþ for
the very similar galaxy sample, where the red-color shaded region
denotes the model predictions allowed by the 1σ statistical errors
of AIA in their fitting results.

FIG. 8. Posterior distributions in ðbϕfs¼0
NL Þ − ðbψfs¼2

NL Þ plane for
the different galaxy samples.

TABLE V. Results of the PNG analysis where we do not adopt
the assumption on the bias relations (see Sec. V C for details). A
nonzero value of (bϕfNL or bψfs¼2

NL ) means a detection of the
PNG signals in the IA or galaxy power spectrum.

Sample

bψfs¼2
NL bϕfs¼0

NL

MAP 68% CI MAP 68% C.I.

NGC low-z −25.0 −21.8þ37.2
−40.6 246.3 436.1þ252.1

−251.8
SGC low-z 12.7 32.8þ95.5

−93.4 −190.9 118.6þ436.1
−501.1

NGC high-z −47.3 25.2þ42.6
−45.5 8.2 135.0þ238.3

−259.9
SGC high-z −33.6 15.2þ90.0

−101.0 618.2 720.4þ328.7
−313.6
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D. PNG analysis with bψðbKÞ
Here we assume the bias relation between bK and bψ to

obtain a constraint on fs¼2
NL . We adopt bψðbKÞ ¼ 2.04bK

obtained in Ref. [67] for dark matter halos. Although
Ref. [67] found that this relation does not vary with redshift
and mass of halo samples and simulation resolution, it has
to be carefully studied whether this assumption holds for
galaxies. Nevertheless we adopt it since it is the only known
relation for the anisotropic PNG-induced bias. On the other
hand, we keep the combination of ðbϕfs¼0

NL Þ as a parameter
to obtain the constraint on fs¼2

NL based on the minimum
assumption. Hence, we call the analysis in this section as
the baseline analysis for a direct constraint on fs¼2

NL . We
show the 1D posterior distribution in Fig. 9 and obtain the
constraint

fs¼2
NL ¼ −71þ273

−262 ; ð39Þ

with the mode and 68% credible interval.
In addition to this baseline analysis, we perform alter-

native analyses with the different setups to check the
internal consistency of our constraint described in Fig. 9.
In summary, we do not find any significant detection of
fs¼2
NL , due to the anisotropic local PNG.
Our constraint from the BOSS galaxies is about 13 times

larger than that from the Planck CMB data σðfs¼2
NL Þ ∼ 19.2

[33]. As we will discuss in the next section, there should be

room to improve the constraint even with the same dataset
by employing a more optimal sample selection.

E. PNG analysis with bϕðb1Þ and bψðbKÞ
In addition to the relation of the linear shape bias bψ ðbKÞ,

we assume that of the linear galaxy biasbϕðb1Þ. In this work,
we employ the relation estimated by Ref. [133]; bϕðb1Þ ¼
2δcðb1 − pÞ with δc ¼ 1.686 and p ¼ 0.55. We show the
resulting constraint on the two PNG parameters in Fig. 10.
For the fs¼0

NL parameter, our constraint fs¼0
NL ¼ 57þ30

−29 is (1σ)
consistent with, but slightly tighter than that of Ref. [43]
which performed similar linear-scale analyses to ours for the
same BOSS galaxy sample using the galaxy density power
spectrum and obtained fs¼0

NL ¼ 33þ32
−34 (see Table 1 in their

paper). We expect that this difference arises mainly from
the difference of the data vector, i.e., the measurement
method of the power spectrum. In this work we employ
the conventional “FKP” estimator that is affected by the
window effect. On the other hand, Ref. [43] used the power
spectrum measured by the “window-free” estimator [138].
The data points of the binned spectrum of the former
estimator are considered to include contributions from the
underlying Fourier modes outside the k range due to
the window convolution. Hence, our method includes
some contributions from larger-scale modes k < kmin ¼
0.01 hMpc−1 and yields a slightly tighter constraint on
fs¼0
NL than the constraint from the window-free power

spectrum used in Ref. [43].

FIG. 9. Left panel: Posterior distribution of fs¼2
NL in our “baseline” analysis (see Sec. V D for details), where we assume that the PNG

shape bias parameter bψ is specified by the Gaussian linear shape bias parameter bK and here we adopt the relation bψ ¼ 2.04bK , the
empirical relation found from halo catalogs in N-body simulations. Right panel: Constraints on fs¼2

NL for the different setups. In addition
to the baseline analysis, we performed the internal consistency tests; we redid the analysis removing one galaxy sample out of the four
samples or assuming a uniform prior Uð−10; 10Þ for the residual shot noise parameter cnp instead of our fiducial Gaussian prior
N ð0.0; 0.1Þ as described in Table II. We also show the result of Sec. V E in the row labeled by “w/ bϕðb1Þ relation”, where we further
adopt the assumption that the PNG density bias bϕ is specified by the Gaussian linear bias b1.
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VI. CONCLUSION

In this paper we have measured the three-dimensional IA
power spectrum from the spectroscopic BOSS galaxy
sample. We then used the measurements to obtain con-
straints on the local PNG parameters fs¼0;2

NL from a joint
analysis of the galaxy density and IA power spectra. To do
these, we used the publicly available large-scale structure
catalog [100] as the density sample and defined the shape
sample by cross-matching the shape catalog generated in
Ref. [105] with the density catalog. We also generated a
random catalog for the shape sample by using the accep-
tance-rejection method. We measured the IA power spec-
trum using an efficient estimator developed in Ref. [87].
For likelihood analysis, we newly derived an analytic
covariance for the estimated power spectrum. Our meas-
urement and cosmological analysis using the IA power
spectra are the first of its kind to be performed for the actual
galaxy survey data.
We clearly detected the E-mode IA spectra and found

that the SNR of the IA power spectrum is comparable with
that of the quadrupole moment of the galaxy density power
spectrum for each of the four galaxy samples that are
constructed from the NGC and SGC regions in the two
redshift ranges of 0.2 < z < 0.5 and 0.5 < z < 0.75,
respectively. The measured B-mode spectra are consistent
with a null signal for all the galaxy samples. In the Gaussian
analysis, we confirmed that our measured IA power
spectrum is in good agreement with the previous results.
Nevertheless, we would like to emphasize that the three-
dimensional power spectrum gives an improved precision

of the bK estimation even if our analysis uses only the
information in the linear regime, while the previous works
using the two-dimensional (projected) correlation functions
include the information down to the nonlinear scales.
Hence, our method would give a promising means of
constraining the IA effect for a given galaxy sample. To
constrain the PNG parameters, we performed joint analyses
using several different analysis setups, e.g., those with or
without the assumption on the relations between the linear
bias and the PNG-induced bias. We did not find any
significant evidence for both types of PNG for all the
analyses.
The detection of the IA power spectrum with high SNR

implies that we can potentially extract further cosmological
information from the IA signals. In fact there is still room
for improvements in terms of both theory and observation.
For example, cosmological information in the linear-scale
power spectrum is basically limited to that in the broadband
spectrum, and thus there is little information about baryonic
acoustic oscillations in the present linear-scale analysis.
Therefore, to obtain tighter constraints on the standard
cosmological parameters such as Ωm, σ8 and H0, it is
necessary to prepare sufficiently accurate theoretical tem-
plates of the IA power spectrum and its covariance
which are valid down to quasinonlinear scales beyond
the linear alignment model such as the “Tidal Alignmentþ
Tidal Torque” model and the effective field theory of
intrinsic alignments e.g., [78,139]. The formulation of
these models in the nonlinear regime has been done only
on real space, not on redshift space that is relevant to an
actual galaxy survey but see [140,141] for recent develop-
ments of a general formalism with the integrated perturba-
tion theory. Hence, it would be necessary to extend them to
include realistic observational effects such as the nonlinear
redshift distortion effect beyond the Kaiser factor [116] and
carefully examine a valid wave number- (k-) range of them
to obtain unbiased constraints on cosmological parameters
as in the case of usual galaxy clustering analysis e.g.,
[10,142] for such a study of the galaxy density power
spectrum.
On the observational side, we have used all the galaxies

in the entire sample for the IA power spectrum measure-
ment in order to reduce the shot and shape noise contri-
bution as much as possible. However, several studies
reported that the amplitude of the IA signal, therefore
the SNR of IA, depends on properties and environments of
galaxies, and also the shape measurement methods used to
estimate the individual galaxy shapes. For example,
Ref. [93] reported that the amplitude of IA is a monoton-
ically increasing function of their luminosity. These results
suggest that if we use a sample of only bright galaxies, we
could obtain a higher amplitude IA signal. On the other
hand, the lower number density due to the sample selection
obviously leads to the higher Poisson shot/shape noise in
the statistical errors. Therefore, an optimal sample or

FIG. 10. Posterior distributions in fs¼0
NL − fs¼2

NL plane for the
PNG analysis with bψ ðbKÞ and bϕðb1Þ (see Sec. V E for details).
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weighting scheme for the IA measurements is not clear yet
and worth exploring.
Finally, to do a joint analysis described in this work, we

need both spectroscopic and imaging data for the same
cosmological survey volume, where the imaging data is
needed to characterize shapes of individual galaxies and the
spectroscopic data is needed to measure distances to
galaxies for the three-dimensional power spectrum analy-
sis. This is indeed the case for ongoing/future galaxy
surveys; the Dark Energy Spectrograph Instrument
(DESI) [143], Subaru Prime Focus Spectrograph (PFS)
[144], Euclid [145], NASA Nancy Grace Roman Telescope
[146], and the Spectro-Photometer for the History of the
Universe and Ices Explorer [SPHEREx, 147] for spectro-
scopic surveys; the Subaru HSC survey [148], the Kilo-
Degree survey (KiDS) [149], the Dark Energy Survey
[DES, 150,151], the Vera Rubin Observatory’s Legacy
Survey of Space and Time (LSST) [152], Euclid, and
Roman Space Telescope for imaging surveys. We believe
that the method established in this work helps to extract as
much cosmological information as possible from these
current and upcoming datasets.
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APPENDIX A: DERIVATION AND VALIDATION
OF COVARIANCE MATRICES

In this section we describe the derivation of our analytic
covariance matrices in Secs. A 1–A 3, the numerical

implementation in Sec. A 4, and the validation tests in
Sec. A 5, respectively. We introduce an abbreviated
notation for the window (weight) functions following
Ref. [99] as

Wα
ijðxÞ≡ n̄iαðxÞwj

αðxÞ;

where n̄ is the mean number density, w is the weight for
each galaxy and α∈ fg; γg is the label of the galaxy density
or shape field for later convenience.

1. Galaxy clustering autocovariance: Cov½Pgg;Pgg�
We first reproduce the results for the galaxy power

spectrum covariance, Cov½Pgg; Pgg�, derived in Ref. [99].
We here omit the derivation (see Ref. [99] for detail
derivation), however we explicitly show the derivation of
the IA-related covariances, such as Cov½Pγg; Pγg� and
Cov½Pγg; Pgg�, in detail in the next subsection. Since we
need the labels of the fields, the shape field (γ) and the
density field (g), we will use some slightly different
notations from Ref. [99] as defined below. Also since
we restrict ourselves to the linear regime, we will ignore the
non-Gaussian, beat-coupling and the local-average effects
in the covariance. We thus take into account only the
Gaussian term and shot/shape noise terms including the
survey window effects.
We use the following notations for the observed galaxy

density field:

δ̂gðxÞ≡ n̄gðxÞwgðxÞffiffiffiffiffiffi
Igg

p ngðxÞ − αnrðxÞ
n̄gðxÞ

¼ Wg
11ðxÞffiffiffiffiffiffi
Igg

p δgðxÞ;

where the normalization factor for the density field is

Igg ≡
Z
x
n̄2gðxÞw2

gðxÞ ¼
Z
x
½Wg

11ðxÞ�2 ¼
Z
x
Wg

22ðxÞ. ðA1Þ

We decompose the full Gaussian covariance into the
(pure) “continuous” component and the shot noise-related
components for convenience,

Cov½Pðl1Þ
gg ; Pðl2Þ

gg �≡CGGðcontÞ
l1l2

þ CGGðSNÞ
l1l2

: ðA2Þ

The continuous component (Eq. 57 in Ref. [99]) can be
written as
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CGGðcontÞ
l1l2

ðk1; k2Þ ¼ NG
l1
NG

l2

Z
k̂1;k̂2;x1;x2

Plocal
gg ðk2;x1ÞPlocal

gg ðk1;x2ÞW22ðx1ÞW22ðx2Þe−iðk1−k2Þ·ðx1−x2Þ

× Ll1ðk̂1 · x̂1Þ½Ll2ðk̂2 · x̂2Þ þ Ll2ðk̂2 · x̂1Þ�

≃
X
l0
1
;l0

2

P
ðl0

1
Þ

gg ðk1ÞPðl0
2
Þ

gg ðk2Þ
�
NG

l1
NG

l2

Z
k̂1;k̂2;x1;x2

W22ðx1ÞW22ðx2Þe−iðk1−k2Þ·ðx1−x2Þ

× Ll1ðk̂1 · x̂1Þ½Ll2ðk̂2 · x̂2Þ þ Ll2ðk̂2 · x̂1Þ�Ll0
1
ðk̂1 · x̂2ÞLl0

2
ðk̂2 · x̂1Þ

�
≡ X

l0
1
;l0

2

P
ðl0

1
Þ

gg ðk1ÞPðl0
2
Þ

gg ðk2ÞWGGð1Þ
l1;l2;l01;l

0
2
ðk1; k2Þ: ðA3Þ

Here we have used the normalization factor NG
l ≡ ð2lþ 1Þ=Igg, and defined the local galaxy power spectrum in the

direction x by

Plocal
gg ðk;xÞ≡

Z
s
ξggðs;xÞe−ik·s ≡

Z
s
hδgðxÞδgðx − sÞie−ik·s: ðA4Þ

The shot noise terms [Eq. (B12) in Ref. [99] ] are

CGGðSNÞ
l1l2

ðk1; k2Þ≡
X
l0

½Pðl0Þ
gg ðk1ÞWGGð2Þ

l1;l2;l0
ðk1; k2Þ þ ðk1 ↔ k2Þ� þWGGð3Þ

l1;l2
ðk1; k2Þ; ðA5Þ

where

WGGð2Þ
l1;l2;l0

ðk1; k2Þ≡ 1þ α

2
NG

l1
NG

l2

Z
k̂1;k̂2;x1;x2

W22ðx1ÞW12ðx2Þe−iðk1−k2Þ·ðx1−x2ÞLl0 ðk̂1 · x̂1Þ

× ½Ll1ðk̂1 · x̂1ÞLl2ðk̂2 · x̂1Þ þ Ll1ðk̂1 · x̂2ÞLl2ðk̂2 · x̂2Þ þ Ll1ðk̂1 · x̂1ÞLl2ðk̂2 · x̂2Þ
þ Ll1ðk̂1 · x̂2ÞLl2ðk̂2 · x̂1Þ�; ðA6Þ

WGGð3Þ
l1;l2

ðk1; k2Þ≡ ð1þ αÞ2NG
l1
NG

l2

Z
k̂1;k̂2;x1;x2

W12ðx1ÞW12ðx2Þe−iðk1−k2Þ·ðx1−x2ÞLl1ðk̂1 · x̂1Þ½Ll2ðk̂2 · x̂1Þ þ Ll2ðk̂2 · x̂2Þ�:

ðA7Þ

Note that oncewe obtain the quartic functions of thewindow
function,WGGðiÞ

l;l0;��� (i ¼ 1, 2, 3) from the random catalog, we
can immediately construct the full Gaussian covariancewith
multiplications by the theoretical power spectrum multi-
poles as in Eqs. (A3) and (A5). The indices i ¼ 1, 2, 3
represent the functions for the continuous-continuous,
continuous-SN, and SN-SN components, respectively.

2. Intrinsic alignments autocovariance: Cov½Pγg;Pγg�
We next derive the IA–IA autocovariance. We use the

following notations:

γ̂ðxÞ≡ n̄γðxÞwγðxÞffiffiffiffiffi
Iγγ

p nγðxÞγðxÞ
n̄γðxÞ

¼ Wγ
11ðxÞffiffiffiffiffi
Iγγ

p ½1þ δγðxÞ�γðxÞ

≡Wγ
11ðxÞffiffiffiffiffi
Iγγ

p γ̃ðxÞ;

where the normalization factor for the shape field,

Iγγ ≡
Z
x
n̄2γðxÞw2

γðxÞ ¼
Z
x
Wγ

22ðxÞ:

In the following, we assume the density-weighted shape
field γ̃ðxÞ≡ ½1þ δγðxÞ�γðxÞ is a Gaussian field and simply
denote it as γðxÞ. Also we introduce another normalization
factor,

Iγg ≡
Z
x
wγðxÞn̄γðxÞwgðxÞn̄gðxÞ ¼

Z
x
Wγ

11ðxÞWg
11ðxÞ;

to define the unbiased estimator of the IA-galaxy cross-
power spectrum as we will see in the next.
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a. Local-plane parallel estimator

Our definition of the local-plane parallel estimator for IA power spectrum with the endpoint approximation [87] is

P̂ðLÞ
γg ðkÞ≡ ð2Lþ 1Þ ðL − 2Þ!

ðLþ 2Þ!

ffiffiffiffiffi
Iγγ

p ffiffiffiffiffiffi
Igg

p
Iγg

Z
k̂;x;x0

γ̂ðxÞδ̂gðx0Þe−2iϕk̂;x̂e−ik·ðx−x0ÞLm¼2
L ðk̂ · x̂Þ

¼ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

1

Iγg

Z
k̂

�Z
x
Wγ

11ðxÞγðxÞe−2iϕk̂;x̂e−ik·xLm¼2
L ðk̂ · x̂Þ

��Z
x0
Wg

11ðx0Þδgðx0Þeik·x0
�

≡ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

1

Iγg

Z
k̂
F̂ðLÞ
γ;ijðkÞk̂ik̂jF̂ð0Þ

g ð−kÞ; ðA8Þ

where we have used e−2iϕk̂;x̂ ¼ 2e�ijðx̂Þk̂ik̂j=ð1 − ðk̂ · x̂Þ2Þ with e�ij is the complex conjugate of the polarization tensor. The
ensemble average of this estimator becomes

hP̂ðLÞ
γg ðkÞi ¼ ð2Lþ 1Þ ðL − 2Þ!

ðLþ 2Þ!
1

Iγg

Z
k̂;x;x0

Wγ
11ðxÞWg

11ðx0ÞhγðxÞδgðx0Þie−2iϕk̂;x̂e−ik·ðx−x0ÞLm¼2
L ðk̂ · x̂Þ

¼ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

1

Iγg

Z
k̂;x;s

Wγ
11ðxÞWg

11ðx − sÞξγgðs;xÞe2iϕŝ;x̂−2iϕk̂;x̂e−ik·sLm¼2
L ðk̂ · x̂Þ

≃ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

1

Iγg

Z
k̂;x

Wγ
11ðxÞWg

11ðxÞPlocal
γg ðk;xÞLm¼2

L ðk̂ · x̂Þ

≃ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

1

Iγg

Z
k̂;x

Wγ
11ðxÞWg

11ðxÞ
�X
L0≥2

PðL0Þ
γg ðkÞLm¼2

L0 ðk̂ · x̂Þ
�
Lm¼2
L ðk̂ · x̂Þ

¼ PðLÞ
γg ðkÞ: ðA9Þ

In the first approximation, we have defined the local IA power spectrum as

Plocal
γg ðk;xÞ≡

Z
s
ξγgðs;xÞe2iϕŝ;x̂−2iϕk̂;x̂e−ik·s ≡

Z
s
hγðxÞδgðx − sÞie2iϕŝ;x̂−2iϕk̂;x̂e−ik·s; ðA10Þ

and assumed that the IA power spectrum is a smooth function within each k-bin and the survey window is much larger than
the wave vector we are interested in, i.e.,Z

s
Wðx − sÞξγgðs;xÞe2iϕŝ;x̂−2iϕk̂;x̂e−ik·s ¼

Z
q
Wg

11ðqÞeiq·xPlocal
γg ðkþ q;xÞe2iϕkþq;x̂e−2iϕk̂;x̂ ≃WðxÞPlocal

γg ðk;xÞ: ðA11Þ

In the second approximation, we have ignored higher-order wide-angle corrections to the local power spectrum,

Plocal
γg ðk;xÞ ¼ Pγgðk; k̂ · x̂; kxÞ ≃ Pγgðk; k̂ · x̂Þ ¼

X
L≥2

PðLÞ
γg ðkÞLm¼2

L ðk̂ · x̂Þ: ðA12Þ

Thus, our estimator is an unbiased estimator.

b. Gaussian covariance: Continuous component

We derive the continuous component of the Gaussian covariance for the estimated IA cross-power spectrum, P̂ðLÞ
Eg ðkÞ.

First, we define the E-mode estimator as the real part of Eq. (A8),

P̂ðLÞ
Eg ðkÞ≡ Re½P̂ðLÞ

γg ðkÞ� ¼ 2Lþ 1

2

ðL − 2Þ!
ðLþ 2Þ!

ffiffiffiffiffi
Iγγ

p ffiffiffiffiffiffi
Igg

p
Iγg

Z
k̂;x;x0

½γ̂ðxÞe−2iϕk̂;x̂ þ γ̂�ðxÞe2iϕk̂;x̂ �δ̂gðx0Þe−ik·ðx−x0ÞLm¼2
L ðk̂ · x̂Þ

≡ NI
L

Z
k̂
½F̂ðLÞ

γ;ijðkÞk̂ik̂j þ F̂ðLÞ�
γ;ij ðkÞk̂ik̂j�F̂ð0Þ

g ð−kÞ: ðA13Þ
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We have replaced γ̂ðxÞe−2iϕk̂;x̂ in Eq. (A8) with 1
2
½γ̂ðxÞe−2iϕk̂;x̂ þ γ̂�ðxÞe2iϕk̂;x̂ � and defined NI

L ≡ ð2Lþ1Þ
2

ðL−2Þ!
ðLþ2Þ!

1
Iγg

for

convenience of discussion. The continuous component of the autocovariance becomes

CIIðcontÞ
L1L2

≡ hP̂ðL1Þ
Eg ðk1ÞP̂ðL2Þ

Eg ðk2Þi − hP̂ðL1Þ
Eg ðk1ÞihP̂ðL2Þ

Eg ðk2Þi

¼ NI
L1
NI

L2

Z
k̂1;k̂2

h½F̂ðL1Þ
γ;ij ðk1Þk̂i1k̂j1 þ F̂ðL1Þ�

γ;ij ðk1Þk̂i1k̂j1�F̂ð0Þ
g ð−k1Þ½F̂ðL2Þ

γ;kl ðk2Þk̂k2k̂l2 þ F̂ðL2Þ�
γ;kl ðk2Þk̂k2k̂l2�F̂ð0Þ

g ð−k2Þi

≃Gaussian
NI

L1
NI

L2

Z
k̂1;k̂2

fh½F̂ðL1Þ
γ;ij ðk1Þk̂i1k̂j1 þ F̂ðL1Þ�

γ;ij ðk1Þk̂i1k̂j1�F̂ð0Þ
g ð−k2ÞihF̂ð0Þ

g ð−k1Þ½F̂ðL2Þ
γ;kl ðk2Þk̂k2k̂l2 þ F̂ðL2Þ�

γ;kl ðk2Þk̂k2k̂l2�i

þ h½F̂ðL1Þ
γ;ij ðk1Þk̂i1k̂j1 þ F̂ðL1Þ�

γ;ij ðk1Þk̂i1k̂j1�½F̂ðL2Þ
γ;kl ðk2Þk̂k2k̂l2 þ F̂ðL2Þ�

γ;kl ðk2Þk̂k2k̂l2�ihF̂ð0Þ
g ð−k1ÞF̂ð0Þ

g ð−k2Þig
≡ fA :hγδihγδig þ fB :hγγihδδig;

with

fA :hγδihγδig≡ NI
L1
NI

L2

Z
k̂1;k̂2;x1;x01;x2;x

0
2

e−ik1·ðx2−x01Þe−ik2·ðx1−x02Þe−iðk1−k2Þ·ðx1−x2Þ

×Wγ
11ðx1ÞWg

11ðx0
1ÞWγ

11ðx2ÞWg
11ðx0

2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂2Þ
× h½γðx1Þe−2iϕk̂1 ;x̂1 þ γ�ðx1Þe2iϕk̂1 ;x̂1 �δgðx0

2Þih½γðx2Þe−2iϕk̂2 ;x̂2 þ γ�ðx2Þe2iϕk̂2 ;x̂2 �δgðx0
1Þi

¼s1≡x1−x02; s2≡x2−x01NI
L1
NI

L2

Z
k̂1;k̂2;x1;s2;x2;s1

e−ik1·s2e−ik2·s1e−iðk1−k2Þ·ðx1−x2Þ

×Wγ
11ðx1ÞWg

11ðx2 − s2ÞWγ
11ðx2ÞWg

11ðx1 − s1ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂2Þ
× ½ξγgðs1;x1Þe2iϕŝ1 ;x̂1

−2iϕk̂1 ;x̂1 þ ξ�γgðs1;x1Þe−2iϕŝ1 ;x̂1
þ2iϕk̂1 ;x̂1 �

× ½ξγgðs2;x2Þe2iϕŝ2 ;x̂2
−2iϕk̂2 ;x̂2 þ ξ�γgðs2;x2Þe−2iϕŝ2 ;x̂2

þ2iϕk̂2 ;x̂2 �

≃
Eq: ðA11Þ

NI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2Þ

×Wγ
11ðx1ÞWg

11ðx2ÞWγ
11ðx2ÞWg

11ðx1ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂2Þ
× ½Plocal

γg ðk2;x1Þ þ Plocal�
γg ðk2;x1Þ�½Plocal

γg ðk1;x2Þ þ Plocal�
γg ðk1;x2Þ�

¼ 4NI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2Þ

×Wγ
11ðx1ÞWg

11ðx2ÞWγ
11ðx2ÞWg

11ðx1ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂2ÞPlocal
Eg ðk2;x1ÞPlocal

Eg ðk1;x2Þ

≃
Eq: ðA12Þ X

l0
1
;l0

2

P
ðl0

1
Þ

Eg ðk1ÞPðl0
2
Þ

Eg ðk2Þ4NI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2Þ

×Wγ
11ðx1ÞWg

11ðx2ÞWγ
11ðx2ÞWg

11ðx1ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂2ÞLl0
1
ðk̂2 · x̂1ÞLl0

2
ðk̂1 · x̂2Þ

≡ X
l0
1
;l0

2

P
ðl0

1
Þ

Eg ðk1ÞPðl0
2
Þ

Eg ðk2ÞWIIð1;AÞ
L1;L2;l0

1
;l0

2
ðk1; k2Þ; ðA14Þ

and
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fB :hγγihδδig≡ NI
L1
NI

L2

Z
k̂1;k̂2;x1;x01;x2;x

0
2

e−ik1·ðx1−x01Þe−ik2·ðx2−x02Þ

×Wγ
11ðx1ÞWg

11ðx0
1ÞWγ

11ðx2ÞWg
11ðx0

2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂2Þ
× h½γðx1Þe−2iϕk̂1 ;x̂1 þ γ�ðx1Þe2iϕk̂1 ;x̂1 �½γðx2Þe−2iϕk̂2 ;x̂2 þ γ�ðx2Þe2iϕk̂2 ;x̂2 �ihδgðx0

1Þδgðx0
2Þi

¼x2↔x0
2
; k̂2→−k̂2; L2∶ even

NI
L1
NI

L2

Z
k̂1;k̂2;x1;x01;x2;x

0
2

e−ik1·ðx2−x01Þe−ik2·ðx1−x02Þe−iðk1−k2Þ·ðx1−x2Þ

×Wγ
11ðx1ÞWg

11ðx0
1ÞWγ

11ðx0
2ÞWg

11ðx2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂0
2Þ

× h½γðx1Þe−2iϕk̂1 ;x̂1 þ γ�ðx1Þe2iϕk̂1 ;x̂1 �½γðx0
2Þe

−2iϕk̂2 ;x̂
0
2 þ γ�ðx0

2Þe
2iϕk̂2 ;x̂

0
2 �ihδgðx0

1Þδgðx2Þi

¼s1≡x1−x02; s2≡x2−x01NI
L1
NI

L2

Z
k̂1;k̂2;x1;s2;x2;s1

e−ik1·s2e−ik2·s1e−iðk1−k2Þ·ðx1−x2Þ

×Wγ
11ðx1ÞWg

11ðx2 − s2ÞWγ
11ðx1 − s1ÞWg

11ðx2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x1 − s1Þ
× ½ξ−ðs1;x1Þe4iϕŝ1 ;x̂1e−2iϕk̂1 ;x̂1e

−2iϕ
k̂2 ;x1−s1 þ ξ�−ðs1;x1Þe−4iϕŝ1 ;x̂1e2iϕk̂1 ;x̂1e

2iϕ
k̂2 ;x1−s1

þ ξþðs1;x1Þe−2iϕk̂1 ;x̂1e
2iϕ

k̂2 ;x1−s1 þ ξ�þðs1;x1Þe2iϕk̂1 ;x̂1e
−2iϕ

k̂2 ;x1−s1 �ξggðs2;x2Þ

≃
x1−s1→x̂1;Eq: ðA11Þ

NI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2ÞWγ
22ðx1ÞWg

22ðx2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂1Þ

× ½Plocal
− ðk2;x1Þe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ Plocal�

− ðk2;x1Þe2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1

þ Plocalþ ðk2;x1Þe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ Plocal�þ ðk2;x1Þe2iϕk̂1 ;x̂1e−2iϕk̂2 ;x1 �Plocal
gg ðk1;x2Þ

¼ 2NI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2ÞWγ
22ðx1ÞWg

22ðx2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂1Þ

× fe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ e2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1gPlocal
EE ðk2;x1ÞPlocal

gg ðk1;x2Þ

≃
Eq: ðA12Þ X

l0
1
;l0

2

P
ðl0

1
Þ

gg ðk1ÞPðl0
2
Þ

EE ðk2Þ2NI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2Þ

×Wγ
22ðx1ÞWg

22ðx2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂1ÞLl0
1
ðk̂1 · x̂2ÞLl0

2
ðk̂2 · x̂1Þ

× fe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ e2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1g; ðA15Þ
where we have defined the local IA autopower spectra:

Plocal
EE ðk;xÞ≡ 1

2
Re½Plocalþ ðk;xÞ þ Plocal

− ðk;xÞ�; ðA16Þ

Plocalþ ðk;xÞ≡
Z
s
ξþðs;xÞe−ik·s; ðA17Þ

Plocal
− ðk;xÞ≡

Z
s
ξ−ðs;xÞe4iϕŝ;x̂−4iϕk̂;x̂e−ik·s: ðA18Þ

In the second line, we have changed the dummy variable x2 with x0
2 and also used that L2 is even, i.e.,

Lm¼2
L2

ðμÞ ¼ Lm¼2
L2

ð−μÞ, after replacing k̂2 → −k̂2. Equation (A15) apparently breaks the symmetry under ðL1; k1Þ ↔
ðL2; k2Þ due to the choice of the LOS direction associated with the endpoint approximation. To avoid this inconsistency, we
symmetrize the result in Eq. (A15) as

fB :hγγihδδig≡ X
l0
1
;l0

2

½Pðl0
1
Þ

gg ðk1ÞPðl0
2
Þ

EE ðk2ÞWIIð1;BÞ
L1;L2;l01;l

0
2
ðk1; k2Þ þ ðk1 ↔ k2Þ�; ðA19Þ

TOSHIKI KURITA and MASAHIRO TAKADA PHYS. REV. D 108, 083533 (2023)

083533-22



where

WIIð1;BÞ
L1;L2;l01;l

0
2
ðk1; k2Þ≡ NI

L1
NI

L2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2ÞWγ
22ðx1ÞWg

22ðx2ÞLl0
1
ðk̂1 · x̂2ÞLl0

2
ðk̂2 · x̂1Þ

× Lm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂1Þfe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ e2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1g: ðA20Þ
We can obtain the latter case explicitly by changing x1 ↔ x0

1; k̂1 → −k̂1 and using that L2 is even in the second line of
Eq. (A15) instead. Note that we have expanded the IA power spectra by using the Legendre polynomials during the
calculation of the covariance, not the associated Legendre polynomials as in the definition of the measurements.
In summary, the continuous part of the autocovariance for the IA-galaxy power spectrum is given by

CIIðcontÞ
L1L2

ðk1; k2Þ ¼
X
l0
1
;l0

2

P
ðl0

1
Þ

Eg ðk1ÞPðl0
2
Þ

Eg ðk2ÞWIIð1;AÞ
L1;L2;l0

1
;l0

2
ðk1; k2Þ þ

X
l0
1
;l0

2

½Pðl0
1
Þ

gg ðk1ÞPðl0
2
Þ

EE ðk2ÞWIIð1;BÞ
L1;L2;l01;l

0
2
ðk1; k2Þ þ ðk1 ↔ k2Þ�;

ðA21Þ
where WIIð1;AÞ and WIIð1;BÞ are defined by Eqs. (A14) and (A20), respectively.

c. Gaussian covariance: Shot/shape noise terms

To derive the shot noise and shape noise contributions, we first define the fields that are estimated from discrete objects by

F̂ðlÞ
g ðkÞ ¼

Z
x
ngðxÞwgðxÞe−ik·xLlðk̂ · x̂Þ →

�XNg

i

−α
XNr

i

�
wgðxiÞe−ik·xiLlðk̂ · x̂iÞ

F̂ðLÞ
γ;ijðkÞk̂ik̂j ¼

Z
x
n̄γðxÞwγðxÞγðxÞe−2iϕk̂;x̂e−ik·xLm¼2

L ðk̂ · x̂Þ →
XNγ

i

wγðxiÞγðxiÞe−2iϕk̂;x̂i e−ik·xiLm¼2
L ðk̂ · x̂iÞ:

Hereafter we distinguish the discrete field from the continuous limit by using the label “ d”, i.e., dF̂ðlÞ
g and dF̂ðLÞ

γ;ij. In general,
the two-point correlations of these discrete fields have the shot noise and shape noise terms, respectively:

hdF̂ðl1Þ
g ðk1ÞdF̂ðl2Þ

g ð−k2Þi¼
	��XNg

i

−α
XNr

i

�
wgðxiÞe−ik1·xiLl1ðk̂1 · x̂iÞ

���XNg

j

−α
XNr

j

�
wgðxjÞeik2·xjLl2ðk̂2 · x̂jÞ

�


¼
	�XNg

i

−α
XNr

i

��XNg

j≠i
−α

XNr

j≠i

�
wgðxiÞwgðxjÞe−ik1·xi eik2·xjLl1ðk̂1 · x̂iÞLl2ðk̂2 · x̂jÞ




þ
	�XNg

i

þα2
XNr

i

�
w2
gðxiÞe−ik1·xieik2·xiLl1ðk̂1 · x̂iÞLl2ðk̂2 · x̂iÞ




≃ hF̂ðl1Þ
g ðk1ÞF̂ðl2Þ

g ð−k2Þiþð1þαÞ
Z
x
n̄gðxÞw2

gðxÞe−iðk1−k2Þ·xLl1ðk̂1 · x̂ÞLl2ðk̂2 · x̂Þ

× hdF̂ðL1Þ
γ;ij ðk1Þk̂i1k̂j1dF̂ðL2Þ�

γ;kl ð−k2Þk̂k2k̂l2i

¼
	XNγ

i

wγðxiÞγðxiÞe−2iϕk̂1 ;x̂i e−ik1·xiLm¼2
L1

ðk̂1 · x̂iÞ
XNγ

j

wγðxjÞγ�ðxjÞeþ2iϕk̂2 ;x̂j e−ik2·xjLm¼2
L2

ðk̂2 · x̂jÞ



¼
	XNγ

i

XNγ

j≠i
wγðxiÞγðxiÞe−2iϕk̂1 ;x̂i e−ik1·xiLm¼2

L1
ðk̂1 · x̂iÞwγðxjÞγ�ðxjÞeþ2iϕk̂2 ;x̂j e−ik2·xjLm¼2

L2
ðk̂2 · x̂jÞ




þ
	XNγ

i

w2
γðxiÞjγðxiÞj2e−2iϕk̂;x̂i

þ2iϕk̂;x̂i e−iðk1−k2Þ·xiLm¼2
L1

ðk̂ · x̂iÞLm¼2
L2

ðk̂ · x̂iÞ



≃ hF̂ðL1Þ
γ;ij ðk1Þk̂i1k̂j1F̂ðL2Þ�

γ;kl ð−k2Þk̂k2k̂l2iþ2σ2γ

Z
x
Wγ

12ðxÞe−2iϕk̂1 ;x̂
þ2iϕk̂2 ;x̂e−iðk1−k2Þ·xLm¼2

L1
ðk̂1 · x̂Þ

×Lm¼2
L2

ðk̂2 · x̂Þ
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Note that since hγi ¼ 0 and hγ2i ¼ hγ21i − hγ22i ¼ 0, the shape noise terms appear in the “plus” power spectrum component
in the B term [Eq. (A19)], F̂γ;ijF̂

�
γ;kl ∼ hjγj2i ¼ hγ21i þ hγ22i≡ 2σ2γ . For convenience of discussion, we introduce the noise-

related correlations,

Igg
l1l2

ðk1;−k2Þ≡ ð1þ αÞ
Z
x
Wg

12ðxÞe−iðk1−k2Þ·xLl1ðk̂1 · x̂ÞLl2ðk̂2 · x̂Þ

2I γγ
L1L2

ðk1;−k2Þ≡ 2σ2γ

Z
x
Wγ

12ðxÞe−iðk1−k2Þ·xLm¼2
L1

ðk̂1 · x̂ÞLm¼2
L2

ðk̂2 · x̂Þfe−2iϕk̂1 ;x̂e2iϕk̂2 ;x̂ þ e2iϕk̂1 ;x̂e−2iϕk̂2 ;x̂g:

Then in the case of the discrete fields, the B term can be rewritten as

dfB :hγγihδδig ¼ NI
L1
NI

L2

Z
k̂1;k̂2

h½dF̂ðL1Þ
γ;ij ðk1Þk̂i1k̂j1 þ dF̂ðL1Þ�

γ;ij ðk1Þk̂i1k̂j1�½dF̂ðL2Þ
γ;kl ð−k2Þk̂k2k̂l2 þ dF̂ðL2Þ�

γ;kl ð−k2Þk̂k2k̂l2�i

× hdF̂gð−k1ÞdF̂gðk2Þi

≃ NI
L1
NI

L2

Z
k̂1;k̂2

fh½F̂ðL1Þ
γ;ij ðk1Þk̂i1k̂j1 þ F̂ðL1Þ�

γ;ij ðk1Þk̂i1k̂j1�½F̂ðL2Þ
γ;kl ð−k2Þk̂k2k̂l2 þ F̂ðL2Þ�

γ;kl ð−k2Þk̂k2k̂l2�i

þ 2I γγ
L1L2

ðk1;−k2ÞgfhF̂gð−k1ÞF̂gðk2Þi þ Igg
00ð−k1;k2Þg

≡ contfB :hγγihδδig þ
X
l0

½fPðl0Þ
gg ðk1ÞWIIð2;shapeÞ

L1;L2;l0
ðk1; k2Þ þ Pðl0Þ

EE ðk1ÞWIIð2;shotÞ
L1;L2;l0

ðk1; k2Þg þ ðk1 ↔ k2Þ�

þWIIð3Þ
L1;L2

ðk1; k2Þ
≡ contfB :hγγihδδig þCIIðSNÞ

L1L2

where the first term corresponds to the continuous limit (Eq. (A19) and the window kernels for the shot/shape noise
contributions are

WIIð2;shapeÞ
L1;L2;l0 ðk1; k2Þ≡ σ2γNI

L1
NI

L2

Z
k̂1;k̂2;x1;x2

Wγ
12ðx1ÞWg

22ðx2Þe−iðk1−k2Þ·ðx1−x2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂1Þ

× fe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ e2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1gLl0 ðk̂1 · x̂2Þ; ðA22Þ

WIIð2;shotÞ
L1;L2;l0

ðk1; k2Þ≡ ð1þ αÞNI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

Wγ
22ðx1ÞWg

12ðx2Þe−iðk1−k2Þ·ðx1−x2ÞLm¼2
L1

ðk̂1 · x̂1Þ

× Lm¼2
L2

ðk̂2 · x̂1ÞLl0 ðk̂1 · x̂1Þ; ðA23Þ

WIIð3Þ
L1;L2

ðk1; k2Þ≡ 2σ2γð1þ αÞNI
L1
NI

L2

Z
k̂1;k̂2;x1;x2

Wγ
12ðx1ÞWg

12ðx2Þe−iðk1−k2Þ·ðx1−x2ÞLm¼2
L1

ðk̂1 · x̂1ÞLm¼2
L2

ðk̂2 · x̂1Þ

× fe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ e2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1g: ðA24Þ

3. Intrinsic alignments-galaxy clustering cross-covariance: Cov½Pγg; Pgg�
Similarly, we derive the cross components of the covariance matrix.

CIG
L1L2

≡ hP̂ðL1Þ
Eg ðk1ÞP̂ðl2Þ

gg ðk2Þi − hP̂ðL1Þ
Eg ðk1ÞihP̂ðl2Þ

gg ðk2Þi
≡ X

l0
1
;l0

2

½Pðl0
1
Þ

gg ðk1ÞPðl0
2
Þ

Eg ðk2ÞWIGð1Þ
L1;l2;l01;l

0
2
ðk1; k2Þ þ ðk1 ↔ k2Þ� þ

X
l0

½Pðl0
2
Þ

Eg ðk2ÞWIGð2Þ
L1;l2;l0 ðk1; k2Þ þ ðk1 ↔ k2Þ�

≡ CIGðcontÞ
L1l2

þCIGðSNÞ
L1l2

; ðA25Þ

where
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WIGð1Þ
L1;l2;l01;l

0
2
ðk1; k2Þ≡ NI

L1
NG

l2

Z
k̂1;k̂2;x1;x2

Wγ
11ðx1ÞWg

11ðx1ÞWg
22ðx2Þe−iðk1−k2Þ·ðx1−x2Þ

× Lm¼2
L1

ðk̂1 · x̂1Þ½Ll2ðk̂2 · x̂2Þ þ Ll2ðk̂2 · x̂1Þ�Ll0
1
ðk̂1 · x̂2ÞLl0

2
ðk̂2 · x̂1Þ; ðA26Þ

WIGð2Þ
L1;l2;l0

ðk1; k2Þ≡ NI
L1
NG

l2

Z
k̂1;k̂2;x1;x2

Wγ
11ðx1ÞWg

11ðx1ÞWg
12ðx2Þe−iðk1−k2Þ·ðx1−x2Þ

× Lm¼2
L1

ðk̂1 · x̂1Þ½Ll2ðk̂2 · x̂2Þ þ Ll2ðk̂2 · x̂1Þ�Ll0 ðk̂2 · x̂1Þ; ðA27Þ

4. Numerical implementation

To obtain the elements of analytic covariance matrices,
we show how to evaluate the quartic functions in terms of
the window functions, WXYðiÞ

l1;l2;���ðX;Y∈ fG; Ig; i ¼ 1; 2; 3Þ,
from given random catalogs. Since there is a multidimen-
sional integration,

R
k̂1;k̂2;x1;x2

� � �, in all Ws and thus

particle-based direct calculations are considered to be
not efficient, we employed the grid-based implementation
with FFT algorithm following Ref. [99]. For example, in
the case of the IA-IA covariance, the contributions from the
monopoles, ðl0

1;l
0
2Þ ¼ ð0; 0Þ, to the continuous parts of the

lowest-order multipole, ðL1; L2Þ ¼ ð2; 2Þ, can be rewritten
as [Eqs. (A14) and (A19)]

WIIð1;AÞ
2;2;0;0ðk1; k2Þ

≡ 4ðNI
2Þ2

Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2ÞWγ
11ðx1ÞWg

11ðx2ÞWγ
11ðx2ÞWg

11ðx1ÞLm¼2
2 ðk̂1 · x̂1ÞLm¼2

2 ðk̂2 · x̂2Þ

¼ 4ðNI
2Þ2

Z
k̂1;k̂2

�Z
x1

e−iðk1−k2Þ·x1Wγ
11ðx1ÞWg

11ðx1ÞLm¼2
2 ðk̂1 · x̂1Þ

��Z
x2

eiðk1−k2Þ·x2Wγ
11ðx2ÞWg

11ðx2ÞLm¼2
2 ðk̂2 · x̂2Þ

�

≡ 4ðNI
2Þ2

Z
k̂1;k̂2

Qγg
2 ðk1 − k2; k̂1ÞQγg�

2 ðk1 − k2; k̂2Þ;

with the associated Legendre polynomials, Lm¼2
2 ðμÞ ¼ 3ð1 − μ2Þ, decomposed into the sum of the products of Cartesian

components to be computed by FFTs,

Qγg
2 ðk1 − k2; k̂1Þ ¼

Z
x
e−iðk1−k2Þ·xWγ

11ðxÞWg
11ðxÞ3ð1 − ðk̂1 · x̂Þ2Þ

¼ 3

Z
x
e−iðk1−k2Þ·xWγ

11ðxÞWg
11ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1 FFT

þ 3k̂i1k̂
j
1

Z
x
e−iðk1−k2Þ·xWγ

11ðxÞWg
11ðxÞx̂ix̂j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

6 FFTs

:

Similarly, we have

WIIð1;BÞ
2;2;0;0ðk1; k2Þ≡ ðNI

2Þ2
Z
k̂1;k̂2;x1;x2

e−iðk1−k2Þ·ðx1−x2ÞWγ
22ðx1ÞWg

22ðx2ÞLm¼2
2 ðk̂1 · x̂1ÞLm¼2

2 ðk̂2 · x̂1Þ

× fe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ e2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1g

¼ ðNI
2Þ2

Z
k̂1;k̂2

�Z
x1

e−iðk1−k2Þ·x1Wγ
22ðx1ÞLm¼2

2 ðk̂1 · x̂1ÞLm¼2
2 ðk̂2 · x̂1Þfe−2iϕk̂1 ;x̂1e2iϕk̂2 ;x̂1 þ e2iϕk̂1 ;x̂1e−2iϕk̂2 ;x̂1g

�

×

�Z
x2

eiðk1−k2Þ·x2Wg
22ðx2Þ

�

≡ ðNI
2Þ2

Z
k̂1;k̂2

Qγγ
22ðk1 −k2; k̂1; k̂2ÞQgg�

0 ðk1 −k2Þ:
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Hence we need one FFT computation for Qgg
0 and 21 FFTs for Qγγ

22 as

Qγγ
22ðk1 − k2; k̂1; k̂2Þ ¼

Z
x
e−iðk1−k2Þ·xWγ

22ðxÞ3ð1 − ðk̂1 · x̂Þ2Þ3ð1 − ðk̂2 · x̂Þ2Þfe−2iϕk̂1 ;x̂e2iϕk̂2 ;x̂ þ e2iϕk̂1 ;x̂e−2iϕk̂2 ;x̂g

¼ 36

Z
x
e−iðk1−k2Þ·xWγ

22ðxÞfe�ijðx̂Þeklðx̂Þ þ eijðx̂Þe�klðx̂Þg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
21 FFTs

k̂i1k̂
j
1k̂

k
2k̂

l
2;

where we have used the definition of the phase factor,
e−2iϕk̂;x̂ ¼ 2e�ijðx̂Þk̂ik̂j=ð1 − ðk̂ · x̂Þ2Þ. Note that we need
more arrays for the higher-order multipoles (l > 0)
roughly scaling as l2. However since the monopole mo-
ment (isotropic part) should have a dominant contribution
and the higher-order anisotropies of the window function
should be subdominant as shown in Fig. 2, we ignore
higher-order moments than hexadecapole moment to save
computational resources.
Wenext consider the double angular integration,

R
k̂1;k̂2

� � �,
for each ðk1; k2Þ-bin. We carry out the k̂1-integration
taking the subsample average of Nsamp points randomly
drawn from wave vectors which belong to the k1-shell
(Nsamp ≤ Nmodeðk1Þ). For the k̂2-integration, we refer to
QðΔkÞ within a sphere centered at the endpoint of each k1

with a sufficiently large radius jΔkj < ksph to take into
account the smearing effect due to the survey window
function, i.e. we set ksph ≫ 1=Rsurvey, and add them to the
ðk1; k2Þ-bin satisfying k2 ¼ jk1 − Δkj. In this work, we set
Nsamp ¼ 10000 and ksph ¼ 0.03 hMpc−1.

5. Validation tests for covariance matrices

We validate the analytic covariance for the estimated
power spectra by comparing the evaluated covariance with
that estimated from the mock data for the BOSS survey.
Since the mathematical forms of window functions, W, in
both clustering and IA parts are fundamentally similar to
each other, we first do the same validation test for the
galaxy clustering part, CGG

l1l2
, as done in Ref. [99] to

check our implementation of the numerical integrals,R
k̂1;k̂2;x1;x2

� � �, in Ws. We prepare the mock covariance
by using 2048 realizations of BOSS DR12 MultiDark-
Patchy mock catalogs [132] (hereafter Patchy mocks) and
compare it to the analytic results [Eqs. (A2)–(A7)]. We
checked that the analytic covariance (Gaussian and shot
noise terms) and the mock covariance show good agree-
ment with each other on scales up to k ≃ 0.05 hMpc−1 that
is the maximum wave number used for our analysis of the
galaxy density power spectrum.
On the other hand, as far as we know, there currently

does not exist a suite of realistic and physically well-
motivated mock catalogs for galaxy IA unlike the galaxy
clustering such as the Patchy mocks. Thus we do a
validation test using the simulated tidal field as a

hypothetical IA signal including the observational effects,
i.e., the projection and survey window effects. We adopt the
same Gaussian random fields and tidal fields as the mock
data used in Ref. [87]. We briefly describe the data here. We
first generate each realization of the matter density field,
δðkÞ using the linear matter power spectrum PðkÞ at
redshift z ¼ 0, in a simulation box with comoving side
length of 3 h−1Gpc with 5123 grids. The Nyquist frequency
kNy ≃ 0.5 hMpc−1. As for the input PðkÞ we assume the
flat ΛCDM cosmology, which is consistent with the Planck
CMB data [2],

fΩm;ωb;ωc; ns; lnð1010AsÞg
¼ f0.3156; 0.02225; 0.1198; 0.9645; 3.094g:

The input power spectrum corresponds to σ8 ¼ 0.834, the
rms value of present-day mass fluctuations within a sphere
of radius 8 h−1Mpc. We then compute the tidal field
TijðkÞ≡ ðk̂ik̂j − δij=3ÞδðkÞ in Fourier space and inverse
Fourier transform the field to obtain TijðxÞ on each grid in
configuration space. We repeated the above procedures to
generate 1000 realizations of Tij using different random
seeds. For the power spectrum measurements, we further
define the projected tidal field, i.e., observed ellipticities,
viewed by an observer in the simulation box for each grid
as γobsðxÞ≡ eijðx̂ÞTijðxÞ with eij being the polarization
tensor. Note that the underlying (unwindowed) density and
shape power spectra in this test are then given by

PmmðkÞ ¼ PðkÞ;

PEmðkÞ ¼
1

2
ð1 − μ2kÞPðkÞ: ðA28Þ

Employing a survey window that mimics the BOSS NGC
footprint, we measure the IA power spectrum by using our
LPP estimator defined by Eq. (12) and compute the mock
covariance by using the measurements from 1000 simu-
lation realizations. For the analytic covariance, on the other
hand, we generate random particles whose distribution
traces the assumed footprint and calculate the window
functions, W, with the above implementation. By multi-
plying them and the theoretical power spectra [Eq. (A28)]

together, we obtain the analytic covariance, CIIðcontÞ
L1L2

[Eq. (A21)]. In Fig. 11, we show the comparison of the
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analytic covariance and the mock covariance. The two
covariances agree well for both the diagonal terms and the
off-diagonal terms due to window smearing. In particular,
the diagonal terms of the covariance of the density and
shape power spectra show a scale-dependent difference that
is not just a constant multiple, due to the different effects of
the window function on the scalar and tensor quantities.

APPENDIX B: WEAK LENSING EFFECTS
ON IA POWER SPECTRUM

We here derive the contamination of weak lensing effects
in the measured IA power spectrum by using similar
approximations employed inRefs. [123,124,153] to estimate
the magnification bias on the measured galaxy power
spectrum. We extend their previous results to the IA power
spectrumandalso newlypropose a generalmethod to include
the survey window effects using an actual random catalog.

1. Observables

The spatial fluctuation of an observed galaxy number
density at a certain redshift is determined by thegravity of not
only the surrounding large-scale structure but also the
foreground large-scale structure due to the weak lensing
effects. Hence the observed density fluctuation field includ-
ing the leading-order weak lensing effect can be written as

δobsg ðxÞ ¼ δgðxÞ þ δWL
g ðxÞ: ðB1Þ

The first term is the standard, intrinsic density field aris-
ing from the galaxy distribution in the large-scale structure at
redshifts of galaxies in the sample. The second term is the
magnification bias defined by δWL

g ðxÞ≡2ðαmag−1ÞκWLðxÞ
with αmag ≡ 5s=2 where s is the slope of the cumulative
galaxy number counts for galaxies brighter than magni-
tude m,

s≡ dlnNð<mÞ
dm

;

and κWL is the weak lensing convergence field,

κWLðxÞ≡ 1

2
∇̂2ϕWLðxÞ

≡ 3

2
ΩmH2

0

Z
χ

0

dχ0
ðχ − χ0Þχ0

χ

1

aðχ0Þ δmðx
0Þ; ðB2Þ

where ϕWLðxÞ is the lensing potential, χ is the comoving
distance, and ∇̂2 is the angular part of the Laplacian.We have
used the Poisson equation at the second equality.
Similarly, we define the observed galaxy shape field,

inferred from the spatial pattern of observed galaxy
ellipticities,

γobsðxÞ ¼ γIAðxÞ þ γWLðxÞ; ðB3Þ

where the first term is the standard IA field arising from the
large-scale structure at redshifts of galaxies in the sample,
and the second term is the weak lensing shear,

γWLðxÞ≡ 1

2
ð2ϕWLðxÞ

¼ 3

2
ΩmH2

0

Z
χ

0

dχ0
ðχ − χ0Þχ0

χ

1

aðχ0Þ 2eijðx̂Þ

×
Z
k0
k̂0ik̂

0
jδmðk0Þeik0·x0 ; ðB4Þ

where ð2 ≡ 2eijðx̂Þ∇̂i∇̂j and eij is the polarization tensor.
In the following, we use the abbreviated notations, C≡
3ΩmH2

0=2 and Kðχ; χ0Þ≡ ðχ − χ0Þχ0=ðχaðχ0ÞÞ.

FIG. 11. Comparison of the analytic covariance (solid line) with the mock covariance (dots) for the diagonal (left panel) and the off-
diagonal terms (right), respectively. The blue line and symbol correspond to the covariance of the shape power spectrum, CIIðcontÞ

22 , and

the black ones correspond to that of the density power spectrum, CGGðcontÞ
00 .
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2. Two-point statistics

The cross-correlation between the observed galaxy
density field and shape field can be decomposed into four
terms,

hδobsg γobsi ¼ hδgγIAi þ hδgγWLi þ hδWL
g γIAi

þ hδWL
g γWLi: ðB5Þ

The second and third terms arise due to the breakdown of
the thin redshift shell approximation and the last term is the
pure weak-lensing autocorrelation. We estimate the order of
magnitude of each contribution including actual survey
window effects.
We first start with the autocorrelation functions of weak

lensing,

hδWL
g ðx1ÞγWLðx2Þi ¼ 2ðαmag − 1ÞhκWLðx1ÞγWLðx2Þi

¼ 2ðαmag − 1ÞC2

Z
χ1

0

dχ01Kðχ1; χ01Þ
Z

χ2

0

dχ02Kðχ2; χ02Þ2eijðx̂Þ
Z
k0
k̂0ik̂

0
jPðk0; χ01; χ02Þeik

0·ðx0
1
−x0

2
Þ

≃ 2ðαmag − 1ÞC2

Z
minðχ1;χ2Þ

0

dχ0Kðχ1; χ0ÞKðχ2; χ0Þ
Z
k0⊥

e
2iϕk̂0⊥Pðk0⊥; χ0Þeik

0⊥·ðx0
1;⊥−x0

2;⊥Þ:

We have used the Limber approximation in the second line where the subscript “ ⊥” denotes the components per-
pendicular to the line-of-sight (LOS) direction, and introduced the notation of the phase factor, 2eijðx̂Þk̂0ik̂0j ≡
ð1 − ðk̂0 · x̂Þ2Þe2iϕk̂0⊥ ≃ e

2iϕk̂0⊥ . Also by approximating χ1, χ2 as the (constant) mean redshift χ̄, we obtain

hδWL
g ðx1ÞγWLðx2Þi ≃ 2ðαmag − 1ÞC2

Z
χ̄

0

dχ0K2ðχ̄; χ0Þ
Z
k0⊥

e
2iϕk̂0⊥Pðk0⊥; χ0Þeik

0⊥·ðx0
1;⊥−x0

2;⊥Þ: ðB6Þ

Next, we consider the survey window effects by multiplying the weight function, e.g., δ̃WL
g ðxÞ≡WðxÞδWL

g ðxÞ. Hereafter
we assume the separable form for the window function, i.e., WðxÞ ≃WkðxkÞW⊥ðx⊥Þ where the subscript “ k” denotes the
LOS component (see the next subsection for justifications of this approximation). By performing the Fourier transform of
Eq. (B6), we define the coordinate-independent power spectrum with the window effects as

P̃δWL
g γWLðkÞ≡ e−2iϕk̂⊥ jWkðkkÞj22ðαmag − 1ÞC2

Z
χ̄

0

dχ0K2ðχ̄; χ0Þ
�
χ̄

χ0

�
2
Z
k0⊥

e
2iϕk̂0⊥P

�
k0⊥

χ̄

χ0
; χ0

�
jW⊥ðk⊥ − k0⊥Þj2; ðB7Þ

and then, we finally obtain the multipole moments with respect to the associated Legendre polynomials of m ¼ 2,

P̃ðLÞ
δWL
g γWLðkÞ≡ ð2Lþ 1Þ ðL − 2Þ!

ðLþ 2Þ!
Z
k̂
P̃δWL

g γWLðkÞLm¼2
L ðμÞ ðB8Þ

¼ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!
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ðB9Þ

≡ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!
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1

−1

dμ
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Lm¼2
L ðμÞjWkðkkÞj22ðαmag − 1ÞC2

×H2D
2

�
Q⊥ðr⊥ÞðH2D

2 Þ−1
�Z
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dχ0K2ðχ̄; χ0Þ
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�
2

P
�
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��
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�
ðk⊥Þ; ðB10Þ

where in the second line, we have defined the autocorrelation function of the perpendicular components of the window
function, Q⊥, as

jW⊥ðk⊥Þj2 ≡
Z
r⊥
Q⊥ðr⊥Þeik⊥·r⊥ ; ðB11Þ
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and used the 2D plane-wave expansion with the Bessel function Jn,

e−ik⊥·r⊥ ¼
X∞
n¼−∞

ð−iÞnJnðk⊥r⊥Þe−inðϕk̂⊥−ϕr̂⊥ Þ: ðB12Þ

In the third line, we reexpress the result in terms of the 2D Hankel and inverse Hankel transforms, H2D
l and ðH2D

l Þ−1,
explicitly to numerically implement it with 1D FFT (FFTlog).
We next calculate the galaxy-weak lensing cross-correlation with the same approximations as

hδgðx1ÞγWLðx2Þiχ1<χ2 ¼ C
Z

χ2

0

dχ0Kðχ2; χ0Þ2eijðx̂Þ
Z
k0
k̂0ik̂

0
jPgmðk0; χ1; χ0Þeik0·ðx1−x02Þ

≃ CKðχ2; χ1Þ
Z
k0⊥

e
2iϕk̂0⊥Pgmðk0⊥; χ1Þeik

0⊥·ðx1;⊥−x2;⊥Þ

≃ C
χ2 − χ1
aðχ̄Þ

Z
k0⊥

e
2iϕk̂0⊥Pgmðk0⊥; χ̄Þeik

0⊥·ðx1;⊥−x2;⊥Þ:

Performing the Fourier transform taking into account the window function, we obtain the power spectrum,

P̃δgγ
WLðkÞ≡ e−2iϕk̂⊥

GkðkkÞ
2

C
aðχ̄Þ

Z
k0⊥

e
2iϕk̂0⊥Pgmðk0⊥; χ̄ÞjW⊥ðk⊥ − k0⊥Þj2; ðB13Þ

where

GkðkkÞ≡
Z

dx1;k

Z
dx2;kWkðx1;kÞWkðx2;kÞjx1;k − x2;kje−ikkðx1;k−x2;kÞ ≡

Z
drkjrkjQkðrkÞe−ikkrk :

Thus, the multipole moments are

P̃ðLÞ
δgγ

WLðkÞ≡ ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

Z
k̂
P̃δgγ

WLðkÞLm¼2
L ðμÞ ðB14Þ

≡ð2Lþ 1Þ ðL − 2Þ!
ðLþ 2Þ!

Z
1

−1

dμ
2
Lm¼2
L ðμÞGkðkkÞ

2

C
aðχ̄ÞH

2D
2 ½Q⊥ðr⊥ÞðH2D

2 Þ−1½Pgmðk0⊥; χ̄Þ�ðr⊥Þ�ðk⊥Þ: ðB15Þ

After similar calculations, we obtain the magnification-IA cross-power spectrum:

P̃ðLÞ
δWL
g γIA

ðkÞ≡ ð2Lþ1Þ ðL−2Þ!
ðLþ2Þ!

Z
1

−1

dμ
2
Lm¼2
L ðμÞGkðkkÞ

2

2ðαmag−1ÞC
aðχ̄Þ H2D

2 ½Q⊥ðr⊥ÞðH2D
2 Þ−1½PγIAmðk0⊥; χ̄Þ�ðr⊥Þ�ðk⊥Þ: ðB16Þ

For the numerical evaluation, we assume Pgm ¼ b1PNL and
PγIAm ¼ bKPNL=2where PNL is the nonlinear-matter power
spectrum.

3. Window functions for weak lensing signals

Here we address the window function for the weak
lensing signal. As shown in the previous subsection, we
approximate the window function as the separable form
parallel/perpendicular to the LOS direction. In this case, the
autocorrelation of W also becomes separable,

QðrÞ≡
Z
x
WðxÞWðxþ rÞ

≃
Z
x
WkðxkÞWðx⊥ÞWkðxk þ rkÞWðx⊥ þ r⊥Þ

≡QkðrkÞQ⊥ðr⊥Þ:

To see how good this approximation is, we first measureQk
and Q⊥ from the random catalog, next reconstruct its (3D)
multipole moments by the angular integration,

Qrec
l ðrÞ≡ ð2lþ 1Þ

Z
dΩr̂

4π
QkðrkÞQ⊥ðr⊥ÞLlðμÞ; ðB17Þ

where ðrk; r⊥Þ ¼ ðμr;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2

p
rÞ, and then compare Qrec

l

with the true multipole moments, Ql, which is defined as

QlðrÞ≡
Z
x
WðxÞWðxþ rÞLlðμÞ: ðB18Þ

To obtain Qk;⊥, we follow the pair-counting approach
[118] which was originally proposed to obtain Ql. We
slightly modify it to evaluate each parallel/perpendicular
component as follows. We first review the methodology for

CONSTRAINTS ON ANISOTROPIC PRIMORDIAL NON- … PHYS. REV. D 108, 083533 (2023)

083533-29



the calculation of Ql. The number of pairs connecting the
infinitesimal volume dVðxÞ with dV 0ðx0Þ is written by

RRðx;x0Þ ¼ WðxÞdV ·Wðx0ÞdV 0;

whereWðxÞ≡ n̄ðxÞwðxÞ is the “window” function defined
by the product of the mean number density n̄ and weight w.
The total number of pairs over the survey region with the
separation vector r≡ x0 − x is given by the summation,

RRtotðrÞ≡
Z

RRðx;x0Þ ¼ dV 0
Z
x
WðxÞWðxþ rÞ

¼ dV 0QðrÞ: ðB19Þ

By using dV 0 ¼ r3Δðln rÞdΩr̂ and taking the angular
average with the Legendre polynomials, we have

RRtot
l ðrÞ≡ ð2lþ 1Þ

Z
RRtotðrÞLlðμÞ

¼ 4πr3Δðln rÞQlðrÞ;

where we define μ for each pair as the cosine between the
separation vector and the midpoint vector towards the pair,

μ≡ r̂ · d̂ with d≡ ðxþ x0Þ=2. Thus, we obtain Ql by
normalizing the total weighted pair counts ∝ RRtot

l =r3.
Similarly, under the assumption of the separable form of

the window function, we can factorize Eq. (B19) by using
dV 0 ¼ rkΔðln rkÞ · r2⊥Δðln r⊥Þdϕr̂⊥ ,

RRtotðrk;r⊥Þ≃ rkΔðlnrkÞQkðrkÞ · r2⊥Δðlnr⊥Þdϕr̂⊥Q⊥ðr⊥Þ;

where rk ≡ r · d̂ and r⊥ ≡ r − rkd̂. Therefore, the parallel
and perpendicular components of the window autocorre-
lation can be estimated by the pair counts summed
with respect to rk and r⊥, respectively; Qk ∝ RRtot=rk and
Q⊥ ∝ RRtot=r2⊥.
The left panels in Fig. 12 show the LOS-parallel

and -perpendicular components of the window autocorre-
lation, Qk and Q⊥, respectively. The dumping scales,
rk ∼ 500 h−1Mpc and r⊥ ∼ 2000 h−1Mpc, roughly corre-
spond to the comoving range of galaxy distributions in each
direction. We show the comparison between the true and
reconstructed multipole moments of the window autocor-
relation function in the right panel. We find that the
assumption of the LOS-parallel/perpendicular decomposi-
tion is not perfect, but the difference is less than 5% for all
scales. Besides, since the order of amplitude of weak

FIG. 12. Left column: The upper (lower) panel shows the LOS-parallel (-perpendicular) component of the window autocorrelation
function measured from the random catalog for NGC high-z sample (0.5 < z < 0.75). Right: The comparison between the true
multipole moments defined by Eq. (B18) (solid line), denoted as Ql, and the reconstructed moments from Qk;⊥ defined by Eq. (B17)
(dashed line), denoted as Qrec

l . The blue, orange and green curves correspond to the monopole, quadrupole and hexadecapole,
respectively. The lower panel shows the difference between them. The jagged features at small scales are due to the resolution of the pair
counting approach.
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lensing signals is small enough compared to the statistical
error as we will see in the next subsection, we stick to this
assumption for the window function throughout this paper.

4. Amplitude of weak lensing signals

Figure 13 shows the density-shape cross-power spectrum
(multipole moment of L ¼ 2) including the survey window
effect and the weak lensing contributions for each galaxy
sample, NGC low-z/high-z. The effective redshifts are 0.38
and 0.61, respectively.We assume b1 ¼ 2, bK ¼ −0.045 for
the intrinsic alignment power spectrum (the linear alignment
model), and for the magnification bias in the weak lensing

signals, we use αðlow-z;high-zÞmag ≡ ð1.93; 2.62Þ [126,130]. The
amplitude of WL-cross-power spectrum (orange, dot-
dashed curve) is similar between the two samples because
it is almost determined by the radial (finite) width of the
galaxy distribution,Δrk ∼ 500 h−1Mpc. On the other hand,
for WL-autopower spectrum (green, dotted), the high-z
sample has greater amplitude than the low-z sample due
to the higher weak lensing efficiency as expected. Since the
intrinsic alignment and the weak lensing have opposite
signs, i.e., radial and tangential distortions, the total
power spectrum (black, solid) is smaller than the pure IA
power spectrum (blue, dashed). We take this weak lensing

contamination into account in the analysis as described in
Sec. IVA.

APPENDIX C: FURTHER TESTS
FOR COSMOLOGICAL ANALYSIS

1. Window convolution with primordial
non-Gaussianity

The model of the IA power spectrum used in our analysis
has been validated in Ref. [87]. However, the test was done
in Ref. [87] using a continuous tidal field, generated under
the Gaussian initial condition, to simulate the IA signal.
Since the observed galaxy density and shape fields are
discrete and we aim at exploring the PNG (i.e., non-
Gaussian initial condition) information from the observed
power spectra, the previous tests would be considered
insufficient. As we currently do not have a realistic mock
signal of galaxy IA in the k-range we are interested in,
0.01≲ k≲ 0.2 hMpc−1, we conduct the following addi-
tional tests using dark matter halo samples obtained by
N-body simulations under both Gaussian and non-Gaussian
(fs¼2

NL ¼ 500) initial conditions generated in Ref. [67]. We
adopt Npart ¼ 20483 particles and 4.096 h−1Gpc for the
comoving simulation box size, which corresponds to the
particle masses mp ≃ 7.0 × 1011 h−1M⊙. We use halos

FIG. 13. Upper panels: The model predictions of of various power spectra, computed from our theoretical template of the linear-
theory power spectra, for NGC low-z (left) and high-z (right) samples, respectively: the “intrinsic” IA-density cross spectrum (blue,
dashed line), the WL-density or WL-IA cross spectrum (orange, dot-dashed), and the WL autospectrum (green, dotted). Black, solid line
show the total power that is the sum of the above power spectra, to be compared with the measured power spectrum. Note that we plot
the absolute values of power spectra because the signs of IA and WL signals are opposite. Lower panels: The ratio of the total power
spectrum to the intrinsic IA power spectrum, where the latter does not include the WL contamination due to the foreground large-scale
structure at different redshifts from those of galaxies in the sample. The gray band corresponds to the statistical errors in each k bin that
are estimated from the diagonal elements of the covariance for each galaxy sample.
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identified by Rockstar [154] with their virial mass
Mvir > 7 × 1013 h−1M⊙. Employing the same BOSS-like
survey geometry as used in Ref. [87] (also used in the
validation test of the covariance matrix in Appendix A), we
measure the halo IA power spectrum including the survey
window, the projection of halo shapes, and the redshift-space
distortion effect for each line-of-sight direction.We chop out
32 different subregions, each of which mimics the BOSS
survey window (∼2 h−3Gpc3), from the entire simulation
box (∼69 h−3Gpc3) and use the signals measured from
the subregions to estimate the mean signal and the error
bars needed to compare the theoretical model with the
measurements.
Figure 14 shows the comparison of the measured IA

power spectrum and the linear (alignment) model predic-
tion including observational effects. The figure gives
validation of our theoretical model because the model
predictions fairly well reproduces the simulation results,
down to very small k bins, for both the Gaussian and PNG
initial conditions. Note that the deviation between the
theory and measurement at k ∼ 0.1 hMpc−1 is due to the
nonlinearities of the evolution of IA and the RSD effect.

We will discuss the impact of this nonlinear effect on the
PNG parameter estimations in the next section.

2. Determination of kmax for IA power spectrum

We here study a proper choice of the maximum wave
number kmax in the sense that our analysis using the
theoretical template based on the linear model can recover
the input PNG parameter in an unbiased manner. In this
work, we choose kmax so that the 1D systematic bias in fs¼2

NL
parameter is smaller than the statistical error, 1σ. For this
purpose we need to prepare a realistic mock signal (data
vector) that mimics the true nonlinearity of galaxy IA
corresponding to the BOSS galaxy sample we use.
However, again since we currently do not have a reliable
mock of galaxy IA, we use the halo IA power spectrum
generated in the previous section to approximate the
nonlinearity of the observed IA signal as follows. Since
the density and IA power spectra of halos have greater
amplitudes than do the BOSS galaxy power spectra, we
make the following correction to make the mock catalog
more realistic. We first estimate the linear density and shape

FIG. 14. Comparison of the halo IA power spectra, measured by our estimator (points with error bars) from the mock data, with the
theoretical predictions including the observational effects (solid lines) for Gaussian (left) and anisotropic PNG (right) initial conditions,
respectively. The upper panels are for the real-space power spectrum and the lower for the redshift-space power spectrum. These are
measured for the halo sample with Mvir > 7 × 1013 h−1M⊙ in the mock data including the BOSS-like survey window (see text for
details). Note that the data points are the mean signal of the 32 mock data realizations, while the error bars are computed from the
standard deviations of the 32 measurements, which give an estimate of the statistical errors in the power spectrum measurement for the
BOSS volume.
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bias parameters by fitting the linear power spectrum to the
halo power spectrum up to k ¼ 0.05 hMpc−1, where the
linear model is valid. Then we rescale the halo power
spectra by multiplying the constant factor so that the
resulting halo power spectra have the linear bias param-
eters, ðb1; bKÞ ¼ ð2.0;−0.04Þ, that are typical values for
the BOSS galaxy samples we use. Nevertheless the halo
power spectra have stronger nonlinearities in their cluster-
ing, IA and redshift-space distortion at the larger k in the
nonlinear regime, and therefore our validation tests to
estimate the impact of these nonlinear effects can be
considered as a conservative estimate.
For comprehensiveness of our discussion we make two

kinds of validation tests. For the first test, to generate the
mock data vector d, we use the rescaled halo power spectra,
as described above, that are originally measured from
halos in N-body simulations. Here we call this mock data
vector as d ¼ “halo IA”. For the second test we use the
linear power spectra to make the mock data vector,
where the model predictions are computed from the same
model that is used in the theoretical template of the
parameter inference (d ¼ “LA”). Then we test whether

our analysis pipeline can recover the input value of fs¼2
NL .

The latter test can quantify the impact of projection effect in
a multidimensional parameter space in the Bayesian
parameter inference, which refers to a bias that the input
parameter value is not necessarily perfectly recovered if the
posterior distribution in a full parameter space is non-
Gaussian [10,142].
Figure 15 shows the results. In the case of the “halo IA”

(blue), our pipeline can recover the input fs¼2
NL only when

using up to kmax ≃ 0.1 hMpc−1 to within 1σ error, and gives
a parameter bias greater than 1σ for the larger kmax because
of the stronger nonlinearities that are not captured by the
linear model. In the case of the “LA” (orange), although the
pipeline can recover the input value of fs¼2

NL to within 1σ for
all kmax of interest, the projection effect is larger for the
smaller kmax due to the banana-shaped degeneracy between
bK and fs¼2

NL . We note that for both cases the estimated
value of fs¼2

NL tends to be smaller than the true value,
meaning that the analysis tends to underestimate the PNG
amplitude. From these results we adopt kmax¼0.1hMpc−1

as our fiducial choice.

FIG. 15. Left panel: Comparison of the mock data vector of the IA power spectrum in our test. The orange points are the mock data
made by our linear alignment model (“LA”), while the blue points are the mock data made by the halo power spectrum measured from
the simulation (“halo IA”). Here we adopted the linear shape bias parameter to mimic that for BOSS-like galaxies, while we “rescaled”
the amplitude of the halo power spectrum to match with the linear-theory prediction for BOSS-like galaxies on linear scales (see text for
details). The circle symbols in the respective color are for the Gaussian initial conditions for the ΛCDM model, while the cross symbols
are for the PNG model with fs¼2

NL ¼ 500 (the other cosmological parameters are kept fixed to the fiducal values). The error bars are from
the diagonal components of the covariance for the BOSS NGC low-z galaxy sample. Right: Results for the validation test of our analysis
pipeline. Shown is the difference between the estimated fs¼2

NL and its true value assumed in the mock data, where fs¼2
NL is estimated by

comparing the model template of linear-theory power spectrum with the mock data in the range k ¼ ½0.01 hMpc−1; kmax� as a function of
kmax in the x-axis. Each color and symbol corresponds to the respective result using the respective mock data in the left figure.
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