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Dark matter halos of dwarf spheroidal galaxies (dSphs) play important roles in dark matter detection.
Generally we estimate the halo profile using a kinematical equation of dSphs but the halo profile has a
large uncertainty because we have only a limited number of kinematical datasets. In this paper, we utilize
cosmological models of dark matter subhalos to obtain better constraints on halo profile of dSphs. The
constraints are realized as two cosmological priors: satellite prior, based on a semianalytic model of the
accretion history of subhalos and their tidal stripping effect, and stellar-to-halo mass relation prior, which
estimates halo mass of a galaxy from its stellar mass using empirical correlations. In addition, we adopt a
radial dependent likelihood function by considering the velocity dispersion profile, which allows us to
mitigate the parameter degeneracy in the previous analysis using a radial independent likelihood function
with averaged dispersion. Using these priors, we estimate the squared dark matter density integrated
over the region of interest (so-called J factor) of eight classical and 27 ultrafaint dSphs. Our method
significantly decreases the uncertainty of J factors (up to about 20%) compared to the previous radial
independent analysis. We confirm the model dependence of J-factor estimates by evaluating Bayes
factors of different model setups and find that the estimates are still stable even when assuming different
cosmological models.
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I. INTRODUCTION

The presence of dark matter in our Universe is one of the
most important open questions in the current physics. Even
though cosmological observations agree with predictions of
the Λ-cold dark matter model with surprising accuracy [1],
we still do not know what dark matter is. In order to answer
this question, many candidates and detection methods have
been proposed [2]. Among various detection methods,
those using dwarf spheroidal galaxies (dSphs) are interest-
ing. DSphs are a kind of satellite galaxy of the Milky Way
with large mass-to-light ratio, which implies that they are
dark matter rich objects. Such a large amount of dark matter
enables us to explore the nature of dark matter. In the
indirect detection method, we can constrain the annihilation
cross section by observing the signal flux of annihilation
products. This method is very useful to detect well-
motivated dark matter candidates such as the weakly
interacting massive particles [3,4], because they have a
large annihilation cross section thanks to a nonrelativistic
quantum effect, so-called the Sommerfeld effect [5,6]. The
sensitivity of the detection depends on the estimated
amount of signal flux. This amount is proportional to an
astrophysical quantity, so-called J factor:

JðΔΩÞ≡
Z

dΩ
Z

dlρ2ðrÞ; ð1Þ

where Ω is the solid angle, ΔΩ is the region of interest, l
denotes the line-of-sight distance, r is the radius from the
center of a target dSph, and ρðrÞ denotes the dark matter
density profile. In order to obtain reliable and useful results,
we need to know the accurate and precise value of the J
factor, that is, the shape of dark matter density profile ρðrÞ.
Although dSphs are useful tools to study the dark matter,

their dark matter density profiles have large astrophysical
uncertainty compared to other uncertainties from particle
physics models. Generally, the dark matter density profile
is estimated by fitting the spectroscopic dataset of dSph
member stars using the Jeans equation [7]. However, the
stellar dataset cannot completely determine the dark matter
profile because we generally use empirical models of the
dark matter profile through the fitting and their parameters
are degenerated. Fortunately, from the viewpoint of cos-
mology, structure formation models predict the distribution
of dSph profiles in the Universe, which is useful to select
theoretically favored density profile model parameters and
mitigate the problematic degeneracy. For instance, Ref. [8]
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uses the conventional theory of spherical collapse to
roughly constrain the parameter space of the dark matter
density profile.
Recently, semianalytic models of the tidal mass stripping

effect on the cold dark matter halo were developed [9,10],
which allows us to construct a multivariate distribution of
dSph mass and its tidal truncation radius. This probability
distribution was applied as a prior (called satellite prior)
for the J-factor estimation of dSphs by fitting their averaged
velocity dispersion [11] and it was shown that the satellite
prior has a potential to break the degeneracy among
parameters of the Navarro–Frenk–White (NFW) profile [12].
While the satellite prior gives a statistical trend for the

whole dSph, cosmology offers us another way to constrain
the dark matter mass of an individual dSph. Since the dark
matter plays an essential role in forming the structure of the
Universe including dSphs, the stellar components of dSphs
have a strong relation to their dark matter halo, known as
the stellar-to-halo mass relation (SHMR) [13]. The dark
matter halo mass in each dSph can be therefore constrained
by its stellar mass by using this relation.
In this paper, we perform a more detailed analysis of the

satellite prior in Ref. [11] (hereafter SA20) by considering
the radial dependence of the velocity dispersion to optimize
given kinematical datasets. The radial dependency weakens
the degeneracy among dark matter halo parameters and
gives more precise estimation than the radial independent
analysis. Moreover, we consider some SHMR models to
obtain more reasonable estimation results from the view-
point of cosmology. These models help us to obtain
more accurate constraints of the halo parameters than the
previous satellite prior only analysis. From the other point
of view, our analysis also provides a method for evaluating
the credibility of each SHMR model using dark matter
halos of dSphs. This paper is organized as follows: In
Sec. II, we discuss our analysis method. In Sec. II A, we
describe our model setups and assumptions on the dSph
system and introduce our likelihood function. In Sec. II B,
we explain the construction of the satellite prior and the
stellar-to-halo mass relation prior. We set up several choices
of these priors reflecting the uncertainty of cosmological
models. In Sec. II C, we show the table of dSphs including
their half-light radii and distances. The kinematical dataset
and preanalysis method for each dSph is also described.
In Sec. III, we show results of the analysis and estimated
J-factor values. Here we compare results of different priors
to verify the stability of the estimated J factor by changing
cosmological models. In Sec. V, we discuss and summarize
our results.

II. METHOD

A. Models and likelihood

We assume that dSphs are spherical and steady
systems according to conventional analyses [8,14,16].

Their velocity dispersions are determined by the spherical
Jeans equation,

1

νðrÞ
∂ðνðrÞσ2rðrÞÞ

∂r
þ 2σ2rðrÞβðrÞ ¼ −

GMðrÞ
r2

; ð2Þ

whereG is the gravitational constant, r denotes the distance
from the dSph center, νðrÞ is the stellar number density and
MðrÞ denotes the dark matter mass enclosed within the
radius r. The anisotropy of the stellar motion βðrÞ is
defined by the ratio of the velocity dispersions σ2rðrÞ, σ2θðrÞ
and σ2ϕðrÞ as βðrÞ≡ 1 −

σ2θþσ2ϕ
2σ2r

. By definition, βðrÞ satisfies
−∞ < βðrÞ ≤ 1. In this paper, we assume that βðrÞ ¼
βaniðconstÞ for simplicity.
We describe the stellar profile νðrÞ as the Plummer

profile, a widely used fitting function of the stellar number
density of dSphs [17,18]. Its stellar number density νðrÞ
and surface density ΣðRÞ are given by

νðrÞ ¼ 3

4πR3
e

�
1þ

�
r
Re

�
2
�

−5=2
; ð3Þ

ΣðRÞ ¼ 1

πR2
e

�
1þ R2

R2
e

�
−2
; ð4Þ

where R denotes the radius projected on the celestial sphere
and Re is the half-light radius of the surface density profile.
For the dark matter density profile, there are many

discussions and no consensus exists yet. This is known
as the core-cusp problem [21]; N-body simulation shows
the cuspy dark matter density profile (ρðrÞ ∝ r−1 around
the center), while observations suggest the cored profile
[ρðrÞ ∝ const]. In this paper, we assume the cold dark
matter model, then the dark matter density profile can be
well described by the truncated NFW profile [12], whose
mass density ρðrÞ and enclosed massMðrÞ≡ R

dr4πr2ρðrÞ
are respectively written as

ρðrÞ ¼
8<
:

ρs
�

r
rs

�
−1
�
1þ r

rs

�
−2 ð0 ≤ r ≤ rtÞ

0 ðrt < rÞ;
ð5Þ

MðrÞ ¼
�
4πρsr3sfNFWðr=rsÞ ð0 ≤ r ≤ rtÞ
4πρsr3sfNFWðrt=rsÞ ðrt < rÞ; ð6Þ

where ρs and rs is scale density and radius of the profile,
respectively, rt denotes the truncation radius, and an
auxiliary function fNFWðxÞ is defined as follows:

fNFWðxÞ ¼ lnð1þ xÞ − 1

1þ x−1
: ð7Þ
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Using these quantities, we define our likelihood function
as follows:

LðΘÞ ¼
Y
i

N ½vi; vdSph; σ2losðRiÞ þ δσ2i �; ð8Þ

where vdSph is the systemic velocity of each dSph,
Θ≡ Re; rs; ρs; rt; βani; vdSph represents the parameter set
in our model, N ½x; μ; σ2� denotes the normal (Gaussian)
distribution with the mean μ and the variance σ2, vi is the
observed velocity of the ith star and δσi is its observational
error. The function σ2losðRÞ is the projected velocity
dispersion along the line of sight at projected radius R,
given by the following formula:

σ2losðRÞ ¼
2

ΣðRÞ
Z

∞

R
dr

�
1 − βðrÞR

2

r2

�
νðrÞσ2rðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2=r2

p : ð9Þ

When βðrÞ ¼ βaniðconstÞ, Eq. (9) is simplified to [22]

σ2losðRÞ ¼
1

ΣðRÞ
Z

∞

R
dsνðsÞGMðsÞ

s
Kðs=RÞ; ð10Þ

KðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u−2

p

×

�
u2
�
3

2
− βani

�
2F1

�
1;
3

2
− βani;

3

2
; 1 − u2

�
−
1

2

	
;

ð11Þ

where 2F1ða; b; c; zÞ is the Gaussian hypergeometric
function.
We note that our likelihood function has R dependence in

contrast with that SA20 used the averaged (R-independent)

velocity dispersion σ2los ¼ 4πG
3

R∞
0 drrνðrÞMðrÞ. The advan-

tage of the our R-dependent analysis is that it weakens the
degeneracy between parameters by probing the shape of

σ2losðRÞ even when σ2los is not changed.

B. Priors

1. Photometry prior

The half-light radius Re is constrained by the result of
photometric observations, which is realized as a photo-
metric prior. We adopt a log-normal distribution for the
half-light radius to construct the prior as follows:

πphotoðlog10Re=ðpcÞÞ
¼ N ðlog10Re=ðpcÞjlog10re;circ=ðpcÞ; δlog10re;circ=ðpcÞÞ;

ð12Þ

where we calculate the mean log10 re;circ and standard
deviation δ log10 re;circ based on the error propagation

law by using θ̂ listed in Table I on the supplement material
of SA20 [23].

2. Satellite prior

Structure formation models of subhalos in the
Milky Way predict structural parameters of subhalo profile
ρðrÞ: rs, ρs and rt. In this paper we use the satellite prior
proposed in SA20, briefly reviewed in the following: The
formation of subhalos is well described by the extended
Press-Schechter formalism [45], which gives the differ-

ential number of accreted subhalos d2Nsh
dzadma

. Here Nsh denotes
the number of the subhalo, and za and ma are the redshift
and mass of a subhalo when the subhalo accreted onto its
host. Here ma can be reinterpreted as halo parameters ρs;a,
rs;a and r200 by considering two conditions: (i) The subhalo
is virialized ma ¼ 4πρcritðzaÞ200r3200=3, where the virial
radius r200 is calculated from rs;a by using the concen-
tration parameter ca ¼ rs;a=r200, whose probability density

TABLE I. The half-light radius, distance from Earth, stellar
mass and reference list for the 27 ultrafaint dSphs analyzed in this
paper. We derive the half-light radius and its error based on the
value in SA20. The values of distance and stellar mass are from
SA20 and Ref. [24], respectively (see text for more details). The
last column shows the source of kinematical dataset.

Name log10Re=ðpcÞ D� (kpc) M�ðM⊙Þ Refs.

Aquarius 2 2.09� 0.08 108 4.7 × 103 [25]
Boötes 1 2.20� 0.02 66 2.9 × 104 [26]
Boötes 2 1.52� 0.07 42 1.0 × 103 [27,28]
CanesVenatici 1 2.53� 0.02 218 2.3 × 105 [29]
CanesVenatici 2 1.73� 0.09 160 7.9 × 103 [29]
Carina 2 1.87� 0.05 36 5.4 × 103 [30]
ComaBerenices 1.76� 0.03 44 3.7 × 103 [29]
Draco 2 1.12� 0.18 20 1.0 × 103 [31]
Eridanus 2 2.20� 0.05 380 6.5 × 104 [32]
Grus 1 1.27� 0.46 120 2.1 × 103 [33]
Hercules 2.08� 0.04 132 3.7 × 104 [29]
Horologium 1 1.49� 0.10 79 2.2 × 103 [34]
Hydrus 1 1.73� 0.03 28 6.5 × 103 [35]
Leo 4 2.01� 0.05 154 1.9 × 104 [29,36]
Leo T 2.13� 0.05 417 1.4 × 105 [29]
Leo 5 1.57� 0.18 178 1.1 × 104 [36]
Pegasus 3 1.62� 0.16 215 3.6 × 103 [37]
Pisces 2 1.68� 0.07 182 8.6 × 103 [38]
Reticulum 2 1.49� 0.02 30 3.0 × 103 [39]
Segue 1 1.30� 0.06 23 3.4 × 102 [40]
Segue 2 1.53� 0.04 35 8.6 × 102 [41]
Triangulum 2 1.10� 0.13 30 4.5 × 102 [42]
Tucana 2 2.21� 0.07 57 2.8 × 103 [33]
Tucana 3 1.64� 0.06 25 7.9 × 102 [43]
UrsaMajor 1 2.18� 0.02 97 1.4 × 104 [29]
UrsaMajor 2 1.93� 0.02 32 4.1 × 103 [29]
Willman 1 1.30� 0.05 38 1.0 × 103 [44]
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distribution PðcaÞ is given by the log-normal distribution
with mean c200ðma; zaÞ [46] and standard deviation σln c ¼
0.13 [47]. (ii) The dark matter distribution of the subhalo is
given by the NFW profilem200 ¼ 4πρs;ar3sfNFWðr200=rs;aÞ,
where fNFW is the same as defined in Eq. (7).
After the accretion, the tidal force of the Milky Way

starts stripping subhalo mass. In a semianalytic strategy,
the mass-loss rate through this process is modeled as

dm
dt

¼ −A
mðzÞ
τdynðzÞ

�
mðzÞ
MðzÞ

	
ζ

; ð13Þ

where τdynðzÞ denote the dynamical timescale [48], mðzÞ
and MðzÞ are subhalo and host halo mass at redshift z,
respectively. [Here we assume that Mðz ¼ 0Þ ¼ 1012M⊙
according to SA20. We discuss the impact of the host halo
mass dependence on the prior distribution in Appendix A.]
The two parameters A and ζ are calibrated by the results
of N-body simulations. The solution of this equation with
the initial condition mðzaÞ ¼ ma gives current (z ¼ 0)
subhalo mass m0 ¼ mð0Þ. As the subhalo mass evolves,
structural parameters ρs;a and rs;a also evolve to ρs;0
and rs;0 (or simply ρs and rs) according to the empirical
fitting formula [47]. Finally, current truncation radius rt;0
(or simply rt) is determined by the NFW condition
m0 ¼ 4πρs;0r3s;0fNFWðrt;0=rs;0Þ.
We combine the two distributions of parameters at

accretion d2Nsh
dzadma

and PðcaÞ with the parameter evolution
model to obtain the distribution of parameters at present [49].
Instead of calculating the distribution of current parameters
directly by using the Jacobian of the evolution formula,
we obtain finite samples of the parameters. We subdivide
ðlnma; za; caÞ linearly and calculate the weight of the ith
grid according to

wi ¼ N
d2Nsh

dzadma






za¼za;i;ma¼ma;i

ðΔzaÞiðΔmaÞi

× PðcaÞjca¼ca;iðΔcaÞi; ð14Þ

where N is a normalization factor to satisfy the

condition
P

i wi ¼ Nsh;tot ≡ ∬ dzadma
d2Nsh
dzadma

. Each point
ðlnma;i; za;i; ca;iÞ is interpreted to ðρs;i; rs;i; ct;iÞ according
to the stripping model, then we obtain finite samples of
ðρs; rs; ctÞ with its weight [50].
Some subhalos do not host any stars because baryons

in too small of a halo cannot lose their energy due to
its ionizing background, known as reionization
suppression [51,52]. In order to consider the effect, we
multiply wi by the formation probability of a satellite for
the given subhalo Pform as follows:

PformðVpeakÞ ¼
1

2

�
1þ erf

�
Vpeak − V50ffiffiffi

2
p

σ

�	
; ð15Þ

where Vpeak denotes the maximum circular velocity of
the satellite at accretion time, given by Vpeak ¼
ð4πGρs;a=4.625Þ1=2rs;a for a NFW subhalo and it is
calculated for each parameter grid ðρs;i; rs;i; ct;iÞ. For the
lower bound parameter V50, we have two choices: V50 ¼
18 km=s, motivated by conventional theory of reionization
[53–56], and V50 ¼ 10.5 km=s, based on the result of more
resent analysis [52]. For σ, we adopt σ ¼ 2.5 km s−1,
following Ref. [52]. For classical dSphs, we adopt V50 ¼
25 km=s according to [57]. Here we assume σ ¼ 0 km s−1

for simplicity. In this case PformðVpeakÞ is equivalent to a
step function ΘðVpeak − V50Þ.
Using these quantities, the probability density distribu-

tion of the three profile parameters is then given by

πsatðrs; ρs; rtÞ ∝
d3Nsh

drsdρsdrt
PformðVpeakÞ; ð16Þ

where πsat. should be properly normalized to be a prob-
ability density distribution function. For the discrete sample
points generated above, it is realized as

πsat;i ¼
wiPformðVpeak;iÞP
iwiPformðVpeak;iÞ

: ð17Þ

Finally we smooth these samples fπsat;ig to reconstruct a
prior function πsatðrs; ρs; rtÞ by using weighted kernel
density estimation implemented in SciPy [58].

3. SHMR prior

In addition to the satellite prior, we use another prior
motivated by the stellar-to-halo mass relation (SHMR)
(see [59] for a review). This relation is obtained by fitting
the structure formation model by using observed cosmo-
logical datasets with a simple assumption; the larger the
halo becomes, the more stars it hosts. Stellar mass m� is
then written as a monotonic function of halo mass mz for
given redshift z. We identify mðzÞ with the subhalo mass at
the accretion time and relate it to the current subhalo mass
using the semianalytic approach mentioned in Sec. II B 2.
Here, for the simplicity, we assume that the stellar mass
does not change after accretion and identify m� as the
current stellar mass [60]. The schematic figure of this
procedure is shown in Fig. 1.
In order to check model dependence, we adopt four

SHMR models [61–64] (hereafter PB13, BM13, PB19
and BM18, respectively). These models have the following
features:

(i) PB13: calibrated by the Bolshoi simulation, using
a multipower law fitting function for the SHMR
and fitting the SHMR intrinsic parameters with other
systematic parameters.
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(ii) BM13: calibrated by the Millennium simulation,
using a double-power law fitting function for the
SHMR and simply fitting SHMR parameters.

(iii) PB19: updated datasets from PB13, cosmological
models calibrated by the Bolshoi-Planck simulation,
using a double-power law fitting function for the
SHMR and simply fitting SHMR parameters.

(iv) BM18: updated datasets from BM13, cosmological
models assuming double-power law for the evolu-
tion of baryon conversion efficiency calibrated by an
independent simulation, using double-power law for
the SHMR and simply fitting SHMR parameters.

The probability density distribution of stellar mass m� is
given by the log-normal distribution as follows:

Pðm�jmðzÞÞ¼ð1=m� ln10ÞN ½log10ðm�=½M⊙�Þ;
log10ðm�ðmðzÞ;zÞ=½M⊙�Þ;δ log10ðm�=½M⊙�Þ�;

ð18Þ

where m�ðMh; zÞ is expected stellar mass for given
halo mass Mh at accretion redshift z, shown in Fig. 2
for each model. δ log10ðm�=½M⊙�Þ denotes the model
uncertainty of each SHMR model from each literature.

We discuss the impact of varying the uncertainty in
Appendix B since, in this analysis, we refer the low-mass
end of the relation where we have few datasets to
determine SHMR uncertainties.
In terms of the Bayesian statistics, we can compare

credibility of a model (model 1) to a reference model
(model 0) by using Bayes factor BF, defined as the ratio of
Bayesian evidences E:

BF ¼ E1

E0

¼
R
dΘ1L1ðΘ1Þπ1ðΘ1ÞR
dΘ0L0ðΘ0Þπ0ðΘ0Þ

: ð19Þ

Here the minus logarithm of the Bayesian evidence− ln E is
approximated by the widely applicable Bayesian informa-
tion criterion (WBIC) [65]:

− ln E ≃WBIC ¼ −
R
dΘðlnLðΘÞÞLðΘÞβπðΘÞR

dΘLðΘÞβπðΘÞ ; ð20Þ

β ¼ 1= lnð#dataÞ: ð21Þ

In this work, we calculate WBIC of each model using
the Markov chain Monte Carlo algorithm and evaluate the
Bayes factor according to

ln BF ¼ ln E1 − ln E0 ≃ −WBIC1 þWBIC0: ð22Þ

Here BF > 1 or ln BF > 0 means that model 1 is more
credible than model 0. According to Ref. [66], there
is a scale for interpreting lnBF into the strength of
evidence as follows: Decisive for ln BF≳ 4, very strong
for 3≲ ln BF≲ 4, strong for 2≲ ln BF≲ 3, substantial
for 1≲ ln BF≲ 2, and barely worth mentioning for
0≲ ln BF≲ 1.

C. Data

We analyze the dSphs listed in Tables I and II according
to SA20, where we show the half-light radius, distance,
and stellar mass of each dSph. The half-light radius and
distances are from SA20 and also we use the values in

FIG. 1. A schematic picture to illustrate how to construct our
SHMR prior. Horizontal one-side arrows indicate time evolution.
Shapes with bold edges are values at present (z ¼ 0), which
appeared in the definition of the SHMR prior in Eq. (18).

FIG. 2. SHMR function m�ðMh; zÞ normalized by the halo
mass Mh. Here we fix z ¼ 0.1 for illustration purposes.

TABLE II. Same as Table I, but for classical dSphs.

Name log10Re=ðpcÞ D� (kpc) M�ðM⊙Þ Refs.

Carina 2.392� 0.005 105 3.8 × 105 [67]
Draco 2.256� 0.005 76 2.9 × 105 [68]
Fornax 2.849� 0.003 147 2.0 × 107 [67]
Leo 1 2.353� 0.004 254 5.5 × 106 [69]
Leo 2 2.217� 0.005 233 7.4 × 105 [70]
Sculptor 2.359� 0.004 86 2.3 × 106 [67]
Sextans 1 2.538� 0.004 86 4.4 × 105 [67]
UrsaMinor 2.434� 0.006 76 2.9 × 105 [71]
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Ref. [24] for the stellar masses. For dSphs without stellar
mass values in Ref. [24], we calculate their stellar
masses from apparent magnitudes and distances, assuming
M=L ¼ 1 according to Ref. [24]. The last column in Table I
and II indicates references of the kinematical dataset. In
general, the kinematical dataset includes member stars and
foreground stars. For datasets having a membership flag,
we extract stars identified as members. For those containing
membership probability PM, we choose memberlike stars
(PM > 0.95). For the other datasets having no membership
information, we adopt the selection criteria illustrated and
described in the reference. In addition, we remove member
stars identified as binary stars in order to avoid accidental
increase of the velocity dispersion.

D. Analysis

Based on the likelihood and priors defined above, we can
calculate the posterior probability density distribution (or
simply posterior) PðΘjDÞ by using the Bayes’ theorem:

PðΘjDÞ ¼ LðΘÞπðΘÞR
dΘLðΘÞπðΘÞ ; ð23Þ

where

π ¼

8>><
>>:

πphoto ðwithout any cosmological priorsÞ
πphotoπsat ðsatellite prior onlyÞ
πphotoπsatþSHMR ðsatellite and SHMR priorÞ:

ð24Þ

Here, as mentioned in Sec. II B, the satellite prior πsat is
selected from two candidates sat10.5 and sat18, and the
SHMR model for πsatþSHMR is chosen from PB13, BM13,
PB19 and BM18.
Instead of calculating Eq. (23) straightforwardly, we

obtain samples from the posterior by using the Markov
chain Monte Carlo methods. In this paper, we use the Affine
invariant ensemble sampler implemented in EMCEE [72]. We
scan the parameter region as shown in Table III. For Re, rs,

ρs and rt we adopt the logarithmic scale, reflecting that they
are positive. The range for the anisotropy βani is set to include
both of the radial and tangential cases. Since vdSph is strongly
constrained by the likelihood function, we choose its limits
large enough to include the estimated value.

TABLE III. Scanning region of each parameter.

Parameter Minimum Maximum

log10Re=ðpcÞ 1.0 3.5
log10rs=ðpcÞ 0.0 5.0

log10 ρs=ðM⊙pc−3Þ −4.0 4.0

log10rt=ðpcÞ 0.0 5.0
− log10ð1 − βaniÞ −1.0 1.0

vdSph=ðkms−1Þ −1000 1000

FIG. 3. Posterior probability density function projected onto
the rs-ρs plane for the case of Segue 1. The top and bottom panels
show results assuming the sat10.5 and sat18 model, respectively.
Blue dots are distributed according to likelihood only analysis
(without any cosmological priors), while colored contours show
posteriors with cosmological priors. The gray shaded area shows
the cosmological constraint adopted in Ref. [8]. For the other
dSphs, see Fig. 9–12.
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III. RESULTS

Figure 3 shows the posterior projected onto the rs-ρs
plane. The value of the likelihood function is shown by
blue dots and contours. Colored contours denote posteriors
assuming the satellite and/or SHMR priors. The satellite
prior itself is shown by gray contours and the gray shaded
area shows the cosmological constraint adopted in Ref. [8].

For illustration purposes, we only show the result of
Segue 1. For other dSphs, see Fig. 9–12.
In order to clarify the advantage of R-dependent analysis,

we compare results of R-dependent and R-independent
likelihood analyses in Fig. 4, where R-independent like-
lihood is defined similarly to Eq. (8) but the velocity

dispersion σ2losðRÞ is replaced by averaged dispersion σ2los.
In Fig. 4 the color of the heat map corresponds to the value
of likelihood functions.
Tables IV and V show the median values of J-factor

posteriors with 68% (∼1σ) credible intervals. The left three
columns show results without SHMR priors. In particular,
the “flat” column denotes those without any cosmological
priors (only with the likelihood and the photometry prior).
The following columns are those with SHMR priors, PB13,
BM13, PB19, and BM18, respectively. These results are
also shown in Fig. 5. In Fig. 5, we also show the results
of conventional analysis [11] as gray bars and the J-factor
values adopted in the Fermi-LAT analysis [73] for
comparison.
We show the Bayes factor of each model in Table VI.

Column 1 shows the Bayes factor of sat18 to a reference
model sat10.5 for each dSph. Columns 2–5 show the Bayes
factors of the satellite prior sat10.5 and SHMR analyses to
the satellite prior only analysis as a reference. Columns 6–9
are the same as columns 2–5 but for sat18 cases. Here a
positive (negative) value indicates that the corresponding
model is more (less) credible than sat10.5.

IV. DISCUSSION

A. Posterior

For Boötes 2, Draco 2, Leo 4, Pegesus 3, Pisces 2,
Segue 2, Triangulum 2 and Tucana 3, their posterior
distributions of rs-ρs without satellite priors (likelihood)
are broadly distributed (Fig. 9–12). This is because obser-
vational errors of spectroscopic dataset are too large to
exclude the small rs-ρs region (dSph without dark matter).
In such a case, the GS15-like cut excludes the heavier halo
mass region but the estimated J factor is still distributed
broadly towards the small rs-ρs region, thus the choice of
scanning range of rs and ρs strongly affects the result of
estimation. This problem is solved by introducing the
satellite prior because it excludes the small rs-ρs region
based on the formation history of dSphs.
For the other ultrafaint dSphs, posterior distribution

becomes more ridgy thanks to a large amount of kinemati-
cal data. In contrast with those obtained in SA20, the
likelihood edges become narrow towards the upper left
(compact) or lower right (faint) regions, which indicates
that the height of likelihood peak varies from the upper left
to the lower right. This is thanks to the radial dependence of
the velocity dispersion σðRÞ; even though σ̄ can be constant
by varying rs and ρs properly, σðRÞ cannot be kept to fit
observed stellar velocity distribution at all radii.

FIG. 4. Results of likelihood only (without any cosmological
priors) analyses. The top panel is for the R-dependent likelihood
function, [Eq. (8)], while the bottom panel is for the R-
independent likelihood (see text), respectively. The color of
the heat map corresponds to the value of profiled likelihood
function Lprofðrs; ρsÞ≡maxrt Lðrs; ρs; rtÞ. Gray contours denote
the 1σ and 2σ regions of the satellite prior and the gray shaded
region shows the rough cosmological prior adopted in Ref. [8].
For illustration purposes, we show only the Coma Berenices case.
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Figure 4 shows that introducing R dependence in the
likelihood function mitigates the degeneracy between ρs
and rs in SA20. Since certain combinations of ρs and rs
give the same value of mean σ2los, R-independent likelihood
as used in SA20 has a degeneracy problem. In contrast, the
function σ2los is not equivalent even for such a combination,
hence it allows us to distinguish these parameter sets.
Introducing R dependence however causes another issue,
namely, arbitrariness of anisotropy function βðrÞ, which is
just assumed to be constant for simplicity in this study. In
order to remove unexpected bias, this arbitrariness should
be carefully treated in the further study as well as other
arbitrariness such as the axisymmetricity.

B. J factor and Bayes factor

Figure 5 shows that, in the satellite prior only analysis,
our estimates of log-J factor are larger by ∼Oð0.1Þ than
those estimated in SA20. This is because the R dependence
of our likelihood function weakens the ρs-rs degeneracy, as
mentioned in the previous section, and excludes the too
compact (small rs, large ρs) or faint (large rs, small ρs) dark
matter halo with small J-factor value.
Figure 5 also shows that SHMR priors decrease the

uncertainty of J factor by up to about 50%, but estimated
median values have SHMR model dependence and some
estimations are not consistent with each other. For instance,
the PB13 prior tends to predict smaller J factor than
other priors for dSphs with large J factors such as
Segue 1. Conversely, the BM18 prior gives larger J factor
than other priors for small J-factor dSphs such as Leo 4.
These features come from the difference of SHMR models.
As shown in Fig. 2, SHMR models have different slopes
for the small Mh region around the mass scale of dSph
halos. In particular, the PB13 model has a large m�=Mh
ratio, while the BM18 one has a smaller m�=Mh than
others. Once m� is fixed by observations, large m�=Mh
gives small Mh, and vice versa. We note that Ref. [74]
reported M=L ∼ 1.6, thus our estimates of stellar mass

obtained by assuming M=L ¼ 1 are potentially smaller
than actual values. However, this discrepancy has no
significant effect on our estimation because of the scatter
of SHMR models.
Bayes factors help us understand the model dependence

of the estimated J factors. Tables IV and VI show that
models whose estimate is deviated from the result of satellite
prior only analysis tend to have small Bayes factors. For
instance, the PB13 model shows lnBF≲ −3 for Segue 1 and
Willman 1, and the BM18 shows lnBF≲ −1 for Leo 4. It
means that, in terms of the Bayesian analysis, the results of
PB13 for Segue 1 and Willman 1 are very strongly less
reliable than those of the satellite prior only analysis, and the
results of BM18 for Leo 4 are substantially less reliable,
respectively. We can understand this feature through poste-
riors in Fig. 9–12. For these dSphs, posteriors obtained by
PB13 or BM18 are significantly deviated from the contour
of the satellite prior only analysis, which means that these
SHMR models and the satellite prior are incompatible. In
contrast, models having comparable J factors to the satellite
prior only analysis have Bayes factors almost equal to or
larger than the satellite prior only analysis. This tendency of
the Bayes factors indicates that the estimated J-factor values
with the satellite prior only analysis are stable even when
considering SHMRs.
We can utilize this tendency in the opposite direction;

not evaluating dark matter profiles by using SHMRs,
but evaluating SHMRs by using dark matter profiles.
The relation between J factors and Bayes factors suggest
some possibilities that there are some unknown biases in
the observation of these dSphs or that some SHMR models
having small Bayes factors are invalid for certain ultrafaint
dSphs. The latter possibility could originate from the
difference of the construction of these models; the PB13
model predicts larger m�=Mh values than the others around
the small halo mass region, while those of the BM18 model
are smaller than the others (see Fig. 2). In particular,
Ref. [63] indicated that PB13 assumed a strong surface-
brightness incompleteness correction for faint galaxies that

TABLE V. Same as Table IV, but for classical dSphs.

w/o SHMR PB13 BM13 PB19 BM18

Name flat sat sat sat sat sat

Carina 17.86þ0.09
−0.07 17.86þ0.07

−0.06 17.85þ0.06
−0.06 17.85þ0.06

−0.06 17.86þ0.07
−0.06 17.87þ0.06

−0.06

Draco 18.92þ0.06
−0.06 18.89þ0.06

−0.06 18.85þ0.06
−0.06 18.85þ0.06

−0.06 18.85þ0.06
−0.06 18.88þ0.06

−0.06

Fornax 17.93þ0.20
−0.08 18.03þ0.11

−0.10 18.02þ0.10
−0.08 18.00þ0.09

−0.07 18.02þ0.09
−0.08 17.96þ0.07

−0.06

Leo1 17.80þ0.22
−0.14 17.71þ0.10

−0.09 17.73þ0.08
−0.08 17.73þ0.11

−0.09 17.74þ0.12
−0.09 17.78þ0.14

−0.11

Leo2 17.82þ0.25
−0.20 17.70þ0.16

−0.14 17.64þ0.13
−0.11 17.69þ0.15

−0.13 17.71þ0.15
−0.14 17.73þ0.17

−0.14

Sculptor 18.56þ0.07
−0.05 18.55þ0.04

−0.04 18.55þ0.04
−0.04 18.55þ0.04

−0.04 18.55þ0.05
−0.04 18.56þ0.04

−0.04

Sextans1 18.09þ0.40
−0.16 18.12þ0.15

−0.13 18.09þ0.14
−0.11 18.09þ0.14

−0.12 18.12þ0.15
−0.12 18.19þ0.15

−0.13

UrsaMinor 18.47þ0.13
−0.09 18.46þ0.09

−0.08 18.50þ0.09
−0.08 18.46þ0.09

−0.08 18.46þ0.08
−0.07 18.47þ0.09

−0.08
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is no longer observationally supported [75], which causes
the overestimate of the SHMR around the low halo mass
region. For BM18, Ref. [64] pointed out that the under-
estimate of the BM18 model around the low-halo mass
region occurs to compensate the overestimation of the
number of massive galaxies caused by the Eddington bias.
Further investigation of these features would help us to
improve and calibrate these SHMR models using dSph
observation or reveal some unknown nature of dSphs.
Since the J-factor values of the ultrafaint dSphs obtained

in this work are not significantly different from conven-
tional values, there are no significant updates for the current
dark matter constraints of the indirect detection experiment.

The detection sensitivity depends on the lower bounds of J
factors. Because J factors of dSphs with the largest J
factors such as Segue 1 and Ursa Major 2 do not change
significantly even when considering cosmological priors
having largest Bayes factors, constraints on dark matter
parameters do also not show significant difference. The
constraints however could be updated when we select only
a part of dSphs as detection targets, where the J factor
lower bound of each dSph matters.
In contrast, from Table V and Fig. 6, the J-factor

uncertainty of classical dSphs obtained in this work is
reduced up to about 20% of the results of SA20 due to the
consideration of R dependence of the velocity dispersion.

FIG. 5. Estimated J factors of ultrafaint dwarf spheroidal galaxies in Table IV (dots) and their 68% credible intervals (error bars). The black
bars are the resultswith satellite prior only analysis,while thegrayones show the results of conventional analysis [11]. Theblue, orange, green
and red bars correspond to analyses with the satellite prior and PB13, BM13, PB19 and BM18 priors, respectively. The bars on the white
background area correspond to the results for V50 ¼ 10.5 km=s, while those on the gray-shaded area correspond to the results for
V50 ¼ 18 km=s. The brown bars between white and shaded areas denote the J-factor values used in the Fermi-LATanalysis of the indirect
dark matter search [73].
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TABLE VI. The natural logarithm of Bayes factors of each model calculated according to Eq. (22). Column 1 shows the Bayes factor
of sat18 to a reference model sat10.5 for each dSph. Columns 2–5 show the Bayes factors of the satellite prior and SHMR analyses to the
satellite prior only analysis sat10.5 as a reference, so as columns 6–9 not for sat10.5 but sat18 cases. By definition, positive (negative)
values mean that the corresponding model is more (less) credible than the reference model.

sat18=sat10.5 ðsat10.5 þ SHMRÞ=sat10.5 ðsat18 þ SHMRÞ=sat18
Name w/o SHMR PB13 BM13 PB19 BM18 PB13 BM13 PB19 BM18

Aquarius2 0.77 −1.16 0.17 0.34 1.13 −2.16 −0.35 0.05 0.29
Bootes1 −0.01 0.34 0.20 0.17 0.09 0.12 0.10 0.21 0.11
Bootes2 −0.09 0.05 0.06 −0.05 −0.16 0.07 0.04 0.01 −0.01
CanesVenatici1 0.49 0.36 0.49 0.07 0.34 0.33 −0.01 −0.31 −0.03
CanesVenatici2 1.29 −0.70 0.64 0.92 2.08 −2.61 −0.70 0.15 0.71
Carina2 −0.14 0.65 0.44 0.03 −0.35 0.76 0.30 0.29 −0.19
ComaBerenices 1.06 −1.71 −0.09 0.35 1.75 −3.07 −0.52 0.07 0.64
Draco2 0.16 0.10 0.10 0.04 0.24 −0.07 −0.09 −0.05 −0.01
Eridanus2 0.79 −0.22 0.76 0.94 1.53 −0.62 −0.03 0.05 0.78
Grus1 −0.30 0.34 0.14 −0.07 −0.40 0.27 0.19 0.10 −0.07
Hercules 0.88 0.58 0.96 0.59 1.06 −0.04 −0.06 −0.07 0.15
Horologium1 1.12 −3.87 −0.78 −0.44 1.25 −4.13 −0.58 −0.03 0.25
Hydrus1 −0.17 0.30 0.23 −0.20 −0.89 0.38 0.09 −0.03 −0.85
Leo4 −0.16 0.34 0.02 −0.05 −0.93 0.44 0.15 0.01 −0.72
Leo5 −0.03 0.34 0.51 0.04 0.24 −0.47 −0.15 0.31 0.45
LeoT 1.39 0.65 1.85 1.43 0.84 −0.01 0.47 0.08 −0.61
Pegasus3 1.28 −0.19 0.37 0.11 1.62 −1.65 −0.98 −0.06 0.25
Pisces2 0.27 0.49 0.26 −0.04 −0.07 0.29 −0.01 −0.11 −0.28
Reticulum2 0.96 −1.08 0.03 0.17 1.13 −1.85 −0.82 −0.12 0.13
Segue1 1.89 −2.63 −1.00 −0.27 1.36 −4.29 −1.01 −0.05 −0.41
Segue2 0.08 0.11 0.12 0.21 0.26 −0.17 −0.20 0.04 −0.10
Triangulum2 −0.65 −0.01 0.14 −0.02 −0.52 0.57 0.37 0.08 0.16
Tucana2 −0.13 −0.23 0.16 0.11 −0.09 −0.54 0.12 0.16 −0.06
Tucana3 −2.75 0.56 0.18 −0.01 −2.82 3.39 2.68 −0.08 0.08
UrsaMajor1 1.06 −5.26 −0.16 0.61 1.84 −5.30 −0.45 −0.08 0.80
UrsaMajor2 1.25 −4.98 −1.11 0.05 1.67 −5.93 −0.63 −0.21 0.37
Willman1 2.07 −3.05 −1.05 −0.62 1.71 −4.90 −1.26 −0.37 −0.29

FIG. 6. Same as Fig. 5 but for the classical dSphs listed in Table V.
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In particular, the Draco dSph, having one of the largest J
factors, has larger lower bound by about 0.25 in logarithmic
scale than SA20. Since indirect detection sensitivity reflects
the lower bound of the J factor, the sensitivity might be
stronger than the results of SA20. Here we should note that
our results have an implicit bias of dSph model construc-
tion. In other conventional works such as Ref. [8] the
uncertainty of the dark matter profile is taken into account
by introducing more general dark matter profile models and
they indicate the deviation of dark matter profile from the
simple NFW profile. In this paper, however, we neglect the
uncertainty of dark matter profile by fixing it to be the NFW
profile and also that of the anisotropy profile by assuming
constant model, thus our results have an implicit bias based
on the model construction. In order to calculate more
reliable J-factor values, we need further investigation to
implement the flexibility of the dark matter profile into the
cosmological prior analysis.

V. SUMMARY AND CONCLUSION

In this paper, we utilized two cosmological priors
(satellite and SHMR) and a likelihood function with radial
dependence to obtain better constraints on the dark matter
halo profile of dSphs through the kinematical fitting using
the spherical Jeans equation. We prepared some different
setups for the cosmological priors and estimate the pos-
terior probability density function and J factor. We com-
pared these models and showed that our J-factor estimates
obtained by using the satellite prior are stable in terms of
their Bayes factors even when considering another cosmo-
logical prior, the SHMR prior. Cosmological priors and the
R dependence of the likelihood mitigate the degeneracy
between parameters and decrease the uncertainty of
J-factor values up to about 50% for ultrafaint dSphs and
about 20% for classical dSphs. These estimates would
be updated by introducing the flexibility of dSph models
(e.g., anisotropy, halo profile and nonsphericity).
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APPENDIX A: ASSUMPTION ON MILKY WAY

In this study we assume that the Milky Way profile is the
NFW profile with mass 1012M⊙. In order to investigate the
impact of Milky Way models, we calculate the satellite
priors πsat under different assumptions on the Milky Way
mass in Fig. 7. Here we compare the priors whose host halo
mass are set to 0.5, 1.0, and 2.0 × 1012M⊙, shown by the
blue, orange, and green lines, respectively. The figure
shows that Milky Way mass does not affect the prior
distribution more than SMHR models as the mass-loss rate
[Eq. (13)] only weakly depends on the host halo mass as
mentioned in SA20, which allows us to ignore this effect in
this study when considering various SHMR models.

APPENDIX B: IMPACT OF SHMR
UNCERTAINTY

As SHMR models are mainly calibrated for heavier
galaxies than (ultrafaint) dSphs, the actual uncertainty for
low-mass galaxies such as (ultrafaint) dSphs could be
inaccurate compared with those expected by extrapolation
due to the limited available data. In Fig. 8, we demonstrate
the impact of model uncertainty levels by setting them to
fixed values. The gray lines depict the cosmological priors
(πsatþSHMR) adopted in this study, while the colored lines
correspond to those with manually fixed uncertainty level.
The light gray lines correspond to the satellite prior without
any SHMRs (πsat.). As shown in the figures, increasing the
uncertainty leads to broader probability distributions, as
expected by the definition of cosmological priors:

πsatþSHMR → πsatðδ log10ðm�=½M⊙�Þ → ∞Þ: ðB1Þ

FIG. 7. Satellite priors assuming different Milky Way masses
0.5, 1.0, and 2.0 × 1012M⊙ by the blue, orange, and green lines,
respectively.
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Therefore, even when the actual uncertainty of SHMR models is larger than those expected by extrapolation and the prior
πsatþSHMR could be inaccurate, our analysis using πsat gives robust estimation of J factors.

APPENDIX C: POSTERIORS

Posterior probability density distribution projected onto the rs-ρs plane are shown in Fig. 9–13. Here Fig. 9–12 are for
ultrafaint dSphs, while Fig. 13 is for classical dSphs.

FIG. 8. Probability density distributions of satellite and SHMR priors πsatþSHMR are shown with varying levels of uncertainty
in each SHRM model. The gray lines depict the distribution with default uncertainties obtained from the literature, while the
light gray lines correspond to the satellite prior without any SHMRs (πsat.). The colored (blue, orange, green, and red) lines
represent the probability density distributions with manually fixed uncertainty levels [δ log10ðm�=½M⊙�Þ ¼ 0.15, 0.3, 0.6, and
1.25, respectively].
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FIG. 9. Posterior probability density distribution projected onto the rs-ρs plane with sat10.5 prior. The gray shaded area shows the
cosmological constraint adopted in Ref. [8]. The gray contours show the probability density distribution of the satellite prior sat10.5. The
blue dots and contours illustrate the shape of the likelihood function (flat prior). Colored contours show the posterior probability density
distribution assuming our cosmological priors.
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FIG. 10. This is continued from Fig. 9.
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FIG. 11. This is the same figure as Fig. 9 but using the satellite prior sat18.

HORIGOME, HAYASHI, and ANDO PHYS. REV. D 108, 083530 (2023)

083530-16



FIG. 12. This is continued from Fig. 11.
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FIG. 13. This is the same as Fig. 9–12 but for classical dSphs.
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