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The horizon of a flat Friedmann-Robertson-Walker (FRW) universe is considered to be dynamic when
the Hubble parameter H and the Hubble radius rH vary with time, unlike for de Sitter universes. To clarify
the thermodynamics on a dynamic horizon, the evolution of a dynamical Kodama-Hayward temperature
and Bekenstein-Hawking entropy on the horizon of a flat FRW universe is examined in a ΛðtÞ model
similar to time-varying ΛðtÞ cosmologies. The ΛðtÞ model includes both a power-law term proportional
to Hα (where α is a free variable) and the equation of state parameter w, extending a previous analysis
[N. Komatsu, Phys. Rev. D 100, 123545 (2019)]. Using the present model, a matter-dominated universe
(w ¼ 0) and a radiation-dominated universe (w ¼ 1=3) are examined, setting α < 2. Both universes tend to
approach de Sitter universes and satisfy the maximization of entropy in the last stage. The evolution of
several parameters (such as the Bekenstein-Hawking entropy) is similar for both w ¼ 0 and w ¼ 1=3,
though the dynamical temperature TH is different. In particular, TH is found to be constant when w ¼ 1=3
with α ¼ 1, although H and rH vary with time. To discuss this case, the specific conditions required for
constant TH are examined. Applying the specific condition to the present model gives a cosmological
model that can describe a universe at constant TH , as if the dynamic horizon is in contact with a heat bath.
The relaxation processes for the universe are also discussed.

DOI: 10.1103/PhysRevD.108.083515

I. INTRODUCTION

To explain the accelerated expansion of the late Universe
[1–3], various cosmological models have been proposed
[4–6], such as lambda cold dark matter (ΛCDM) models,
time-varying ΛðtÞ cosmology [7–11], bulk viscous cos-
mology [12–16], creation of CDM models [17–19], and
thermodynamic scenarios [20–32]. Most of the models
imply that our Universe finally approaches a Λ-dominated
universe, namely a de Sitter universe. The de Sitter universe
is in thermal equilibrium from the viewpoint of horizon
thermodynamics [33], which is closely related to black hole
thermodynamics [34–36].
The thermodynamic scenario and thermodynamics of the

universe have been extensively examined [37–64], espe-
cially based on the holographic principle [65]. In those
works, the Gibbons-Hawking temperature [33] is widely
used as an approximate temperature on the cosmological
horizon. The Gibbons-Hawking temperature is constant
during evolution of de Sitter universes, in which the Hubble
radius and the Hubble parameter are also constant. In
contrast, these three quantities vary with time in the late
Universe [3]. In this sense, the horizon of the de Sitter
universe is static, whereas horizons of other universes

(including our Universe) are generally considered to be
dynamic.
In fact, a dynamical temperature (called the Kodama-

Hayward temperature) has been proposed to describe the
temperature on dynamic horizons of black holes and
universes [66–68]. The dynamical temperature on the
cosmological horizon [68] is considered to be an extended
Gibbons-Hawking temperature and has been examined
from various viewpoints [69–72]. The dynamical temper-
ature should be suitable for discussing the thermodynamics
on a dynamic horizon. However, the evolution of the
dynamical temperature has not yet been sufficiently studied
in cosmological models.
We therefore examine the evolution of the dynamical

temperature TH on the horizon of a flat Friedmann-
Robertson-Walker (FRW) universe. For cosmological
models, we consider a ΛðtÞ model [58–61], similar to a
time-varying ΛðtÞ cosmology, which is a commonly used
model [62]. The ΛðtÞ model includes a power-law term
proportional toHα, where H is the Hubble parameter and α
is a free parameter [58]. Although this model has been used
for a matter-dominated universe (w ¼ 0) [60–62], a radi-
ation-dominated universe (w ¼ 1=3) has not yet been
examined, where w represents the equation of state param-
eter. Naturally, a dynamical temperature was not discussed
in the earlier works. Therefore, it is worth examining the*komatsu@se.kanazawa-u.ac.jp
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evolution of TH in matter- and radiation-dominated uni-
verses in the ΛðtÞ model. In addition, we recently found
that a universe with constant TH is related to a radiation-
dominated universe in a ΛðtÞ model. The constant TH
universe should extend the concept of horizons at constant
temperature and may provide new insights for the dis-
cussion of horizon thermodynamics.
In this context, we examine the horizon thermodynamics

of matter and radiation-dominated universes in the ΛðtÞ
model by observing the dynamical temperature TH and the
Bekenstein-Hawking entropy. The ΛðtÞ model used here
includes both a power-law term and the equation of state
parameter, extending previous analyses [58–62]. In addi-
tion, we study cosmological models that can describe a
universe at constant TH.
The remainder of the present article is organized as

follows. In Sec. II, horizon thermodynamics is reviewed.
The Bekenstein-Hawking entropy and the dynamical tem-
perature TH on the cosmological horizon are introduced. In
Sec. III, we introduce a ΛðtÞ model that includes both a
power-law term and the equation of state parameter. Using
the present model, we examine the evolution of the
Bekenstein-Hawking entropy and the dynamical temper-
ature TH. In Sec. IV, we study the specific conditions
required for constant TH on dynamic horizons. Based on
the specific conditions and the present model, we formulate
a cosmological model that can describe a universe at
constant TH. We also discuss the properties of the universe
in the formulated model. Finally, in Sec. V, the conclusions
of the study are presented.
In this paper, a flat FRW universe is considered and,

therefore, the Hubble horizon is equivalent to an apparent
horizon. An expanding universe is assumed as well.
Inflation of the early Universe and density perturbations
related to structure formations are not discussed.

II. HORIZON THERMODYNAMICS

The horizon of a universe is assumed to have an
associated entropy and an approximate temperature [21],
based on the holographic principle [65]. The entropy and
the temperature are introduced in this section.
We select the Bekenstein-Hawking entropy as the

associated entropy [34–36]. In general, the cosmological
horizon is examined by replacing the event horizon of a
black hole by the cosmological horizon [63,64]. This
replacement method has been widely accepted [20,38–48]
and we use it here.
Based on the form of the Bekenstein-Hawking (BH)

entropy, the entropy SBH on the Hubble horizon is written as

SBH ¼ kBc3

ℏG
AH

4
; ð1Þ

where kB, c,G, and ℏ are the Boltzmann constant, the speed
of light, the gravitational constant, and the reduced Planck

constant, respectively. The reduced Planck constant is
defined by ℏ≡ h=ð2πÞ, where h is the Planck constant
[58,59]. AH is the surface area of the sphere with a Hubble
horizon (radius) rH given by

rH ¼ c
H
; ð2Þ

where the Hubble parameter H is defined by

H ≡ da=dt
aðtÞ ¼ ȧðtÞ

aðtÞ ; ð3Þ

and aðtÞ is the scale factor at time t [58]. Substituting AH ¼
4πr2H into Eq. (1) and applying Eq. (2) yields

SBH ¼ kBc3

ℏG
AH

4
¼

�
πkBc5

ℏG

�
1

H2
¼ K

H2
; ð4Þ

where K is a positive constant given by

K ¼ πkBc5

ℏG
: ð5Þ

The normalized SBH is written as [61]

SBH
SBH;0

¼
�
H
H0

�
−2
; ð6Þ

where the subscript 0 represents the present time t0.
When a de Sitter universe is considered, rH and SBH are

constant during the evolution of the universe because H is
constant. In this sense, the horizon of the de Sitter universe
is considered to be static. Note that the scale factor for the
de Sitter universe varies with time [63],

a
a0

¼ exp½Hðt − t0Þ�; ð7Þ

where a0 represents the scale factor at the present time.
Next, we introduce an approximate temperature on the

Hubble horizon. Before introducing the dynamical temper-
ature, we will review the Gibbons-Hawking temperature.
The Gibbons-Hawking temperature TGH is given by [33]

TGH ¼ ℏH
2πkB

: ð8Þ

This equation indicates that TGH is proportional to H
and is constant during the evolution of de Sitter universes.
In fact, TGH is obtained from field theory in the de Sitter
space [33]. However, most universes are not pure de Sitter
universes in that their horizons are dynamic. A similar
dynamic horizon for black holes has been examined in the
works of Hayward [66] and Hayward et al. [67]. Hayward
suggested a dynamical temperature on a black hole horizon
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and clarified the relationship between the surface gravity
and the temperature on a dynamic apparent horizon for the
Kodama observer [66]. (The Kodama-Hayward temper-
ature was discussed in, e.g., the recent work of Muhsinath
et al. [72].)
Based on the works of Hayward et al., a dynamical

temperature on the cosmological horizon of an FRW
universe has been proposed [68] and examined from
various viewpoints [69–72]. When a flat universe is
considered, the apparent horizon is equivalent to the
Hubble horizon. Consequently, the dynamical temperature
TH for a flat FRW universe can be written as [69,70]

TH ¼ ℏH
2πkB

�
1þ Ḣ

2H2

�
; ð9Þ

where H > 0 is used for an expanding universe. For de
Sitter universes, TH reduces to TGH. That is, TH is
considered to be an extended version of TGH. For details
of TH, see, e.g., the works of Tu et al. [69,70].
In this study, based on Eq. (9), we consider the

normalized temperature,

TH

TGH;0
¼ H

H0

�
1þ Ḣ

2H2

�
; ð10Þ

where TGH;0 is the Gibbons-Hawking temperature at the
present time, given by TGH;0 ¼ ℏH0

2πkB
. In the next section, the

normalized entropy and the normalized temperature are
examined, using a ΛðtÞ model.
We note that various black hole entropies have been

proposed by extending the Bekenstein-Hawking entropy
[73–78]. The thermodynamic consistency of non-Gaussian
black hole entropies has been examined in Ref. [79]. Those
entropies have been applied to dynamic horizons of
universes, see, e.g., Refs. [28–32,58]. While it is worth-
while studying the thermodynamic relations between the
dynamical temperature and the entropy on the cosmologi-
cal horizon, the thermodynamic relation is not discussed
here and the present study focuses on and examines
evolution of thermodynamic quantities.

III. ΛðtÞ MODEL WITH A POWER-LAW TERM

We review the ΛðtÞ model with a power-law term and
study the evolution of the Bekenstein-Hawking entropy
SBH and the dynamical temperature TH. In Sec. III A,
the ΛðtÞ model is introduced. In Sec. III B, background
evolution of the universe for the present model is discussed.
The evolution of the entropy and the temperature is
examined in Secs. III C and III D, respectively. We consider
a flat FRW universe and assume an expanding universe.

A. Cosmological equations

Based on previous works [60–63], a ΛðtÞ model that
includes both a power-law term and the equation of state
parameter is introduced, using a general formulation of the
cosmological equations. The general Friedmann equation
for the ΛðtÞ model is given as

HðtÞ2 ¼ 8πG
3

ρðtÞ þ fΛðtÞ; ð11Þ

and the general acceleration equation is

äðtÞ
aðtÞ ¼ −

4πG
3

ð1þ 3wÞρðtÞ þ fΛðtÞ; ð12Þ

where w represents the equation of state parameter for a
generic component of matter, w ¼ pðtÞ=ðρðtÞc2Þ. Also,
ρðtÞ and pðtÞ are the mass density and pressure of
cosmological fluids, respectively [60,62,63]. For a matter-
dominated universe, a radiation-dominated universe, and a
Λ-dominated universe, w is 0, 1=3, and −1, respectively.
In this paper, w ¼ 0 and w ¼ 1=3 are considered. An extra
driving term fΛðtÞ is phenomenologically assumed.
Combining Eq. (11) with Eq. (12) yields [60]

Ḣ ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞfΛðtÞ: ð13Þ

Using the above equation, we have phenomenologically
formulated a ΛðtÞ model that includes a power-law term
based on Padmanabhan’s holographic equipartition law
[58,60–62]. The power-law term has been investigated in
previous works [60–62]. According to these works, we use
the following power-law term:

fΛðtÞ ¼ ΨαH2
0

�
H
H0

�
α

; ð14Þ

where α and Ψα are dimensionless constants whose values
are real numbers [58]. Also, α and Ψα are independent free
parameters, and α < 2 and 0 ≤ Ψα ≤ 1 are considered.
That is, Ψα is a kind of density parameter for the effective
dark energy. For the derivation of the power-law term, see,
e.g., Ref. [58]. A similar power series for H in ΛðtÞ models
was examined in Ref. [10].
Substituting Eq. (14) into Eq. (13) yields

Ḣ ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞΨαH2

0

�
H
H0

�
α

¼ −
3ð1þ wÞ

2
H2

�
1 −Ψα

�
H
H0

�
α−2

�
: ð15Þ

This equation is satisfied for all α [60]. The solutions can
be categorized according to whether or not α ¼ 2. The
solution for α ¼ 2 is written as [60]
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H
H0

¼
�
a
a0

�
−3ð1þwÞð1−ΨαÞ

2

; ð16Þ

and the solution for α ≠ 2 is written as

�
H
H0

�
2−α

¼ ð1 −ΨαÞ
�
a
a0

�
−3ð1þwÞð2−αÞ

2 þ Ψα: ð17Þ

The solution method is summarized in Ref. [60]. This
model has been studied for w ¼ 0 in Refs. [60,61] and it
was found that when w ¼ 0, α < 2 leads to an initially
decelerating and then accelerating universe (hereafter, a
“decelerating and accelerating universe”). Also, when
w ¼ 0, the universe for α < 2 satisfies the maximization
of entropy in the last stage [60,61]. Therefore, α < 2 is
considered in this study.
Using the normalized scale factor ã, the solution for

α ≠ 2 given by Eq. (17) is written as
�
H
H0

�
2−α

¼ ð1 −ΨαÞã−γ þ Ψα; ð18Þ

where ã and the parameter γ are given by

ã ¼ a
a0

and γ ¼ 3ð1þ wÞð2 − αÞ
2

: ð19Þ

A coefficient (1þ w) is included in γ. In this paper, α < 2,
w ¼ 0, and w ¼ 1=3 are considered. Therefore, 2 − α,
1þ w, and γ are positive.
We note that ΛCDM models are obtained from Eq. (18),

neglecting the influence of radiation. Substituting α ¼ 0
and w ¼ 0 into Eq. (19) yields γ ¼ 3. In addition, sub-
stituting α ¼ 0 and γ ¼ 3 into Eq. (18) and replacingΨα by
ΩΛ yields [60]

�
H
H0

�
2

¼ ð1 − ΩΛÞã−3 þ ΩΛ; ð20Þ

where ΩΛ is the density parameter for Λ and is given by
Λ=ð3H2

0Þ. The above equation corresponds to the ΛCDM
model in a flat FRW universe, where the influence of
radiation is neglected.

B. Deceleration parameter q

In this subsection, we examine the background evolution
of the universe for the present model. To this end, we
observe the evolution of the Hubble parameter and a
deceleration parameter q, defined by

q≡ −
�

ä
aH2

�
; ð21Þ

where a positive or negative q represents deceleration or
acceleration, respectively [60]. Substituting ä=a ¼ Ḣ þH2

into Eq. (21) and substituting Eq. (15) into the resultant
equation yields

q ¼ −
Ḣ
H2

− 1 ¼ 3

2
ð1þ wÞ

�
1 −Ψα

�
H
H0

�
α−2

�
− 1: ð22Þ

Substituting Eq. (18) into the above equation yields

q ¼ 3

2
ð1þ wÞ

�
1 −

Ψα

ð1 −ΨαÞã−γ þ Ψα

�
− 1

¼
3
2
ð1þ wÞð1 − ΨαÞã−γ
ð1 −ΨαÞã−γ þΨα

− 1; ð23Þ

where γ ¼ 3ð1þwÞð2−αÞ
2

, as given by Eq. (19). Equation (23)
includes γ and a coefficient (1þ w).
Figure 1 illustrates the evolution of the Hubble parameter

and the deceleration parameter. The dashed and solid lines
represent w ¼ 0 and w ¼ 1=3, respectively. To examine
typical results, α is set to 0 and 1. In addition, Ψα is set to
0.685, which is equivalent to ΩΛ for the ΛCDM model
from the Planck 2018 results [2]. That is, the plots for
[α ¼ 0, w ¼ 0] are equivalent to those for the ΛCDM
model. The normalized scale factor ã increases with time
because an expanding universe is considered. Similar
evolution for w ¼ 0 has been examined in Refs. [60–63].

FIG. 1. Evolution of the universe for the present model for
Ψα ¼ 0.685. (a) Normalized Hubble parameter H=H0. (b) Decel-
eration parameter q. The dashed and solid lines represent w ¼ 0
and w ¼ 1=3, respectively. The red and blue lines represent α ¼ 0
and α ¼ 1, respectively. In (a), the open diamonds with error bars
are observed data points taken from Ref. [3]. To normalize the
data points, H0 is set to 67.4 km=s=Mpc from Ref. [2]. Similar
evolution for w ¼ 0 has been examined in Refs. [60–63].
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As shown in Fig. 1(a), H=H0 decreases with ã
and gradually approaches a positive value that depends
on α and Ψα but not on w. The positive value is given by

H=H0 ¼ Ψ1=ð2−αÞ
α , which is obtained by applying ã → ∞

to Eq. (18) with α < 2 [63]. Before approaching the
positive value, H=H0 for w ¼ 1=3 is quantitatively differ-
ent from that for w ¼ 0. However, the evolution of H=H0

for w ¼ 0 and w ¼ 1=3 is similar. We note that H=H0 is
equivalent to the normalized Gibbons-Hawking temper-
ature TGH ¼ ℏH=ð2πkBÞ, as given by Eq. (8), because TGH
is proportional to H.
Next, we observe the evolution of the deceleration

parameter q. As shown in Fig. 1(b), q decreases with ã
and gradually approaches −1, although it is positive in the
early stage. Also, q is negative at ã ¼ 1, namely, at the
present time. This result indicates a decelerating and
accelerating universe, as examined in Refs. [60,61]. In
addition, q for w ¼ 1=3 is quantitatively different from that
for w ¼ 0, but the evolution of q for w ¼ 1=3 is similar to
that for w ¼ 0.
The deceleration parameter q depends on w, α, Ψα, and

H=H0, as shown in Eq. (22). Therefore, we discuss an
accelerating universe using the ðα;ΨαÞ plane. The boun-
dary required for q ¼ 0 can be calculated from Eq. (22).
(The boundary of q ¼ 0 for w ¼ 0 was discussed in
Ref. [60].) Substituting q ¼ 0 into Eq. (22) yields

1 −Ψα

�
H
H0

�
α−2

¼ 2

3ð1þ wÞ : ð24Þ

Solving this with respect to Ψα yields

Ψα ¼
�
1 −

2

3ð1þ wÞ
��

H
H0

�
2−α

¼ 1þ 3w
3ð1þ wÞ

�
H
H0

�
2−α

: ð25Þ

This equation is satisfied for all α. When α ¼ 2, from
Eq. (25), the boundary (point) is given by

Ψα ¼
1þ 3w
3ð1þ wÞ ðfor α ¼ 2Þ: ð26Þ

Also, substituting Eq. (18) into Eq. (25) yields

Ψα ¼
1þ 3w
3ð1þ wÞ ½ð1 −ΨαÞã−γ þ Ψα�; ð27Þ

and solving Eq. (27) with respect toΨα yields the following
boundary of q ¼ 0:

Ψα ¼
ð1þ 3wÞã−γ

2þ ð1þ 3wÞã−γ ; ð28Þ

where γ ¼ 3ð1þwÞð2−αÞ
2

from Eq. (19). The above equation
includes not only γ but also a coefficient ð1þ 3wÞ. In this
study, 1þ 3w is positive because w ¼ 0 and w ¼ 1=3 are
considered.
Using Eq. (28), the boundary of q ¼ 0 can be plotted

in the ðα;ΨαÞ plane. In Fig. 2, a=a0 is set to 0.5, 1,
and 2, to examine typical boundaries. In an expanding
universe, a=a0 increases with time. The arrow attached to
each boundary indicates an accelerating-universe-side
region that satisfies q < 0. The upper side of each
boundary corresponds to this region. The dashed and
solid lines represent w ¼ 0 and w ¼ 1=3, respectively.
Similar boundaries for w ¼ 0 have been examined in
Ref. [60]. In this figure, to avoid confusion, a=a0 is
used for the normalized scale factor, instead of ã, because
the symbol ã is similar to the symbol α on the horizon-
tal axis.
As shown in Fig. 2, the accelerating-universe-side region

for both w ¼ 0 and w ¼ 1=3 varies with a=a0. The region
for w ¼ 0 is similar to that for w ¼ 1=3. For example, in
both cases, the boundaries for a=a0 ¼ 0.5 imply that a
large-α and large-Ψα region tends to occur on the accel-
erating universe side. In contrast, the boundaries for
a=a0 ¼ 2 imply that a small-α and large-Ψα region tends
to occur on the accelerating universe side. In both cases, a
decelerating and accelerating universe is further expected
with increasing a=a0. The results are consistent with those
in Ref. [60].
Of course, the boundaries for w ¼ 1=3 are quantitatively

different from those for w ¼ 0. That is, the boundaries for
w ¼ 1=3 are located higher than those for w ¼ 0. To
examine this difference, we observe the two boundaries
for a=a0 ¼ 1, represented by the two horizontal lines in
Fig. 2. When a=a0 ¼ 1, the boundary is given by
Ψα ¼ 1þ3w

3ð1þwÞ, which is obtained by applying ã¼a=a0¼1

to Eq. (28). The obtained boundary depends on w and is
equivalent to Eq. (26).

FIG. 2. Boundary of q ¼ 0 in the ðα;ΨαÞ plane for various
values of a=a0. The dashed and solid lines represent w ¼ 0 and
w ¼ 1=3, respectively. The arrow attached to each boundary
indicates an accelerating-universe-side region that satisfies q < 0.
The open circle represents ðα;ΨαÞ ¼ ð0; 0.685Þ for the ΛCDM
model.
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C. Entropy SBH on the horizon

Ordinary isolated macroscopic systems spontaneously
evolve to equilibrium states of maximum entropy consis-
tent with their constraints [80]. Previous works imply that
certain types of universes behave as ordinary macroscopic
systems [37,54–57,60,61]. In other words, the entropy on a
cosmological horizon does not decrease, i.e., ṠBH ≥ 0.
Also, the entropy approaches a certain maximum value
in the last stage; that is, the maximization of entropy,
S̈BH < 0, should be satisfied.
In this subsection, we examine the entropy SBH on the

horizon for the present model for both w ¼ 0 and w ¼ 1=3.
From Eq. (6), the normalized SBH is written as

SBH
SBH;0

¼
�
H
H0

�
−2
: ð29Þ

Substituting Eq. (18) into Eq. (29) yields

SBH
SBH;0

¼
�
ð1 −ΨαÞã−γ þ Ψα

� 2
α−2
; ð30Þ

where γ is 3ð1þwÞð2−αÞ
2

given by Eq. (19), which includes a
coefficient (1þ w). The case for w ¼ 0 has been discussed
in previous works [60,61].
The calculations of ṠBH and S̈BH are summarized in the

Appendix, extending previous analyses [60,61]. Using
Eq. (A4) and SBH;0 ¼ K=H2

0, we obtain the normalized
ṠBH, which is given by

ṠBH
SBH;0H0

¼ 3ð1þ wÞð1 −ΨαÞã−γ
½ð1 − ΨαÞã−γ þΨα�3−α2−α

: ð31Þ

This equation indicates that ṠBH ≥ 0 is satisfied because
w ¼ 0, w ¼ 1=3, and 0 ≤ Ψα ≤ 1 are considered. In addi-
tion, from Eq. (A9), the normalized S̈BH is written as

S̈BH
SBH;0H2

0

¼ 9

2
ð1þ wÞ2ð1 −ΨαÞã−γ

×
ð1 − ΨαÞã−γ þ ðα − 2ÞΨα

½ð1 −ΨαÞã−γ þΨα�2
: ð32Þ

Equation (32) implies that S̈BH < 0 should be satisfied in
the last stage when α < 2. The details of the calculation are
summarized in the Appendix.
We now observe the evolution of SBH and S̈BH for the

present model for both w ¼ 0 and w ¼ 1=3. To examine
typical results, α is set to 0 and 1, and Ψα is set to 0.685.
As shown in Fig. 3(a), SBH increases with ã. That is, the
second law of thermodynamics, ṠBH ≥ 0, is satisfied in
both cases. In addition, SBH approaches a positive value that
depends on α and Ψα but not on w. The positive value is

given by SBH=SBH;0 ¼ Ψ−2=ð2−αÞ
α , which is obtained by

applying ã → ∞ to Eq. (30) with α < 2. In fact, SBH rapidly
increases in the early stage and gradually approaches a
positive value in the last stage. Consequently, S̈BH is positive
in the early stage and negative in the last stage, as shown in
Fig. 3(b). These results are consistentwith those in Ref. [60].
That is, in both cases, maximization of entropy, S̈BH < 0,
should be satisfied in the last stage. Of course, the entropic
parameters for w ¼ 1=3 are quantitatively different from
those for w ¼ 0. However, the evolution of those for w ¼
1=3 is similar to that for w ¼ 0, as for the case of H=H0.
As examined above, the universe observed here

approaches a kind of equilibrium state in the last stage.
The evolution of the universe is considered to be a
relaxation process. To study the relaxation process system-
atically, the boundary required for S̈BH ¼ 0 is calculated.
(The boundary of S̈BH ¼ 0 for w ¼ 0 was discussed in
Ref. [60].) Using Eq. (A8) and assuming Ḣ ≠ 0, we obtain
the boundary of S̈BH ¼ 0, which is given by

Ψα ¼
1

3 − α

�
H
H0

�
2−α

: ð33Þ

When α ¼ 2, Ψα ¼ 1 is obtained from this equation. When
α ≠ 2, substituting Eq. (18) into Eq. (33) yields

Ψα ¼
1

3 − α

h
ð1 −ΨαÞã−γ þ Ψα

i
: ð34Þ

FIG. 3. Evolution of the normalized entropic parameters for the
present model for Ψα ¼ 0.685. (a) SBH=SBH;0. (b) S̈BH=ðSBH;0H2

0Þ.
The dashed and solid lines represent w ¼ 0 and w ¼ 1=3,
respectively. The red and blue lines represent α ¼ 0 and
α ¼ 1, respectively.
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Solving Eq. (34) with respect to Ψα yields the following
boundary required for S̈BH ¼ 0:

Ψα ¼
ã−γ

2 − αþ ã−γ
; ð35Þ

where γ ¼ 3ð1þwÞð2−αÞ
2

from Eq. (19). The influence of w is
included in γ.
Using Eq. (35), the boundary of S̈BH ¼ 0 for various

values of a=a0 can be plotted on the ðα;ΨαÞ plane.
In Fig. 4, a=a0 is set to 0.5, 1, and 2, to observe
typical boundaries. In this figure, a=a0 represents the
normalized scale factor. The dashed and solid lines represent
w ¼ 0 and w ¼ 1=3, respectively. The arrow attached to
each boundary indicates the relaxation-process-side region
that satisfies S̈BH < 0. For each boundary, the upper side
corresponds to this region. For both w ¼ 0 and w ¼ 1=3,
this region gradually extends downward with increasing
a=a0. When a=a0 ¼ 1, the boundary for w ¼ 0 is the same
as that for w ¼ 1=3, where the boundary is given by Ψα ¼
1=ð3 − αÞ from Eq. (35). In both cases, a small-α and large-
Ψα region tends to satisfy S̈BH < 0 at the present time. The
properties of the boundary of S̈BH ¼ 0 for both cases are
similar to each other. Note that the boundary for w ¼ 1=3 is
quantitatively different from that for w ¼ 0, except when
a=a0 ¼ 1.

D. Dynamical temperature TH on the horizon

The evolution of the parameters examined, such as
H=H0, q, SBH, and S̈BH, for the present model, was found
to be similar for both w ¼ 0 and w ¼ 1=3. However, we
expect that the evolution of the dynamical temperature for
w ¼ 1=3 is different from that for w ¼ 0. In this subsection,
we therefore examine the dynamical temperature TH for the
present model.

Substituting Eq. (15) into Eq. (10) yields

TH

TGH;0
¼ H

H0

�
1þ Ḣ

2H2

�

¼ H
H0

�
1 −

3ð1þ wÞ
4

�
1 −Ψα

�
H
H0

�
α−2

��
; ð36Þ

where TGH;0 is the Gibbons-Hawking temperature at the
present time, given by ℏH0=ð2πkBÞ. The normalized TH is
not negative in the present model, becausew ¼ 0,w ¼ 1=3,
0 ≤ Ψα ≤ 1, and H > 0 are considered. Substituting
Eq. (18) into Eq. (36) and performing several calculations
yields

TH

TGH;0
¼

h
ð1 − ΨαÞã−γ þ Ψα

i 1
2−α

×

�
1 −

3ð1þ wÞ
4

�
1 −

Ψα

ð1 −ΨαÞã−γ þ Ψα

��

¼ ð1 − 3wÞð1 −ΨαÞã−γ þ 4Ψα

4½ð1 − ΨαÞã−γ þ Ψα�1−α2−α
; ð37Þ

where γ is 3ð1þwÞð2−αÞ
2

given by Eq. (19). Also, Eq. (37)
includes a coefficient ð1 − 3wÞ, which affects the properties
of TH. For example, substituting w ¼ 1=3 and α ¼ 1 into
Eq. (37) yields

TH

TGH;0
¼ Ψα

�
for w ¼ 1

3
and α ¼ 1

�
: ð38Þ

The obtained temperature does not depend on ã.
Using Eq. (37), we study two specific cases: ã ¼ 1 and

ã → ∞. First, substituting ã ¼ 1 into Eq. (37) yields

TH

TGH;0
¼ ð1 − 3wÞð1 −ΨαÞ þ 4Ψα

4
ðfor ã ¼ 1Þ: ð39Þ

Equation (39) indicates that TH does not depend on α
at the present time. For w ¼ 0, Eq. (39) is written as
TH=TGH;0 ¼ ð1þ 3ΨαÞ=4. For w ¼ 1=3, Eq. (39) is writ-
ten as TH=TGH;0 ¼ Ψα, which is equivalent to Eq. (38).
Second, substituting ã → ∞ into Eq. (37) with α < 2 yields

TH

TGH;0
¼ Ψ

1
2−α
α ðfor ã → ∞Þ: ð40Þ

Equation (40) indicates that TH does not depend on w
when ã → ∞.
We now observe the evolution of the normalized TH for

the present model for both w ¼ 0 and w ¼ 1=3. To examine
typical results, α is set to 0 and 1, and Ψα is set to 0.685,
equivalent to ΩΛ for the ΛCDM model.
As shown in Fig. 5, when ã ⪅ 0.6, TH for w ¼ 0

decreases with ã, whereas TH for w ¼ 1=3 does not

FIG. 4. Boundary of S̈BH ¼ 0 in the ðα;ΨαÞ plane for various
values of a=a0. The dashed and solid lines represent w ¼ 0 and
w ¼ 1=3, respectively. The arrow attached to each boundary
indicates the relaxation-process-side region that satisfies
S̈BH < 0. The open circle represents ðα;ΨαÞ ¼ ð0; 0.685Þ for
the ΛCDM model. When a=a0 ¼ 1, the boundary for w ¼ 0 is
the same as that for w ¼ 1=3, where the boundary is given
by Ψα ¼ 1=ð3 − αÞ.

EVOLUTION OF THERMODYNAMIC QUANTITIES ON … PHYS. REV. D 108, 083515 (2023)

083515-7



decrease. The evolution of TH for w ¼ 1=3 is different
from that for w ¼ 0 in the very early stage. In the last stage,
TH gradually approaches a positive value, TH=TGH;0 ¼
Ψ1=ð2−αÞ

α , given by Eq. (40), that depends on α and Ψα but
not on w. In particular, TH for [α ¼ 1, w ¼ 1=3] is constant
during the evolution of the universe. The universe at constant
TH is not a de Sitter universe because H=H0 for [α ¼ 1,
w ¼ 1=3] varies with ã, as shown in Fig. 1(a). We note that
H=H0 is equivalent to the normalized Gibbons-Hawking
temperature because TGH ¼ ℏH=ð2πkBÞ.
Figure 5 indicates that a universe at constant TH on a

dynamic horizon is obtained from the present model for
[α ¼ 1, w ¼ 1=3]. To observe this from a different view-
point, we plot contours of the normalized TH in the ðã; αÞ
plane. As shown in Fig. 6, the contour lines are plotted at
increments of 0.1. We set Ψα ¼ 0.6, to make a certain
contour line for w ¼ 1=3 clear, as discussed below.
As shown in Fig. 6(a), for w ¼ 0, the normalized TH for

all α varies with ã. In contrast, for w ¼ 1=3, the normalized
TH for α ¼ 1 is indicated by the horizontal straight contour

line [Fig. 6(b)]. The horizontal straight contour line
corresponds to TH=TGH;0 ¼ Ψα ¼ 0.6, which is given by
Eq. (38). Also, in the early stage (ã ≪ 1), the normalized
TH for α > 1 is high, whereas the normalized TH for α < 1
is low. These results indicate that α ¼ 1 can be considered a
kind of critical value when the normalized TH for w ¼ 1=3
is discussed in the present model.
In this way, the evolution of the normalized TH for w ¼

1=3 is different from that for w ¼ 0. In addition, we can
obtain a universe at constant TH on a dynamic horizon from
the present model for [α ¼ 1, w ¼ 1=3]. The obtained
universe corresponds to a radiation-dominated universe that
includes an extra driving term proportional to H. The
universe is expected to be a good model for studying
relaxation processes for the universe at constant TH because
systems at constant temperature play important roles in
thermodynamics and statistical physics. In the next section,
we examine specific conditions required for constant TH,
based on the definition of the dynamical temperature.

IV. CONSTANT TH MODEL

In this section, we examine the conditions required for a
constant TH and formulate a cosmological model that can
describe a universe at constant TH on a dynamic horizon
and then discuss the properties of the constant TH universe
of the formulated model. The universe considered in this
section should be different from the late Universe, but
should help in studying the relaxation processes for
thermodynamic quantities on a dynamic horizon.
From Eq. (9), the temperature on the horizon of a flat

FRW universe is written as

TH ¼ ℏH
2πkB

�
1þ Ḣ

2H2

�
: ð41Þ

To examine the conditions required for constant TH, we
consider a nondimensional parameter ψ, written as

FIG. 5. Evolution of the normalized TH for the present model
for Ψα ¼ 0.685. The dashed and solid lines represent w ¼ 0 and
w ¼ 1=3, respectively. The red and blue lines represent α ¼ 0 and
α ¼ 1, respectively. The horizontal straight line corresponds to
[α ¼ 1, w ¼ 1=3].

FIG. 6. Contours of the normalized TH in the ðã; αÞ plane for the present model for Ψα ¼ 0.6. (a) w ¼ 0. (b) w ¼ 1=3. The horizontal
axis represents the normalized scale factor ã, which increases with time. In (b), the horizontal straight contour line at α ¼ 1 corresponds
to TH=TGH;0 ¼ Ψα ¼ 0.6, which is given by Eq. (38). Note that, in (a) and (b), the vertical straight lines at ã ¼ 1 corresponds to Eq. (39).
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ψ ¼ H
H0

�
1þ Ḣ

2H2

�
; ð42Þ

where ψ is assumed to be constant. When this equation is
satisfied, TH is constant because TH can be written as

TH ¼ ℏψH0

2πkB
ðfor constantTHÞ; ð43Þ

where Eqs. (41) and (42) are used. The above equation
indicates that TH is proportional to ψ . Note that ψ should
also be related to surface gravity because TH given by
Eq. (41) is based on the relationship between the temper-
ature and the surface gravity [68–72].
Solving Eq. (42) with respect to Ḣ yields

Ḣ ¼ −2H2 þ 2ψH0H: ð44Þ

We expect that Eq. (44) is related to cosmological models.
Based on this expectation, we attempt to formulate a
cosmological model that satisfies Eq. (44). To this end,
we consider the present model again. From Eq. (15), the
cosmological equation for the present model is written as

Ḣ ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞΨαH2

0

�
H
H0

�
α

: ð45Þ

By comparing Eqs. (44) and (45), we find

α ¼ 1 and w ¼ 1

3
: ð46Þ

In fact, substituting Eq. (46) into Eq. (45) yields

Ḣ ¼ −2H2 þ 2ΨαH0H: ð47Þ

This equation is equivalent to Eq. (44) for Ψα ¼ ψ. The
above cosmological model, hereafter “the constant TH
model,” can describe a universe at constant TH on a
dynamic horizon. The constant TH model corresponds to
the present model for [α ¼ 1, w ¼ 1=3]. The model
obtained here is a viable scenario in that other models
can also satisfy Eq. (44). For example, substituting w ¼ 0

and 3fΛðtÞ=2 ¼ −H2=2þ 2ψH0H into Eq. (13) can yield
Eq. (44). Even in this case, the background evolution of the
universe is equivalent to that for the constant TH model
because Eq. (44) is satisfied. In the present study, we use
the constant TH model as a viable scenario.
As mentioned above, ψ is considered to be related to the

horizon temperature and the surface gravity. Also, Ψα is a
kind of density parameter for the effective dark energy.
Therefore, Ψα ¼ ψ may imply that the effective dark
energy is related to the temperature and the surface gravity.
In this study, we accept this relation and assume Ψα ¼ ψ .
Consequently, from Eq. (43), the constant normalized
temperature is written as

TH

TGH;0
¼

ℏψH0

2πkB
ℏH0

2πkB

¼ ψ ¼ Ψα; ð48Þ

where TGH;0 is the Gibbons-Hawking temperature at the
present time, given by ℏH0=ð2πkBÞ.
We now observe the evolution of several parameters for

the constant TH model and examine the relaxation proc-
esses for the universe. To observe typical results, Ψα is set
to 0.685, as in previous sections.
As shown in Fig. 7, TH is constant during the evolution

of the universe. The value of the normalized TH is 0.685
from Eq. (48). The other parameters (namely, H, q, SBH,
and S̈BH) gradually approach a constant value in the last
stage. The final state corresponds to a de Sitter universe
whose temperature is TH.
We note that the Gibbons-Hawking temperature TGH ¼

ℏH=ð2πkBÞ is proportional to H, as given by Eq. (8).
Therefore, the normalized TGH, namely, TGH=TGH;0, is
H=H0 and is equivalent to the normalized H. Thus, Fig. 7
indicates that the normalized TGH decreases with ã and
gradually approaches the normalized constant TH.
The evolution of these parameters can be interpreted as a

relaxation process at constant TH. To discuss the relaxation
process, we examine the evolution of SBH and S̈BH for
various values of Ψα. To study typical results, Ψα is set to
0.4, 0.6, and 0.8. (Note that Ψα is equivalent to the value of
the normalized TH.) As shown in Fig. 8(a), the normalized
SBH increases with ã and gradually approaches a positive
value that depends onΨα. The normalized value is given by

SBH=SBH;0 ¼ Ψ−2=ð2−αÞ
α ¼ Ψ−2

α , as considered in Sec. III C,
where α ¼ 1 is used for the constant TH model. The
evolution of SBH depends onΨα; that is, the largerΨα is, the
earlier SBH approaches a positive value. Also, as shown in
Fig. 8(b), the normalized S̈BH is positive initially and
negative finally. Accordingly, the maximization of entropy,
namely, S̈BH < 0, is satisfied in the last stage.

FIG. 7. Evolution of normalized parameters for the constant TH
model for Ψα ¼ 0.685. The parameters are replotted and q is not
normalized. The normalized H is equivalent to the normalized
TGH (see the text). The constant TH model corresponds to the
present model for [α ¼ 1, w ¼ 1=3].
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In the constant TH model, the normalized TH is
equivalent to Ψα, as shown in Eq. (48) and hence their
influence on the model can be seen as being the same.
Accordingly, to observe the influence of TH, we examine a
temporal Ψα region that satisfies the maximization of
entropy, using contours of S̈BH in the ðã;ΨαÞ plane. In
Fig. 9, the arrow attached to the line S̈BH ¼ 0 indicates a
region that satisfies the maximization of entropy, S̈BH < 0.
The line S̈BH ¼ 0 is equivalent to the boundary calculated
from Eq. (35). As shown in Fig. 9, the normalized S̈BH
tends to be positive in the early stage and negative in the
last stage. In addition, the larger Ψα is, the earlier S̈BH < 0
is satisfied. These results imply that the higher TH is, the
earlier the entropy should be maximized.
In this way, using the constant TH model, we can

examine the relaxation processes for a universe at constant
temperature on a dynamic horizon. Of course, this model is
simply one viable scenario with a constant horizon temper-
ature. The obtained universe is different from the late
Universe described by ΛCDM models because α ¼ 1 and
w ¼ 1=3 are considered here. However, we expect that the
constant TH model will contribute to the study of thermo-
dynamics and statistical physics on dynamic horizons
because the horizon temperature is constant in de Sitter
universes. For example, the holographic equipartition law
of energy [39,42] should be properly applied to the
dynamic horizon in a constant TH model. Based on this,
the energy EH is written as EH ¼ NH × 1

2
kBTH ¼ 2SBHTH,

where NH is the number of degrees of freedom on the
horizon, given by NH ¼ 4SBH=kB. Using these

thermodynamic quantities, thermodynamic relations can
be examined on the dynamic horizon at constant temper-
ature. Also, we may discuss the relationship between
holographic entanglement entropy [81–84] and thermody-
namic entropy on the dynamic horizon by extending this
model. Those tasks are left for future research.

V. CONCLUSIONS

To clarify the thermodynamics on a dynamic horizon, we
examined the evolution of the dynamical temperature TH
and the Bekenstein-Hawking entropy SBH on the horizon of
a flat FRW universe in a ΛðtÞ model. In this study, we
considered a ΛðtÞ model that includes both a power-law
term proportional to Hα and the equation of state para-
meter w. Using the present model, we examined a matter-
dominated universe (w ¼ 0) and a radiation-dominated
universe (w ¼ 1=3), setting α < 2. Both universes are
found to approach de Sitter universes and satisfy maximi-
zation of the entropy in the last stage. The evolution of
several parameters (such as H=H0, q, and SBH) is similar
for w ¼ 0 and w ¼ 1=3. However, the evolution of TH is
different for w ¼ 0 and w ¼ 1=3. In particular, TH is
constant for w ¼ 1=3 with α ¼ 1, although the Hubble
parameter H and the Hubble radius rH vary with time,
unlike for a de Sitter universe.
To discuss this particular case, we examined the specific

conditions required for constant TH. By applying the
condition [α ¼ 1, w ¼ 1=3] to the present model, we
formulated a cosmological model that can describe a
universe with constant TH on a dynamic horizon. The
formulated constant TH model implies that the density
parameter for the effective dark energy is related to TH. It is

FIG. 9. Contours of normalized S̈BH in the ðã;ΨαÞ plane for the
constant TH model. The vertical axis Ψα is equivalent to the
normalized TH . The arrow attached to the line of S̈BH ¼ 0

indicates a region that satisfies S̈BH < 0. Unsatisfied regions
are displayed in gray, to make the boundary of S̈BH ¼ 0 clear. The
contour lines are plotted at increments of 1. The color scale bar is
based on the normalized value, which is calculated from Eq. (32),
applying α ¼ 1 and w ¼ 1=3.

FIG. 8. Evolution of normalized entropic parameters for the
constant TH model for various values of Ψα. (a) SBH=SBH;0.
(b) S̈BH=ðSBH;0H2

0Þ. The constant TH model corresponds to the
present model for [α ¼ 1, w ¼ 1=3].
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found that the higher TH is, the earlier the entropy should
be maximized. Using the constant TH model we can
examine the relaxation processes for a universe at constant
horizon temperature, as if the dynamic horizon is in contact
with a heat bath.
The present results may provide new insights for the

discussion of thermodynamics and statistical physics on the
cosmological horizon. Detailed studies are needed and are
left for future research.

APPENDIX: ṠBH AND S̈BH FOR THE ΛðtÞ MODEL
WITH A POWER-LAW TERM

In this appendix, we calculate ṠBH and S̈BH for a ΛðtÞ
model that includes both a power-law term and the equation
of state parameter. For this, the present model is given
again. From Eq. (15), the differential equation is

Ḣ ¼ −
3

2
ð1þ wÞH2 þ 3

2
ð1þ wÞΨαH2

0

�
H
H0

�
α

¼ −
3

2
ð1þ wÞH2

�
1 − Ψα

�
H
H0

�
α−2

�
: ðA1Þ

The solution for α ≠ 2 given by Eq. (18) is written as

�
H
H0

�
2−α

¼ ð1 −ΨαÞã−γ þ Ψα; ðA2Þ

where γ ¼ 3ð1þwÞð2−αÞ
2

from Eq. (19).
The following calculations are based on Refs. [60,61].

The results examined in the previous works are slightly
extended because the present model includes the equation
of state parameter w.
To obtain ṠBH for the present model, we first calculate

the first derivative of SBH from Eq. (4). Differentiating
Eq. (4) with respect to t yields [58,59]

ṠBH ¼ d
dt

SBH ¼ d
dt

�
K
H2

�
¼ −2KḢ

H3
: ðA3Þ

Substituting Eq. (A1) into Eq. (A3) and applying Eq. (A2)
yields

ṠBH ¼ −2KḢ
H3

¼ 2K
H0

�
−Ḣ
H2

�
H0

H

¼ 2K
H0

3

2
ð1þ wÞ

�
1 −Ψα

�
H
H0

�
α−2

�
H0

H

¼ 3K
H0

ð1þ wÞ
�
1 −

Ψα

ð1 −ΨαÞã−γ þ Ψα

�

×
h
ð1 −ΨαÞã−γ þΨα

i 1
α−2

¼ 3K
H0

ð1þ wÞð1 −ΨαÞã−γ
½ð1 − ΨαÞã−γ þΨα�3−α2−α

: ðA4Þ

The obtained ṠBH includes γ and a coefficient (1þ w).
Also, γ includes the coefficient (1þ w). Except for these
points, Eq. (A4) is equivalent to that examined in
Refs. [60,61].
In this paper, 1þ w ≥ 0, 1 −Ψα ≥ 0, and Ψα ≥ 0 are

satisfied because w ¼ 0, w ¼ 1=3, and 0 ≤ Ψα ≤ 1 are
considered. Accordingly, the second law of thermodynam-
ics on the horizon, namely, ṠBH ≥ 0, is satisfied in the
present model. The second law of thermodynamics has
been examined for w ¼ 0 in Ref. [60].
Next, we calculate S̈BH. Differentiating Eq. (A3) with

respect to t yields

S̈BH ¼ d
dt

ṠBH ¼ d
dt

�
−2KḢ
H3

�
¼ −2K

�
Ḧ
H3

−
3Ḣ2

H4

�

¼ 2
K
H2

�
3Ḣ2 − ḦH

H2

�
¼ 2SBH

�
3Ḣ2 − ḦH

H2

�
: ðA5Þ

We now calculate S̈BH for the present model. For this,
we calculate 3Ḣ2 − ḦH in Eq. (A5) using Eq. (A1). The
detailed calculation is summarized in Ref. [60]. Based on
the result, 3Ḣ2 − ḦH is written as

3Ḣ2 − ḦH ¼ 3

2
ð1þ wÞð−ḢÞH2

×

�
1 − Ψαð3 − αÞ

�
H
H0

�
α−2

�
: ðA6Þ

The above equation includes a coefficient (1þ w). Except
for this point, Eq. (A6) is equivalent to Eq. (C7) of
Ref. [60]. Substituting Eq. (A6) into Eq. (A5) yields

S̈BH ¼
2SBH 3

2
ð1þwÞð−ḢÞH2

h
1−Ψαð3−αÞ

�
H
H0

�
α−2

i
H2

¼ 3SBHð1þwÞð−ḢÞ
�
1−Ψαð3−αÞ

�
H
H0

�
α−2

�
;

ðA7Þ

and applying SBH ¼ K=H2 given by Eq. (4) yields

S̈BH¼3Kð1þwÞ
�
−Ḣ
H2

��
1−Ψαð3−αÞ

�
H
H0

�
α−2

�
: ðA8Þ

In addition, substituting Eq. (A1) into Eq. (A8) and
applying Eq. (A2) to the resultant equation yields
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S̈BH ¼ 3Kð1þ wÞ
�
−Ḣ
H2

��
1 −Ψαð3 − αÞ

�
H
H0

�
α−2

�

¼ 3Kð1þ wÞ × 3

2
ð1þ wÞ

�
1 −Ψα

�
H
H0

�
α−2

�

×

�
1 − Ψαð3 − αÞ

�
H
H0

�
α−2

�

¼ 9K
2

ð1þ wÞ2
�
1 −

Ψα

ð1 −ΨαÞã−γ þ Ψα

�

×

�
1 −

Ψαð3 − αÞ
ð1 − ΨαÞã−γ þ Ψα

�

¼ 9K
2

ð1þ wÞ2ð1 −ΨαÞã−γ

×
ð1 − ΨαÞã−γ þ ðα − 2ÞΨα

½ð1 −ΨαÞã−γ þ Ψα�2
; ðA9Þ

where γ ¼ 3ð1þwÞð2−αÞ
2

from Eq. (19). Equation (A9)
includes a coefficient ð1þ wÞ2 and γ. Also, γ includes
(1þ w). Except for these points, Eq. (A9) is equivalent to
that examined in Refs. [60,61]. The maximization of the
entropy for w ¼ 0 was discussed in previous works and it
was reported that S̈BH < 0 should be satisfied in the last
stage when α < 2 [60,61]. In the previous works, w ¼ 0 is
considered and, therefore, (1þ w) is positive. In this
study, similarly, (1þ w) is positive because w ¼ 0 and
w ¼ 1=3 are considered. Accordingly, the result reported
in Refs. [60,61] can also be applied to the present model.
That is, Eq. (A9) indicates that S̈BH < 0 should be
satisfied in the last stage when α < 2. We note that ṠBH
and S̈BH for α ≠ 2 reduce to those for α ¼ 2, respectively,
when α → 2.

[1] S. Perlmutter et al., Nature (London) 391, 51 (1998); A. G.
Riess et al., Astron. J. 116, 1009 (1998).

[2] N. Aghanim et al., Astron. Astrophys. 641, A6 (2020).
[3] O. Farooq, F. R. Madiyar, S. Crandall, and B. Ratra,

Astrophys. J. 835, 26 (2017).
[4] S. Weinberg, Cosmology (Oxford University Press,

New York, 2008); G. F. R. Ellis, R. Maartens, and M. A. H.
MacCallum, Relativistic Cosmology (Cambridge University
Press, Cambridge, England, 2012).

[5] K. Bamba, S. Capozziello, S. Nojiri, and S. D. Odintsov,
Astrophys. Space Sci. 342, 155 (2012); S. Nojiri, S. D.
Odintsov, and V. K. Oikonomou, Phys. Rep. 692, 1 (2017).

[6] S. Wang, Y. Wang, and M. Li, Phys. Rep. 696, 1 (2017); N.
Frusciante and L. Perenon, Phys. Rep. 857, 1 (2020).

[7] K. Freese, F. C. Adams, J. A. Frieman, and E. Mottola,
Nucl. Phys. B287, 797 (1987); J. M. Overduin and F. I.
Cooperstock, Phys. Rev. D 58, 043506 (1998); J. Solà,
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