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The “ϕ2” slow roll inflation combined with general relativity is largely excluded by Planck data. In this
paper, we consider the same potential combined with the Rþ C2 gravity of purely virtual particles
(or fakeons), where the would-be ghost introduced by the Weyl tensor term, C2, is quantized with the
fakeon prescription. We compute the tensor power spectrum in the full theory by means of the cosmic
renormalization group formalism and critically examine its physical meaning. In particular, we show that it
is not possible to retrieve the power spectrum of the fakeon free-theory by considering the decoupling limit
of the purely virtual particles. We provide a physical explanation in terms of the causal structure of the
theory to infer that a model of quadratic inflation from purely virtual particles is also discarded from a
phenomenological point of view.
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I. INTRODUCTION

The current high-energy physics scenario is character-
ized by a mostly consistent theoretical description, whose
direct implications have been tested to a high degree of
accuracy. The Standard Model of particle physics is one of
the greatest examples of successful theory confirmed by a
large amount of experimental tests. Its powerful predictivity
heavily relies on three basic principles: unitarity, locality,
and renormalizability. Despite its success, the Standard
Model can actually furnish a satisfactory explanation of
only three of the four known fundamental interactions: the
electromagnetic, the weak and the strong force. Gravity,
whose effects range from the smallest to the largest scales,
has not been included up to now. As a matter of fact,
building a theory of gravity that respects the aforemen-
tioned principles is a hard task: General Relativity is a
nonrenormalizable quantum field theory [1,2], thus lacking
of predictivity for all the energy scales.1 On the other hand,
the simplest renormalizable extension of general relativity
[4] is not unitary: the higher-derivative term build with the
Weyl tensor, C2, propagates a spin-2 ghost particle when
the theory is quantized with the usual iϵ prescription.

Recently, a new theory of quantum gravity has been
formulated [5–12]. This theory heavily relies on the
concept of purely virtual quantum, a particle that can only
propagate inside the Feynman diagrams but cannot appear
as an asymptotic state. The theory circumvents the prob-
lems of Stelle’s theory [4] by means of a new approach
based on the combination of a prescription and a projection,
which allows us to quantize the ghost as a purely virtual
particle (or fakeon), and then project to the physical
subspace by removing it from the physical spectrum.
This way, we switch to a different, ghost-free theory,
and gain unitarity. In the end, the theory, which is described
by the renormalizable Rþ R2 þ C2 Lagrangian, propa-
gates three degrees of freedom: a massless spin-2 particle
(the graviton), a massive spin-2 field (the fakeon), and a
scalar field (interpreted in the cosmological context as the
inflaton, see below). Other approaches to higher-derivative
quantum gravity retain the ghost particle and give pre-
dictions in cosmology (see e.g. [13–15]), we critically
compare them with the results of Sec. IV.
The introduction of purely virtual particles modifies the

usual notion of causality, leading to microcausality viola-
tions. Such causality violations occur in a time interval Δt
and are related to the fakeon mass mχ , Δt ∼ 1=mχ [9]. As a
consequence, the causality violations are suppressed since
the fakeon mass is expected to be very large, Oð1013Þ GeV
from cosmological constraints [16]. The goal of this paper
is to show that there are exceptions. Indeed, we show that
for particular inflationary dynamics the causality violation
introduced by purely virtual particles propagates to large
timescales.
In order to assess the phenomenological impact of said

particles, we focus on in inflationary cosmology, where a
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1Nevertheless, general relativity can be considered as an
effective field theory with predictions at low energy [3].
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number of predictions have already been derived [16–19].
In this context, the scalar degree of freedom is interpreted as
the inflaton field, which undergoes a phase of slow roll
dynamics [20]. The underlying inflationary potential is
constrained by renormalizability and turns out to be the
Starobinsky potential [21,22]. In this case, the predictivity
of the theory is enforced by a consistency condition on the
fakeon projection. Such condition imposes a bound on the
fakeon and inflaton masses and keeps the causality viola-
tion under control by demanding that the fakeon Green
function has no tachyonic poles [16]. The computation of
the testable quantities, such as the tensor and scalar power
spectra, are derived by means of a new formalism, the
cosmic renormalization group (RG) [17], whose features
closely resemble the usual RG structure of high-energy
physics. This formalism allows to compute high-order
corrections to the aforementioned quantities in a consistent
way and substantially improves the computational methods
developed in fakeon-free theories [23,24]. In particular, the
cosmic RG flow sets a perturbative expansion for the power
spectra in terms of a slow roll coupling, which we refer as
the de Sitter perturbative expansion. As the usual QFT
perturbative expansion, the de Sitter perturbative expansion
is organized in terms of leading (LL), next-to-next-to-
leading (NLL), next-to-leading-log (NNLL)... contribu-
tions coming from the running coupling.
In addition to the potential derived from the theory, we

can also investigate the phenomenological consequences of
purely virtual particles in other inflationary scenarios.
The Starobinsky potential is obtained from the Rþ R2 þ

C2 theory by means of a Weyl transformation that casts the
action in the Rþ C2 þ VStarðϕÞ form [16], ϕ and VStarðϕÞ
being the inflaton field and the Starobinsky potential
respectively [21,22]. As an interesting possibility, we
can also investigate the phenomenological consequences
of purely virtual particles in other inflationary scenarios by
replacing the Starobinsky potential with a generic potential
VðϕÞ and derive the corresponding predictions by means
of the cosmic RG formalism.2 In this way, we obtain a
theory that is completely different from the original Rþ
R2 þ C2 theory both from the formal and phenomenologi-
cal perspective. In this paper, we consider the scenario of
quadratic inflation, where VðϕÞ ∝ ϕ2. First, we derive the
predictions in the limit of infinitely heavy fakeon, where
the theory reduces to general relativity combined with the
inflaton action. In this case, we make a comparison with
Planck data [25] and recover the well known conclusion:
quadratic inflation is excluded by the bound on the tensor to
scalar ratio. Then, we derive the physical predictions of the
full theory and show that the consistency condition for the
fakeon projection is violated within the validity of the de
Sitter perturbative expansion, so that the theory is no longer
causal on large timescales. This fact is reflected in the

structure of the coefficients in the power spectra, which
exhibits unusual physical features. In particular, we show
that the decoupling limit of the fakeon does not retrieve the
results of the fakeon-free theory, general relativity, but
leads to divergent power spectra as mχ → ∞. As we show
in the last section, the natural explanation of this fact is that
we are unable to retrieve a causal theory from a strongly
acausal theory. As a side note, we point out that the “ϕ2”
potential from purely virtual particles falls in the class of
potentials discussed in [19]. However, Ref. [19] does not
provide the explicit form of the coefficients appearing in the
tensor power spectrum since it aims to discuss the generic
parametrization of such spectrum in the presence of a
nontrivial mass-renormalization in the Mukhanov-Sasaki
action. As a consequence, the features and the interpreta-
tion of the divergent decoupling limit are not discussed.
The paper is organized as follows. In Sec. II we describe

the theory and provide the RG formalism for the “ϕ2”
potential. In Sec. III we compute the tensor and scalar
power spectra in the mχ → ∞ limit, where the fakeon is
decoupled from the theory. In Sec. IV we compute the
predictions in the full theory by projecting the fakeon from
the physical spectrum and comment on the final results.
Section V is devoted to the physical interpretation of the
predictions. Useful formulas are collected in the Appendix.

II. COSMIC RG FLOW FOR QUADRATIC
INFLATION

We start by considering the classical action of the theory
in the inflaton framework (also known as Einstein frame)

Sinfl ¼ −
1

16πG

Z ffiffiffiffiffiffi
−g

p
d4x

�
Rþ 1

2m2
χ
CμνρσCμνρσ

�

þ 1

2

Z ffiffiffiffiffiffi
−g

p
d4xðDμϕDμϕ − 2VðϕÞÞ; ð2:1Þ

where Cμνρσ is the Weyl tensor, while mϕ and mχ are the
inflaton and fakeon masses. In general, the choice of the
potential VðϕÞ leads to a different inflationary dynamics.
In particular, if we choose VðϕÞ to be the Starobinsky
potential [21,22], and perform the appropriate field trans-
formations, we retrieve the Rþ R2 þ C2 action in the
geometric framework (or Jordan frame) [16].
As stated in the introduction, we focus on the model of

quadratic inflation

VðϕÞ ¼ m2
ϕ

2
ϕ2: ð2:2Þ

Despite the choice of a different potential from the
Starobinsky one, we still have nontrivial phenomenological
features due to the C2 term, which is associated to the
propagation of the purely virtual particles.2See [19] for a systematic study.
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As a first step, we start with the background physics,
which is described by the Friedmann-Lamaitre-Robertson-
Walker (FLRW) metric

gμν ¼ diagð1;−a2;−a2;−a2Þ: ð2:3Þ

Here aðtÞ is the expansion parameter. Since the FLRW
metric has a vanishing Weyl tensor, the Friedmann equa-
tions derived from (2.1) are the ones of the usual slow roll
inflation. In particular, we have

Ḣ ¼ −4πGϕ̇2; H2 ¼ 8πG
3

�
ϕ̇2

2
þ VðϕÞ

�
;

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ 0; ð2:4Þ

where H ≡ ȧ=a denotes the Hubble parameter. We intro-
duce the cosmic RG flow [17–19] by defining the coupling
constant

α≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−

Ḣ
3H2

s
¼

ffiffiffiffiffiffiffiffiffi
4πG
3

r
ϕ̇

H
¼

ffiffiffi
ϵ

3

r
; ð2:5Þ

which parametrizes the departure from the de Sitter uni-
verse in terms of the slow roll parameter ϵ≡ −Ḣ=H2. The
insertion of (2.5) in the first two equations (2.4) allows us to
compute ϕ̇ and V(ϕ) in terms of the coupling. We obtain

ϕ̇ ¼
ffiffiffiffiffiffiffiffiffi
3

4πG

r
αH; VðϕÞ ¼ 3

8πG
ð1 − α2ÞH2: ð2:6Þ

The second equation sets the bound−1 ≤ α ≤ 1 since VðϕÞ
is positive. Now we can insert (2.6) into the third equa-
tion (2.4) to get the evolution equation of α

α̇ ¼ 3Hαðα2 − 1Þ −mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
: ð2:7Þ

Since we are dealing with an inflationary scenario we may
adopt a perturbative approach: α is a small parameter. Then
we can write the Hubble parameter as a power series in α

H ¼
X∞
n¼0

hnαn; ð2:8Þ

and can determine the coefficients of the expansion by
taking the time derivative of (2.8): in the left-hand side (lhs)
we use Ḣ ¼ −3α2H2, while in the right-hand side (rhs) we
replace α̇with (2.7). This procedure allows to extract the hn
coefficients order by order in the perturbative expansion. In
particular, we have

mϕ

H
¼ −3α −

3

2
α3 þ 15

8
α5 −

183

16
α7 þOðα8Þ: ð2:9Þ

We note that the expression of H is singular in the de Sitter
limit (α ¼ 0): in Sec. V, we show that the appearance of this

essential singularity produces physical effects when the ϕ2

model is combined with the Rþ C2 action. Next, we switch
to the conformal time

τ≡ −
Z þ∞

t

dt0

aðt0Þ : ð2:10Þ

Precisely, we consider the quantity −aHτ and write an
analogous power expansion (2.8). Following the previous
procedure, the outcome is

−aHτ ¼ 1þ 3α2 þ 27α4 þ 1573

4
α6 þOðα8Þ: ð2:11Þ

On the other hand we can write d
dt ¼ − H

ð−aHτÞ
d

d ln jτj and read
from (2.7) the β function of the theory,

βα ≡ dαð−τÞ
d ln jτj ¼ −ð−aHτÞ

�
3αðα2 − 1Þ −mϕ

H

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p �
:

ð2:12Þ
Plugging the expansions (2.8) and (2.11), we obtain the
perturbative expression

βα ¼ −3α3ð1þ 2α2 þ 28α4 þOðα6ÞÞ: ð2:13Þ

This is a QCD-like beta function. Specifically, we learn that
α ¼ 0 is the unique fixed point, and the theory is asymp-
totically free (de Sitter universe in the infinite past
τ → −∞). The uniqueness of the fixed point can be proved
by searching for zeros of (2.12) of the form α ¼ const. This
implies d

dt ð
mϕ

H Þ ¼ 0 and therefore ϵ ¼ 3α2 ¼ 0.
We now move to the running of the coupling constant α.

In particular, we switch to the dimensionless variable
η≡ −kτ, where k ¼ jkj is a reference comoving momen-
tum and read the running equation from (2.13)

d ln η ¼ −
dα

3α3ð1þ 2α2 þ 28α4 þOðα6ÞÞ : ð2:14Þ

Finally, we can cast the running coupling in terms of a
leading and subleading log expansion

α2 ¼ α2k
λ

Y2
i¼0

ð1þ α2nk γnðλÞÞ; ð2:15Þ

where αk ≡ αðk−1Þ and λ ¼ 1þ 6α2k ln η, while γnðλÞ are
functions that are determined by inserting (2.15) into
(2.14). With this procedure we can extract the functions
γn iteratively order by order. We give the results for i < 3
(LL, NLL, NNLL contributions)

α2 ¼ α2k
λ

Y2
i¼0

ð1þ α2nk γnðλÞÞ; ð2:16Þ
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where

γ0ðλÞ ¼ 0

γ1ðλÞ ¼ −
4 ln λ
λ

γ2ðλÞ ¼ −
12

λ2

�
1 − λþ 4

3
ln λð1 − ln λÞ

�
: ð2:17Þ

As discussed in [19], the employed formalism exhibits a
RG structure in the proper sense. Indeed, the resulting
correlation functions (i.e., the power spectra, see Sec. III)
satisfy an equation of the Callan-Symanzik type with
vanishing anomalous dimension [17].
Having discussed the main features of the cosmic RG

flow, we can study the fluctuations around the background
metric and their associated power spectra.

III. POWER SPECTRA IN THE INFINITELY
HEAVY FAKEON LIMIT

In this section we compute the power spectra in the
heavy fakeon limit by means of the cosmic RG formalism.
In particular, we recover the known results in the literature
[19] and further extend the de Sitter perturbative expansion.
The action of the inflaton framework in the mχ → ∞

limit reads

Sinfl ¼ −
1

16πG

Z ffiffiffiffiffiffi
−g

p
d4xR

þ 1

2

Z ffiffiffiffiffiffi
−g

p
d4xðDμϕDμϕ − 2VðϕÞÞ; ð3:1Þ

so that we retrieve general relativity coupled to the inflaton
sector.

A. Tensor modes

Let us parametrize the perturbations associated to the
tensor modes in the following way [26]

gμν ¼ ð1;−a2;−a2;−a2Þ
− 2a2ðuδ1μδ1ν − uδ2μδ2ν þ vδ1μδ2ν þ vδ2μδ1νÞ; ð3:2Þ

where uðt; zÞ and vðt; zÞ are the physical graviton polar-
izations.3 We now insert (3.2) into the action (3.1) and
express the modes via their spatial Fourier transform [ukðtÞ
and vkðtÞ]. We get, up to the quadratic order in perturbation
theory, the following action

St ¼
Z

dtd3k
a3

8πG

�
u̇kðtÞu̇−kðtÞ −

k2

a2
ukðtÞu−kðtÞ

�
þ same for vk: ð3:3Þ

In particular, we derived this result working in the comov-
ing gauge δϕ ¼ 0 and plugging (2.6) in (3.1).
Let us focus on the uk mode. We perform the change of

variable4

w ¼ au

ffiffiffiffiffiffiffiffiffi
k

4πG

r
: ð3:4Þ

Thanks to this redefinition, the a3 dependence in front of
the kinetic term vanishes when we switch to the conformal
time η. What we get, upon integrating by parts and the
insertion of (2.11), is

St ¼
1

2

Z
dηd3k

�
w02 − w2 þ ð2þ σtÞ

w2

η2

�
ð3:5Þ

where the prime denotes the derivative with respect to η,
while

σt ¼ 9α2 þ 108α4 þ 1708α6 þOðα8Þ: ð3:6Þ

The corresponding equation of motion (Mukhanov-Sasaki
equation) is

w00 þ w − ð2þ σtÞ
w
η2

¼ 0: ð3:7Þ

Following the standard procedure, we quantize the
metric perturbations by promoting the wk modes to
operators: ŵkðηÞ ¼ wkðηÞâk þ w�

−kðηÞâ†−k, where ak and
a†−k are the usual creation and annihilation operators. Then,
the vacuum state of this quantum theory is fixed by setting
the Bunch-Davies condition [27]

w ∼
eiηffiffiffi
2

p ; η → ∞: ð3:8Þ

We now solve (3.7) equipped with (3.8). In particular, we
can write the w modes as w ¼P∞

n¼0 wnα
n
k , so that (3.7)

reads

w00
n þ wn −

2wn

η2
¼ gtnðηÞ

η2
ð3:9Þ

order by order in perturbation theory. The gtnðηÞ are known
functions and are listed in the Appendix. Reference [17]
shows that is possible to write the w mode as two
contributions: ηw ¼ Qðln ηÞ þWðηÞ. The first contribu-
tion is dominant in the superhorizon limit (η → 0), while
the second one is vanishing. Specifically, the following
Q-equation holds [17,18]

3u and v depend only on the z spatial coordinates because the
graviton polarizations are helicity eigenstates. 4Inwhat follows, we often omit thek subscript for compactness.
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βα
∂Q̃
∂α

¼ −
σ

3
Q̃ −

1

3

X∞
n¼1

3−n
�
βα

∂

∂α

�
n
ðσQ̃Þ; ð3:10Þ

where Q̃ðα; αkÞ≡Qðln ηðα; αkÞÞ. We now solve Eq. (3.10)
up to the NNLL order. In particular, we truncate βα and σt
as in Eqs. (2.13), (3.6), while the rhs of (3.10) contains the
first three terms

βα
∂Q̃
∂α

¼ −
σ

3
Q̃ −

1

9

�
βα

∂

∂α

�
ðσQ̃Þ

−
1

27

�
βα

∂

∂α

���
βα

∂

∂α

�
ðσQ̃Þ

�
: ð3:11Þ

We can seek a solution for Q̃ in power series

Q̃ðα; αkÞ ¼ Q̃ðαkÞ
α

αk

1þP∞
n¼1 cnα

2n

1þP∞
n¼1 cnα

2n
k

: ð3:12Þ

Q̃ðαkÞ is an arbitrary constant that must be fixed by means
of the Bunch-Davies condition. We determine the cn
coefficients by inserting (3.12) into (3.11), which gives

c1 ¼
7

2
; c2 ¼

2057

72
: ð3:13Þ

In deriving the cn coefficients, we have also used the
running coupling (2.16).
After the determination of the w modes in the super-

horizon limit, we can compute the tensor power spectrum.
The tensor power spectrum PT is defined from the two-
point correlator5

hûkðτÞûk0 ðτÞi ¼ ð2πÞ3δð3Þðkþ k0Þ π2

8k3
PT;

PT ¼ 8k3

π2
jukj2; ð3:14Þ

and it has the remarkable property of being time-
independent on superhorizon scales [26,28]. Starting from
the solution (3.12), we now rewind all the field redefinition
and plug them in (3.14). In particular, we extract the w
modes via w ∼ Q̃=η and use (3.4) combined with the power
expansion (2.11). The result is

PT ¼ 32Gm2
ϕ

9πα2k
jQ̃ðαkÞj2½1 − 7α2k þOðα4kÞ�; ð3:15Þ

which is correctly time independent.
The next step is to fix the Q̃ðαkÞ constant by means of the

Bunch-Davies condition. Precisely, we solve (3.9) with the

functions gtn collected in the Appendix and fix the arbitrary
constants of each solution via Bunch-Davies.6 Finally, we
sum these contributions by imposing

Q̃ðαkÞ¼ lim
η→0

ηwjα¼αk
¼ lim

η→0
η½w0þw1αþw2α

2þw3α
3�jα¼αk

:

ð3:16Þ

The four wn functions are listed in the Appendix. The
outcome is

Q̃ðαkÞ ¼
iffiffiffi
2

p ½1þ 3ð2 − γM þ iπÞα2k þOðα4kÞ�; ð3:17Þ

where γM is the Euler-Mascheroni constant and the final
tensor power spectrum reads

PT ¼ 16Gm2
ϕ

9πα2k
½1þ ð5 − 6γMÞα2k þOðα4kÞ�: ð3:18Þ

This final result agrees with the general results of Ref. [19].

B. Scalar modes

We parametrize the scalar perturbations of the metric as
follows [26]

gμν ¼ ð1;−a2;−a2;−a2Þ þ 2ðΦ; a2Ψ; a2Ψ; a2ΨÞ
− δ0μδ

i
ν∂iB − δ0νδ

i
μ∂iB: ð3:19Þ

We insert (3.19) in the action (3.1) by working in the
comoving gauge δϕ ¼ 0. In terms of the Fourier compo-
nents, the corresponding Lagrangian is

8πG
a3

Ls ¼ −3ðΨ̇þHΦÞ2 þ 4πϕ̇2Φ2

þ k2

a2
½2BðΨ̇þHΦÞ þ ΨðΨ − 2ΦÞ�: ð3:20Þ

Using the background value for ϕ̇ and noting that B appears
algebraically in (3.20), we integrate out B (its equation of
motion implies Φ ¼ − Ψ̇

H) and obtain

8πG
a3

Ls ¼ 3α2
�
Ψ̇2 −

k2

a2
Ψ2

�
: ð3:21Þ

We can easily obtain the Mukhanov-Sasaki action by
performing the following field redefinition

5We have already summed the (equal) contributions of the uk
and vk polarizations in formula (3.14).

6Of course the Bunch-Davies condition is imposed on the
whole w mode. This requirement is “transferred” on each wn by
imposing w0 ∼ eiηffiffi

2
p ; w1 ∼ 0; w2 ∼ 0, w3 ∼ 0… as η → ∞.
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w≡ αaΨ
ffiffiffiffiffiffiffiffiffi
3k
4πG

r
: ð3:22Þ

In this way, we obtain the same action (3.5) in the
conformal time

Ls ¼
1

2

�
w02 − w2 þ ð2þ σsÞ

w2

η2

�
; ð3:23Þ

with σs ¼ 18α2 þ 171α4 þ 2302α6 þOðα8Þ.
The computation of the Ψk mode is identical to the one

of uk. Precisely, we first quantize the fluctuations and
then solve the NNLL Q equation (3.11) for σs with the
following ansatz in power series

Q̃ðα;αkÞ ¼ Q̃ðαkÞ
α2

α2k

1þP∞
n¼1 cnα

2n

1þP∞
n¼1 cnα

2n
k

: ð3:24Þ

We find that the cn coefficients are the same as those
of Eq. (3.13).
We now can compute the scalar power spectrum PR,

which is defined from the two-point correlation function of
the comoving curvature perturbation R (which is equal to
Ψ in our gauge choice [28]),

hRkðτÞRk0 ðτÞi ¼ ð2πÞ3δð3Þðkþ k0Þ 2π
2

k3
PR;

PR ¼ k3

2π2
jΨkj2: ð3:25Þ

Finally, using the derived power expansions, (3.25) gives

PR ¼ 2Gm2
ϕ

27πα4k
jQ̃ðαkÞj2½1 − 7α2k þOðα4kÞ�: ð3:26Þ

The gsn and ws
n functions for the scalar case are reported in

the Appendix. Here we just give the result of Q̃ðαkÞ
obtained by imposing the Bunch-Davies condition, which
reads

Q̃ðαkÞ ¼
iffiffiffi
2

p ½1þ ð12 − 6γM þ 6iπÞα2k þOðα4kÞ�: ð3:27Þ

The final scalar power spectrum is

PR ¼ Gm2
ϕ

27πα4k
½1þ ð17 − 12γMÞα2k þOðα4kÞ�: ð3:28Þ

As before, the power spectrum is time independent in the
superhorizon limit. The leading term in the expansion of
(3.28) coincides with the general result of Ref. [19]: in this
paper, we also provide the first nontrivial subleading
correction.

Finally, we introduce the tensor to scalar ratio and
the tensor and scalar spectral indices in terms of the β
function [17]

rðkÞ ¼ PT

PR

nT ¼ −βαðαkÞ
∂ lnPT

∂αk
; nR − 1 ¼ −βαðαkÞ

∂ lnPR

∂αk
:

ð3:29Þ

In our specific case, we get

r ¼ 48α2k þOðα4kÞ; nT ¼ −6α2k þOðα4kÞ;
nR − 1 ¼ −12α2k þOðα4kÞ; ð3:30Þ

which yields to the well known consistency relation

rþ 8nT ¼ Oðα4kÞ: ð3:31Þ

As a further check of the formalism, we combine (3.30) with
the Planck data [25]. In particular, we obtain α0.002 ¼
0.053� 0.005 from the measured nR at the pivot scale
k ¼ 0.002 Mpc−1. This value in turn yields to r0.002 ¼
0.136� 0.016, which is largely excluded by the current
upper bound r0.002 < 0.055. Consistently to what is known
in the literature, we find that the “ϕ2” slow roll potential
combined with general relativity is excluded by Planck data.

IV. TENSOR MODES FROM PURELY
VIRTUAL PARTICLES AND THE SINGULAR

DECOUPLING LIMIT

In the following section we discuss the inclusion of
purely virtual particles in quadratic inflation. As a proto-
type computation, we derive the tensor power spectrum by
projecting away the purely virtual particle from the
physical spectrum. In the following analysis, we exclu-
sively deal with the tensor modes: all the nontrivial aspects
of the “ϕ2” case are already encoded here.
Parametrizing the metric as in (3.2), we find the

following Lagrangian Lt

8πG
a3

Lt ¼
�
u̇2ðtÞ − k2

a2
u2ðtÞ

�
þ −

1

m2
χ

�
ü2ðtÞ

− 2

�
H2 −

3

2
α2H2 þ k2

a2

�
u̇2ðtÞ þ k4

a4
u2ðtÞ

�
:

ð4:1Þ

The presence of the C2 term in (2.1) introduces a high-
derivative term in the fluctuations. We can remove this term
by adding an auxiliary Lagrangian containing a new
algebraic field UðtÞ
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ΔLt ¼
a3

8πGm2
χ
ðm2

χcðtÞU − ü − fðtÞu̇ − hðtÞuÞ2; ð4:2Þ

where f, c, h are arbitrary functions that are chosen in order
to cast the Lagrangian in the simplest form possible.
Precisely, by means of the field redefinition

u ¼ U þ V; ð4:3Þ

we can cast the Lagrangian in the form

8πG
a3γ

Lt ¼ U̇2 −
�
k2

a2
þ gUðγ; H; α; kÞ

�
U2 − V̇2

þ
�
k2

a2
þ gVðγ; H; α; kÞ

�
V2 þ gUVðγ; H;α; kÞUV;

ð4:4Þ

with the following choice of the arbitrary functions

cðtÞ ¼ γ ≡ 1þ 2
H2

m2
χ
;

fðtÞ ¼ 3H −
12α2H3

m2
χγ

;

hðtÞ ¼ k2

a2
þm2

χγ þ −3H2α

�
4mϕH

m2
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

−
�
1 −

18H2

m2
χ

�
αþ

�
1 −

8H2

m2
χγ

�
6α3H2

m2
χγ

�
: ð4:5Þ

While gU;V;UV are known (but involved) functions that we
do not report here. Let us consider the field redefinitions

U≡
ffiffiffiffiffiffiffiffiffi
4πG
γ

s
U1

a
;

V ≡
ffiffiffiffiffiffiffiffiffi
4πG
γ

s
V1

a
: ð4:6Þ

Now it is possible to cancel the a and γ dependence in front
of the kinetic terms by switching to the conformal time τ.
The Lagrangian reads

Lt ¼
1

2
U02

1 −
1

2
ðk2 þ FUðγ; H; α; k; aÞÞU2

1 −
1

2
V 02
1

þ 1

2
ðk2 þ FVðγ; H; α; k; aÞÞV2

1

þ FUVðγ; H; α; k; aÞU1V1; ð4:7Þ

where FU;UV;V , again, are known functions. Every expres-
sion until now is exact in α. Furthermore, the heavy fakeon
limit mχ → ∞ of (4.7) retrieves correctly the σt expression
derived in the fakeon-free theory (3.6). The next step is to

expand (4.7) around the de Sitter fixed point by using (2.9)
and (2.11). Remarkably, up to α4 order, we get

Lt ¼
1

2
U02

1

−
1

2

�
bðαÞk2 − 1

τ2

�
2þ

�
18þ 81

2ξ2

�
α4
��

U2
1 −

1

2
V 02
1

þ 1

2

�
ð2 − bðαÞÞk2 þ α2

τ2

�
9

ξ2
þ
�
18þ 207

2ξ2

�
α2
��

V2
1

þ
�
ð1 − bðαÞÞk2 − α2

τ2

�
6þ

�
45 −

81

2ξ2

�
α2
��

U1V1;

ð4:8Þ

where ξ≡ mϕ

mχ
, and

bðαÞ ¼ 1 −
�
36þ 27

ξ2

�
α4 ð4:9Þ

is a sort of running squared mass, similar to what we get in
the case of the Starobinsky potential with purely virtual
particles. We note three features from (4.8):

(i) The particular choice of the arbitrary functions (4.5)
has the advantage of admitting a smooth de Sit-
ter limit.

(ii) The Lagrangian is diagonal in the de Sitter limit and
V1ðτÞ is indeed the fakeon, as can be seen from the
negative kinetic term.

(iii) The heavy fakeon limit ξ → 0 no longer retrieves the
fakeon free-theory.

We emphasize that the third feature could be regarded (at
least at this stage) just as a drawback of the chosen
parametrization7: in order to understand if this is a real
issue, we have to carry out the computation of the tensor
power spectrum.

A. The fakeon projection

At the classical level, the fakeon projection amounts to
replace the solution of the V1 equation of motion (calcu-
lated with the fakeon prescription [9,29]) into the
Lagrangian (4.8). The U1V1 term is of order α2, therefore,
we expect the fakeon to be of order α2 as well. In this case
(at the cubic order in α), the Bunch-Davies condition is not
affected by V1. Therefore, we can consider the super-
horizon limit kτ → 0 for the fakeon equation of motion. We
determine the solution by means of the following ansatz in
power expansion:

7Other choices were studied to overcome this unpleasant
feature but, unfortunately, they lead to singular expressions in
the de Sitter limit (which is a much more annoying issue for
computations).
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V1 ¼ α2ðb0 þ b1α2ÞU1 þ b2α4τU0
1: ð4:10Þ

The coefficients are determined as follows: when we insert
the ansatz in the fakeon equation of motion there are terms

such asU00
1 andU

ð3Þ
1 . These terms can be replaced by means

of the U1 equation of motion using again the ansatz (4.10)
when necessary. At this point, exploiting the superhorizon
limit kτ → 0, we obtain an equation of the form

f1ðbi; αÞU1 þ f2ðbi; αÞτU0
1 ¼ 0; ð4:11Þ

where f1;2 are power expansions in α. Setting each term of
the power expansion to zero, we get the explicit values of
the coefficients, which are

b0 ¼ 3; b1 ¼
27

2

�
1 −

5

2ξ2

�
; b2 ¼ 18: ð4:12Þ

It is important to stress that the ansatz in power series
captures the perturbative behavior of the full fakeon Green
function Gfðt; t0Þ (obtained through the classical limit of
the quantum prescription, see the next section). We thus see
that the insertion of the fakeon solution into the Lagrangian
(4.8) leads to nonlocal terms, due to the presence of the full
fakeon Green function. These terms, however, are of order
α4, since V1 is of order α2: in other words, the action is still
local up to the α3 order.8

B. Tensor power spectrum

Inserting the ansatz in (4.10), we obtain (up to α3)

Lproj ¼
1

2
U02

1 −
1

2

�
k2 −

2

τ2

�
U2

1; ð4:13Þ

which coincides with the Lagrangian in the de Sitter case.
We can scale the field U1 → U2 ≡

ffiffiffi
k

p
U1 (coherently, we

scale V1 as well) and switch to the dimensionless variable
η ¼ −kτ. After the quantization of the field, the solution of
the equation of motion equipped with the Bunch-Davies
condition reads

U2 ¼
eiηffiffiffi
2

p
�
1þ i

η

�
: ð4:14Þ

Now we can rewind the changes of variables and compute
the tensor power spectrum PT . The result is

PT ¼ 8k3

π2
jukj2 ¼

8k3

π2
jU þ Vj2

¼ 32k3G
πγa2

jU1 þ V1j2

¼ 32G
π

1

ðaHτÞ2
 

H2

1þ 2H2

m2
χ

!
η2jU2 þ V2j2: ð4:15Þ

Expanding around the de Sitter fixed point by means of
(2.9),(2.11), (4.10) and taking the superhorizon limit
(η → 0) after the insertion of (4.14) into (4.15), we obtain

PT ¼ 8Gm2
ϕ

πξ2

�
1 −

9

2ξ2
α2k þOðα4kÞ

�
: ð4:16Þ

This last expression shows that the physical observable,
i.e., the tensor power spectrum, does not admit a finite
decoupling limit ξ → 0.
It is interesting to compare the final results with those

presented in the literature with alternative approaches. In
Ref. [14], the power spectra are computed by keeping the
spin-2 ghost. In particular, it is argued that the effects of
the ghost particle vanish for superhorizon scales, since the
ghost wk modes are suppressed in this limit. However, we
recall that the wk modes are determined by imposing the
Bunch-Davies condition, which is set in the UV regime
(η → ∞). There, we cannot neglect the effects of the ghost.
On the other hand, the fakeon prescription is crucial to deal
with the UV regime. For example, in the Rþ R2 þ C2

theory (Starobinsky potential) with fakeons [16], the UV-IR
interpolation gives a bound that involves the fakeon mass
and, consequently, the tensor to scalar ratio r. Interestingly,
Ref. [30] shows that the results of the ghost approach
coincide with the predictions of the theory with fakeons
once the aforementioned consistency bound is applied.
In the case of the “ϕ2” potential, the expression (4.15)

coincides with the one of Ref. [14] for the leading order
contribution. This happens because the fakeon Green
function does not contribute to the computations up to
the α3 order. However, as we show in the next section, the
fakeon prescription hides an additional constraint, which is
able to explain the unusual properties of (4.16).

V. PHYSICAL INTERPRETATION OF THE
SINGULAR DECOUPLING LIMIT

In this section we discuss the key features of the singular
decoupling limit. We first study the problem by enlight-
ening the connection with the causal structure of the theory,
then we examine the viability of the model from a
phenomenological point of view. In what follows, we
make a comparison with the Starobinsky potential, which
admits a smooth and finite fakeon decoupling.
The problem discussed in the previous section originates

from a sort of “discontinuity” in the computation: every

8In this case we cannot overcome the issue of non locality by
using the ξ → 0 expansion as in the scalar case of the Starobinsky
potential [17] because every expression is singular in this limit.
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step of the exact computation reproduces the fakeon free
results under the decoupling limit and only after the step
concerning the de Sitter limit, we encounter the first
singularities in ξ ¼ 0. From an algebraic point of view
is easy to understand the origin of the singular decoupling
limit. Consider for example the variable γ−1 that multiplies
the power spectrum PT

γ−1 ¼ 1

1þ 2H2

m2
χ

: ð5:1Þ

The leading term of the power expansion in the de Sitter
limit gives

γ−1 ≃

8>><
>>:

2m2
χ

m2
ϕþ2m2

χ
for Starobinsky;

9
2

�
mχ

mϕ

�
2
α2 for ϕ2

ð5:2Þ

We have used the H power expansions of the Starobinsky
[16] and “ϕ2” potentials. The upper expression admits a
regular decoupling limit, while the lower expression does
not: clearly the difference between the two cases is encoded
in the singular behavior of H for the “ϕ2” potential.
The irregularity of the decoupling limit is enforced by

the coefficients of the fakeon solution (4.12), because they
were already singular in ξ ¼ 0, well before the computation
of PT in (4.15). This last remark may prompt the following
question: is the projection procedure hiding some physical
information? Indeed, the procedure showed in Sec. IVA is
more involved then the simple “hunt for the right ansatz” of
the fakeon equation of motion. The fakeon solution should
be derived using the average of the advanced and retarded
Green functions [9] and the power expansion (4.10) is only
able to capture the perturbative behavior of the Green
function. The complete procedure has been explicitly
applied for the Starobinsky case to the lowest order in
the de Sitter expansion [16].
The full fakeon Green function is constrained to have a

real pole mass (no-tachyon condition): this feature is
crucial to make the theory causal,9 since a tachyonic mass
would propagate the causality violation introduced by the
purely virtual particles [7,9,29] up to large timescales.
In the Starobinsky case, this condition imposes a con-
straint on the fakeon and inflaton masses such that it is
possible to make the prediction on the tensor to scalar ratio
sharp [16,17].
We now extend the analysis to the ϕ2 potential, where we

meet some additional difficulties due to the singularities in
α ¼ 0. In order to get some physical information, we work

with the cosmological time. In particular, we switch to the
new variables

A≡
ffiffiffiffiffiffiffiffiffi
a3γ
4πG

r
U; B≡

ffiffiffiffiffiffiffiffiffi
a3γ
4πG

r
V: ð5:3Þ

In this way, the Lagrangian (4.4) reads

Lt ¼
1

2
Ȧ2 −

1

2
Ḃ2 þ GAðαÞA2 þ GBðαÞB2 þ GABðαÞAB;

ð5:4Þ
where, as usual, G are known functions. The de Sitter limit
of this expression has some unexpected features: first
of all, the singularities in α ¼ 0 do not vanish as happens
in the conformal time expression of Lt. Second, the
Lagrangian is no longer diagonal in the de Sitter limit.
In particular, we have

Lt ¼
1

2
U̇T

�
1 0

0 −1

�
U̇ −

1

2
UTMð2ÞU; ð5:5Þ

where

U ≡
�
A

B

�
and

Mð2Þ ≡
2
64

1
4

�
7 − 1

α2

�
m2

ϕ
2
3
m2

ϕ

2
3
m2

ϕ −m2
χ − 1

36

�
7 − 1

α2

�
m2

ϕ:

3
75 ð5:6Þ

Another issue concerning the computation of the Green
function is the following: the equation of motion has some
time dependent coefficients due to the presence of α. This is
not a real problem. In fact, we recall that the smallness
of the second slow roll parameter δ≡ −ϕ̈=Hϕ̇ ensures a
very slow variation of the ϵ parameter (and therefore α)
during inflation. Therefore, we assume α ≃ const for this
discussion.
Let us diagonalize the Lagrangian (5.5) by switching to

the mass eigenstates. In particular, we introduce a new field
U ≡ SB, where S ¼ ½cosh θsinh θ

sinh θ
cosh θ� is a hyperbolic rotation.

The Lagrangian (5.5) in terms of the new field reads

Lt ¼
1

2
ḂT

�
1 0

0 −1

�
Ḃ −

1

2
BTMð2Þ

d B; ð5:7Þ

where

Mð2Þ
d ¼ STMð2ÞS: ð5:8Þ

We note that the matrix (5.6) is symmetric: we can make

Mð2Þ
d diagonal by choosing themixing angle θ properly. The

expression for the angle, that we do not report here, is rather
involved. The important quantities are the masses (that is,

the diagonal entries of Mð2Þ
d ), which are

9At least for timescales larger than Δt ∼ 1=mχ ∼ 10−38 s. The
estimate is obtained by plugging the benchmark value
mχ ≃ 1013 GeV, which is suggested by the predicted band for
the tensor to scalar ratio [16].
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m2
1 ¼

1

4

�
7 −

1

α2

�
m2

ϕ;

m2
2 ¼ −m2

χ −
1

36

�
7 −

1

α2

�
m2

ϕ: ð5:9Þ

Note that the diagonal entries (5.6) are not modified by the
diagonalization procedure, since cosh θ ¼ 1þOðα3Þ.
The no-tachyon condition for the fakeon mass is m2

2 < 0

(that is, α > 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7þ

�
6mχ

mϕ

�
2

r
). Similarly, the no-tachyon

condition for the physical degree of freedom is m2
1 > 0

(α > 1=
ffiffiffi
7

p
). Combining this two conditions, we get

α >
1ffiffiffi
7

p ; ð5:10Þ

which is an upper bound for α. Hence, the de Sitter
expansion α → 0 explicitly violates the bound. In this
way, the fakeon Green function satisfies the equation

�
d2

dt2
−m2

2

�
Gfðt; t0Þ ¼ δðt − t0Þ; ð5:11Þ

which must be solved with the fakeon prescription [9,16]

Gfðt; t0Þ ¼
1

2m2

sin ðm2jt − t0jÞ: ð5:12Þ

As stated for the Starobinsky potential, the key feature of
(5.12) is the causality violation occurring in a typical time
interval Δt ∼ 1=m2, provided that m2 is real. However, the
de Sitter perturbative expansion α → 0 violates the no-
tachyon condition (5.10) and m2 becomes imaginary. In
other words, the violation of the bound turns the fakeon
Green function into an hyperbolic sine and the violation of
causality is “propagated” up to very large timescales. For
this reason, we are unable to retrieve the power spectrum of
General Relativity through the decoupling limit mχ → ∞:
the Green function (5.12) in the fundamental theory (2.1)
blows up so that we are unable to obtain a causal theory,
General Relativity, from a strongly acausal theory.

VI. CONCLUSIONS

A theory of gravity from purely virtual particles is
strongly motivated by the QFT requirements of unitarity,
locality and renormalizability [5]. Following the previous
works in the literature [16–19], we considered the effects of
said particles in the inflationary scenario by means of the
cosmic RG flow approach.
We analyzed the model of quadratic inflation. Although

the specific model falls in the class of potentials discussed
in [19], we have provided a detailed computation of the
coefficients appearing in the tensor power spectrum. Such

coefficients diverge in the limit of infinitely heavy purely
virtual particles. This last feature tells us that is not possible
to retrieve the well-known results of general relativity once
the purely virtual particles are decoupled from the theory.
The interpretation of this fact is hidden in the causal
structure of the full theory, since purely virtual particles
introduce (micro) causality violations [7,9,29]. In particular
we showed that the de Sitter limit, which is crucial to derive
the perturbative expansions of the power spectra, turns the
purely virtual particles into tachyons and hence propagates
the causality violations up to large timescales so that we are
unable to retrieve the results of the causal theory, general
relativity. We also conclude that the model of quadratic
inflation from purely virtual particles is discarded from a
phenomenological point of view, likewise to what happens
in the inflationary scenario driven by general relativity. We
stress, however, that these two exclusions are radically
different since the former has to do with the causal structure
of the theory, while the latter is related to the experimental
data concerning power spectra [25].

ACKNOWLEDGMENTS

The author warmly thanks D. Anselmi for useful dis-
cussions, P. Panci and F. Tarantelli for carefully reading the
manuscript.

APPENDIX

1. Bunch-Davies functions for the ϕ2 potential

a. Tensor modes, mχ → ∞
The g functions are

gt0 ¼ gt1 ¼ 0; gt2 ¼ 9wt
0: ðA1Þ

The w functions are

wt
0 ¼

ðηþ iÞffiffiffi
2

p
η

eiη; wt
1 ¼ 0;

wt
2 ¼

3ffiffiffi
2

p
η
½2ieiη þ ðη − iÞe−iηðEið2iηÞ − iπÞ�; ðA2Þ

where EiðzÞ denotes the exponential-integral function.

b. Scalar modes, mχ → ∞
The g functions are

gs0 ¼ gs1 ¼ 0; gs2 ¼ 18ws
0: ðA3Þ

The w functions are

ws
0 ¼ wt

0; ws
1 ¼ 0;

ws
2 ¼

3
ffiffiffi
2

p

η
½2ieiη þ ðη − iÞe−iηðEið2iηÞ − iπÞ�: ðA4Þ
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