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A dynamical system analysis is performed for a model of dissipative quintessential inflation realizing
warm inflation at early primordial times and dissipative interations in the dark sector at late times. The
construction makes use of a generalized exponential potential realizing both phases of accelerated
expansion. A focus is given on the behavior of the dynamical system at late times and the analysis is
exemplified by both analytical and numerical results. The results obtained demonstrate the viability of the
model as a quintessential inflation model in which stable solutions can be obtained.
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I. INTRODUCTION

Cosmic inflation [1–6], proposed as a solution to the
fine-tuning problems of the big bang theory, describes an
accelerated expanding phase in the early Universe. It is also
commonly assumed to be driven by a potential energy
dominated scalar field, called the inflaton. On the other
hand, the observational discovered late-time cosmic accel-
eration of our Universe [7,8] can also be explained by the
dynamics of a scalar field, called the quintessence [9,10]
(for reviews, see, e.g., [11,12]). There has been constant
effort in the literature to unify the early- and the late-time
cosmic accelerations by making the same scalar field play
the role of both the inflaton and the quintessence field (for
recent reviews, see [13,14] and references therein).
However, the main obstacle to unify the early- and the
late-time accelerations by a single scalar field is that, as in
conventional cold inflation, the energy density in the
inflaton field must, at least partially, decay to radiation
at the end of inflation in order to reheat the Universe, while
part of the energy density of the inflaton must survive until
recently if the inflaton should also play the role of
quintessence. To overcome this difficulty, a number of
alternative reheating mechanisms have been proposed, such
as gravitational reheating [15,16], instant preheating
[17,18], curvaton reheating [19,20], nonminimal [21], or
Ricci reheating [22,23], just to cite some examples.

Another novel way of overcoming the reheating problem
in such unified models is to opt for warm inflation (WI)
[24] as the inflationary model (for recent reviews on WI,
see, e.g., [25,26]). WI is a variant inflationary scenario
where the inflaton field, having strong couplings with other
fields, dissipates its energy to a thermal bath during
inflation. As a constant thermal bath is maintained through-
out WI, it smoothly ends in a radiation dominated Universe,
without invoking the need of a separate reheating phase.
Thus, WI can naturally alleviate the problem of reheating in
such unified quintessential inflation models. Besides, the
constraints set by the swampland conjectures (especially
the de Sitter conjecture [27,28]), which prohibit construc-
tions of de Sitter vacua in string theory, cannot be easily
met by the conventional inflationary models [29,30]. WI,
however, naturally overcome those constraints [31–34]
and, thus, can be considered as a viable inflationary
paradigm in string landscapes. On the late-time acceleration
front, quintessence is in better agreement with the swamp-
land conjectures than a nonzero cosmological constant Λ
[29].1 Hence, unifying WI with quintessence has an added
advantage even from the point of view of effective field
theories consistent with a quantum gravity ultraviolet
realization.
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1It is to note that, in general, quintessence dark energy models,
preferred by the swampland conjectures [29], exacerbates the H0

tension as have been pointed out in [35,36]. For some of the
recent discussions concerning the differences on the value of H0

between the measurements coming from the cosmic microwave
background [37] and by local distance measurements [38–40],
see, e.g., Refs. [41–49].
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The first two attempts [50,51] made in the literature to
unify WI with late-time quintessence-driven acceleration,
dissipative effects played a role only during the early-time
inflationary phase, after which they die down when WI
ends. Afterwards, it was assumed that the late-time accel-
eration was driven by standard quintessence dynamics,
where the quintessence field is treated to be decoupled from
the rest of the matter in the Universe. Above all, two
different forms of potentials of the same scalar field are
required to drive the two accelerating phases, at early and at
late times, in these models. There has been another novel
attempt to unify WI and the late-time acceleration [52],
where the scalar field first dissipates its energy to a
radiation bath during inflation and, at a later stage, due
to couplings with matter, it dissipates its energy to the
matter content of the Universe. This nonrelativistic matter
content, generated due to the dissipation of the scalar field,
is shown to be able to account for the dark matter in the
Universe. Besides, in the implementation considered in
Ref. [52] only one form of the scalar potential (a gener-
alized form of exponential potential) is required to drive
both the early- and the late-time accelerations, which is an
added advantage. Thus, this model accounts for inflation,
dark matter and dark energy at one go.2

The main feature of WI, which distinguishes it from the
standard inflationary paradigm, is the dissipative effects of
the inflaton field during inflation. The presence of dis-
sipation makesWI a rich dynamical system, whose stability
in the early Universe has been previously analyzed in the
literature [54–58]. However, a study of how a similar
analysis could be carried out when those dissipative effects
can extend up to the late times, is still largely missing. In the
unified model described in [52], dissipation effects are
effective even after the inflationary phase, and interactions
in the postinflationary epoch are motivated fully from theWI
picture. Though this might have similarities with models
describing interactions in the dark sector (see, e.g., the review
papers [59,60]), the model studied here is, however, much
more reminiscent of the WI idea, but extending it to
quintessential inflation models. Therefore, we will call the
late-time acceleration of this model as warm quintessential
dark energy model. The aim of this paper is to perform the
first study in the literature of the stability of the dynamical
system of this warm quintessential dark energy model.
We have organized this paper as follows. In Sec. II, we

discuss the model whose stability we want to determine in
this paper. In Sec. III, we discuss the dynamical system
produced by the model and show that it indeed accounts for
four different phases of evolution: (a) inflation; (b) radiation
domination; (c) matter domination; and (d) dark energy
domination for some generic choices of parameters.

In Sec. IV, we qualitatively show that the late-time
acceleration is an attractor solution of the model. In the
following section, Sec. V, we perform a rigorous dynamical
system analysis to study the stability of the system depend-
ing on different model parameters. In Sec. VI, we discuss
our main results and conclude. Finally, an Appendix is
included where we also study the stability of the slow-roll
trajectories in both early- and late-time epochs.

II. MODEL

In our model, the quintessential scalar field decays to
both radiation and matter energy densities. Here, we
propose the complete set of background equations involv-
ing the quintessential scalar field ϕ, the radiation fluid
energy density ρr and the matter energy density ρm, with
evolution equations as given, respectively, by

ϕ̈þ 3Hϕ̇þϒrϕ̇þϒmϕ̇þ V;ϕ ¼ 0; ð2:1Þ

ρ̇r þ 4Hρr ¼ ϒrϕ̇
2; ð2:2Þ

ρ̇m þ 3Hρm ¼ ϒmϕ̇
2; ð2:3Þ

where V;ϕ is the field derivative of the quintessential scalar
potential, ϒr describes the energy exchange between the
quintessential scalar field and radiation energy density, ϒm
describes the energy exchange between the quintessential
scalar field and matter energy density and the Hubble
parameter is given by the Friedmann equation,

H2 ≡ ȧ2

a2
¼ 1

3M2
Pl

�
ϕ̇2

2
þ V þ ρr þ ρm

�
; ð2:4Þ

with a the scale factor and MPl ≡ ð8πGÞ−1
2 ≃ 2.44 ×

1018 GeV is the reduced Planck mass and G is
Newton’s gravitational constant.
We parametrize the dissipation terms ϒr and ϒm in the

following generic forms, which are motivated from many
early works on WI and also discussed in Ref. [52],

ϒr ¼ Crρ
c=4
R ϕpM1−c−p; ð2:5Þ

and

ϒm ¼ Cmρ
k=4
m ϕqM1−k−q; ð2:6Þ

where Cr and Cm are dimensionless constants and M is
some appropriate (constant) scale with mass dimension.
Hence, ½ϒr� ¼ M and ½ϒm� ¼ M.3 The various powers

2A double-field warm inflation model was also recently been
proposed [53], where inflation, dark matter and dark energy can
be realized in a single setup.

3Note that in principle we do not need to have both dissipation
terms with the same mass scale and we could define them with
different scales. But any difference between these scales can be
absorbed in the dimensionless constants Cr and Cm anyway.
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c, p, k, q model the different dependencies that these
dissipation coefficients might have with the quintessence
background field, radiation energy density, and matter
energy density. These parameters are not all arbitrary
and the stability of the dynamical system can put strong
bounds on them, as we will see. In particular, the stability of
the system under slow-roll demands that jcj < 4 and jkj < 4
(see the Appendix for details).
Appropriate choices of dependencies on ϕ, ρr and ρm can

be made in Eqs. (2.5) and (2.6) such that we can have, for
example, the dissipation coefficient ϒr, given in Eq. (2.5),
dominating during inflation, thus leading to a WI regime,
while ϒm, given in Eq. (2.6), only dominates at late times
[52]. While ϒm can be subdominant at primordial times, it
can help in setting an initial abundance for the matter
density. Given appropriate parameters Cm and M, we can
arrange for the matter-quintessence scalar field to display a
similar behavior found, e.g., in the case of nonminimal
couplings of the scalar field to matter [61], thus modeling
different energy exchange forms between the dark sector
components. The matter-quintessence scalar field interac-
tion term, under appropriate choices of parameters, can also
help in providing an extra friction force on the quintessence
scalar field and, thus, help making ϕ acquire a negative
equation of state at late times, signaling the beginning of
the dark energy (quintessence) domination epoch and even
making scalar fields with steeper potentials more likely to
work as a quintessence field, as we will see later.

III. THE DYNAMICAL SYSTEM

The evolution equations (2.1)–(2.3) can be brought into a
form appropriate for a dynamical system analysis by
defining the variables [62]

x ¼ ϕ̇ffiffiffi
6

p
MPlH

; ð3:1Þ

y ¼
ffiffiffiffi
V
3

r
1

MPlH
; ð3:2Þ

Ωr ¼
ρr

3M2
PlH

2
; ð3:3Þ

Ωm ¼ ρm
3M2

PlH
2
: ð3:4Þ

Note that from the above definitions, we have that

x2 þ y2 ¼ Ωϕ; ð3:5Þ

is the fraction in energy density of the quintessence scalar
field. From Eqs. (3.1)–(3.4), the Friedmann equation (2.4)
becomes equivalent to

1 ¼ x2 þ y2 þ Ωr þ Ωm: ð3:6Þ

The evolution equations (2.1)–(2.3) can then be brought
into a dynamical system form as

x0 ¼ −
3xð1 − x2Þ

2
þ Ωrx

2
− 3xðQm þQrÞ

þ
ffiffiffi
3

2

r
λy2 −

3xy2

2
; ð3:7Þ

y0 ¼ 3y
2
þ 3x2y

2
−
3y3

2
−

ffiffiffi
3

2

r
xyλþ yΩr

2
; ð3:8Þ

λ0 ¼ −
ffiffiffi
6

p
xð−1þ ΓÞλ2; ð3:9Þ

Ω0
r ¼ 6x2Qr −Ωr þ 3x2Ωr − 3y2Ωr þ Ω2

r ; ð3:10Þ

where, in the above equations, a prime means derivative
with respect to the number of e-folds, 0 ≡ d=dN, where
dN ¼ Hdt, while Qr and Qm are the dissipation ratios,
defined as

Qr ¼
ϒr

3H
; ð3:11Þ

and

Qm ¼ ϒm

3H
: ð3:12Þ

In Eqs. (3.7)–(3.10) we have also introduced the variable λ,
which is defined as

λ ¼ −MPl
V;ϕðϕÞ
VðϕÞ ; ð3:13Þ

and Γ in Eq. (3.9) is defined as

Γ ¼ VðϕÞV;ϕϕðϕÞ
V2
;ϕðϕÞ

: ð3:14Þ

Note that the Eqs. (3.7)–(3.10) are general and valid in
principle for any potential. To complete the dynamical
system, we also need the evolution equations for the
dissipation ratios Qm and Qr and to fix the form of the
inflaton potential VðϕÞ. For definiteness, let us consider
the generalized exponential inflaton potential of the form,

VðϕÞ ¼ V0e−αðϕ=MPlÞn ; ð3:15Þ

where V0 is the normalization of the potential, α is a
dimensionless constant here taken as positive and n > 1 for
potentials steeper than the simple exponential potential.
This form of potential was originally proposed in Ref. [63]
and considered also in Refs. [64–67] for quintessential
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inflation in the cases of absence of dissipation (i.e.,
radiation production). The first use of this potential in
the context of warm quintessential inflation was in
Ref. [52] and later also considered in Refs. [68,69].
Studies involving observational predictions for this model
in the context of WI were developed in Refs. [70,71].
From the potential (3.15), we then obtain that

Γ ¼ 1 −
ðn − 1Þ
nα

�
λ

nα

� n
1−n
; ð3:16Þ

and

λ ¼ nα

�
ϕ

MPl

�
n−1

: ð3:17Þ

Note that for n ≠ 1, ϕ is related to λ by

ϕ ¼ MPl

�
λ

nα

� 1
n−1
: ð3:18Þ

From the above definitions, the evolution equations for Qm
and Qr can be expressed, respectively, as

Q0
m ¼ 3ð2 − kÞQm

4
þ 3ðx2 − y2ÞQm

2

þ
ffiffiffi
6

p
qx

�
nα
λ

� 1
−1þn

Qm þQmΩr

2

−
3kx2Q2

m

2ð−1þ x2 þ y2 þΩrÞ
; ð3:19Þ

Q0
r ¼

3ð1 − 2cÞQr

2
þ 3ðx2 − y2ÞQr

2

þ
ffiffiffi
6

p
px

�
nα
λ

� 1
−1þn

Qr þ
3cx2Q2

r

2Ωr
þQrΩr

2
: ð3:20Þ

In writing the system of equations Eqs. (3.7)–(3.10),
(3.19), and (3.20), we have considered the fraction in
energy density in matter as equivalently to the first integral
of Eq. (2.3) and which is determined through the constraint
Eq. (3.6). The system of equations Eqs. (3.7)–(3.10), (3.19)
and (3.20), together with Eq. (3.6), hence, form a complete
set of equations describing the dynamics of the system.
In Ref. [52], the evolution equations (2.1)–(2.3) were

solved assuming a dissipation coefficient ϒr given by

ϒr ¼ Crρ
3=4
r =ϕ2; ð3:21Þ

while ϒm was taken to be of the form ϒm ¼ ϒm;1 þϒm;2,
where

ϒm;1 ¼ Cmρ
3=4
m =ϕ2; ð3:22Þ

ϒm;2 ¼ M2=ρ1=4m : ð3:23Þ

Let us show that in this case, the dynamical system given by
Eqs. (3.7)–(3.10), (3.19), and (3.20) lead to the same
dynamics as shown in Ref. [52]. In Fig. 1 we show the
result obtained by the solution of the dynamical system for
the energy density fractions Ωϕ;Ωr, and Ωm and which is
obtained by a representative example of initial conditions.
We see that the system of equations (3.7)–(3.10), (3.19),
and (3.20) produce an evolution that is initially charac-
terized by an accelerated inflationary regime, when Ωϕ

dominates. This phase smoothly goes to a radiation
dominated regime when Ωr dominates. Towards the end
of the evolution, it displays a short matter dominated phase,
before Ωϕ becomes the dominating component again in the
future, which corresponds to a dark energy phase.

FIG. 1. The energy density ratios as a function of the number
of e-folds for an inflaton potential with constants n ¼ 3
and α ¼ 0.015. The initial conditions considered were such
that xð0Þ ¼ 0.0025;Ωmð0Þ ¼ 10−50; Ωrð0Þ ¼ 5.8× 10−10; λð0Þ ¼
6.1× 10−3, while for the dissipation coefficient ratios we have
considered Qrð0Þ ¼ 10−4, Qm;1ð0Þ ¼ 1.2 × 10−40 for the ratio
corresponding to the dissipation coefficient ϒm;1 and Qm;2ð0Þ ¼
1.7 × 10−65 for the dissipation coefficientϒm;2 (the combination of
the two dissipation coefficients were considered such to reproduce
the analogous case of Ref. [52]).

FIG. 2. The evolution of the dissipation ratios Qr, Qm;1,
and Qm;2.
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In Fig. 2, we give the evolution of the dissipation ratios
Qr, Qm;1, and Qm;2 obtained from Eqs. (3.21)–(3.23). Note
that right after inflation both Qr and Qm;1 drop similarly,
while Qm;2 is enhanced after inflation, during the radiation
era, while flattening at late times. This shows that different
choices of the powers in Eqs. (2.5) and (2.6), can lead to
different evolutions during different epochs in the Universe.

IV. LATE TIME DYNAMICS:
A QUALITATIVE ANALYSIS

Analyzing the complete dynamical system made of the
Eqs. (3.7)–(3.10), (3.19), and (3.20) is too complicated
given that it is a six-dimensional order system. However,
we can still get valuable information looking at snapshots
of the system on a given plane. The most interesting plane
to look at is the plane ðx; yÞ, which gives us information
about the behavior of the trajectories passing through the
accelerated region. This is of particular importance when
studying the late-time dynamics of the system, where we
want to know about the ability of the system in reaching a
DE dominated regime. We perform this analysis next, and
leave the full dynamical system analysis of the late-time
dynamics for the next section.
Since we are interested in the late-time behavior of the

system, we can ignore the radiation related terms in
Eqs. (3.7) and (3.8), which can then be approximated as

x0 ≃ −
3xð1 − x2Þ

2
− 3xQm þ

ffiffiffi
3

2

r
λy2 −

3xy2

2
; ð4:1Þ

y0 ≃
3y
2
þ 3x2y

2
−
3y3

2
−

ffiffiffi
3

2

r
xyλ; ð4:2Þ

with the constraint that

x2 þ y2 ≤ 1; ð4:3Þ

and the trajectories in the plane ðx; yÞ are then constrained
to be in the semi-circle defined by Eq. (4.3) and y ≥ 0
(meaning positive potential energy). At fixed values of λ
and Qm, the fixed points derived from Eqs. (4.1) and (4.2)
are given by

P1 ¼ ð0; 0Þ; ð4:4Þ

P2 ¼ ð−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Qm

p
; 0Þ; ð4:5Þ

P3 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Qm

p
; 0Þ; ð4:6Þ

P4 ¼ ðx4; y4Þ; ð4:7Þ

where

x4 ¼
3þλ2þ3Qm

2
ffiffiffi
6

p
λ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4þ6λ2ð−1þQmÞþ9ð1þQmÞ2

p
2

ffiffiffi
6

p
λ

;

ð4:8Þ

y4 ¼
�
6λ2 − λ4 þ 9ð1þQmÞ2

12λ2
þ ½λ2 − 3ð1þQmÞ�

12λ2

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4 þ 6λ2ð−1þQmÞ þ 9ð1þQmÞ2

q �1
2

: ð4:9Þ

It can be checked that both points P2 and P3 are repelling
nodes, while P1 is a saddle. The point P4 is an attractor.
It is useful to look at the asymptotic value for P4 for large

ϕ. From Eq. (3.17) we then have that λ → 0. Expanding the
point P4 for λ ≪ 1, we obtain that its coordinates in the
plane ðx; yÞ satisfy

x4 ∼
λffiffiffi

6
p ð1þQmÞ

þOðλ3Þ; ð4:10Þ

and

y4 ∼ 1 −
ð1þ 2QmÞλ2
12ð1þQmÞ2

þOðλ4Þ: ð4:11Þ

Thus, the point P4 is an attractor for the trajectories leading,
asymptotically, to a dark energy accelerating regime, with
the potential energy of the quintessence field dominating at
later times.
Note that the larger is Qm, the easiest is to enter in the

accelerating regime, with x4 → 0 and y4 → 1 for Qm ≫ 1
and λ ≪ 1. Physically, the dissipation term ϒm acts as a

FIG. 3. The region of parameters λ and Qm allowing for
acceleration at late times.
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friction term slowing down the quintessence field at later
times and making it easier to enter the accelerating
regime ä > 0.
The region in the parameters Qm and λ for which the

point P4 is in the accelerating regime is illustrated in Fig. 3.
Note that the larger values of Qm allow for steeper
potentials to work as quintessence fields (i.e., allowing
for later accelerated regimes). The boundary of the accel-
erating and nonaccelerating regions shown in Fig. 3 is
given by the condition x24 − y24 ¼ −1=3, i.e., where the
equation of state is exactly ω ¼ −1=3. It is found to be
given by

λaccel ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 6Qm

p
: ð4:12Þ

In Fig. 4, we give snapshots of the phase space trajectories
of the dynamical system in the plane ðx; yÞ for different
values of parameters. The green shaded region denotes the
accelerating region, the blue shaded region is the kination
region, where the kinetic energy of the quintessence field
dominates, and which satisfies x2 > 1=2. The gray region is
the matter dominated region.
Note that for Qm > 0, the points P2 and P3 move away

from the boundary of the region shown in Fig. 4. This is

FIG. 4. Snapshots of the phase space trajectories of the dynamical system in the plane ðx; yÞ for different values of parameters.
Panel a: Qm ¼ 0, λ ¼ λaccel=10; Panel b: Qm ¼ 1, λ ¼ λaccel=10; Panel c: Qm ¼ 1, λ ¼ λaccel=2; Panel d: Qm ¼ 1, λ ¼ λaccel;
Panel e: Qm ¼ 1, λ ¼ 3λaccel.
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why they are not shown in Fig. 4 panels (b)–(e). Since P2

and P3 lie in the kination regions, the trajectories then
emanate from the blue region. Note also that as λ increases
(for a fixed value of Qm), the point P4 moves from the
accelerating region and towards the point P1 for matter
domination. It is interesting to look at the corresponding
value of λaccel from the example given in Fig. 1. At later
times, the total dissipation ratioQm ¼ Qm;1 þQm;2 flattens
with a value Qm ≃ 104. From Eq. (4.12), the corresponding
value for λaccel is then λaccel ∼ 240. The value of λ at later
times in the case of the initial conditions used in the
example of Fig. 1 is λf ∼ 22 ≪ λaccel. Thus, the system at
later times goes to the accelerating dark energy dominated
regime as expected.

V. LATE TIME DYNAMICS: FULL DYNAMICAL
SYSTEM ANALYSIS

The quintessential scalar field predominantly dissipates
to matter energy density during the late times as it is evident
from Fig. 1. Therefore, for the late-time dynamics, one can
ignore the contribution of the radiation bath (Ωr ≈ 0),
which means that we can also ignore the equations of
Ωr and Qr as given in Eqs. (3.10) and (3.20), respectively.
Hence, the previous dynamical system of six equations now
reduces to a dynamical system of four equations:

x0 ¼ −
3xð1 − x2Þ

2
− 3xQm þ

ffiffiffi
3

2

r
λy2 −

3xy2

2
; ð5:1Þ

y0 ¼ 3y
2
þ 3x2y

2
−
3y3

2
−

ffiffiffi
3

2

r
xyλ; ð5:2Þ

Q0
m ¼ 3ð2 − kÞQm

4
þ 3ðx2 − y2ÞQm

2

þ
ffiffiffi
6

p
qx

�
nα
λ

� 1
−1þn

Qm −
3kx2Q2

m

2ð−1þ x2 þ y2Þ ; ð5:3Þ

λ0 ¼
ffiffiffi
6

p
xðn − 1ÞðαnÞ 1

n−1λ
n−2
n−1; ð5:4Þ

and the constraint equation given in Eq. (3.6) becomes

1 ¼ x2 þ y2 þ Ωm: ð5:5Þ

We define the equation of state of the total fluid (including
both Ωm and Ωϕ) as

ωtot ≡ pϕ þ pm

ρϕ þ ρm
¼ x2 − y2: ð5:6Þ

Before analyzing the set of autonomous equations, we
note that, though x and y are bounded between -1 to 1 by

the constraint given in Eq. (5.5), λ and Qm are unbounded
and can take values between 0 to ∞. To obtain dynamical
parameters which are bounded, unlike λ and Qm, it
becomes convenient to introduce two new variables z
and ξ that are defined as

z ¼ λ
1

n−1

1þ λ
1

n−1
; ð5:7Þ

ξ ¼ Qm

1þQm
; ð5:8Þ

which make z and ξ range from 0 < z < 1 and 0 < ξ < 1.
However, we found that the transformed dynamical set of
equations in terms of ðx; y; z; ξÞ displays only the trivial
critical point ð0; 0; z; 0Þ, while the other possible critical
points, including any accelerating solutions, remain hidden.
This seems to be a drawback of the choice of variables
made, but that can be overcame as follows. To work around
the above mentioned difficulty, we first redefine z as

z ¼ 1 − λ
1

n−1

λ
1

n−1
; ð5:9Þ

which now ranges from −1 < z ≤ 0 for values 1 ≤ λ < ∞.
Here we note that for values of λ smaller than unity, z again
becomes unbounded which we do not want. That is why we
restrict the lower value of λ to 1.
Next, we can make a nontrivial transformation of the

variables z and ξ to two other parameters u and v as

u ¼ ξ − z
ξþ z

; v ¼ ξ − z
ξ2

; ð5:10Þ

such that

ξ ¼ 2u
ð1þ uÞv ; z ¼ 2uð1 − uÞ

ð1þ uÞ2v : ð5:11Þ

The ξ and z variables ranges (which are, respectively, given
by 0 < ξ < 1 and −1 < z ≤ 0) put constraints on the u and
v values as

u ≤ −1 ⇒ v >
2ðu − 1Þu
ðuþ 1Þ2 ;

u ≥ 1 ⇒ v >
2u

uþ 1
: ð5:12Þ

Therefore, in terms of the four variables ðx; y; u; vÞ, we get
the set of autonomous equations as follows:
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x0 ¼ 3y2ffiffiffi
6

p
�

vð1þ uÞ2
vð1þ uÞ2 þ 2uð1 − uÞ

�
n−1

þ 3

2
x

�
−2 −

4xu
vð1þ uÞ − 2u

þ 1þ x2 − y2
�
; ð5:13Þ

y0 ¼ −xy
ffiffiffi
6

p

2

�
vð1þ uÞ2

vð1þ uÞ2 þ 2uð1 − uÞ
�

n−1
þ 3y

2
ð1þ x2 − y2Þ; ð5:14Þ

u0 ¼ 1

4

�
3kx2

2Ωm

4u2ð1 − uÞ
v

þ 2uð1 − uÞ
v

ðð1þ uÞv − 2uÞ
�
−3k
4

þ q
ffiffiffi
6

p
xðαnÞ 1

n−1

ð1þ uÞ2v ðð1þ uÞ2vþ 2u − 2u2Þ

þ 3

2
ð1þ x2 − y2Þ

�
þ

ffiffiffi
6

p
xðð1þ uÞ2vþ 2uð1 − uÞÞ2ðαnÞ 1

n−1

ð1þ uÞv
�
; ð5:15Þ

v0 ¼ 3kx2

2Ωm
uþ ðvð1þ uÞ − 2uÞ

2

�
−3k
4

þ q
ffiffiffi
6

p
xðαnÞ 1

n−1
ðð1þ uÞ2vþ 2u − 2u2Þ

ð1þ uÞ2v þ 3

2
ð1þ x2 − y2Þ

�

þ
ffiffiffi
6

p
xðαnÞ 1

n−1
ðð1þ uÞ2vþ 2uð1 − uÞÞ2

4uð1þ uÞ2 −
6kx2

Ωm

u
ð1þ uÞ −

2ðð1þ uÞv − 2uÞ
ð1þ uÞ

�
−
3k
4
þ q

ffiffiffi
6

p
xðαnÞ 1

n−1

×
ðð1þ uÞ2vþ 2u − 2u2Þ

ð1þ uÞ2v þ 3

2
ð1þ x2 − y2Þ

�
; ð5:16Þ

where Ωm ¼ 1 − x2 − y2 from Eq. (5.5). It is to note that
the dynamical system analysis with steeper exponential
potentials (n > 1) is a tasking job, as has been pointed out
in [67]. The linear stability analysis [62] breaks down in
such cases as the real parts of some of the eigenvalues turn
out to be zero. In [67], the authors used the center manifold
theorem to analyze the stability of a system with steep
exponential potentials. However, for the present problem
we found that with dissipation of the scalar field to the
matter sector, the system becomes too intricate to be
analyzed employing the center manifold theorem tech-
nique. Therefore, we chose the nontrivial parametrization,
given in Eq. (5.10), which enables us to do the stability
analysis of the system with dissipation.
The nontrivial transformation in Eq. (5.10) has created a

complicated structure of the autonomous system, making it
difficult to identify the critical points analytically. Therefore,
we shall compute the fixed points by assuming some
representative values of the model parameters ðk; q; n; αÞ.
The advantage of this nontrivial transformation is that we can
find nontrivial fixed points and the linearization technique
[62] does not break down, allowing us to find nonzero
eigenvalues. We select the fixed points based on the con-
straints 0 ≤ x2 þ y2 ≤ 1 and 0 < ξ < 1;−1 < z ≤ 0.
Before we proceed to find the fixed points and their

corresponding eigenvalues, we note that in Eqs. (5.15) and
(5.16), the term x2=Ωm is discontinuous at the point
ðx ¼ 0; y ¼ 1Þ,

lim
x→0
y→1

x2

1 − x2 − y2
¼ 0; lim

y→1
x→0

x2

1 − x2 − y2
¼ −1: ð5:17Þ

However, this discontinuity can be removed by multiplying
the above expression by x. Therefore, in the autonomous
equations this can be achieved by redefining the time
variable dN → xdN. This redefinition does not change the
dynamics of the system and it removes the discontinuity.
Therefore, the structure of the new autonomous system
becomes

dx⃗
dN

¼ fðx⃗Þ × x; ð5:18Þ

where x⃗ ¼ fx; y; u; vg. This set of autonomous equations is
now suitable for finding completely all the critical points.
The critical points for four different example cases have
been evaluated in Table I. To determine the critical points
and for illustration, we have fixed the parameters n and α of
the potential as n ¼ 3 and α ¼ 0.015 as have been
considered in Ref. [52], while four different representative
choices for k and q are made. The motivation for the choice
of parameters come from the fact, as shown in Refs. [52]
and [70], that the type of runaway exponential potential that
we have studied here satisfies well the observations (e.g.,
the tensor-to-scalar ratio r and spectral tilt ns) for the cases
for which the power n in the potential is equal to or larger
than 2. Hence, we have fixed in our examples the case
n ¼ 3 as a representative case, ensuring that the warm
inflationary dynamics can correctly satisfy the Planck
results for r and ns. The same reason motivated our
different choices for the constant α in the potential, while
the choices for k and q, that controls the dissipation in the
dark energy regime, were chosen in analogy to the similar
powers (c and p) appearing in the dissipation coefficient
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during the inflationary regime. We discuss the stability of
these four chosen cases below.

A. Case I: n= 3; k= 3; q= − 2; α= 0.015
Firstly, we consider the model with k ¼ 3 and q ¼ −2,

which corresponds to the dissipation coefficient ϒm;1 (and
therefore Qm;1) given in Eq. (3.22). According to Fig. 2,
this dissipation coefficient is responsible for the decay of
the quintessence field into matter during the early phases of
the evolution. In this case, we found the five critical points
as given in Table I.
The critical points M1 and M2 indicate accelerating

solutions with equation of state given by ωtot ¼ −0.92 and
ωtot ¼ −0.56, respectively. In these cases, the scalar field
density dominates over the matter energy density. However,
we found both these points to be saddles. The critical points
M3 and M4 indicate matter domination, ωtot ∼ 0, with
matter density dominating over the scalar field density.
Both of these points turn out to be saddles too. At the fifth
critical point, M0, the eigenvalues turn out to be zero, the
conventional linearization technique is no longer appli-
cable. Hence, the stability for this critical point has to be
determined numerically by varying the initial conditions. If
x ¼ 0 initially, ðy; u; vÞ can take any value maintaining the
constraint relations 0 ≤ x2 þ y2 ≤ 1, 0 < ξ < 1, and
−1 < z ≤ 0. We then evolve the system numerically and
the evolution of the dynamical parameters ðx; y; u; vÞ is
depicted in Fig. 5. We show in this figure that, even if we
choose the initial values away from the critical point, they
converge to ðx; y; u; vÞ ≃ ð0; 1; 1.6; 1.2Þ as time goes by,
ensuring a stable solution at late times. We plot the
evolution of the cosmological parameters ωtot, Ωϕ, and
Ωm for this critical point in Fig. 6. It is seen thatωtot tends to

−1 steadily at later times and the energy density is fully
dominated by the scalar field density Ωϕ. Figures 5 and 6
confirm that the critical point M0 is stable and yields an
accelerating solution with ωtot ∼ −1.

B. Case II: n= 3; k = − 1; q= 0; α= 0.015
Here, we consider for illustration the model with k ¼ −1

and q ¼ 0, which correspond to the dissipation coefficient
ϒm;2 (and thereforeQm;2) given in Eq. (3.23). According to

TABLE I. Critical points of the redefined autonomous system.

Points ðx; y; u; vÞ ωtot Ωϕ Ωm Stability

Case I: n ¼ 3; k ¼ 3; q ¼ −2; α ¼ 0.015
M0 ð0; any; any; anyÞ −y2 y2 1 − y2 Stable
M1 ð−0.06; 0.96; 1.44; 1.19Þ −0.92 0.92 0.08 Saddle
M2 (0.34, 0.82, 2.02, 2.69) −0.56 0.79 0.21 Saddle
M3 (0.17, 0.23, 7.11, 2.01) −0.06 0.12 0.88 Saddle
M4 ð−0.16; 0.04; 3.59; 1.93Þ 0.02 0.03 0.97 Saddle

Case II: n ¼ 3; k ¼ −1; q ¼ 0; α ¼ 0.015
M0 ð0; any; any; anyÞ −y2 y2 1 − y2 Stable

Case III: n ¼ 3; k ¼ 0; q ¼ 0; α ¼ 0.001
M0 (0.20, 0.84, 1.99, 1.45) −0.66 0.74 0.26 Stable
M1 (0.39, 0.87, 1.99, 4.33) −0.60 0.91 0.09 Saddle

Case IV: n ¼ 3; k ¼ 3; q ¼ 0; α ¼ 0.015
M0 ð0; any; any; anyÞ −y2 y2 1 − y2 Stable
M1 (0.38, 0.86, 1.99, 3.32) −0.59 0.88 0.12 Saddle
M2 (0.09, 0, 1.99, 1.66) 0.01 0.01 0.99 Saddle
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FIG. 5. Numerical evolution of the autonomous equations for
the critical point M0 with k ¼ 3; q ¼ −2; n ¼ 3; α ¼ 0.015. The
dynamical parameters x, y, u, and v have been evolved numeri-
cally with ten different initial conditions. The ten different
colored lines in each of these panels represent the evolution of
these parameters with these varied initial conditions. The initial
values of each of these parameters can be read from each of the
plots at N ¼ 0.
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Fig. 2, this dissipation coefficient is responsible for the
decay of the quintessence field into matter during late
times. We found only one critical pointM0 for this case. As
before, the eigenvalues for this critical point turn out to be
zero. Hence, we then resort again to a numerical analysis of
the stability for this point. Initially, ðy; u; vÞ can take any
value maintaining the constraint relations 0 ≤ x2 þ y2 ≤ 1,
0 < ξ < 1, and −1 < z ≤ 0, with fixed x ¼ 0. We evolve
the system numerically and the corresponding evolution of
the dynamical parameters ðx; y; u; vÞ is depicted in Fig. 7.
We see that although x, y, and v converge at late times, u
does not converge to a single value. Still, the system
does not diverge and, thus, shows stability at late times.

To establish the stability of this point, we further plot the
evolution of the cosmological parameters ωtot, Ωϕ, and Ωm

for this critical point in Fig. 8. We see from the result shown
in that figure that ωtot steadily tends to -1 for any initial
condition, with scalar field density dominating over matter
energy density (Ωϕ ∼ 1). Both Figs. 7 and 8 show that the
critical point M0 is stable and yields an accelerating
solution with ωtot ∼ −1.

C. Case III: n= 3, k= 0, q = 0, α= 0.001

Here, we consider the model with a constant dissipation,
ϒm ¼ constant, which is obtained by setting k ¼ q ¼ 0.
Note that the x2=Ωm term, which leads to the discontinuity
in Eqs (5.15) and (5.16), comes with the factor k. Thus, by
setting k ¼ 0, we no longer face the discontinuity in the
autonomous equations and Eqs. (5.13)–(5.16) yield the
critical points for this case. We found no critical point for
α ¼ 0.015. However, after lowering the value to α to 0.001,
we found two critical points, both of them indicating
accelerating solutions. While M1, with ωtot ¼ −0.6, is a
saddle point,M0 (with ωtot ¼ −0.66) turns out to be stable.
We did not find any stable accelerating point with ωtot ∼ −1
for this case.

D. Case IV: n= 3, k= 3, q= 0, α= 0.015

Finally, we consider the model with k ¼ 3 and q ¼ 0,
which yields a dissipation coefficient like ϒm ∝ ρ3=4m . We
found three critical points for this case as shown in Table I.
The critical point M1 shows accelerating characteristics,
while M2 produces nonaccelerating behavior at which
matter energy density dominates. Both M1 and M2 turn
out to be saddle points. The critical point M0 is studied
numerically, like in the first two models. The stability of the
system has been evaluated numerically in Fig. 9. We see
that the parameters steadily converges to the values
ðx; y; u; vÞ ≃ ð0; 1; 1.6; 1.2Þ. We plot the evolution of the
cosmological parameters ωtot, Ωϕ, and Ωm for this critical
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FIG. 6. Evolution of cosmological parameters ðωtot;Ωϕ;ΩmÞ
corresponds to the critical point M0 with k ¼ 3; q ¼ −2; n ¼ 3;
α ¼ 0.015.
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FIG. 7. Numerical evolution of the autonomous equations for
the critical point M0 with k ¼ −1; q ¼ 0; n ¼ 3; α ¼ 0.015. The
dynamical parameters x, y, u, and v have been evolved numeri-
cally with ten different initial conditions. The ten different
colored lines in each of these panels represent the evolution of
these parameters with these varied initial conditions. The initial
values of each of these parameters can be read from each of the
plots at N ¼ 0.
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FIG. 8. Evolution of cosmological parameters ðωtot;Ωϕ;ΩmÞ
corresponds to the critical point M0 with k ¼ −1; q ¼ 0; n ¼ 3;
α ¼ 0.015.
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point in Fig. 10, which shows that the model can produce a
stable accelerating solution with ωtot ∼ −1.

VI. DISCUSSION AND CONCLUSION

In this paper, we have studied a phenomenological
model for quintessential inflation that is motivated from
warm inflation. At early times, the quintessential scalar
inflaton field decays into radiation during warm inflation,
while at late times it is allowed to decay into matter, thus
realizing a model of dissipative interaction in the dark
sector at late times. The construction also makes use of a

generalized exponential potential able to realize both
phases of accelerated expansion, at early- and late-times.
The full dynamical system was analyzed, with a focus on
the behavior of the dynamical system at late times. The
analysis was exemplified by both analytical and numerical
results and for different illustrative values of parameters.
The analysis performed here extents and generalizes the
results originally obtained in Ref. [52], where a version of
this model was first proposed. The results obtained dem-
onstrate the viability of the model as a quintessential
inflation model and in which stable solutions can be
obtained. In addition, we have also analyzed the stability
of the slow-roll solutions at both early- and late-times,
which allowed us to put some constraints in the model
parameters.
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APPENDIX: SLOW-ROLL ANALYSIS
OF THE DYNAMICAL SYSTEM

In this section, we shall consider the stability of the slow-
roll approximated dynamical system of the warm quintes-
sential dark energy model following [55]. From the set of
equations (2.1)–(2.3), we see that there are three dynamical
quantities ϕ, ρr, and ρm. We express the radiation energy
density ρr in terms of the entropy density s as ρr ¼
ð3=4ÞsT and, thus, the above set of equations become

ϕ̈þ 3Hð1þQr þQmÞϕ̇þ V;ϕ ¼ 0;

Tṡþ 3HTs ¼ 3HQrϕ̇
2;

ρ̇m þ 3Hρm ¼ 3HQmϕ̇
2: ðA1Þ

Under the slow-roll conditions, this set of background
equations then reduce to

3Hð1þQr þQmÞϕ̇þ V;ϕ ¼ 0;

Ts ¼ Qrϕ̇
2;

ρm ¼ Qmϕ̇
2: ðA2Þ

The leading order slow-roll parameters in this model
are [55]
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FIG. 9. Numerical evolution of the autonomous equations for
the critical point M0 with k ¼ 3, q ¼ 0, n ¼ 3, α ¼ 0.015. The
dynamical parameters x, y, u, and v have been evolved numeri-
cally with ten different initial conditions. The ten different
colored lines in each of these panels represent the evolution of
these parameters with these varied initial conditions. The initial
values of each of these parameters can be read from each of the
plots at N ¼ 0.
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FIG. 10. Evolution of cosmological parameters ðωtot;Ωϕ;ΩmÞ
corresponds to the critical point M0 with k ¼ 3, q ¼ 0, n ¼ 3,
α ¼ 0.015.
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ϵ ¼ 1

16πG

�
V;ϕ
V

�
2

;

η ¼ 1

8πG

V;ϕϕ
V

;

κ ¼ 1

8πG

V;ϕ
ϕV

;

β ¼ 1

8πG

V;ϕ Γr;ϕ
VΓr

¼ pκ;

γ ¼ 1

8πG

V;ϕ Γm;ϕ
VΓm

¼ qκ;

δ ¼ TV;ϕT
V;ϕ

: ðA3Þ

Here, we have defined an extra slow-roll parameter γ in
connection with the dissipation to the matter energy
density, which is in general not present in standard WI
models.
We find it convenient to change the independent variable

from cosmic time t to the inflaton field ϕ as a clock in the
equations of motion. We also define u≡ ϕ̇ and, thus,
d
dt ¼ u d

dϕ. Note that this variable u is different from the
dynamical variable u we defined previously in Eq. (5.10).
We also redefine ρm ≡ w. Then, the set of equations given
in Eq. (A1) can be written as

u0 ¼ −3H − Γr − Γm − V;ϕ u−1 ≡ fðu; s; wÞ;
s0 ¼ −3Hsu−1 þ T−1Γru≡ gðu; s; wÞ;
w0 ¼ −3Hwu−1 þ Γuu≡ hðu; s; wÞ; ðA4Þ

where prime denotes derivative with respect to ϕ.
Therefore, the background set of equations can be com-
pactly written as

x0 ¼ FðxÞ; ðA5Þ

where

x≡
0
B@

u

s

w

1
CA: ðA6Þ

We take a background x̄, which satisfies the slow-roll
equations, Eq. (A2). Then, the linearized perturbations
satisfy the equations

δx0 ¼ Mðx̄Þδx − x̄; ðA7Þ

where the M matrix is defined as

M ¼ ∂ðf; g; hÞ
∂ðu; s; wÞ

				
u¼ū;s¼s̄;w¼w̄

: ðA8Þ

We find the matrix elements as

∂f
∂u

¼ H
u

�
−3ð1þQr þQmÞ −

ϵ

ð1þQr þQmÞ2
�
≡A;

∂f
∂s

¼ H
s

�
−cQr −

Qrϵ

ð1þQr þQmÞ2

þδð1þQr þQmÞ
�
≡ B;

∂f
∂w

¼ H
w

�
−
3k
4
Qm −

Qmϵ

ð1þQr þQmÞ2
�
≡ E;

∂g
∂u

¼ Hs
u2

�
6 −

ϵ

ð1þQr þQmÞ2
�
≡ C;

∂g
∂s

¼ H
u

�
c − 4 −

Qrϵ

ð1þQr þQmÞ2
�
≡D;

∂g
∂w

¼ Hs
uw

�
−

Qmϵ

ð1þQr þQmÞ2
�
≡ F ;

∂h
∂u

¼ Hw
u2

�
6 −

ϵ

ð1þQr þQmÞ2
�
≡ G;

∂h
∂s

¼ Hw
su

�
−

Qrϵ

ð1þQr þQmÞ2
�
≡H;

∂h
∂w

¼ H
u

�
−3þ 3k

4
−

Qmϵ

ð1þQr þQmÞ2
�
≡ I : ðA9Þ

The matrix M can then be read as

M ¼

0
B@

A B E

C D F

G H I

1
CA: ðA10Þ

The sufficient condition for stability of this slow-roll
approximated system is that the M matrix varies slowly,
which is justified by having all the three eigenvalues of the
diagonalized matrix to be negative. If all the three eigen-
values of the diagonalized matrix are negative, then both
detðMÞ and trðMÞ should be negative as well. We find, at
leading order (ignoring slow-roll parameters),

detðMÞ ¼ 9

4
ððc − 4Þð4 − kÞ þ ðc − 4Þð4þ kÞQm

þðcþ 4Þðk − 4ÞQrÞ;

trðMÞ ¼ −7þ cþ 3k
4
− 3ð1þQm þQrÞ: ðA11Þ

Thus, to have detðMÞ negative, we find the conditions
−4 < c < 4 and −4 < k < 4. These conditions also make
trðMÞ negative. We can see it explicitly that these con-
ditions yield three negative eigenvalues of the matrix M in
three different physical situations:
(1) Strong dissipative inflationary regime (Qr ≫ 1

and Qm ≪ 1): During slow-roll, with these limits,

DAS, HUSSAIN, NANDI, RAMOS, and SILVA PHYS. REV. D 108, 083517 (2023)

083517-12



we find three eigenvalues of the matrix M as
λ1¼ð3=4Þð−4þkÞ, λ2¼2c−3Qr, and λ3¼−4−c.
We note that the three eigenvalues can be simulta-
neously negative only if −4<c< 4 and −4<k< 4.

(2) Weak dissipative inflationary regime (Qr ≪ 1 and
Qm ≪ 1): In this case, we find the three eigenvalues
as λ1 ¼ −3, λ2 ¼ −4þ c, and λ3 ¼ ð3=4Þð−4þ kÞ.
Here also, we note that the conditions to get all the
three eigenvalues negative are −4 < c < 4 and
−4 < k < 4.

(3) Quintessence driven dark energy dominated regime
(Qr ≪ 1 and Qm ≫ 1): Here the three eigenvalues
turn out to be λ1 ¼ −4þ c, λ2 ¼ ð3=2Þðk − 2QmÞ
and λ3 ¼ −ð3=4Þð4þ kÞ. Like in the previous two
cases, in this case too, the conditions to get all the three
eigenvalues negative are−4<c< 4 and−4 < k < 4.

Therefore, we see that for the system to be stabilized, the
form of the dissipative coefficientsϒr andϒm must involve
the powers c and k satisfying the conditions −4 < c < 4
and −4 < k < 4.
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