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In scenarios of physical interest in loop quantum cosmology, with a preinflationary epoch where the
kinetic energy of the inflaton dominates, the analytic study of the dynamics of the primordial fluctuations has
been carried out by neglecting the inflaton potential in those stages of the evolution. In this work we develop
approximations to investigate the influence of the potential as the period of kinetic dominance gives way to
the inflationary regime, treating the potential as a perturbation. Specifically, we study how the potential
modifies the effective mass that dictates the dynamics of the scalar perturbations in the preinflationary
epochs, within the framework of the so-called hybrid prescription for loop quantum cosmology. Moreover,
we motivate and model a transition period that connects the kinetically dominated regime with inflation,
allowing us to study the interval of times where the contribution of the potential is no longer negligible but an
inflationary description is not yet valid. Finally, we include the main modifications coming from a slow-roll
correction to a purely de Sitter evolution of the perturbations during inflation. We analytically solve the
dynamics of the perturbations in each of these different epochs of cosmological evolution, starting from
initial conditions fixed by the criterion of asymptotic Hamiltonian diagonalization. This enables us to
compute and quantitatively analyze the primordial power spectrum in a specific case, using a quadratic
inflaton potential.
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I. INTRODUCTION

Over the last two decades, loop quantum cosmology
(LQC) [1–3] has settled as an active discipline for the
consideration of quantum gravitational phenomena in the
early Universe [4–6]. This theoretical formalism has sen-
sibly incorporated corrections from the theory of loop
quantum gravity [7,8] to the evolution of the primordial
fluctuations around the cosmological metric, as well as
around the scalar field that conventionally drives a period
of cosmic inflation. Part of these fluctuations, considered
as cosmological perturbations, are widely believed to be
the seeds for the formation of the large-scale structure of the
Universe that we observe nowadays [9–11]. In fact, their
classical description—within general relativity (GR)—in
early epochs using the standard cosmological model pro-
vides a primordial power spectrum that has been tested to a
great degree of accuracy by high precision observations of
the cosmic microwave background (CMB) [12,13]. The best

fit of the cosmological parameters of this model to the CMB
observations however displays certain statistical anomalies
in the low multipole region of the angular spectrum of
temperature and polarization anisotropies [14–18]. Even
though this region is strongly affected by cosmic variance,
in principle it should not be ruled out that these anomalies
may be an indicator of new physics beyond the standard
model (and even beyond GR). In this context, LQC has
shown to be a promising candidate to alleviate the obser-
vational tensions by invoking the quantum nature of gravity
at the Planck scale [19,20].
In contrast with previous attempts to ease the CMB

anomalies within GR [21–27], via the introduction of scalar
field regimes with kinetic dominance in preinflationary
periods, in LQC there exists a natural curvature scale of
Planckian order that turns out to be important for the
perturbations [28]. More concretely, the (so-called effective)
cosmological dynamics considered in LQC describes uni-
verses, minimally coupled to an inflaton field, with an
evolution that connects in a smooth way contracting with
expanding homogeneous and isotropic spacetimes [29].
This happens through a bouncing mechanism of quantum
origin that replaces the classical singularity [30–32]. This
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bounce is then shortly followed by a classical regime. In
situations of phenomenological interest in view of their
compatibility with observations, while allowing for falsifi-
able quantum corrections, the kinetic energy of the inflaton
dominates in this region after the bounce, until the Universe
enters a stage when the cosmological dynamics transitions
into a sufficiently long period of slow-roll inflation [33–35].
The dynamics of the Fourier modes of the primordial
fluctuations encode these modifications to the standard
cosmological model via an effective time-dependent mass
that incorporates LQC corrections [36]. The relevance
of these corrections for modes in the observable window of
the CMB depends on the duration of the inflationary
period [37–41]. If this duration is not excessively large,
the corrections can leave a measurable imprint, especially at
large angular scales [33]. The effective mass of the scalar
perturbations in LQC is the counterpart of the standard ratio
−̈z=z found in GR, where the dot denotes the derivative with
respect to the conformal time and z ¼ a2ϕ̇=ȧ, with a and ϕ
denoting the scale factor and the scalar inflaton field,
respectively. The changes between the dynamics of LQC
and GR explain the modifications that appear in this mass,
that can be drastic. Moreover, the evolution of the pertur-
bations is especially sensitive to the behavior of this mass. In
particular, at the LQC bounce it reaches (in absolute value) a
universal maximum of Planckian order, as one could expect
from quantum gravity considerations, and then rapidly
decreases to very small, nearly classical values during the
kinetic epoch. Furthermore, it displays a substantial change
of behavior at an instant of time (that depends on the initial
conditions) happening just before slow-roll inflation starts,
epoch when the mass becomes increasingly large (in norm),
as it is standard in conventional slow-roll scenarios. The
value of the mass at that instant defines a curvature scale at
the onset of inflation, which is also present in pure GR
models with a period of kinetic dominance preceding slow-
roll inflation [21,28]. However, the Planckian scale at the
curvature maximum is a genuine feature of LQC and its
existence affects the primordial power spectrum, at least for
reasonable choices of a vacuum state for the perturbations.
With a general understanding of the origin of the possible

modifications to the primordial power spectrum, confronting
the predictions from LQC with the CMB observations
requires performing a full statistical analysis of the best
fit of the cosmological parameters that appear in the theory.
Recent efforts have been made in this direction [19,42] by
two different strategies in LQC that lead to power suppres-
sion at low observable scales for the perturbations, as
indicated by the anomalies: The dressed metric [43–45]
and hybrid approaches [46–48]. However, these studies start
from purely numerical expressions for the primordial power
spectrum (or certain parameterizations of them) and, in part
because of this, a statistical analysis that properly includes all
of the free parameters that are relevant in LQC, including,
e.g., the value of the inflaton field at the bounce, is still

missing.1 Such an analysis is crucial for a comprehensive
understanding of the physical consequences of an LQC
description of the Early Universe.
A first approach to the analytic characterization of the

primordial power spectrum in the case of hybrid LQC has
been developed in Ref. [28], starting with a physically well-
motivated choice of vacuum state and leading to power
suppression at low scales. These investigations have con-
siderably simplified the dynamics of the perturbations by
completely ignoring the effects of the inflaton potential in
the earliest epochs of kinetic dominance, and then treating
the slow-roll inflationary period as an exact de Sitter phase.
The resulting analytic formula for the power spectrum,
though interesting for qualitative analyses, is clearly not
realistic enough for observational purposes. The aim of this
work is to fill this gap in two fronts. On the one hand, we
incorporate corrections to the dynamics of the perturbations
taking into account that the inflaton potential becomes
increasingly non-negligible in the epoch of kinetic domi-
nance, as one approaches the inflationary regime. On the
other hand, we apply the slow-roll approximation at first
order to calculate the resulting power spectrum, reflecting
the fact that the inflationary epoch is not exactly of
de Sitter type.
These improvements pave the road for a more detailed

discussion of the LQC effects on the power spectrum and
their comparison with observations, including a full
statistical analysis, which we do not perform in this work
but will be the subject of future research. Our results are
intimately attached to the hybrid formalism for LQC and a
specific criterion for the choice of vacuum of the cosmo-
logical perturbations, used in Ref. [28]. Nonetheless,
extensions to other LQC formalisms and vacua are
possible, for instance to the dressed metric formalism
with the same criterion for the vacuum choice, as advo-
cated in Ref. [50]. Moreover, our study will focus on a
quadratic inflaton potential, although a similar line of
arguments can be followed for other potentials (in this
context, let us recall that the effective mass of the
perturbations was investigated in Ref. [51] for dressed
metric and hybrid LQC in the cases of the Starobinsky
potential and some exponential potentials). It is worth
commenting that a quadratic potential is not currently
favored by a statistical analysis of the observations of the
CMB within the standard inflationary model (see, e.g., the
results of the Planck mission in Ref. [13]). One should,
however, be extremely careful when extrapolating this
preference to the study of perturbations in LQC, a
framework in which a similar statistical analysis of the

1Some progress has been achieved for hybrid LQC in Ref. [42]
using certain parametrizations for the power spectrum and with a
specific choice of vacuum state along the lines proposed in
Ref. [49]. This vacuum is not especially responsive to the
quantum bounce and differs from the vacuum that we will
consider in this work.
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data has not been completed, including different families
of potentials and adapting the choice of vacuum state to the
new situation, which modifies the standard scenario. In
addition, it has been argued that genuine LQC modifica-
tions to the power spectrum should not vary much with the
inflaton potential, at least qualitatively [33,52]. It therefore
seems reasonable to study first the simplest case of a
quadratic potential, and confront the extension of this
study to other potentials in future investigations.
To include the effects of an inflaton potential that is not

fully negligible during kinetic dominance, we will employ
the analysis developed in Ref. [53]. That reference studies
the modifications produced by a generic inflaton potential
in the quantum expectation values on the LQC geometry
that determine the effective mass of the perturbations, the
definition of the conformal time, and the initial conditions
for the choice of vacuum state used in Ref. [28]. These
studies provide, in particular, general formulas for these
modifications in regimes where LQC is indistinguishable
from GR. In the present work, we particularize this analysis
to states peaked on effective trajectories of LQC [3,29,48] in
cases of phenomenological interest, working out all relevant
formulas in regions of kinetic dominance with classical
behavior of these effective trajectories, and completing all
calculations for a quadratic potential. Moreover, we use and
apply the previous results of Ref. [53] about the corrections
from this potential to the vacuum state, with the aim of
computing the associated primordial power spectrum,
which is our primary goal here.
The structure of this work is the following. In Sec. II,

we explicitly compute corrections to the effective time-
dependent mass of the perturbations in the epoch of kinetic
dominance, owing to the presence of the inflaton potential
at first order. After checking the accuracy of this approxi-
mation, we motivate the consideration of a transition
regime for the dynamics of the perturbations as they enter
the inflationary epoch. In Sec. III we present our criterion
for the choice of a vacuum state for the perturbations, and
then we analytically solve their dynamical equations using
the initial data determined by such choice. This allows us
to find, in Sec. IV, an analytic formula for the primordial
power spectrum associated with our choice of vacuum,
which leads to power suppression. With this formula, we
evaluate the spectrum explicitly and check how it changes
if one ignores separately any of the types of corrections
that we introduce in this work: Contributions of the
potential during kinetic dominance, a transition epoch,
and the slow-roll effects. Finally, in Sec. V we summarize
our results and give an outlook for them. We work in
Planck units, with ℏ ¼ G ¼ c ¼ 1.

II. THE PREINFLATIONARY EFFECTIVE MASS

Let us start by summarizing the effective dynamics of
cosmological perturbations of scalar type in the hybrid
approach to LQC. This formalism is based on a canonical

quantization of the relativistic system formed by a spatially
flat, homogeneous, and isotropic spacetime background
minimally coupled to the inflaton field ϕ, with inhomo-
geneous perturbations truncated at quadratic order in the
action. In the hybrid approach, the background is quantized
using LQC techniques, whereas the perturbations are quan-
tized using a more standard, Fock representation. Treating
the Mukhanov-Sasaki gauge invariant [54–56] and its
canonical momentum as fundamental fields for the descrip-
tion of the scalar perturbations, it is possible to Abelianize
the constraints of the system and render the homogeneous
mode of the Hamiltonian constraint as the only nontrivial
one to impose. Its vanishing as a quantum operator on a wide
class of physical states eventually leads to the following
effective equations that dictate the dynamics of the Fourier
modes vk⃗ of the Mukhanov-Sasaki field:

v̈k⃗ þ ðk2 þ sÞvk⃗ ¼ 0; ð2:1Þ

where k is the Euclidean norm of the wave vector k⃗
(belonging to R3nf0g) of the perturbation mode, the dot
denotes derivative with respect to the conformal time η, as
we mentioned in the Introduction, and s is a time-dependent
mass term that encodes the LQC modifications on the
otherwise relativistic evolution. For additional details on
the derivation of these equations, we refer the reader, e.g., to
Refs. [5,47]. Physically preferred choices of states for the
homogeneous LQC geometry lead to an effective mass s that
has exactly the same functional dependence as in GR on the
inflaton, the scale factor, and their canonical momenta [36].
However, the evolution of these quantities in LQC differs
from the relativistic one when the energy density of the
inflaton approaches a few percentages of the Planck density,
leading to the celebrated bounce. For the effective mass, this
bounce produces a positive maximum, which is followed in
the expanding branch by a rapid decrease that soon con-
verges to a relativistic behavior, where the kinetic energy of
the inflaton dominates. In particular, only after 0.4 cosmic
Planck seconds from the bounce, the evolution of s turns out
to be indistinguishable from its relativistic counterpart [28].
Moreover, the contribution from the inflaton potentialWðϕÞ
at the bounce and shortly after it is completely negligible in
the considered family of LQC geometries [33]. Nevertheless,
the relativistic epoch of kinetic dominance that follows the
bounce eventually ends and gives way to a period of slow-
roll inflation. The purpose of this section is thus to
analytically characterize the dominant contributions to the
effective mass s of the potential during the kinetic epoch,
until the system experiences the transition to the inflationary
regime, where WðϕÞ completely dominates the dynamics.

A. Corrections to the mass at first order in the potential

Let us review how to introduce first order corrections to
the effective mass s produced by the potential WðϕÞ in
situations where the evolution of the background geometry
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with respect to ϕ is generated by a Hamiltonian H0 of
the form

H0 ¼ HðFÞ
0 −WðϕÞ V2

HðFÞ
0

þOðW2Þ;

HðFÞ
0 ¼ HðFÞ

0 ðπV; VÞ; ð2:2Þ

where V is the physical volume (of a cubic cell with edges of
coordinate length 2π, namely ð2πaÞ3), πV is its canonical
momentum, and the symbol O stands for terms of the order
of its argument or smaller. We find this type of Hamiltonian
at early times for the choice of LQC states that we consider
in this work, peaked on trajectories that can be modeled by
an effective Hamiltonian dynamics [29,48,57]. Furthermore,
a function of the form (2.2) also generates the evolution with
respect to ϕ of the cosmological geometry in GR in regimes
where WðϕÞ is negligible (a setting which reproduces very
well the effective LQC dynamics shortly after the bounce).
The procedure to incorporate in s the corrections

coming from the presence of WðϕÞ at first order has been
developed in full detail in Ref. [53], in the contexts of
hybrid LQC and of GR. Here, we adapt the discussion and
formulas of that work to scenarios where the cosmological
evolution is generated by a Hamiltonian of the sort of H0.
In particular, Ref. [53] provides a formula for the effective
mass in conformal time of the form s ¼ sðFÞ þ sðWÞþ
OðW2Þ, where the first term refers to the effective mass in
the “free” scenario with vanishing inflaton potential, and
the second one is the first order correction arising from the
potential. Explicitly, we have

sðFÞðηÞ ¼ 1

3π

ðHðFÞ
0 Þ2

V4=3

����
ϕ¼ϕðFÞðηÞ

; ð2:3Þ

sðWÞðηÞ¼ 2

3π
V2=3

�
3

8π
W00 þ15Wþ3

ffiffiffi
3

π

r
ΛðFÞ
0

HðFÞ
0

W0
�����

ϕ¼ϕðFÞðηÞ

−fsðFÞ;JðWÞðηÞgjϕ¼ϕðFÞðηÞ; ð2:4Þ

where ϕðFÞðηÞ is the free dependence of the scalar field on
the conformal time η, and all phase space functions to the
left of the symbol jϕ¼ϕðFÞðηÞ must be evaluated on the

trajectories generated by the free Hamiltonian HðFÞ
0 , with

evolution parameter given by ϕ. Besides, the prime denotes
the derivative with respect to the inflaton, f:; :g is the

Poisson bracket, ΛðFÞ
0 is the effective counterpart of an LQC

operator that equals −signðπVÞHðFÞ
0 in GR, and JðWÞðηÞ is a

time and phase space dependent function defined as

JðWÞðηÞ ¼ HðFÞ
0 ϕðWÞðηÞ −

Z
ϕ

ϕ0

dϕ̃Kðϕ; ϕ̃ÞWðϕ̃Þ; ð2:5Þ

where ϕ0 ¼ ϕðFÞð0Þ and

Kðϕ; ϕ̃Þ ¼
X∞
n¼0

1

n!
ðϕ − ϕ̃Þn
HðFÞ

0

fV2;HðFÞ
0 g: ð2:6Þ

It is not difficult to check that this last quantity corresponds

to the evolution of V2=HðFÞ
0 from ϕ̃ to ϕ in the free case with

WðϕÞ ¼ 0. Finally, ϕðWÞðηÞ is the first order correction
(caused by the potential) to the evolution of the inflaton field
in conformal time, and it is given by

ϕðWÞðηÞ ¼ −ηðWÞðϕðFÞðηÞÞϕ̇ðFÞðηÞ; ð2:7Þ

where ηðWÞðϕÞ is the first order correction to the inverse of
the inflaton field as a function of η,

ηðWÞðϕÞ ¼ 3

2

Z
ϕ

ϕ0

dϕ̃

½HðFÞ
0 �2

�
V8=3

HðFÞ
0

Wðϕ̃Þ

þ
Z

ϕ̃

ϕ0

dϕ⋆Wðϕ⋆ÞðV2=3fKðϕ̃;ϕ⋆Þ;HðFÞ
0 g

þHðFÞ
0 fV2=3; Kðϕ̃;ϕ⋆ÞgÞ

�
: ð2:8Þ

In this formula, all functions of the geometry must be
evaluated on the trajectories, parametrized by ϕ̃, generated

by the free Hamiltonian HðFÞ
0 .

B. Approximating the effective mass in the kinetic epoch

As we already mentioned, less than half a Planck second
(in cosmic time) after the bounce, the effective mass s in
hybrid LQC is practically indistinguishable from its
counterpart in classical GR. Moreover, in the typical
backgrounds of interest, the contribution from the inflaton
potential is completely negligible in the region near the
bounce, and remains small in the kinetically dominated
relativistic period after it. Therefore, in the following we
approximate the effective mass in this kinetic epoch treating
the inflaton potential as a small correction, keeping only
first order contributions of this potential to the mass. We call
sðWÞ these contributions, that modify the effective mass sðFÞ
of the classical relativistic period ignoring the potential. In

this respect, HðFÞ
0 ¼ ffiffiffiffiffiffiffiffi

12π
p jπV jV is the Hamiltonian that

generates the evolution of the geometry with respect to ϕ in
the absence of a potential [53]. We notice that, up to a
constant positive factor and possibly a sign, this
Hamiltonian is just the generator of dilations in the physical
volume. Evaluating Eq. (2.6) in this case, we obtain the
following result:
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Kðϕ; ϕ̃Þ ¼ V2

HðFÞ
0

exp ½4
ffiffiffiffiffiffi
3π

p
signðπVÞðϕ − ϕ̃Þ�; ð2:9Þ

which, in turn, leads to the following simplification of
Eq. (2.8):

ηðWÞðϕÞ ¼ 3

2

Z
ϕ

ϕ0

dϕ̃
V8=3

½HðFÞ
0 �3

�
Wðϕ̃Þ þ 8

3

ffiffiffiffiffiffi
3π

p
signðπVÞ

×
Z

ϕ̃

ϕ0

dϕ⋆Wðϕ⋆Þe4
ffiffiffiffi
3π

p
signðπVÞðϕ̃−ϕ⋆Þ

�
: ð2:10Þ

On the other hand, the relativistic dynamics of a flat,
homogeneous, and isotropic spacetime minimally coupled
to a massless scalar field is exactly solvable. It leads to the
following evolution in conformal time (see, e.g., Ref. [28]):

VðηÞ ¼ V0

�
1þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p
V2=3
0

η

�3=2

;

πVðηÞ ¼ −
HðFÞ

0

2
ffiffiffiffiffiffi
3π

p
V0

�
1þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p
V2=3
0

η

�−3=2

; ð2:11Þ

ϕðFÞðηÞ − ϕ0 ¼
ffiffiffiffiffiffiffiffi
3

16π

r
ln

�
1þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p
V2=3
0

η

�
; ð2:12Þ

where V0 ¼ Vð0Þ andHðFÞ
0 is a constant of motion equal to

the canonical momentum of the scalar field. If we introduce
all of these expressions in Eq. (2.3) [together with defi-
nitions (2.5) and (2.7)], we obtain the following formula for
the first order correction to the time-dependent mass s in GR
owing to the inflaton potential:

sðWÞðηÞ ¼ 2

π

�
V2=3
0 þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p η

��
5WðϕðFÞðηÞÞ þ

ffiffiffi
3

π

r
W0ðϕðFÞðηÞÞ þW00ðϕðFÞðηÞÞ

8π

�

þ 16

3π

ffiffiffi
π

3

r �
V2=3
0 þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p η

�Z
ϕðFÞðηÞ

ϕ0

dϕ̃Wðϕ̃Þe−4
ffiffiffiffi
3π

p ½ϕðFÞðηÞ−ϕ̃�

þ 4

3π

ffiffiffiffiffiffi
1

3π

r
½HðFÞ

0 �3
V2
0

�
1þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p
V2=3
0

η

�−3

ηðWÞðϕðFÞðηÞÞ; ð2:13Þ

where ηðWÞ is computed using Eqs. (2.11) and (2.12) (replacing ϕðFÞðηÞ with ϕ̃ in the last of those equations) to write the
functions of the geometry appearing in the integrand of Eq. (2.10) in terms of free trajectories parametrized by ϕ̃.
The expression that we have obtained for sðWÞ is valid for any choice of inflaton potential. For concreteness, in the

remainder of this work we will focus our discussion on a quadratic potential: WðϕÞ ¼ m2ϕ2=2. A direct computation then
shows that

sðWÞðηÞ ¼ 2

π
m2

�
V2=3
0 þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p η

��
5

2
ϕðFÞðηÞ2 þ

ffiffiffi
3

π

r
ϕðFÞðηÞ þ 1

8π

�

−
2m2

9π

�
V2=3
0 þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p η

���
1þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p
V2=3
0

η

�−3�
ϕ2
0 −

ϕ0ffiffiffiffiffiffiffiffi
12π

p þ 1

24π

�
− ϕðFÞðηÞ2 þ ϕðFÞðηÞffiffiffiffiffiffiffiffi

12π
p −

1

24π

�

þ 4

3π

ffiffiffiffiffiffi
1

3π

r
½HðFÞ

0 �3
V2
0

�
1þ 2HðFÞ

0ffiffiffiffiffiffi
3π

p
V2=3
0

η

�−3

ηðWÞ
m ðϕðFÞðηÞÞ; ð2:14Þ

for the quadratic potential, with

ηðWÞ
m ðϕÞ ¼ 3m2

8
ffiffiffiffiffiffi
3π

p V8=3
0

½HðFÞ
0 �3

�
e4
ffiffiffiffi
3π

p ðϕ−ϕ0Þ=3
�
ϕ2
0 −

ϕ0

2
ffiffiffiffiffiffi
3π

p þ 1

24π

�
−
9

8

�
ϕ2
0 −

3

8
ffiffiffiffiffiffi
3π

p ϕ0 þ
3

128π

�

þ 1

8
e16

ffiffiffiffi
3π

p ðϕ−ϕ0Þ=3
�
ϕ2 þ 5

8
ffiffiffiffiffiffi
3π

p ϕ −
47

384π

��
: ð2:15Þ

The formulas that we have obtained contain the main correction of the inflaton potential to the effective mass of the
Mukhanov-Sasaki perturbations in the relativistic epoch of kinetic dominance. They can be used to explicitly compute an
approximation of this time-dependent function as s ≈ sðFÞ þ sðWÞ in this epoch. Here, the dominant mass term, for vanishing
inflaton potential, is
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sðFÞðηÞ ¼ 1

4

�
ηþ

ffiffiffiffiffiffi
3π

p

2HðFÞ
0

V2=3
0

�−2
: ð2:16Þ

In the rest of this section we study the range of applicability
of this approximation, as well as possible improvements of
it that allow to connect the kinetically dominated regime
with slow-roll inflation.

C. Validity of the approximation: Transition epoch

In order to analyze the goodness of the approximation
s ≈ sðFÞ þ sðWÞ in the classical epoch of kinetic dominance
after the bounce, we are going to compare it with its exact
counterpart in GR, given by [36]:

sGR ¼ 4

3π
V2=3

�
π2

ϕ̇2

V2=3
0

−WðϕÞ
�
þ U;

U ¼ 12

π
V2=3

�
W00ðϕÞ
48π

þWðϕÞ þ Vϕ̇
V̇

W0ðϕÞ

−
6V8=3

πV̇2
W2ðϕÞ

�
: ð2:17Þ

The evolution of V and ϕ is obtained by solving the
Friedmann and Klein-Gordon equations, conveniently
rewritten as

V̇ ¼ V4=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

π

�
2π2

ϕ̇2

V2=3 þWðϕÞ
�s
;

ϕ̈þ 2V̇
3V

ϕ̇þ V2=3

4π2
W0ðϕÞ ¼ 0: ð2:18Þ

The solutions to these equations are completely fixed by the
initial data V0, ϕ0, and ϕ̇ð0Þ. Here, we are only interested in
solutions which connect with the effective LQC trajectories
of phenomenological interest that we are considering. These
experience bounces where the contribution of the potential
to the energy density of the inflaton is completely negligible,
and the dynamics there can be analytically solved [28,34].
Recalling that 0.4 Planck seconds (in cosmic time) after the
bounce are enough to neglect any LQC modification to
the relativistic dynamics, we can use that instant to set the
associated origin of conformal time, and fix V0 and ϕ̇ð0Þ by
requiring continuity with the corresponding effective LQC
trajectory (computed by letting WðϕÞ vanish). Choosing,
e.g., positive ϕ̇ð0Þ and the scale factor to be equal to one at
the bounce, we then get [28]

V0 ¼ 8π3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 96π

25
ρc

r
;

ϕ̇ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32π4

V4=3
0

ρc −
V2=3
0

2π2
Wðϕ0Þ

vuut ; ð2:19Þ

where ρc ≈ 0.41 is the value of the energy density at the
bounce [3]. The only piece of data remaining to solve
the cosmological dynamics in GR is ϕ0, namely the value of
the inflaton field at 0.4 Planck seconds after the bounce, in
cosmic time. Besides, we need to fix the mass parameter m
that characterizes our quadratic choice for the inflaton
potential. For concreteness, we choose the values ϕ0 ¼
1.22 (for which the corresponding value of the inflaton at
the bounce is 0.97) and m ¼ 1.2 × 10−6. It is well known
that choices similar to this one lead to a kinetically
dominated bounce, together with an inflationary period
that contains just enough e-folds to be compatible with the
CMB observations while leaving room for LQC modifica-
tions at low observable scales k [33,58]. Moreover, the
above choice of values for the inflaton at the bounce and
constant m is precisely the choice made in the analytic and
numerical studies of Refs. [28,58], so that the results of
those works can be used for comparison with the present
analysis.
Starting with the set of data ϕ0 and m, we numerically

integrate the relativistic dynamics of Eq. (2.18) using a
Runge-Kutta method of 4th order. The resulting curve for
the mass sGRðηÞ is shown in blue color in the left panel of
Fig. 1. In order to compare it with our approximation of
the effective mass in the classical regime of kinetic
dominance, namely s ≈ sðFÞ þ sðWÞ, it only makes sense
to choose the same values of ϕ0 andm [together with V0 as
in Eq. (2.19)] in order to evaluate Eqs. (2.14) and (2.15).
Moreover, one can check that the matching between free
solutions in GR and the considered effective LQC ones
around the bounce leads to the following value of the

constant of motion HðFÞ
0 [28]:

HðFÞ
0 ¼ 8π3

ffiffiffiffiffiffiffi
2ρc

p
: ð2:20Þ

In the left panel of Fig. 1 we plot the resulting curves for
sðFÞ and sðFÞ þ sðWÞ in red and green, respectively. They
are both practically indistinguishable from their exact
counterpart sGR at early times, as we expect from the type
of LQC scenarios that we are considering, since the
potential contribution becomes completely negligible as
one approaches the bouncing epoch. However, this con-
tribution grows as one evolves to the future in the regime
of kinetic dominance, until one has sðFÞ ¼ sðWÞ at a time
around η ¼ 430. From this moment on, the first order
correction owing to the presence of the potential becomes
significantly relevant, modifying the behavior of the mass
with respect to the free case. In this way, we obtain an
approximate description for s that fits its exact behavior
for later times better than if we had completely ignored
WðϕÞ, as it was done in Ref. [28].
The improvement in the approximation to the effective

mass achieved by considering the first order correction sðWÞ
is shown quantitatively in the right panel of Fig. 1. This
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panel displays the relative errors (with respect to the
average of the two compared quantities) committed when
approximating the exact relativistic mass sGR by sðFÞ and
sðFÞ þ sðWÞ. We clearly see that including the contribution
from sðWÞ keeps the approximation good until later times.2

In particular, for times earlier than η ¼ 800 (and later than
the matching at η ¼ 0 with the bouncing epoch), the error
made when approximating the effective mass by sðFÞ þ
sðWÞ is less than 50% (even if the mass is approaching a
period with very small values). Beyond this instant, we see
in the left panel of Fig. 1 that the exact relativistic mass
enters a plateau where it remains approximately constant
until around η ¼ 1300. This moment can be understood as
the end of kinetic dominance and the beginning of inflation,
since one can check that the kinetic contribution to the
energy density of the inflaton becomes comparable to its
potential there. From this perspective, we can complete our
analytic approximation to the effective mass, from η ¼ 0
(i.e., when LQC effects become negligible after the bounce)
until η ¼ 1300, by matching the dynamics, at the moment
when the approximation s ≈ sðFÞ þ sðWÞ begins to fail, with
a transition epoch between kinetic dominance and inflation
where the mass is simply a constant, given by the value
of sGR.
In summary, we have found that the following function

approximates reasonably well the numerical behavior of the
effective mass s for the Mukhanov Sasaki perturbations in
hybrid LQC, for times η∈ ½0; 1300�:

spreðηÞ ¼
(
sðFÞðηÞ þ sðWÞðηÞ; η∈ ½0; ηt�;
sc ¼ 1.83 × 10−6; η∈ ½ηt; ηi�;

ð2:21Þ

where ηt ¼ 800, ηi ¼ 1300, and we have taken the numeri-
cal value of sGRðηtÞ as the value for the mass in the
transition epoch. For times earlier than η ¼ 0, the LQC
effects are important in the cosmological dynamics. In this
epoch near the bounce, we use a Pöschl-Teller potential to
approximate the effective mass. This has been shown to be
a satisfactory approximation in that epoch (see, e.g.,
Ref. [28]). On the other hand, we recall that for times later
than ηi, inflation starts and eventually leads to a slow-roll
regime. For simplicity, for η > ηi we model the effective
mass by its standard relativistic counterpart computed to
first order in the slow-roll approximation. We expect that the
errors made by adopting an instantaneous transition to the
slow-roll inflationary regime and using standard slow-roll
formulas in that epoch will not be especially important,
considering that such transition is characterized by com-
pletely negligible values of s (together with a change of sign
in the effective mass), for which a variation affects mostly
the evolution of modes with k ≪ 10−3, wave number scales
which are too small to be observable in any plausible
inflationary scenario.

III. EVOLUTION OF THE PERTURBATIONS

We have developed a (semi)analytic description of the
effective mass appearing in the dynamical equations (2.1)
of the Mukhanov-Sasaki modes, which incorporates the
first order effects of the inflaton potential in their evolution.
The next natural step is to solve these dynamical equations,
once a particular choice of initial conditions (or vacuum
state) is provided for them. The criteria on which this
choice is based must remain meaningful in the context of

FIG. 1. Left: numerical comparison between the curves sGRðηÞ (blue), sðFÞðηÞ (red), and sðFÞðηÞ þ sðWÞðηÞ (green). Right: relative error
made when approximating the exact mass function sGRðηÞ by sðFÞðηÞ (blue) and by sðFÞðηÞ þ sðWÞðηÞ (red), in conformal time. In both
panels, the axes are in a logarithmic scale.

2The instant η ≈ 1800 where the relative error of sðFÞ vanishes
corresponds to a casual intersection between this curve and sGR
when inflation has already started, and has no physical signifi-
cance.
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LQC. It has been widely debated that making this choice has
important consequences in the shape of the resulting power
spectrum [49,58–62]. For example, one can ignore any
physically relevant preinflationary effect by simply working
with the standard Bunch-Davies vacuum [63] at the slow-
roll inflationary epoch, or completely hide from sight the
LQC phenomena at the bounce by choosing initial con-
ditions that are natural if inflation is preceded by just a
classical epoch of kinetic dominance within GR [21,28].
Bearing in mind the extensive (though yet inconclusive)
literature on this topic, in this work we focus on a specific
choice of vacuum state that is motivated by the criterion of
asymptotic Hamiltonian diagonalization (AHD) [64], spe-
cially well suited for hybrid quantization formalisms and,
hence, for hybrid LQC [5,64,65]. The origin of this criterion
lies at the very quantization procedure for the Hamiltonian
operator of the perturbations, and it naturally leads to a set of
positive frequencies for them. Moreover, in effective sce-
narios, it selects solutions to the dynamical equations (2.1)
with norms that display the minimal oscillations allowed in
the evolution for asymptotically large k [65], and certain
nonoscillating (NO) behavior even beyond that asymptotic
region. This feature, when valid for all modes that could be
observable today, has been argued to be desirable for
choices of a vacuum state in LQC that does not lead to
power amplification. Because of these properties, we will
call the vacuum selected by this criterion the NO-AHD
vacuum.
This vacuum has already been considered in analytic

studies that, within LQC, have proven an associated power
supression starting from a scale cutoff of the order of the
spacetime curvature at the bounce. To the best of our
knowledge, this result is only shared (at least qualitatively)
by the proposal of vacuum state for the perturbations put
forward by Ashtekar and Gupt, in the so-called dressed
metric prescription of LQC [59,60]. We recall that, in this
prescription, the perturbation modes have similar equa-
tions of motion as in hybrid LQC, but the effective mass
differs in the two cases. For the dressed metric prescrip-
tion, the effective mass has the same functional depend-
ence on the background metric as in GR, but evaluated
on the effective geometries that we are considering in
LQC [36,43–45].
More specifically, the NO-AHD vacuum consists in

(normalized) positive-frequency solutions to Eq. (2.1) of
the form

μk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

1

2ImðhkÞ

s
ei
R

η

0
dη̄ImðhkÞðη̄Þ; ð3:1Þ

where the time-dependent function hk is a solution of the
Riccati equation

ḣk ¼ k2 þ sþ h2k ð3:2Þ

that displays the following asymptotic expansion in the
regime of large k [64]:

1

hk
≃
i
k

�
1 −

1

2k2
X∞
n¼0

�
−i
2k

�
n
γn

�
: ð3:3Þ

Here, γ0 ¼ s and the coefficients γnþ1 for n ≥ 0 are fixed by
the recurrence relation

γnþ1 ¼ −γ̇n þ 4s

�
γn−1 þ

Xn−3
m¼0

γmγn−ðmþ3Þ

�

−
Xn−1
m¼0

γmγn−ðmþ1Þ: ð3:4Þ

These formulas lead to the standard choices of vacuum state
in situations that are well understood in quantum field
theory, such as the Poincaré and Bunch-Davies states in,
respectively, Minkowski and de Sitter spacetimes [64]. They
have also been shown to fix a well-behaved state in
preinflationary epochs described by GR with a minimally
coupled massless scalar field in kinetically dominated
regimes [28]. In this work, we are interested in their
application to the effective LQC epoch near the bounce.
With an adequate choice of Pöschl-Teller potential to
approximate there the behavior of s, it was shown in
Ref. [28] that the NO-AHD vacuum corresponds to pos-
itive-frequency solutions associated with the following
choice of hk:

hk ¼ −ik − 2α2xð1 − xÞ cd
αþ ik

× 2F1ðcþ 1; dþ 1; 2þ ik=α; xÞ
2F1ðc; d; 1þ ik=α; xÞ ;

with x ¼ ½1þ e−2αðη−ηBÞ�−1: ð3:5Þ

Here, 2F1 is the Gauss hypergeometric function, ηB is the
instant of the bounce in conformal time (recall that the origin
of η has been placed some tenths t0 of a Planck second in
cosmic time after the bounce), namely [28]

−ηB ¼ 2F1

�
1

6
;
1

2
;
3

2
;−24πρct20

�
t0; ð3:6Þ

where in the case under study t0 ¼ 0.4, and we have defined

c¼ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32πρc

3α2

r !
; d¼ 1

2

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32πρc

3α2

r !
;

α¼−
1

ηB
arcosh

�
V2=3
0

4π2

�
: ð3:7Þ
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The above solutions are valid from η ¼ ηB until η ¼ 0. At
that end of the bounce epoch, they provide the initial data
needed to integrate Eq. (2.1) in the relativistic preinflationary
epoch, using our approximation (2.21) for the effective
mass s.

A. Mode solutions in the kinetic epoch

Let us study the solutions of the Mukhanov-Sasaki
equations (2.1) when we approximate the effective mass
as s ≈ sðFÞ þ sðWÞ, in the interval of conformal time ½0; ηt� of
our model. For consistency, we want to obtain the expres-
sion of the solutions at first order in the inflaton potential.
The general form of the positive-frequency solutions in the
massless case (withWðϕÞ ¼ 0) is exactly known in terms of

Hankel functions of zeroth order,Hð1Þ
0 andHð2Þ

0 [21,28]. We

call μðFÞk these free solutions. In general, they are completely

fixed via Eq. (3.1) by functions hðFÞk that solve the Riccati
equation (3.2) for s ¼ sðFÞ. In Ref. [53] one can find a
detailed study of how the presence of the correction sðWÞ to
the mass modifies the expression of these positive-
frequency solutions to first order in the contributions of
the inflaton potential. The modified solutions are obtained

after inserting in Eq. (3.1) the function hk ¼ hðFÞk þ hðWÞ
k ,

where hðWÞ
k is given by

hðWÞ
k ðηÞ ¼

�
CðWÞ
k þ

Z
η

0

dη̄sðWÞðη̄Þe−I
ðFÞ
hk

ðη̄Þ
�
eI

ðFÞ
hk

ðηÞ;

IðFÞhk
ðηÞ ¼ 2

Z
η

0

dη̄hðFÞk ðη̄Þ; ð3:8Þ

and CðWÞ
k is an integration constant that we fix to zero in this

work, so that hk coincides with the free solution hðFÞk to
Eq. (3.2) at the initial time η ¼ 0, when the contribution
from the inflaton potential is completely negligible.

If we substitute the function hk ¼ hðFÞk þ hðWÞ
k in

Eq. (3.1) and expand to first order in the potential, we
obtain the following formula for the positive-frequency
solutions μkink in the kinetically dominated epoch:

μkink ðηÞ ¼ μðFÞk ðηÞ½1þFðWÞ
k ðηÞ�;

FðWÞ
k ðηÞ ¼ i

Z
η

0

dη̄ImhðWÞ
k ðη̄Þ − ImhðWÞ

k ðηÞ
2ImhðFÞk ðηÞ

; ð3:9Þ

where hðWÞ
k is given by Eq. (3.8) with CðWÞ

k ¼ 0 and we

recall that μðFÞk are the positive-frequency solutions to the
Mukhanov-Sasaki equations with a mass term equal to the
free relativistic function sðFÞ [28]. Explicitly, we obtain

μkink ¼
ffiffiffiffiffi
πy
4

r n
CkH

ð1Þ
0 ðkyÞ

h
1þFðWÞ

k

i
þDkH

ð2Þ
0 ðkyÞ

h
1þFðWÞ

k

io
;

y ¼ ηþ
ffiffiffiffiffiffiffiffiffiffi
3

8πρc

s
V2=3
0

8π2
; ð3:10Þ

where Ck and Dk are integration constants that satisfy
jDkj2 − jCkj2 ¼ 1, so that the solutions are normalized with
respect to the Klein-Gordon product (up to higher than
linear order in W). The choice of these constants for all
modes is tantamount to the choice of a vacuum state for the
perturbations. In this respect, we follow the NO-AHD
proposal explained in the beginning of this section and
impose as initial data the values at η ¼ 0 of the solutions
μk and of their first time derivative obtained by inserting

Eq. (3.5) in Eq. (3.1). Taking into account thatFðWÞ
k ð0Þ ¼ 0,

this leads to

Ck ¼
1

Hð1Þ
0 ðk=k0Þ

"
2

ffiffiffiffiffi
k0
π

r
μkð0Þ −DkH

ð2Þ
0 ðk=k0Þ

#
;

Dk ¼
i
2

ffiffiffiffiffi
π

k0

r �
kHð1Þ

1 ðk=k0Þμkð0Þ −
k0
2
Hð1Þ

0 ðk=k0Þμkð0Þ

þHð1Þ
0 ðk=k0Þμ̇kð0Þ

�
; ð3:11Þ

where we have defined the scale k0 ¼ 8π2V−2=3
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρc=3

p
.

The resulting positive-frequency solutions μkink are valid
from η ¼ 0 to η ¼ ηt when, according to our approximation
(2.21), the epoch that marks the transition to inflation starts.
The behavior at η ¼ ηt of such mode solutions serves as
initial data for the next period in the evolution of the
perturbations.

B. Mode solutions during the transition to inflation

The epoch that connects the period of kinetic dominance
with the inflationary regime corresponds to the interval of
conformal time ½ηt; ηi�. There, we have seen that the
effective mass for the perturbations behaves approximately
as a constant, sc ¼ 1; 83 × 10−6. The Mukhanov-Sasaki
equations (2.1) are straightforward to solve in this situation,
yielding positive-frequency solutions μck of the form

μck ¼
iFkffiffiffiffiffiffiffiffiffiffiffi
2κðkÞp e−iκðkÞðη−ηtÞ þ iGkffiffiffiffiffiffiffiffiffiffiffi

2κðkÞp eiκðkÞðη−ηtÞ;

κðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ sc

q
; ð3:12Þ

where Fk and Gk are integration constants that satisfy
jFkj2 − jGkj2, so that, once again, these solutions are
normalized. Their specific value for our choice of vacuum
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state is computed imposing as initial data for the solutions
the value at η ¼ ηt of the functions μkink and of their time
derivatives, determined by Eqs. (3.10) and (3.11) in the
preceding cosmological epoch. This leads to the following
constants:

Fk ¼ −

ffiffiffiffiffiffiffiffiffi
κðkÞ
2

r �
iμkink ðηtÞ −

μ̇kink ðηtÞ
κðkÞ

�
;

Gk ¼ −

ffiffiffiffiffiffiffiffiffi
κðkÞ
2

r �
iμkink ðηtÞ þ

μ̇kink ðηtÞ
κðkÞ

�
: ð3:13Þ

The resulting positive-frequency solutions describe the
evolution of the perturbations from η ¼ ηt to η ¼ ηi.

C. Mode solutions in slow-roll inflation

According to our approximations, we consider that the
inflationary period starts at η ¼ ηi, experiencing an expan-
sion of quasi de Sitter type. The Universe then enters the
celebrated period of slow-roll inflation, and by definition it
holds as long as the following parameters are much smaller
than one:

ϵW ¼ 1

16π

�
W0ðϕÞ
WðϕÞ

�
2

; δW ¼ 1

8π

W00ðϕÞ
WðϕÞ : ð3:14Þ

The slow-roll approximation at first order consists in
treating these parameters as small constants, ignoring any
non-linear contribution from them in the cosmological
dynamics. Within this approximation, one can check
that [66]

sGR≈
�
ȧ
a

�
2

ð−2þ3δW−5ϵWÞ;
d
dη

�
a
ȧ

�
≈ϵW−1: ð3:15Þ

It then follows that we can approximate the effective mass
in the Mukhanov-Sasaki equations (2.1) in the slow-roll
regime by the function

ssr¼−
1

ðη− η̄eÞ2
�
ν2−

1

4

�
; ν¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ9ϵW−3δW

r
; ð3:16Þ

where η̄e is a constant that can be identified, at any instant
ηe in the slow-roll interval, as

η̄e ¼ ηe þ
1

1 − ϵW

�
a
ȧ

�����
ηe

: ð3:17Þ

We will take ηe at the end of the slow-roll regime, defined
as the instant when the slow-roll parameters stop behaving
as constants, while still being much smaller than one. At
that instant, we notice that a=ȧ turns out to be negligible
compared to ϵ2W and δ2W for typical inflationary scenarios
(recall that the dot denotes the derivative with respect to

the conformal time). Considering that we are working at
first order in the slow-roll approximation, in the following
analysis we work with the identification η̄e ¼ ηe. With the
above mass function, Eq. (2.1) can be written as a Bessel
equation of order ν in the variable kðηe − ηÞ. Therefore,
positive-frequency solutions μsrk within the first order
slow-roll approximation adopt the form

μsrk ¼ Ak

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4
ðηe − ηÞ

r
Hð1Þ

ν ½kðηe − ηÞ�

þ Bk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4
ðηe − ηÞ

r
Hð2Þ

ν ½kðηe − ηÞ�; ð3:18Þ

where Hð1Þ
ν and Hð2Þ

ν are the Hankel functions of order ν
and of the first and second kind, respectively, whereas Ak
and Bk are integration constants. Again, normalization
of the solutions demands that jAkj2 − jBkj2 ¼ 1. In our
model, the initial data, given by the values at η ¼ ηi of the
solutions μck (and of their derivatives) specified by
Eqs. (3.12) and (3.13), lead to the following expressions
for these constants:

Ak ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

16
ðηe − ηiÞ

r �
kHð2Þ

νþ1½kðηe − ηiÞ�

− kHð2Þ
ν−1½kðηe − ηiÞ� −

Hð2Þ
ν ½kðηe − ηiÞ�
ðηe − ηiÞ

	
μckðηiÞ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4
ðηe − ηiÞ

r
Hð2Þ

ν ½kðηe − ηiÞ�μ̇ckðηiÞ; ð3:19Þ

Bk ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

16
ðηe − ηiÞ

r �
kHð1Þ

νþ1½kðηe − ηiÞ�

− kHð1Þ
ν−1½kðηe − ηiÞ� −

Hð1Þ
ν ½kðηe − ηiÞ�
ðηe − ηiÞ

	
μckðηiÞ

− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4
ðηe − ηiÞ

r
Hð1Þ

ν ½kðηe − ηiÞ�μ̇ckðηiÞ: ð3:20Þ

In the next section we will provide numerical values for
the quantities that appear in these expressions, in the
scenarios of phenomenological interest in LQC that we are
considering in this work.

IV. PRIMORDIAL POWER SPECTRUM

The analysis carried out so far provides all the ingredients
for the computation of the primordial power spectrum of the
scalar perturbations in hybrid LQC using (semi)analytic
formulas. In general, this quantity is defined as [67]

PRðkÞ ¼
k3

2π2
jμexk ðηfÞj2
z2ðηfÞ

ð4:1Þ

BEATRIZ ELIZAGA NAVASCUÉS et al. PHYS. REV. D 108, 083521 (2023)

083521-10



where z ¼ a2ϕ̇=ȧ, the functions μexk form a complete set of
exact positive-frequency solutions for Eq. (2.1), and ηf is
any instant of time within or by the end of slow-roll inflation
such that k ≪ ȧðηfÞ=aðηfÞ for the observed modes. The
arbitrariness allowed in the determination of this time is
physically due to the fact that the evolution of the rescaled
Mukhanov-Sasaki mode vk⃗=z freezes during slow-roll
inflation after its corresponding wavelength has crossed
the Hubble horizon [10].
In the previous section, Eqs. (3.18)–(3.20) describe the

evolution of the perturbations within slow-roll inflation, for
the choice of an NO-AHD vacuum state in the epoch near
the bounce in hybrid LQC. To compute the primordial
power spectrum, as commented above, we need to evaluate
those expressions at a time ηf of the slow-roll inflationary
epoch where the evolution of the relevant perturbation
modes has frozen. Let us focus our attention on the window
of modes k∈ ½10−4; 102�. This window has been used in a
number of studies in the literature [28,48,49,58]. With
sufficient flexibility to account for all the cases of interest,
this window includes the curvature scales that are important
in the effective LQC scenarios that we are studying. For this
window, reasonable values of the conformal Hubble
parameter ȧ=a (i.e., a times the standard Hubble parameter)
at, respectively, ηf and ηe are, e.g., 108 and 1020 [58], while
numerically we find that ηe − ηf ≈ 10−7.
Thus, the argument of the Hankel functions in our

analytic formula (3.18) for the positive-frequency solutions
μsrk during slow-roll inflation is much smaller than one, at
least for all scales k in the considered window. We can
therefore employ the limiting behavior of these functions
[68] to obtain

jμsrk ðηfÞj2 ≈
1

4π
ðηe − ηfÞjΓðνÞj2

�
kðηe − ηfÞ

2

�−2ν
jAk −Bkj2;

ð4:2Þ

where Γ is the gamma function. So, we can finally
approximate the primordial power spectrum as

PRðkÞ ≈ Cνk3−2νjAk − Bkj2;

Cν ≈
1

2π2
ηe − ηf
aðηfÞ2ϵW

jΓðνÞj2
�
ηe − ηf

2

�
−2ν

; ð4:3Þ

because during slow-roll inflation it is well known that z2 ≈
a2ϵW=ð4πÞ [66]. The only remaining quantities that we
need in order to calculate the power spectrum are the time
difference ηe − ηi and the slow-roll parameters ϵWðηfÞ and
δWðηfÞ, which are equal to each other in the case of the
quadratic potential. Our numerical simulations show that,
with our choice of ηf and ηe above, ηe − ηi ≈ 7700

and ϵWðηfÞ ¼ δWðηfÞ ≈ 1.27 × 10−2.

Before passing to a quantitative analysis of our results, an
important remark is in order. The (semi-)analytic function by
which we have approximated the behavior of the effective
mass s for the Mukhanov-Sasaki perturbation modes in
hybrid LQC is discontinuous and/or not differentiable at the
instants η ¼ 0, η ¼ ηt, and η ¼ ηi. Such discontinuities
prevent one from properly applying the NO-AHD criterion
to select an optimally adapted vacuum state in the whole
period of evolution, tailored to a smooth dynamics till the
end of inflation. Moreover, in Ref. [28] it was argued that
they are responsible for the appearance of spurious oscil-
lations in the power spectrum, coming from the introduction
of a dephasing between the constants of integration as the
positive-frequency solutions adjust themselves to the sudden
change in the mass at the discontinuities. A straightforward
way to remove this somewhat artificial dephasing was also
discussed in Ref. [28]. It consists in applying just a
Bogoliubov transformation to the positive-frequency solu-
tions during the slow-roll regime. This transformation is

Ak → Ãk ¼ jAkj; Bk → B̃k ¼ jBkj: ð4:4Þ

Motivated by these arguments, in the remainder of this work
we will employ the following expression for the primordial
power spectrum, which eliminates in a neat way the spurious
oscillations arising from our approximate (nonsmooth)
treatment of the cosmological dynamics:

P̃RðkÞ ¼ Cνk3−2νðjAkj − jBkjÞ2: ð4:5Þ

A. Quantitative results

In the following, we evaluate Eq. (4.5) for the primordial
power spectrum with the choice of constants Ak and Bk that
we have determined by adopting an NO-AHD proposal to
select a vacuum in hybrid LQC. We use a quadratic
potential of the form WðϕÞ ¼ m2ϕ2=2, and focus our
study on the specific values m ¼ 1.2 × 10−6, ϕ0 ¼ 1.22,
ηe − ηi ¼ 7700, and ϵW ¼ δW ¼ 1.27 × 10−2 motivated in
our discussion above. Moreover, to compute the first order
correction in the potential to the effective mass during the
relativistic epoch of kinetic dominance, we take the values

of V0 and HðFÞ
0 provided by Eqs. (2.19) and (2.20).

The left panel of Fig. 2 displays the resulting power
spectrum in red. Superposed to it, we show in blue the
result obtained after adopting the same criterion for the
choice of an NO-AHD vacuum, but completely ignoring
the effects from the inflaton potential both in the preinfla-
tionary epoch (including the transition period of constant
mass) and during slow-roll inflation. The behavior of
the two displayed spectra is very similar for scales k in the
interval ½10−2; kLQC�, where kLQC ≈ 3 is the curvature scale
at the bounce (see e.g., the discussion in Ref. [28]). In this
window, both spectra show power suppression to the
infrared, which is approximately of exponential type.
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It has been long argued that such suppression may
alleviate the anomalies observed in the CMB if one
adheres to the standard cosmological paradigm, as long
as the duration of inflation is such that the curvature scale
kLQC falls into the observational window. For scales
10−3 < k < 10−2, on the other hand, the spectrum displays
some features in the suppression of power when it includes
the corrections discussed in this work. In fact, these
features appear at a scale which is of the order of the
square root of the constant mass of the second epoch of our
approximation, and which is of the same order as the value
of the conformal Hubble parameter at the onset of inflation
[28]. Moreover, the power suppression for wave numbers
below 10−3 (although faster than for larger k in both
cases) is slightly more pronounced with the considered

corrections than in the power spectrum computed without
them. Finally, for scales greater than kLQC, we observe that
both power spectra exhibit a (quasi) constant behavior that
agrees with that of the standard Bunch-Davies state.
Notice, however, that the consideration of slow-roll effects
in this work introduces a red tilt, in contrast with the pure
scale invariance that is obtained when treating the infla-
tionary phase as an exactly de Sitter scenario. This red tilt
is just a property of the quadratic potential studied here.
We show it zoomed in the right panel of Fig. 2.
Given the commented differences between the primordial

power spectrum computed with and without the corrections
introduced in this work, it is interesting to understand the
origin of each of these modifications. For this purpose, in
the left and right panels of Fig. 3 we respectively compare

FIG. 2. Left: comparison between the (normalized) primordial power spectrum C−1
ν P̃R obtained in this work (red) and its analog

without any contribution of the inflaton potential (blue). Right: zoom of the left panel in the region of large scales k∈ ½1; 100�. In both
panels, the axes are in a logarithmic scale.

FIG. 3. Left: normalized power spectrum C−1
ν P̃R obtained with all the modifications from the inflaton potential studied in this work

(red) versus the result with FðWÞ
k ¼ 0 (blue). Right: comparison between our normalized power spectrum computed with ν ¼

ð9=4þ 9ϵW − 3δWÞ1=2 for slow-roll inflation (red) and the spectrum with ν ¼ 3=2 for de Sitter inflation (blue). In both panels, the axes
are in a logarithmic scale.
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our results, on the one hand, with the spectrum obtained if
we ignore the first order corrections sðWÞ to the effective
mass in the kinetically dominated epoch [namely, if we set

FðWÞ
k ¼ 0 in Eq. (3.10)] and, on the other hand, with the

spectrum reached if we neglect the slow-roll effects and set
ν ¼ 3=2 in our formulas, corresponding to an exact de Sitter
inflation. The left panel clearly shows that the presence of
sðWÞ is the main actor behind the slight increase in the rate of
suppression for k < 10−3 found in Fig. 2. The right panel,
on the other hand, indicates that slow-roll effects barely
modify the spectrum in the window of scales ½10−4; kLQC�.
Remarkably, this window includes wave number scales
between 10−3 and 10−2, for which Fig. 2 shows a small
bump when compared to the spectrum derived without any
of the corrections from the inflaton potential introduced in
this work. One can convince oneself that this feature arises
from the transition epoch between kinetic dominance and
inflation, which we modeled by introducing a constant
value sc ¼ 1.83 × 10−6 for the effective Mukhanov-Sasaki
mass. Once this fact is realized, we immediately confirm
that the main consequence of the slow-roll effects is indeed
the red tilt in the ultraviolet sector. Thus, we conclude that
the modifications produced by the slow-roll regime in the
shape of the primordial power spectrum can be incorporated
in scenarios from LQC exactly as they are treated in the
standard cosmological paradigm, i.e., by multiplying the
spectrum obtained in de Sitter by a factor k3−2ν.

V. CONCLUSIONS

We have carried out a semi-analytic study of the
evolution of primordial fluctuations of scalar type in some
physically interesting scenarios arising in hybrid LQC. As a
main novelty with respect to previous works on this topic,
we have introduced the most relevant modifications to the
dynamics of the perturbations that are due to the presence
of an inflaton potential. This has been done in three steps.
First, we have explicitly computed the first order correction
caused by the potential in the effective Mukhanov-Sasaki
mass of the epoch after the LQC bounce, where the
background geometry follows approximately the same
dynamics as in GR and the energy density of the inflaton
is dominated by its kinetic contribution. This correction
arising from the potential grows as time passes. To
incorporate it, we have particularized the general results
of Ref. [53] to a classical regime with kinetic dominance,
working out all computations in the specific case of a
quadratic inflaton potential and completing all calculations
explicitly. Eventually, the kinetically dominated epoch
gives way to an inflationary phase of the Universe.
Comparing the resulting approximation to the mass with
its exact numerical counterpart, we have argued in favor of
a transition period between the epoch of kinetic dominance
and inflation, at times in the cosmological evolution when
including the potential as a small correction is no longer

valid. As a second step in our approach, this transition has
been modeled just by setting the mass equal to a constant,
with a precise value that is determined numerically. Finally,
we have approximated the whole inflationary epoch by a
slow-roll regime, computing the dynamics of the perturba-
tions to first order in the slow-roll approximation.
Any complete study of the dynamics of the Mukhanov-

Sasaki perturbations requires (in a way or another) a
criterion to choose their initial conditions, choice that
amounts to select their vacuum state. In this work, we have
adhered to the NO-AHD proposal, which has a funda-
mental motivation in hybrid (loop) quantum cosmology
and is conceived to favor desirable nonoscillatory proper-
ties for the corresponding positive-frequency solutions.
Taking advantage of previous experience in approximating
the dynamics of the perturbations around the kinetically
dominated bounce (when the LQCmodifications to GR are
significant) [28], we have applied the NO-AHD proposal
to select a vacuum state in that earliest epoch. This
provides initial data for the perturbations during the
relativistic epoch of kinetic dominance, epoch in which
we have solved the dynamics of the perturbation modes at
first order in the inflaton potential. The resulting solution
fixes in turn the solution for each perturbation mode during
the transition epoch of constant mass, and eventually also
during the slow-roll regime. Evaluation of these mode
solutions at late enough times within the inflationary
period gives the primordial power spectrum associated
with our choice of vacuum state. In order to study its
properties, one should bear in mind that our approxima-
tions (to reach an analytic resolution of the perturbation
equations) introduce spurious oscillations in the norm of
the solutions, owing to the (necessary but artificial)
appearance of discontinuities in the effective mass and/
or its time derivatives. Following the same philosophy as in
Ref. [28] with respect to such an artificial non-smooth
behavior, we have removed these spurious oscillations in a
neat way before quantitatively evaluating the spectrum for
our LQC scenario.
The evaluation of the power spectrum obtained with our

analysis shows that the effects of the inflaton potential do
not qualitatively change the power suppression previously
found [17,19,28] for k smaller than the scale kLQC ≈ 3 in
Planck units, confirming that this suppression is genuine of
LQC scenarios and it starts at a scale that is directly related
to the universal value of the spacetime curvature at the
bounce. However, the corrections introduced in this work
quantitatively change how this suppression behaves in the
very infrared end of the spectrum and become also relevant
for k > kLQC. For very infrared scales, there are relevant
modifications arising from the effects of the inflaton
potential in the preinflationary epochs. On the one hand,
the transition period of constant mass is manifest via a
small bump in the power spectrum for values of k between
10−3 and 10−2. On the other hand, the importance of the
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potential at the end of the period of kinetic dominance is
reflected as an increase in the power suppression for scales
even further in the infrared regime. For wave number
scales k greater than the curvature at the LQC bounce,
which lie in the quasi scale invariant part of the spectrum,
slow-roll effects produce a red tilt in the considered case
of a quadratic potential, just as they do in the standard
cosmological model.
We have conducted our analysis in the framework of the

hybrid formalism of LQC, with an inflaton potential given
by a mass term, and a choice of initial conditions selected
by the criteria explained in Ref. [28]. We expect that a
similar study can be carried out in the dressed metric
formalism using as starting point the case of vanishing
potential during kinetic dominance, recently developed in
Ref. [50]. A generalization to other potentials also seems to
be at hand, especially to potentials that depend exponen-
tially on the inflaton [51], given that most of the integrals
that arise in our calculations involve this kind of functional
dependence. On the other hand, work experience indicates
that the results will be very sensitive to the choice of
vacuum state [58], something that can significantly affect,
e.g., the scale of power suppression (for instance, see the
cases analyzed in Refs. [28,42]).
Our investigations open a road to find an analytic

parametrization of the primordial power spectrum in terms
of the free parameters of our LQC scenarios, namely, the
initial value at the bounce of the inflaton field and its

potential. These, in turn, directly determine how long the
inflationary period lasts, and therefore fix the relative
location of kLQC in the observable window of scales
nowadays. It is therefore of great importance to include
them in any statistical analysis on the predictions of LQC in
what respects the early Universe. The formulas obtained
here clearly provide a promising starting point for such a
parameterization. Moreover, the methodology developed in
this work can be directly applied to also study the evolution
of the tensor modes of the perturbations. This would provide
a way to analyze the effects of the inflaton potential on the
primordial power spectrum of gravitational waves in cos-
mological scenarios inspired by hybrid LQC. Finally, it
would be interesting to perform a similar study on the
evolution of the primordial fluctuations according to the
dressed metric approach to LQC, in order to eventually
establish whether it can be distinguished from the hybrid
formalism using cosmological observations.
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Marugán, Primordial perturbations in kinetically dominated
regimes of general relativity and hybrid quantum cosmol-
ogy, Phys. Rev. D 104, 103520 (2021).

EFFECTS OF THE INFLATON POTENTIAL ON THE … PHYS. REV. D 108, 083521 (2023)

083521-15

https://doi.org/10.1103/PhysRevLett.125.051302
https://doi.org/10.1103/PhysRevLett.125.051302
https://doi.org/10.1088/1361-6382/abc521
https://doi.org/10.3389/fspas.2021.685288
https://doi.org/10.3389/fspas.2021.685288
https://doi.org/10.3389/fspas.2021.703845
https://doi.org/10.3389/fspas.2021.703845
https://doi.org/10.1088/1475-7516/2003/07/002
https://doi.org/10.1088/1475-7516/2003/09/010
https://doi.org/10.1088/1475-7516/2003/09/010
https://doi.org/10.1103/PhysRevD.78.023013
https://doi.org/10.1103/PhysRevD.81.063520
https://doi.org/10.1103/PhysRevD.85.103517
https://doi.org/10.1103/PhysRevD.93.023503
https://doi.org/10.1103/PhysRevD.93.023503
https://doi.org/10.1103/PhysRevD.100.023501
https://doi.org/10.1088/1475-7516/2021/09/030
https://doi.org/10.1088/1475-7516/2021/09/030
https://doi.org/10.1103/PhysRevD.78.064072
https://doi.org/10.1103/PhysRevD.73.124038
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.74.084003
https://doi.org/10.1103/PhysRevD.80.104015
https://doi.org/10.1103/PhysRevD.92.124040
https://doi.org/10.1103/PhysRevD.96.083520
https://doi.org/10.1103/PhysRevD.96.083520
https://doi.org/10.1103/PhysRevD.99.063520
https://doi.org/10.1103/PhysRevD.97.043523
https://doi.org/10.1007/s10714-011-1246-y
https://doi.org/10.1103/PhysRevD.87.123509
https://doi.org/10.1088/1361-6382/aa7779
https://doi.org/10.1088/1475-7516/2019/10/066
https://doi.org/10.1103/PhysRevD.106.103535
https://doi.org/10.1103/PhysRevD.106.103535
https://arXiv.org/abs/2305.09599
https://doi.org/10.1103/PhysRevLett.109.251301
https://doi.org/10.1103/PhysRevLett.109.251301
https://doi.org/10.1103/PhysRevD.87.043507
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1088/0264-9381/30/8/085014
https://doi.org/10.1103/PhysRevD.86.024003
https://doi.org/10.1088/1475-7516/2015/06/045
https://doi.org/10.1103/PhysRevD.96.103528
https://doi.org/10.1103/PhysRevD.96.103528
https://doi.org/10.1088/1475-7516/2016/06/029
https://arXiv.org/abs/2307.06813
https://doi.org/10.3390/universe8090463
https://doi.org/10.1103/PhysRevD.93.063513
https://doi.org/10.1103/PhysRevD.104.103520


[54] V. Mukhanov, Quantum theory of gauge-invariant cosmo-
logical perturbations, Zh. Eksp. Teor. Fiz. 94, 1 (1988),
https://www.osti.gov/etdeweb/biblio/6533681 [Sov. Phys.
JETP 67, 1297 (1988)].

[55] M. Sasaki, Gauge invariant scalar perturbations in the new
inflationary universe, Prog. Theor. Phys. 70, 394 (1983).

[56] H. Kodama and M. Sasaki, Cosmological perturbation
theory, Prog. Theor. Phys. Suppl. 78, 1 (1984).

[57] L. Castelló Gomar, M. Martín-Benito, and G. A. Mena
Marugán, Quantum corrections to the Mukhanov-Sasaki
equations, Phys. Rev. D 93, 104025 (2016).

[58] B. Elizaga Navascués, D. Martín de Blas, and G. A. Mena
Marugán, The vacuum state of primordial fluctuations in
hybrid loop quantum cosmology, Universe 4, 98 (2018).

[59] A. Ashtekar and B. Gupt, Initial conditions for cosmological
perturbations, Classical Quantum Gravity 34, 035004 (2017).

[60] A. Ashtekar and B. Gupt, Quantum gravity in the sky:
Interplay between fundamental theory and observations,
Classical Quantum Gravity 34, 014002 (2017).

[61] M. Martín-Benito, R. B. Neves, and J. Olmedo, States of
low energy in bouncing inflationary scenarios in loop
quantum cosmology, Phys. Rev. D 103, 123524 (2021).

[62] M. Martín-Benito, R. B. Neves, and J. Olmedo, Non-
oscillatory power spectrum from states of low energy in
kinetically dominated early universes, Front. Astron. Space
Sci. 8, 702543 (2021).

[63] T. S. Bunch and P. Davies, Quantum field theory in de Sitter
space: Renormalization by point splitting, Proc. R. Soc. A
360, 117 (1978).

[64] B. Elizaga Navascués, G. A. Mena Marugán, and
T. Thiemann, Hamiltonian diagonalization in hybrid quan-
tum cosmology, Classical Quantum Gravity 36, 185010
(2019).

[65] B. Elizaga Navascués, G. A. Mena Marugán, and S. Prado,
Non-oscillating power spectra in loop quantum cosmology,
Classical Quantum Gravity 38, 035001 (2021).

[66] D. Baumann, Inflation, Physics of the Large and the Small
(World Scientific, Singapore, 2011).

[67] D. Langlois, Inflation and cosmological perturbations, Lect.
Notes Phys. 800, 1 (2010).

[68] M. Abramovitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical
Tables, revised 9th Dover ed (Dover, New York, USA,
1972).
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