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Local non-Gaussianities in the initial conditions of the Universe, parametrized by fNL, induce a scale
dependence in the large-scale bias of halos in the late Universe. This effect is a promising path to constrain
multifield inflation theories that predict nonzero fNL. While most existing constraints from the halo bias
involve autocorrelations of the galaxy distribution, cross-correlations with probes of the matter density
provide an alternative channel with fewer systematics. We present the strongest large-scale structure
constraint on local primordial non-Gaussianity that utilizes cross-correlations alone. We use the cosmic
infrared background (CIB) consisting of dusty galaxies as a halo tracer and cosmic microwave background
(CMB) lensing as a probe of the underlying matter distribution, both from Planck data. Milky Way dust is
one of the key challenges in using the large-scale modes of the CIB. Importantly, the cross-correlation of
the CIB with CMB lensing is far less affected by Galactic dust compared to the autospectrum of the CIB,
since the latter picks up an additive bias from Galactic dust. We find no evidence for primordial non-
Gaussianity and obtain −87 < fNL < 19, with a Gaussian σðfNLÞ ≈ 41, assuming universality of the halo
mass function, or −179 < fNL < 39 for a more aggressively cleaned patch of sky, on which we find a much
better fit. We find that future CMB lensing data from Simons Observatory and CMB-S4 could achieve
σðfNLÞ of 23 and 20 respectively. The constraining power of such an analysis is limited by current Galactic
dust cleaning techniques which introduce a multiplicative bias on very large scales, requiring us to choose a
minimum multipole of l ¼ 70. If this challenge is overcome with improved analysis techniques or external
data, constraints as tight as σðfNLÞ ¼ 4 can be achieved through the cross-correlation technique. More
optimistically, constraints better than σðfNLÞ ¼ 2 could be achieved if the CIB autospectrum is dust-free
down to the largest scales.

DOI: 10.1103/PhysRevD.108.083522

I. INTRODUCTION

The search for non-Gaussianities in the initial conditions
of the Universe (“primordial non-Gaussianities”, or PNG)
is a key goal of the cosmology community. Of particular
interest is primordial non-Gaussianity of the local type,
parametrized by flocalNL , with flocalNL ¼ 0 indicating exact
Gaussianity. Multifield inflation models predict flocalNL of
Oð1Þ (e.g. [1]), and so a detection of flocalNL will be key for
discriminating between inflation models. To date, all
measurements are consistent with Gaussian initial condi-
tions, with the strongest constraint coming from measure-
ments of the early-Universe bispectrum (or three-point
function) through the cosmic microwave background

(CMB) as measured by Planck: flocalNL ¼ −0.9� 5.1 [2].
This constraint is not expected to improve enough to probe
multifield inflation with future measurements of the pri-
mary CMB fluctuations (e.g. up to σðflocalNL Þ ¼ 2 with the
Simons Observatory [3]).
The late-Universe large-scale structure (LSS) bispectrum

is perhaps the next obvious probe of non-Gaussianities;
although, as gravitational evolution induces non-
Gaussianities in an initially non-Gaussian field, these must
first be disentangled before constraining the primordial
Universe from a measurement of the bispectrum of LSS
[4–7]. However, there exists a well-known signature of flocalNL
(henceforth fNL) in the two-point power spectrum of biased
objects such as halos. In particular, nonzero fNL induces a
scale-dependence in the bias of these objects with respect to
darkmatter, a signal that is strongest on the largest scales [8],*fmccarthy@flatironinstitute.org
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Δb ∼
fNL
k2

ðbG − 1Þ; ð1Þ

where bG is the Gaussian bias (which is scale-independent
on large scales), andΔb is the change in bias induced byfNL.
Constraints from the bias of quasars in the SDSS/BOSS
surveys [9–14] have used this signal to constrain fNL, with
the strongest finding fNL ¼ −12� 21 [14], and recent
combined constraints from the BOSS bispectrum and power
spectrum in fact get most of their constraining power on fNL
from the effect on the power spectrum [15,16]. Forecasts
have indicated that future LSS surveys such as Rubin
Observatory’s Legacy Survey of Space and Time (LSST)
[17] and SPHEREx [18], a high-number density galaxy
clustering survey, will be able to reach the σðfNLÞ ∼ 1
regime if systematics are well-controlled.
Many of the aforementioned LSS constraints on fNL

involvemultiple powers of the halo overdensity field (two in
the power spectrum, three in the bispectrum). On the other
hand, constraints from cross-correlations with probes of the
unbiased matter distribution—like those of [11,12]—offer
advantages: (1) an analysis involving a cross-correlation of
one power of the halo overdensity typically does not suffer
from additive systematics in measurements of the LSS
survey (e.g. selection effects andMilkyWay dust); and (2) a
joint analysis of all cross- and autospectra can significantly
improve the bias measurement through sample variance
cancellation [19]. Such measurements have been proposed
using unbiased tracers of mass such as CMB-lensing
convergence maps [20] or velocity such as the kinetic
Sunyaev-Zel’dovich (kSZ) effect [21]; [11,12] use the
integrated SachsWolfe (ISW) effect aswell asCMB lensing.
In this work, we present the strongest constraint on fNL

through cross-correlation alone, the previous strongest
being fNL ¼ 46� 68 from the cross correlation of the
ISW effect and galaxies [11]. We use (1) the cosmic
infrared background (CIB) as our halo tracer and (2) weak
lensing of the CMB as our probe of the unbiased matter
distribution.
(1) The CIB is sourced by the thermal radiation of dust

grains in distant galaxies; these dust grains absorb
ultraviolet (UV) starlight, which heats them up and
is re-emitted in the infrared (IR). The star formation
rate (SFR) of our Universe peaked at around z ∼ 2
[22], and the CIB is thus sourced from galaxies at
around this redshift and higher, although it is a
diffuse field with contributions from all redshifts up
to reionization at z ∼ 7. The CIB anisotropies that
we measure trace the clustering of these objects [23].
For this reason, it might be considered a promising
candidate for constraining fNL: the fNL signal
increases with bias, and galaxies at high redshift
such as those sourcing the CIB are more highly
biased than galaxies at lower redshifts. As well as
this, it is highly correlated with the CMB lensing

convergence field κ, giving a potential opportunity to
improve the fNL measurement by using a simulta-
neous measurement of κ and the CIB intensity to
exploit sample variance cancellation.

(2) The CMB lensing convergence field is a map of all
the matter between us and the surface of last scatter-
ing, projected along the line of sight [24]. As the
CMB has been traveling through the Universe, it has
interacted gravitationally with this matter in a well-
understood way [25]. The result is that the CMB we
see has been weakly lensed, an effect which can be
detected statistically, and has been done with high
statistical significance by thePlanck satellite [26–29]
and high-resolution ground-based CMB experiments
such as the Atacama Cosmology Telescope (ACT)
(e.g. [30–32]) and the South Pole Telescope (SPT)
(e.g. [33–37]).

Previous work has shown that the information contained
in the autopower spectrum of the CIB anisotropies could in
principle yield a measurement with σðfNLÞ < 1 [38].
However, as indicated earlier, there are significant diffi-
culties associated with using autospectra for fNL measure-
ments, and this is especially true for the CIB. The signal of
interest is mostly sourced at large scales, where it is difficult
to separate the cosmological CIB signal from the emission
from dust in our own Milky Way galaxy. The Galactic dust
signal is also scale dependent with significant power on
large scales; even in maps postprocessed through compo-
nent separation or foreground cleaning techniques, any
spurious dust power will bias the inference of fNL. For this
reason, we do not use the large-scale CIB autopower
spectrum1 in this work and instead focus on constraining
fNL from its cross-power spectrum with the CMB lensing
convergence field Cνκ

l alone, as this statistic does not suffer
from the same additive dust bias. There is however a
multiplicative bias associated with the dust cleaning pro-
cedure that prevents us from accessing all scales [39]; this is
discussed later in this work.
The paper is organized as follows. In Sec. II we discuss

the relevant theory, including the scale dependence induced
in the bias by fNL, and the formalism we use to model the
CIB and the CIB-CMB-lensing cross-correlation. In
Sec. III we discuss the data products used in our analysis
and in Sec. IV we present our pipeline for the extraction of
fNL. We present our results in Sec. V. In Sec. VI we forecast
constraints from future CMB lensing experiments. We
conclude in Sec. VII.
Throughout, we use the cosmology of [40]; fH0 ¼

67.11 km=s=Mpc;Ωch2 ¼ 0.1209;Ωbh2 ¼ 0.022068;As ¼
2.2× 10−9; ns ¼ 0.9624g where H0 is the Hubble constant

1We use “CIB autopower spectrum” to refer to the cross-power
spectra between the different frequency channels at which the
CIB is measured. As described later, we do include small-scale
CIB autospectra to help constrain the CIB model itself.
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today, Ωch2 is the physical cold dark matter density today,
Ωbh2 is the physical baryon density today, As is the
amplitude of scalar fluctuations, and ns is the spectral
index (with a pivot scale of 0.05 Mpc−1). All matter power
spectra and transfer functions are calculated with the
Einstein-Boltzmann code CAMB2 [41].

II. THEORY

In Sec. II Awe discuss the induction of scale dependence
in halo bias from fNL. In Sec. II B we present the theory
model we use to model the CIB and the CIB-CMB lensing
cross-power spectrum.

A. fNL from scale-dependent bias

fNL parametrizes primordial non-Gaussianity of the local
type as follows:

ΦðxÞ ¼ ϕðxÞ þ fNLðϕ2ðxÞ − hϕ2iÞ ð2Þ

where ΦðxÞ is the Newtonian potential at x and ϕðxÞ is an
underlying Gaussian field. On subhorizon scales, Φ is
related to the overdensity δ through the Poisson equation.
While the overdensity field δ is continuous, in several

situations the peaks of δ are the objects of interest. This is
because gravitational collapse happened only where δ was
higher than a critical value δc, and so these regions (with
δ > δc) are those in which large scale structure formed.
These peaks of δ are biased with respect to δ,

δh ¼ bhδ; ð3Þ

where δh is the overdensity of the peaks (the “halo
overdensity”), and bh is their bias (the “halo bias”). This
leads to them following a different power spectrum to that
of the underlying dark matter:

PhhðkÞ ¼ b2hPmmðkÞ; ð4Þ

where PhhðkÞ is the halo power spectrum and PmmðkÞ is the
matter power spectrum. For Gaussian initial conditions, bh
is scale independent on large scales—i.e., it does not
depend on k. However, non-Gaussianity of the form of
Eq. (2) serves to induce a scale dependence [8],

bNG
h ¼ bGh þ fNL

3ΩmH2
0

k2TðkÞDðzÞ δcðb
G
h − 1Þ; ð5Þ

where Ωm is the mean density of matter today, H0 is the
Hubble constant, TðkÞ andDðzÞ are the transfer and growth
functions of the density field, respectively, with TðkÞ
normalized to 1 at low k and DðzÞ normalized such that
DðzÞ ¼ 1

1þz during matter domination, and δc ¼ 1.686 is

the critical overdensity above which objects undergo
gravitational collapse. bGh refers to the Gaussian bias, i.e.
the bias in the absence of fNL.

B. The CIB-CMB lensing cross correlation

1. The CIB

The CIB is sourced by thermal emission of dust in star-
forming galaxies. As the physics of star formation is not
well-understood, we lack a first-principles model for the
CIB. Instead several parametric models of various physical
motivation have been proposed (see, e.g. [42–45]).
The CIB intensity at frequency ν Iν is given by

Iνðn̂Þ ¼
Z

χre

0

dχaðχÞjνðχ; n̂Þ; ð6Þ

where jν is the comoving CIB emissivity density, aðχÞ is
the scale factor, and the integral over comoving distance χ
is done out to reionization at χre. jνðχ; n̂Þ can be separated
into its mean value and fluctuations,

jνðχ; n̂Þ ¼ j̄νðχÞ
�
1þ δjνðχ; n̂Þ

jνðχÞ
�
: ð7Þ

CIB models generally include a model for the mean
emissivity j̄ν as well as a prescription for the clustering
of the fluctuations, in particular the three-dimensional
emissivity power spectrum Pνν0

jj ðk; z; z0Þ, which is defined
as follows:

hδjνðk; zÞδjν0 ðk0; z0Þi
j̄νðzÞj̄ν0 ðz0Þ

≡ ð2πÞ3Pνν0
jj ðk; z; z0Þδ3ðk − k0Þ: ð8Þ

The angular CIB power spectrum can then be integrated
directly according to

Cνν0
l ¼ 2

π

Z
dχdχ0

Z
k2dkaðχÞaðχ0Þj̄νðχÞj̄ν0 ðχ0Þ

× Pνν0
jj ðk; z; z0ÞjlðkχÞjlðkχ0Þ; ð9Þ

where jlðxÞ are the spherical Bessel functions of degree l.
As jνðχÞ has support on a very wide range of χ, in most
cases the Limber approximation [46] is valid and we can
simplify Eq. (9) to reduce to the more standard expression,

Cνν0
l ¼

Z
dχ
χ2

a2ðχÞj̄νðχÞj̄ν0 ðχÞPνν0
jj

�
k ¼ l

χ
; z

�
ð10Þ

where Pjjðk; zÞ≡ Pjjðk; z; zÞ is the equal-time emissivity
power spectrum. However, at the lowest values of l
(lðl≲ 40Þ), we should integrate the full expression (9).
In this work, we use the linear CIB model of [47] to

model the CIB. In this model, the mean CIB emissivity is2https://camb.info.
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related directly to the mean star formation rate density
(SFRD) with the Kennicutt relation [48],

j̄νðzÞ ¼
ρSFRðzÞð1þ zÞSν;effðzÞχ2

K
; ð11Þ

where K is the Kennicutt constant K ¼ 1.7 ×
10−10M⊙ yr−1 L−1

⊙ and Sν;effðzÞ is the mean effective
spectral energy distribution (SED), calculated using the
method of [49] using SEDs calibrated with Herschel data
[50,51].3 The SFRD is parametrized according to

ρSFRðzÞ ¼ α
ð1þ zÞβ
1þ ð1þz

γ Þδ ð12Þ

with α, β, γ, δ free parameters of the model. As this is a
linear model, the CIB fluctuations can be parametrized
directly by defining the CIB bias bCIBðzÞ,

Pνν0lin
jj ðk; z; z0Þ ¼ bCIBðzÞbCIBðz0ÞPlin

mmðk; z; z0Þ; ð13Þ

where Plin
mmðk; z; z0Þ is the linear matter power spectrum;

bCIBðzÞ is parametrized as

bCIBðzÞ ¼ b0 þ b1zþ b2z2 ð14Þ

with b0, b1, b2 free parameters of the model [note that Pνν0
jj

as defined in Eq. (8) is thus independent of ν and ν0, with
the frequency dependence of Cνν0

l coming from the SFRD
alone]. We expect this linear model to be sufficient since we
restrict our analysis to relatively large scales (l ≤ 550).
The parameters fα; β; γ; δ; b0; b1; b2g were fit to the

Planck CIB auto and CIB-lensing power spectra at ν ¼
f217; 353; 545; 857g GHz in Ref. [47]; their values are
given in Table I. In our analysis, we marginalize over all of
these parameters, with a prior of b0 ¼ 0.83� 0.11. We
note that we do not vary any cosmological parameters,

since these are very well-determined by primary CMB
measurements.
There is also a small contribution to the CIB power from

the small-scale regime (1-halo term) and the shot noise (as
the CIB is intrinsically sourced by discrete objects), which
is constant in l. We include these contributions to the
power by using the prescription presented in [45,47].4

However, in practice we will marginalize over the values
of the shot noise, which we expect to allow for model
uncertainty in both the shot noise and the 1-halo term which
are very degenerate on the linear scales we use, as the
1-halo term is only very mildly scale dependent in this
regime.
Thus, in total, the full model for the CIB power is

Cνν0
l ¼ Cνν0linear

l þ Cνν0one-halo
l þ Sνν0 ; ð15Þ

where Cνν0linear
l is the linear term that we model by

calculating Eq. (10) using Pνν0lin
jj and j̄ν as described above;

Cνν0one-halo
l is the (almost-constant) one-halo contribution,

which we precompute, and Sνν0 is the constant shot-noise
(over which we will marginalize in our analysis).

2. CMB lensing

Gravitational lensing induces a specific form of statis-
tical anisotropy in the CMB allowing the use of quadratic
estimators to reconstruct the line-of-sight gravitational
potential ϕ [52] integrated all the way to the surface of
last scattering. The contribution to the lensing potential
peaks at redshifts around z ∼ 2. As the CIB is sourced
mostly at the same redshifts where the CMB lensing
efficiency peaks, the two fields are expected to be highly
correlated with each other; indeed, their correlation has
been detected by Planck [53], SPT [54] and ACT [30,55].
Going forward, we may interchangeably refer to both the
lensing potential ϕ and the lensing convergence field κ
(proportional to the projected matter density), which are
straightforwardly related through ∇2ϕ ¼ −2κ.
The CMB lensing potential ϕ is given by

ϕðn̂Þ ¼ −2
Z

χS

0

dχ
χS − χ

χSχ
Φðχ; n̂Þ; ð16Þ

where χS is the comoving distance to the surface of last
scattering, where the CMB was released, and Φðχ; n̂Þ is the
Newtonian potential.Φ can be related directly to the matter
overdensity δ on subhorizon scales with the Poisson
equation

∇2Φ ¼ −
3

2

�
H0

c

�
2 ΩmH0

a
δ: ð17Þ

TABLE I. The fiducial values for the parameters of the CIB
model, from [47].

Parameter Value

ρSFRðzÞ evolution α 0.007
β 3.590
γ 2.453
δ 6.578

CIB bias evolution b0 0.83
b1 0.742
b2 0.318

3These are available at https://github.com/abhimaniyar/
halomodel_cib_tsz_cibxtsz [45]. 4Again, see this URL for the precomputed 1-halo term.
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As a result of this, in harmonic space the lensing potential is
related to the lensing convergence κ by

ϕl ¼ 2

lðlþ 1Þ κl; ð18Þ

where

κ ¼
Z

χS

0

dχWκðχÞδðχ; n̂Þ; ð19Þ

with the lensing convergence kernel WκðχÞ given by

WκðχÞ ¼ 3

2

�
H0

c

�
2Ωm

a
χ

�
1 −

χ

χS

�
: ð20Þ

The angular power spectrum of the CMB lensing con-
vergence field is

Cκκ
l ¼ 2

π

Z
dχdχ0

Z
k2dk

×WκðχÞWκðχ0ÞPmmðk; z; z0ÞjlðkχÞjlðkχ0Þ; ð21Þ

which in the Limber approximation reduces to

Cκκ
l ¼

Z
dχ
χ2

WκðχÞ2Pmm

�
k ¼ l

χ
; z

�
: ð22Þ

As we work on linear scales, we use the linear matter power
spectrum Plin

mmðkÞ in place of PmmðkÞ.

3. The CIB-CMB lensing cross-correlation

On linear scales, the CIB-CMB lensing cross-power
spectrum is given by

Cνκ
l ¼ 2

π

Z
dχdχ0

Z
k2dk

× aðχÞj̄νðχÞWκðχ0ÞPν
jmðk; z; z0ÞjlðkχÞjlðkχ0Þ ð23Þ

with the cross-power spectrum Pν
jm given on linear

scales by

Pν
jm

linðk; z; z0Þ ¼ bCIBðzÞPlin
mmðk; z; z0Þ: ð24Þ

Except for on the largest scales, this reduces to the standard
expression with the Limber approximation,

Cνκ
l ¼

Z
dχ
χ2

aðχÞj̄νðχÞWκðχÞPν
jm

�
k ¼ l

χ
; z

�
: ð25Þ

As we restrict our analysis to linear scales, we use the linear
expression (24) when calculating Eq. (25).
The redshift distributions of the various Cls are shown in

Fig. 1, calculated with our fiducial model, calculated at

l ¼ 1000. The substantial overlap between the CMB
lensing anisotropy kernel and the CIB anisotropy kernels
is clear, with all showing peaks at around 1≲ z≲ 3.

4. Including fNL
To allow for dependence on fNL, we directly promote the

CIB bias to be scale-dependent according to Eq. (5). The
CIB-CMB lensing power spectra for various values of fNL
are shown in Fig. 2. Note that on the largest scales l≲ 40,
the Limber approximation is not valid, and in principle we
must directly integrate the three-dimensional power spec-
trum to find Cl; however, as we restrict our analysis to
l > 70 in this work, we employ the Limber approximation
throughout.

5. Color correction

Our model is constructed for the νIν ¼ constant photo-
metric convention. In practice, this means that we must
color correct our model to compare appropriately with the
data measured with the Planck bandpasses,

CνXcolor-corrected
l ¼ ccνCνX

l ð26Þ

where cc353 ¼ 1.097, cc545 ¼ 1.068, and cc857 ¼ 0.995;
note that this means that the Cνν0

l spectra are multiplied by
two factors and Cνκ

l only by one.

III. DATA

Wemeasure the CIB-CMB lensing cross correlation with
the CIB maps of [39] (constructed from Planck HFI maps
and HI4PI neutral hydrogen maps), and the CMB lensing
reconstruction of Planck [28]. In this section we briefly
describe these data.

FIG. 1. The redshift distrubtions of the Cls, normalized so that
their integral is 1, for our fiducial model, calculated at l ¼ 100
with fNL ¼ 0.
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A. CIB maps

We use the CIB maps of [39] which were produced from
high-frequency (353 GHz, 545 GHz, 857 GHz) data from
the Planck satellite’s HFI instrument, with Galactic dust
cleaned by using neutral hydrogen (HI) data collated from
various radio surveys, in particular the Effelsberg-Bonn HI
Survey (EBHIS) [56–58], and the Galactic All-Sky Survey
(GASS) [59–61], collected in the HI4PI Survey [62]. The

HI data is used to create a template for the Milky Way
Galactic dust to be subtracted from the Planck single-
frequency maps. Going from HI data to dust templates
requires the modeling of a dust-to-gas ratio; this is a
spatially-dependent quantity, depending on the environ-
ment of the gas, and so local modeling is required. As there
is a spatial limit to the size over which the dust-to-gas ratio
can be modeled, there is a scale above which the maps
cannot be properly cleaned. Due to this, the maps of [39]
are not guaranteed to be unbiased below angular scales
l ∼ 70, and so we restrict ourselves to l > 70 in our
analysis. This is a significant penalty on the extraction of
information on fNL, as most information is in the largest
scales. Regardless of this multiplicative transfer function
present in the maps, the CIB maps of [39] are far more
appropriate for our work than the raw intensity maps from
Planck; while those raw intensity maps do not have a
multiplicative transfer function and could in principle be
used for unbiased cross-correlations down to arbitrary
scales, in practice, the presence of Galactic dust induces
very large scatter on any measured cross-correlation. Thus,
we proceed with the HI template-subtracted CIB maps
from [39].

B. CMB lensing map

For our CMB lensing map, we use the minimum
variance (MV) CMB lensing convergence (κ) reconstruc-
tion from the Planck 2018 release [28], available on the
Planck legacy archive (PLA). This reconstructed map is
reliable down to l ¼ 8making it ideally suited for studying
local primordial non-Gaussianity. The lensing map itself
does not contain information on fNL, but it provides an
unbiased probe of the matter distribution that is highly
correlated with the CIB, allowing the redshift distribution
of the CIB to be constrained and the sample variance in the
measurement to be reduced [63]. The lensing map is
reconstructed exploiting the fact that the small-scale
anisotropies in the CMB (measured primarily at 100
and 150 GHz) are modulated by large-scale lenses
in a well-understood way. The reconstruction uses a
quadratic estimator dominated by information in the
CMB temperature anisotropy at low frequencies (LF)
κ̂ ∝ hTLF

high−lT
LF
high−li. As described in [63], crucially, this

means that the large-scale lensing map that is produced
primarily uses small-scale CMB data (l > 800) at
frequencies where Galactic dust contamination is much
smaller than at the high frequencies at which the Planck
CIB measurements are made. In the cross-correlation
of the CIB map with the CMB lensing map, we therefore
do not expect a Galactic dust bias proportional to the
power spectrum of the Galactic dust at high frequencies
(HF) (where the dust is brighter) but rather a negligible
bispectrum of the form hDHF

low−lD
LF
high−lD

LF
high−li for

Galactic dust modes DHF at high frequencies and the
much dimmer modes DLF at low frequencies (LF).

FIG. 2. The effect of various values of fNL on the CIB-CMB
lensing power spectra. Also indicated is the size of the 1σ
uncertainty on the measurement Cκν

l from the maps we are
using (NHI < 2.5 cm−2), when binned linearly with bins of
width Δl ¼ 60.
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IV. ANALYSIS PIPELINE

We constrain fNL by maximizing a likelihood defined as

−2 lnL ¼ ðCðΠÞ − ĈÞTC−1ðCðΠÞ − ĈÞ þ χ2priors; ð27Þ
where Π is the parameter vector, CðΠÞ is the theoretical
data vector calculated from the parameters, Ĉ is the
measured data (superscript T denotes the transpose), and
C is the covariance matrix. We include priors on the CIB
mean, the CIB calibration parameters, and the bias at z ¼ 0;
we will discuss each element below.

A. Parameter vector

Π is a 17-dimensional parameter vector, which
contains fNL along with all the parameters over
which we marginalize the CIB bias parameters
fb0; b1; b2g, the star formation rate density parameters
fα; β; γ; δg, the Planck instrument calibration para-
meters ff353; f545; f857g, and the CIB shot noise values
fS353;353; S353;545; S353;857S545;545S545;857; S857;857g,

Π ¼ ½fNL; b0; b1; b2; α; β; γ; δ; ffνg; fSνν0 g�: ð28Þ
The calibration parameters fν are nuisance parameters that
we implement as multiplicative biases on the CνX

l ; the
remaining parameters have been discussed in Sec. II B.

B. Data vector

We take as our data vector C the cross-power spectrum
Cνκ
l binned in l-space between l ¼ 70 and l ¼ 550 in bins

of equal (linear) extent in l. As we require some autopower
spectrum data to constrain our nuisance parameters (in
particular the CIB SFRD parameters), we also include the
CIB autospectrum between l of 430 and 550. Thus we have

C ¼
�Cνκ

l 70 ≤ l ≤ 430

Cνν0
l ; Cνκ

l 430 ≤ l ≤ 550:
ð29Þ

It is important not to include CIB autopower spectrum
data at l < 430, as we wish to avoid adding constraining
power on fNL from the CIB autopower spectrum. At lower
l, there would be significant information on fNL in this
data, but also significant potential for bias from any residual
Galactic dust in the maps; this is not a problem for the νκ
power spectra as the residual Galactic dust will add noise to
the measurement but not bias.
As we are using a linear model for the CIB, we never use

any data from multipoles greater than l ¼ 550.
We will discuss in detail in Sec. IV F how we measure

the Cl from the maps.

C. Covariance matrix

In Eq. (27), C is the covariance matrix of our data, which
we take to be diagonal in l.

A theoretical expression for the covariance matrix is
given by

CðĈαβ
l ; Ĉγδ

l0 Þ ¼
1

ð2lþ 1Þfsky
ððCαγ

l þ Nαγ
l ÞðCβδ

l þ Nβδ
l Þ

þ ðCαδ
l þ Nαδ

l ÞðCβγ
l þ Nβγ

l ÞÞδll0 ð30Þ

where Cl is a fiducial (theoretically calculated) power
spectrum and Nl contains any noise and foreground
power; fsky is the sky area on which the analysis is done.
Instead of the theoretical covariance matrix, we simulate
170 Gaussian full-sky maps using healpy’s5 [64,65]
synalm function and apply our power spectrum estimation
pipeline (see Sec. IV F) to calculate the covariance matrix
used in our analysis by directly measuring the covariance of
these simulations; this accounts for effects not accounted
for such as the mask apodization procedure.
To simulate the sky, we need theoretical power spectra

(auto and cross) and also a theoretical model for the noise
power spectra Nl. For the theoretical power spectra, we use
the fiducial values of our model. We must also include
noise in these simulations; we include the noise in the CIB
maps as beam-deconvolved white noise corresponding to
the values in Table II, which we take from [66]. For
all autopower spectra we take the half-mission splits, so
in practice when simulating the half-mission maps we
multiply the noise power spectrum by 2. We use the
following expression for the power spectrum of the beam-
deconvolved noise:

NCIB
l ¼ Nwhiteelðlþ1ÞΘ2=8 ln 2: ð31Þ

We also include the CMB reconstruction noise in Nκκ
l

provided with the Planck 2018 release for the MV lensing
reconstruction map.
CðĈαβ

l ; Ĉγδ
l Þ can be converted directly into uncertainties

on the measurement of the Ĉls. In Fig. 3, we show the
fiducial power (Cl þ Nl) for the autospectra along with the
measured power.We can see that themeasuredCMB lensing
power is captured appropriately by the fiducial model; for

TABLE II. The values we used to model the white noise in our
Gaussian simulations, in Jy2=sr, on the CIB maps at each
frequency.

Frequency Noise Beam (arcmin)

353 GHz 305 Jy2=sr 4.86

545 GHz 369 Jy2=sr 4.84

857 GHz 369 Jy2=sr 4.63

5http://healpix.sf.net.
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the more aggressive cleaning thresholds (NHI < 2.5 cm−2

and lower), the large-scale auto-CIB power is also captured
by the model. However, for less aggressive thresholds,
namely NHI ¼ f3.0; 4.0g cm−2, there is some remaining
power due to Galactic dust. Neglecting this power would
lead to underestimation of the uncertainties on Ĉνκ

l ; this
could be incorporated by including some Galactic dust
power in the covariance matrix. However, we choose to
restrict our analysis to the maps with NHI < 2.5 cm−2.
Note that, as we have not accounted for Galactic dust in

the uncertainties in Fig. 3, the uncertainties for NHI ¼
f3.0; 4.0g cm−2 are underestimated; however, as noted
above, we do not use these data in our analysis. We also
ignore any possible non-Gaussian contributions to the noise
as these are expected to be small since we use relatively
clean parts of the sky with our HI thresholds. Our
covariance naturally includes the effects of mask decou-
pling since this is performed on the simulations as well.

D. Priors

We include three priors in our analysis:
(i) a prior on the CIB-mean;

(ii) a prior on the calibration parameters;
(iii) and a prior on the CIB bias at z ¼ 0.

For these priors, we follow [47]. All priors are Gaussian;
the details are given in Table III. The CIB-mean prior
comes from measurements of the CIB mean [67,68]; for
further details and references we refer to [47]. The
calibration parameters allow for uncertainty in the
Planck calibration and are implemented as multiplicative
factors multiplying the power spectra at the appropriate
frequency. We marginalize over these, with three indepen-
dent Gaussian priors centered on 1 with a width of 5%. The
prior on the CIB bias at z ¼ 0 is b0 ¼ 0.83� 0.11 [47].

E. Sky area and masks

In [39], the cleaning process allowed for subtraction of
differing amounts of Galactic dust by defining different
thresholds for the amount of HI in the maps; the cleanest
maps, with NHI < 1.5 cm−2, are on ∼10% of the sky, with
the largest maps, at NHI < 4.0 cm−2, on ∼34% of the sky.
Each threshold has a different sky mask provided. We
perform the analysis separately on the four cleanest maps:
NHI ≤ f1.5; 1.8; 2.0; 2.5g cm−2. In every case, we multiply

FIG. 3. The fiducial autopower and noise, and the measured power spectrum for various sky areas. For CMB lensing (top left), the
fiducial models for Cl and Nl give an appropriate estimation of the measured power in the maps, and thus are appropriate to use in the
theoretical covariance matrix. However, it is clear that in the CIB maps the fiducial component is insufficient, especially for the large sky
areas (corresponding to dustier maps); this is also a problem for the ν ≠ ν0 power spectra. To avoid this dust bias, we only perform
analysis on the maps with NHI < 2.5 cm−2 and below.

MCCARTHY, MADHAVACHERIL, and MANIYAR PHYS. REV. D 108, 083522 (2023)

083522-8



the appropriate 353, 545, 857GHzBooleanmaskswith each
other and with the mask used for the Planck CMB lensing
reconstruction, such that our analysis is done on one
common area of sky for each NHI; the resulting sky areas
are given in Table IV. Following [39], we apodize the maps
with a kernel with a full width at half maximum (FWHM) of
15’ before estimating the auto and cross-power spectra on
the remaining sky. Reference [39] also includes maps with
NHI ≤ f3.0; 4.0g cm−2; we also measure the power spectra
of these maps but we do not use them in our analysis as they
contain significant amounts of dust on large scales.

F. Power spectrum measurement

Wemeasure the cross-power spectrumof theCMB lensing
map with the CIB maps at frequencies (353 GHz, 545 GHz,

857 GHz) using NaMaster [69]. We bin the Cl in bins of
equal width Δl ¼ 60, between l ¼ 70 and l ¼ 550; we
have checked robustness of our results for different bin

TABLE IV. The sky-areas (in percentage of the full sky) of the 3
CIB maps at each HI threshold fνsky, their overlap area fCIBsky , and

their overlap area with the CMB lensing reconstruction fCIB;κsky . We

calculate fCIBsky by calculating the area of the mask defined by the
product of the binary masks for each of the three CIB frequencies.
We calculate fCIB;κsky by multiplying this mask with the Planck
lensing reconstruction mask (which itself has a total sky area of
67.06%). As we only concentrate on regions of the sky where all
the fields can be measured simultaneously, fCIB;κsky is the relevant
sky fraction for us; we see that the cleanest maps are on 10.20%
of the sky, with areas as large as 33% possible at the cost of higher
dust contamination.

HI threshold f353sky ½%� f545sky ½%� f858sky ½%� fCIBsky ½%� fCIB;κsky ½%�
1.5 cm−2 10.56 10.52 10.41 10.37 10.20

1.8 cm−2 14.63 14.57 14.42 14.36 14.06

2.0 cm−2 16.38 16.31 16.15 16.08 15.73

2.5 cm−2 18.7 18.62 18.42 18.34 17.95

3.0 cm−2 27.57 27.44 27.15 27.03 26.46

4.0 cm−2 34.42 34.23 33.83 33.67 32.99

TABLE III. The priors on the CIB mean; for more details and
references see Table 2 of [47]. This prior is implemented as a
Gaussian prior on νIν as calculated by Eq. (6), with mean ¯νIν and
standard deviation σþ for νIν higher than the mean, and standard
deviation σ− for νIν lower than the mean.

Frequency
[GHz] ¯νIν½nWm−2sr−1� σþ½nWm−2sr−1� σ−½nWm−2sr−1�
353 0.46 0.04 0.05
600 2.8 0.93 0.81
857 6.6 1.70 1.60
1200 10.2 2.6 2.3
1875 13.63 3.53 0.85
3000 12.61 8.31 1.74

FIG. 4. The measured cross-power spectra of the CIB with the
CMB lensing potential, along with the fiducial model. Note that,
in contrast to the autopower (Fig. 3), we see no Galactic dust
contamination by eye at low l regardless of the NHI threshold
used for cleaning. The error-bars are calculated by taking the
square root of the covariance matrix used in our MCMC analysis,
which is calculated as described in Sec. IV C (note that the NHI <
3.0 cm−2 and NHI < 4.0 cm−2 uncertainties are therefore under-
estimated, as they do not include the significant variance
contribution from Galactic dust at these thresholds; however,
we do not use these thresholds in our analysis).
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widths. We deconvolve the instrument beam with the
effective window functions provided by [39]. In total, we
have 45 data points from the Cl (9 × 3 ¼ 27 from the 3 Cνκ

l

and 6 × 3 from the 6 Cνν0
l ), 6 priors from the CIB mean

measurement, and 4 external priors, to constrain 17
parameters.
To avoid noise bias in the autopower spectra, we use the

half-mission splits provided by [39] to measure Cνν
l ; for

Cνν0
l with ν ≠ ν0 and for Cνκ

l we use the full mission maps.
We show in Fig. 4 the measured cross-power spectra, for

various values of NHI thresholds. In contrast to the auto-
power spectra, we see that there is no large-scale bias
visible by eye in the dustier maps.

G. fNL extraction and uncertainty calculation

To extract the best-fit fNL, we maximize the likelihood
(27). To calculate the uncertainties, we apply our pipeline to
200 Gaussian simulations. We histogram the best-fit values
of fNL, and fit a Gaussian to this histogram. We verify that
the mean of the histogram is close to 0 (which ensures that
our pipeline is unbiased). The standard deviation of this
Gaussian is our 1σ uncertainty.
We also explore the posterior by using cobaya [70,71]

to perform Markov Chain Monte Carlo (MCMC) sam-
pling. We do this for the four different cleaning thresholds
NHI ¼ f1.5; 1.8; 2.0; 2.5g cm−2 separately, although note
that the data are not independent as the smaller sky areas

FIG. 5. Constraints on fNL, for CIB maps with different HI thresholds. All measurements are consistent with fNL ¼ 0 corresponding
to Gaussian initial conditions. In every plot we show the histogram of the recovered best-fit fNL from 200 simulations, and a Gaussian fit
to this histogram; we indicate in the legend the mean and standard deviation of these Gaussians. We also show the posterior on fNL from
our MCMC analyses, and indicate the 68% confidence interval in the legends. We also show the best-fit fNL from the data with a red
vertical line, and indicate the reduced χ2 (χ2r ≡ χ2=dof) in the legend.
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are subsets of the larger ones, meaning that the constraints
are not independent. We run our chains until they are
converged with a Gelman-Rubin convergence criterion
[72] of R − 1 < 0.01.
We find our best-fit “measured” fNL by minimizing our

χ2 directly, using the above pipeline on the measured data.

V. RESULTS

Our results, for different sky-areas, are presented in
Fig. 5. From our baseline NHI < 2.5 cm−2 configuration
we get a best-fit value of fNL ¼ −34� 40.
We show in Fig. 6 the best-fit theory curves for

NHI < 2.5 cm−2. We also show other plots with varying
values of fNL, with the remaining parameters fixed
to their best-fit values. The overall reduced χ2 is 2.4 for
this fit. This poor fit is perhaps indicative of a need for further
modelling improvements, which we defer to future
work; although, note that we get slightly better fits on the
smaller sky areas, with a reduced χ2 of 1.6 for the NHI <
1.8 cm−2 case, although this is our poorest-constrained data
combination, with the significant negative non-Gaussian
tail in the posterior leading to−179 < fNL < 39 at 68%con-
fidence, despite a much smaller Gaussian covariance
of σðfNLÞ ¼ 54.
We list the values of the best-fit fNL, quantify the

posteriors, and the histograms of the best-fit fNL from
the simulations in Table V. Our tightest constraint on fNL,
from the NHI < 2.5 cm−2 maps, is −87 < fNL < 19; the
reduced χ2 at the best-fit point is 2.3, with a Gaussian
standard deviation of 41. We get a better fit, although a
degraded constraint, from the smaller maps, as indicated
in Table V.

VI. FUTURECONSTRAINTSWITHTHISMETHOD

A. Improvements from future CMB lensing
experiments

In the coming years, experiments such as ACT, SPT, the
Simons Observatory (SO), and CMB-S4 will produce
CMB lensing maps with far lower noise; see Fig. 7 where
we plot the signal and forecast noise from SO [3] and
CMB-S4 [73]. This will directly result in lower uncertain-
ties in the measured CIB-κ cross-correlation, and improved
uncertainties on fNL.
In Fig. 8, we show the 1σ forecast constraint from future

experiments, calculated by simulating 200 datasets in each
case and histogramming the recovered fNL. We find that a
similar analysis to ours but with an experiment like SO for
the CMB lensing data will improve on our uncertainties by
a factor of about 1.4, a significant improvement; however,
at that point the uncertainties will saturate and there will be
only slightly further improvement from an S4-like experi-
ment. For future experiments we can exploit sample
variance cancellation by including the Cκκ

l autopower

FIG. 6. The best-fit curves, and the data points, with different
values of fNL (but the remaining parameters the same as the best-
fit parameters, except fNL) indicated.

TABLE V. A summary of our fNL constraints, with the
67% confidence interval from our fNL posteriors; the standard
deviation of the recovered best-fit fNL from 200 simulations; and
the reduced χ2 at the best-fit point in each case.

NHI 67% confidence limit σðfsimNL Þ χ2r

1.5 cm−2 −117 < fNL < 71 66 1.8
1.8 cm−2 −179 < fNL < 39 54 1.6
2.0 cm−2 −114 < fNL < 22 41 2.1
2.5 cm−2 −87 < fNL < 19 40 2.4
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spectrum, and achieve with an SO-like experiment or an
S4-like experiment σðfNLÞ of 23 and 20 respectively;
however, the higher noise levels of the Planck κ measure-
ment prevent us from gaining significantly from including
Cκκ
l in our current analysis (sample variance cancellation

gains are possible typically when the fields are highly
signal-dominated).
In this analysis, we avoided using Cνν0

l at l < 430 to
avoid bias from Galactic dust. In Fig. 9 we show that the
forecast uncertainty on a Cνν0

l -alone analysis of the NHI <
2.5 cm−2 field would achieve an impressive σðfNLÞ ¼ 17,
with our baseline minimum multipole of lmin ¼ 70. This
could be improved with the Planck lensing measurements
to σðfNLÞ ¼ 14.

B. Dependence on lmin

In this analysis, we have restricted ourselves to a
minimum multipole lmin ¼ 70, as the CIB maps of [39]
are only unbiased above lmin ∼ 70. Since scale-dependent

FIG. 8. Forecast constraints on fNL with this method, from future CMB experiments. We replace the Planck noise curve in the CMB
lensing data of our simulations with one appropriate for an SO-like experiment and a CMBS4-like experiment. We find that, for a
“baseline” analysis exactly like the one we used in this work, there is potential for the uncertainties to decrease by a factor of ∼30% with
SO; CMB-S4 can improve slightly further on this. However, if the lensing autopower spectrum is included (as on the right), there is room
for further improvement via sample variance cancellation in the future experiments; however, for current (Planck) data the noise on the
lensing power spectrum is too high. For these comparisons we used the sky area corresponding to the NHI < 2.5 cm−2 maps.

FIG. 9. Forecast constraints on fNL for the CIB maps combined with various lensing experiments, including the Cνν
l at all scales. We

continue to use a minimum multipole of 70. We see that if we were to include the autopower spectrum at all scales, we could constrain
fNL to ∼14 with the data we have at hand. The sample variance cancellation improvements from including the κν cross power spectrum
and the κκ autopower are also indicated.

FIG. 7. The CMB lensing convergence signal Cκκ
l and the noise

from Planck and the future experiments SO and CMB-S4
(forecasts). The noise for Planck could be further reduced by
using the “GMV” CMB lensing quadratic estimator from [74] as
done in [75]; we will explore using the improved Planck lensing
map in future work.
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bias from fNL has a 1=k2 dependence, the loss of
information at low l is a severe hindrance. Maintaining
optimism that additional external data or new analysis
techniques could help clean Galactic dust at lower multi-
poles in the future, we explore how fNL constraints could
improve if future CIB maps were reliable on larger scales
than used in our analysis. We show in Fig. 10 the
constraints we would expect to get if we could decrease
lmin. We calculate these forecast uncertainties on fNL with
a Fisher matrix for the parameters, calculated according to

FijðΠÞ ¼
X
l

∂ClðΠÞT
∂Πi C−1

l
∂ClðΠÞ
∂Πj ; ð32Þ

where ClðΠÞ is the theoretical data vector which depends
on the parameter vector Π, and Cl is the covariance matrix
defined in Eq. (30) (note that we use the analytical
covariance matrix in this forecast, not a covariance matrix
from simulations as we did in our analysis). We take the sky
area to be fsky ¼ 0.1795, corresponding to the NHI <
2.5 cm−2 threshold. The priors on the parameters b0 and fν
are included according to

F ¼ FðΠÞ þ
X
i

C−1
priori

ð33Þ

where C−1
priori

is a matrix of zeros with C−1
i;i ¼ 1=σ2priori . For

simplicity, we do not include the prior on the mean value of
the CIB in the Fisher forecast.

The marginalized forecast parameter constraints are
calculated from the diagonal of the inverse Fisher matrix
according to

σΠi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þii

q
; ð34Þ

so σfNL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1ÞfNLfNL

q
.

The resulting forecast constraints are shown in Fig. 10.
Although we have avoided the CIB autopower spectrum in
our analysis, we show the constraints for νν0 along with the
νν0 þ νκ þ κκ constraints which can take full advantage of
sample variance as the noise on the CMB lensing
reconstruction is reduced. We also show our “baseline”
constraints, which agree well with the calculated constraint
from simulations of σðfNLÞ ¼ 40 forPlanckwithlmin ¼ 70.
Notably, for lmin ¼ 10 a constraint with σðfNLÞ ∼ 4—

better than the existing constraints from the primary CMB
bispectrum—can be obtained through cross-correlation
alone. Including CIB autospectra allows constraints
stronger than σðfNLÞ ∼ 2, beginning to probe multifield
inflation. These forecasts are optimistic (they also neglect
dust variance on the νκ cross correlation), but serve to show
what can be achieved with CIB maps cleaned to the extent
of [39] to lower multipoles and provide a guide for the full
“Fisher information” in the CIB field.

VII. DISCUSSION

In this work, we have presented the strongest large-
scale structure (LSS) constraint on local primordial non-
Gaussianity that utilizes cross-correlations alone; using the
CIB as a halo tracer and CMB lensing as a probe of
the underlying matter distribution, we constrain scale-
dependent halo bias avoiding potential systematics asso-
ciated with autospectra. In particular, we exploited the
independent large-scale systematics of CMB lensing and
the CIB emission to achieve an estimate of fNL without
Galactic dust bias. With future CMB experiments, the
reconstruction noise will decrease to such a level that there
will be potential improvements on the constraint from
including the CMB lensing autopower spectrum, which
reduces the impact of sample variance in the measurement.
Our baseline constraint on fNL from the largest maps we

used is −87 < fNL < 19 (68% confidence interval from an
MCMC sample); this compares to a Gaussian uncertainty of
σðfNLÞ ¼ 40, with a reduced χ2 of χ2r ¼ 2.4. We also
analyzed smaller maps, which in principle have less
Galactic dust power, and found in our most conservative
case that −117 < fNL < 72, comparing to a Gaussian
uncertainty of σðfNLÞ ¼ 66, with an improved reduced χ2

of χ2r ¼ 1.8 (note that any extra Galactic dust in the larger
maps adds variance although not bias on large scales). Thus
we found no evidence for an fNL signal in any data that we
considered. This is consistent with the independent con-
straint from the CMB bispectrum of fNL ¼ −0.9� 5.1, and

FIG. 10. The behavior of the forecast uncertainty on fNL with
lmin. Note that we calculate this analytically, and do not include
dust variance in the νν covariance matrix, and so this is optimistic
given current methods for Galactic dust subtraction (e.g. [76]).
We show for comparison the forecast constraints from νν and
from the full analysis ννþ νκ þ κκ; we also include our one
“baseline” configuration, i.e. νκ for l < 430 and ννþ νκ for
l > 430, along with the “baseline þ κκ” configuration, i.e. νκ þ
κκ for l < 430 and ννþ νκ þ κκ for l > 430. In all cases we take
a maximum multipole lmax ¼ 550. Note that the lmin we used in
our analysis is lmin ¼ 70, which we have indicated on the plot
with a vertical dotted line.
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from the scale-dependent bias of BOSS quasars [77]
of −12� 21.
There is a large amount of constrainingpower onfNL in the

CIB autopower spectrum, which we have conservatively
avoided by including the CIB autopower spectrum only at
multipoles ≥ 430, which were required to constrain the CIB
bias and star formation rate.We have explicitly calculated the
constraining power on fNL in theCIB autopower spectrum, if
wewere to obtain a dust-freemeasurement (or indeed, to do a
less conservative analysis on the data at-hand). We find that
even with an lmin of 70, the CIB autopower spectrum alone
could constrain fNL to σðfNLÞ ¼ 14 when combined with
CMB lensing. FutureCMB lensing data, in particular those of
CMBS4, could improve this to σðfNLÞ ¼ 10. Even remain-
ing conservative and including no CIB autopower spectrum
below lmin ¼ 430 (as we have done in this analysis), we find
that Simons Observatory and CMBS4 can constrain fNL to
σðfNLÞ ¼ 23 and σðfNLÞ ¼ 20, respectively.
A key limiting factor in our analysis is that we only use

multipoles l > 70 in our analysis, since the CIB maps from
[39] contain a multiplicative transfer function below those
scales that would bias a cross-correlation. This bias arises
from the way a template of the Galactic dust is constructed
after splitting the sky into HEALPIX [65] superpixel
patches; a linear model is fit against the neutral hydrogen
and observed Planck far-infrared data in these superpixels,
but the finite size of the patches effectively induces a high-
pass filter that is significant below around l ∼ 70. We will
explore in future work whether alternative analysis tech-
niques (including obtaining the multiplicative transfer
function from simulations) can overcome this limitation
thus allowing us to vastly improve the fNL constraint from
existing data. We have shown how a dust-free CIB map
down to l ¼ 10 can provide σðfNLÞ ¼ 10 with currently
available Planck data, which would be the tightest fNL
constraint from the late-universe imprint of primordial non-
Gaussianity in large-scale structure. With future CMB
lensing data from SO or S4, such a CIB map could provide
a better fNL constraint—σðfNLÞ below 4—than any
existing measurement, improving that from the primary

CMB early-universe bispectrum measured by Planck. If the
CIB autospectrum could be reliable in such a map, then a
σðfNLÞ below 2 could be achieved with just the Planck CIB
autospectrum. Even with improved datasets, further
improvements to current component separation methods
will be required to achieve this goal.
While we aimed to be conservative in this work by

allowing for a redshift dependent CIB bias and marginal-
izing over three associated bias parameters, we have made
an assumption regarding the universality of the halo mass
function, i.e., we assume that the relation in Eq. (5) is exact.
There has been compelling recent work that shows that this
relation does not hold universally and exactly [78–82],
introducing dependences degenerate with fNL not only
through the kinds of galaxies or halos used but even their
formation history or assembly bias [83]. In this picture, our
constraints can be thought of as a constraint on bϕfNL, with
a fiducial value of bϕ ¼ 2δcðbG − 1Þ (obtained from uni-
versality) that may differ from the bϕ expected for dusty
galaxies constituting the CIB. It is important to note that
despite this, a detection of scale-dependent bias on large
scales still constitutes evidence for primordial non-
Gaussianity; however, the interpretation of such a detection
in terms of multifield inflation models then becomes more
challenging. Nevertheless, the line of work pursued in e.g.
[81] strongly motivates exploring this further with simu-
lations which may deliver strong priors on bϕ. We leave
further investigation of this issue to future work.
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[43] H.-Y. Wu and O. Doré, Mon. Not. R. Astron. Soc. 466, 4651
(2017).

[44] A. Maniyar, G. Lagache, M. Béthermin, and S. Ilić, Astron.
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[50] M. Béthermin, E. Daddi, G. Magdis, C. Lagos, M. Sargent,
M. Albrecht, H. Aussel, F. Bertoldi, V. Buat, M. Galametz
et al., Astron. Astrophys. 573, A113 (2015).
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Pérez-González, G. H. Rieke, and M. Blaylock, Astron.
Astrophys. 451, 417 (2006).
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