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We investigate the Minkowski ground state associated with a real massless scalar field as seen by
an accelerated observer under the perspective of the de Broglie–Bohm quantum theory. We use the
Schrödinger picture to obtain the wave functional associated with the Minkowski vacuum in Rindler
coordinates, and we calculate the field trajectories through the Bohmian guidance equations. The Unruh
temperature naturally emerges from the calculus of the average energy, but the Bohmian approach precisely
distinguishes between its quantum and classical components, showing that they periodically interchange
their roles as the dominant cause for the temperature effects, with abrupt jumps in the infrared regime. We
also compute the power spectra, and we exhibit a very special Bohmian field configuration with remarkable
physical properties.
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I. INTRODUCTION

The construction of a consensual quantum theory of
gravity is one of the toughest and most intriguing challenges
of theoretical physics. One of the attempts to understand
how quantum effects appear in gravity theories is to
consider quantum field theory (QFT) in curved spacetimes,
where important phenomena such as Hawking radiation and
cosmological particle production appear. It should be noted
that even in flat spacetime the particle concept is, in general,
observer-dependent, as it is well-known from the Unruh
effect [1–3]. This is particularly important for understanding
particle emissions from black holes [4,5], once we achieve
similar results with much simpler calculations.
A simple and didactic way to address the Unruh effect

is to consider a free scalar field in a flat 2-dimensional
space from two perspectives; for an inertial observer in
Minkowski space, and a uniformly accelerated observer
with respect to the first one. According to QFT, both
disagree on the number of particles. In the Minkowski
ground state, the number of particles in the inertial frame is
zero, while for the accelerated (Rindler) observer there are
particles in a Bose-Einstein distribution with temperature
proportional to the acceleration,

T ¼ ℏa
2πκbc

: ð1Þ

The key point here is that the inertial observer’s vacuum
state differs from the vacuum of a noninertial one.
Therefore, the number of particles defined in Rindler
space concerning the inertial vacuum is different from
zero.1 Despite being an interesting phenomenon, its
observation is quite challenging. As a rough estimate, to
reach a temperature of 1 K an acceleration of 1019 m=s2 is
necessary. Nevertheless, experimental observations of the
Unruh effect are discussed in [8–12]. For Hawking
radiation, see [13–17].
Usually, the Unruh temperature Eq. (1) is obtained in the

Heisenberg picture in the framework of the standard
probabilistic view of quantum theory. However, this standard
approach cannot be extended to a unified quantum picture
of the Universe, as it assumes the necessity of a classical
world outside the quantum system, where measurements
are realized and definite outcomes are obtained [18]. As in
quantum cosmology the quantum system is the whole
Universe, there is no place for this classical domain, and
the standard approach cannot be applied. In this sense, the de
Broglie–Bohm approach to quantum theory (dBB) [19–21]
is very appropriate.2 In this framework, point particle
positions or field configurations are supposed to have*matheuspaixao@cbpf.br
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1A similar result can be obtained if we consider fermions
instead of a scalar field. In this case, we obtain a Fermi-Dirac
distribution with the same temperature [6,7].

2There are other alternative possibilities, like the many world
interpretation and collapse models, [22,23], but we will not use
them in this paper.
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objective reality, and their dynamics are dictated by the
wave function through the so-called guidance equations.
If the uncertainty of initial positions or field configurations
is given by the Born rule at some initial time, then all
probability predictions of quantum mechanics can be
recovered. Hence, this formulation does not yield different
experimental results as in usual quantum theory, but, besides
opening the route to quantum cosmology, it gives new
understandings of quantum phenomena which might be
useful.3 First of all, it solves the measurement problem [25],
so there is no need for an external classical world for the
description of quantum measurements. This allows, for
example, the understanding of the quantum-to-classical
transitions of cosmological perturbations [26]. Secondly,
the classical limit of quantum systems can be described in
terms of the quantum potential Q, in such a way that when
Q approaches zero, the quantum trajectories approach the
classical ones. Furthermore, in the dBB framework it is
possible to study the quantum singularities of cosmological
models in more detail and, consequently, to identify non-
singular quantum models through the Bohmian solutions,
such as bouncing models, where the Friedmann solution can
be reproduced under certain limits [27–29]. Finally, the
guidance equations for the Universe wave function provide
its time evolution, even though the quantum equations for
Ψuniv do not admit a Schrödinger form. Schrödinger-like
equations appear when we study subsystems, ensuring the
usual time evolution and a probabilistic interpretation in
terms of the Born rule [25].
In such an appealing scenario, it is valid to argue how the

Unruh effect arising in Quantum Field Theory can be
addressed under the de Broglie–Bohm’s perspective. In
order to obtain a guidance equation, we need to tackle this
problem using Schrödinger’s representation of the fields
[30], in order to get the wave functional associated with the
Minkowski vacuum in Rindler space. Using the results of
Ref. [31], we were able to obtain the complete wave
functional solution, the guidance relations, and their inte-
gration, obtaining the Bohmian field trajectories. The Unruh
temperature is obtained in this framework, and its origin as a
quantum effect is discussed in detail. In particular, highly
abrupt jumps between quantum and classical dominance,
which can be discriminated only in the dBB quantum
theory, happen periodically in the infrared limit, or in the
high acceleration limit. We discuss whether this property
can lead to experimental consequences. Also, as the
Bohmian approach is manifestly nonlocal, even for relativ-
istic quantum field theory [32–35] (due to the appearance
of the nonlinear and nonlocal quantum potential), the

entanglement between the left- and right-Rindler wedge
fields [36] can be addressed within a different perspective.
This work is divided into a right-hand Rindler wedge

analysis and a complete manifold analysis, which includes
both right and left Rindler wedges. In Sec. II, we summa-
rize Klein-Gordon theory in the Rindler space, and we
review some results regarding the wave functional of a
massless scalar field in the right Rindler wedge. We then
present the associated de Broglie–Bohm theory in Sec. II A.
In Sec. II B, we calculate the mean number of Rindler
particles by computing the averages of the quantum and
classical quantities. In the following Secs. II G and II H, we
obtain the Bohmian trajectories, with emphasis on a very
peculiar particular one, we analyze the asymptotic expan-
sions for the low- and high-acceleration regimes, and we
calculate the power spectrum. In Sec. III, we extend our
analysis to the complete spacetime, following the same
order: we obtain mean values and Bohmian trajectories,
analyze the asymptotic expansions and calculate the power
spectrum. Finally, our conclusions are presented in the last
section. Natural units are used throughout this work,
with c ¼ ℏ ¼ κb ¼ 1.

II. THE WAVE FUNCTIONAL APPROACH
AND ITS BOHMIAN INTERPRETATION

IN THE RIGHT-RINDLER WEDGE

In this section, we obtain the Minkowski wave functional
in Rindler coordinates for the right wedge based on the
work [31]. The trajectory of an observer with constant
acceleration a and coordinates ðt; xÞ in some Minkowski
frame is given in terms of the transformations

xðτ; ξÞ ¼ eaξ

a
coshðaτÞ;

tðτ; ξÞ ¼ eaξ

a
sinhðaτÞ ð2Þ

where −∞ < τ < ∞ and −∞ < ξ < ∞ are the Rindler
coordinates [37–40]. The horizons t ¼ �x are reached
when τ → �∞, while the origin is achieved when
ξ → −∞. The line element ds2 ¼ −dt2 þ dx2 can be
rewritten as ds2 ¼ e2aξð−dτ2 þ dξ2Þ, implying a con-
formal invariance between the metrics, with a conformal
factor eaξ.
Consider a real massless scalar field ϕ in Minkowski

space described by the action

S ¼ 1

2

Z
dtdx

��
∂ϕ

∂t

�
2

−
�
∂ϕ

∂x

�
2
�
: ð3Þ

The field ϕ satisfies the Klein-Gordon equation
ð−∂2t þ ∂

2
xÞϕ ¼ 0. According to the transformations (2),

the action (3) becomes

3If the uncertainty of initial conditions is not given by the Born
rule in some initial time, then the theory can lead to different
results from usual quantum mechanics up to the time when the
Born rule is recovered, the so-called quantum equilibrium state.
For details on this interesting possibility, see Ref. [24].
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S ¼ 1

2

Z
dτdξ

��
∂ϕ

∂τ

�
2

−
�
∂ϕ

∂ξ

�
2
�
: ð4Þ

As a result, the associated equation of motion is
ð−∂2τ þ ∂

2
ξÞϕ ¼ 0, which is just the Klein-Gordon equation

in Rindler coordinates.
However, there is a slight difference between the actions

(3) and (4). While ϕ can be defined all over Minkowski
spacetime, the same is not valid in Rindler coordinates,
where ϕ can be defined only in the right-hand wedge
(−x < t < x and 0 < x < ∞). The Fourier expansion in
Minkowski modes in this region is given by

ϕðt; xÞ ¼
ffiffiffi
2

π

r Z
∞

0

dk sinðkxÞϕM
k ðtÞ; ð5Þ

where ðϕM
k Þ� ¼ ϕM

k . On the other hand, the expansion in
Rindler modes is

ϕðτ; ξÞ ¼
Z

∞

−∞

dk0ffiffiffiffiffiffi
2π

p eik
0ξϕR

k0 ðτÞ; ð6Þ

with ðϕR
k0 Þ� ¼ ϕR

−k0 .
From Eq. (3), we obtain the Minkowski Hamiltonian

HM ¼ 1

2

Z
∞

0

dk

�
−

∂
2

∂
2ϕM

k

þ k2ðϕM
k Þ2

�
: ð7Þ

Consider the following decomposition for the wave
functional

Ψ½ϕ; η� ¼
Y
k>0

Ψk½ϕk;ϕ�
k; η�; ð8Þ

where η is a temporal variable. Each term Ψk satisfies an
independent Schrödinger equation

i
∂ΨM

k ½ϕM
k ; t�

∂t
¼ 1

2

�
−

∂
2

ð∂ϕM
k Þ2

þ k2ðϕM
k Þ2

�
ΨM

k ½ϕM
k ; t�; ð9Þ

that admits as a ground-state solution

ðΨM
k Þ0½ϕM

k ; t� ¼ Nk exp

�
−
1

2
kðϕM

k Þ2 −
i
2
kt

�
: ð10Þ

Therefore, the wave functional (8) becomes

ðΨMÞ0½ϕM
k ; t� ¼N exp

�
−
1

2

Z
∞

−∞
dkkðϕM

k Þ2− iΩ0t

�
; ð11Þ

with Ω0 the zero-point energy and N a normalization
constant.
In order to obtain the Minkowski vacuum in Rindler

coordinates, we need to write the ϕM
k modes in terms of ϕR

k .

By inverting Eq. (5) and using the expansion (6), we
can write

ϕM
k ¼

Z
∞

−∞
dk0Aðk; k0ÞϕR

k0 ; k > 0; ð12Þ

where the coefficient Aðk; k0Þ can be calculated in their
common spacelike hypersurface at t ¼ τ ¼ 0 (see Ref. [31]
for details) and it is given by

Aðk; k0Þ ¼ 1

aπ
Γ
�
1þ ik0

a

�
cosh

�
πk0

2a

����� ka
����−1−i

k0
a

: ð13Þ

Therefore, substituting Eqs. (12) and (13) into (11),
we obtain the Minkowski ground state wave functional
at t ¼ τ ¼ 0 in terms of the Rindler field configuration ϕR

k

ðΨMÞ0½ϕR
k ;ϕ

R�
k ;0� ¼N exp

�
−
Z

∞

0

dkkcoth

�
πk
2a

�
ϕR
kϕ

R�
k

�
:

ð14Þ

Due to the decomposition (8) we have

ðΨM
k Þ0½ϕR

k ;ϕ
R�
k ;0�¼Nk exp

�
−kcoth

�
πk
2a

�
ϕR
kϕ

R�
k

�
: ð15Þ

The Rindler ground-state wave functional is obtained
similarly. From the action (4), we obtain the Hamiltonian

HR ¼
Z

∞

0

dk

�
−

∂
2

∂ϕR�
k ∂ϕR

k
þ k2jϕR

k j2
�
; ð16Þ

where we split the integral into two equal contributions for
positive and negative values of k and perform the change of
variables k → −k in the negative part. As a consequence of
this choice, the energy of each mode will be two times its
original value. Therefore, adopting the decomposition (8),
we have a Schrödinger equation for each ΨR

k

i
∂ΨR

k ½ϕR
k ;ϕ

R�
k ; τ�

∂τ
¼
�
−

∂
2

∂ϕR�
k ∂ϕR

k
þ k2jϕR

k j2
�
ΨR

k ½ϕR
k ;ϕ

R�
k ; τ�

ð17Þ

that admits the following ground-state solution

ðΨR
k Þ0½ϕk;ϕ�

k; τ� ¼ N k exp ð−kϕR�
k ϕR

k − ikτÞ: ð18Þ

As expected, the vacuums defined by Eqs. (15) and (18) at
τ ¼ 0 are essentially different. Nevertheless, both results
are approximately equal when πk=2a ≫ 1, which is equiv-
alent to small accelerations. In this limit, the conformal
factor is almost 1, so there is little difference between
Rindler and Minkowski narratives.
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The temporal evolution of the vacuum (15) on a Cauchy
hypersurface defined in the accelerated frame can be
obtained considering the following ansatz for the ground
state

ðΨM
k Þ0½ϕR

k ;ϕ
R�
k ; τ� ¼ Nk exp ð−kfkðτÞϕR

kϕ
R�
k þΩkðτÞÞ;

ð19Þ

with ΩkðτÞ being an additive complex phase. As an initial
condition, we impose that fkð0Þ ¼ cothðπk

2aÞ and Ωkð0Þ ¼ 0.
The Schrödinger equation (17) for ðΨM

k Þ0 gives us two
equations, one for fkðτÞ and another for ΩkðτÞ. With the
above initial conditions, the solutions are

fkðτÞ ¼ coth

�
πk
2a

þ ikτ

�
ð20Þ

and

ΩkðτÞ ¼ − ln

�
sinh

�
πk
2a

þ ikτ

�	
; ð21Þ

where an integration constant in (21) can be absorbed in the
normalization factor.

A. The de Broglie–Bohm approach

In this subsection we describe the features of the quantum
scalar field in the ground state (19) from the de Broglie–
Bohm perspective. In the relativistic version of the Bohmian
mechanics, the wave functional determines the time evolu-
tion of the Bohmian fields, which are not operators but
actual fields evolving in spacetime, through the so-called
guidance equations. The set of initial configurations for
determining the field evolution is given by the squared norm
of the wave functional at this initial time. Detailed analysis
of the dBB theory in the context of quantum field theory can
be seen in [41–44].
In order to obtain the Bohmian fields, we rewrite the

wave functional (19) in the polar form

Ψk ¼ RkeiSk ; ð22Þ

where Rk and Sk are the radial part and the phase,
respectively. The wave functional (19), after normalization,
becomes

Ψk½ϕR
k ;ϕ

R�
k ;τ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kℜ½fkðτÞ�

π

r
exp

n
−kℜ½fkðτÞ�jϕR

k j2

þ ið−kℑ½fkðτÞ�jϕR
k j2þℑ½ΩkðτÞ�Þ

o
; ð23Þ

where ℜ½fk� and ℑ½fk� are the real and imaginary parts of
(20), that is,

ℜ½fkðτÞ� ¼
sinh



πk
a

�
cosh



πk
a

�
− cosð2kτÞ

;

ℑ½fkðτÞ� ¼
− sinð2kτÞ

cosh


πk
a

�
− cosð2kτÞ

; ð24Þ

and the real and imaginary part of ΩkðτÞ reads,

ℜ½ΩkðτÞ� ¼ −
1

2
ln

�
cosh2

�
πk
2a

�
− cos2ðkτÞ

	
;

ℑ½ΩkðτÞ� ¼ −tan−1
�
coth

�
πk
2a

�
tanðkτÞ

�
: ð25Þ

Then Rk and Sk can be identified as

RkðϕR
k ;ϕ

R�
k ; τÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kℜ½fkðτÞ�

π

r
exp ð−kℜ½fkðτÞ�jϕR

k j2Þ;
ð26Þ

SkðϕR
k ;ϕ

R�
k ; τÞ ¼ −kℑ½fkðτÞ�jϕR

k j2 þ ℑ½ΩkðτÞ�: ð27Þ

The Schrödinger equation (17) in terms of the wave
function (22) yields two real equations, specifically

∂Sk
∂τ

þ ∂Sk
∂ϕR�

k

∂Sk
∂ϕR

k
þ k2jϕR

k j2 −
1

Rk

∂
2Rk

∂ϕR
k ∂ϕ

R�
k

¼ 0; ð28Þ

∂R2
k

∂τ
þ ∂

∂ϕR
k

�
R2
k
∂Sk
∂ϕR�

k

�
þ ∂

∂ϕR�
k

�
R2
k
∂Sk
∂ϕR

k

�
¼ 0: ð29Þ

In the de Broglie–Bohm (dBB) quantum theory, the
modes ϕR

k are assumed to be actual modes of the scalar field
evolving in spacetime guided by the wave function Ψk
through the dBB guidance equations

∂ϕR
k

∂τ
¼ ∂Sk

∂ϕR�
k

¼ −kℑ½fkðτÞ�ϕR
k : ð30Þ

These are first-order differential equations that give the
time evolution in terms of the Rindler variable τ, with one
integration constant per mode given by some initial
condition, which is not known and practically impossible
to be determined experimentally (they are the hidden
variables of the theory). However, assuming that at some
initial time τ0 the probability density distribution of initial
conditions is given by the Born rule, PðϕR

k ðτ0ÞÞ ¼
R2
kðϕR

k ; τ0Þ, then Eq. (29) together with the guidance
equations (30) guarantee that R2

kðϕR
k ; τÞ gives the proba-

bility density that the field mode has the value ϕR
k at time τ.

In this way, all statistical predictions of quantum theory
can be recovered. Equation (29) can then be understood as
a continuity equation for an ensemble of field trajectories
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in configuration space with probability distribution P ¼
R2
k and velocity field given in Eq. (30).
Once the guidance equations (30) are settled down, one

can read Eq. (28) as a Hamilton-Jacobi equation for the
mode dynamics, supplemented by an extra term. When
this extra term becomes negligible with respect to the
others, the classical evolution is recovered. From
Hamilton-Jacobi theory, the energy is associated with
Ek ¼ − ∂Sk

∂τ . Considering that the modes with wave num-
bers k and −k have the same contribution and were
counted twice in (16), the effective contribution to the
energy in the Hamilton-Jacobi equation for each wave
number should be divided by 2. Hence, looking at
Eq. (28), we define,

EkðτÞ≡ −
1

2

�
∂Sk
∂τ

�
¼ 1

2

�
k
∂ℑ½fkðτÞ�

∂τ
jϕR

k j2 −
∂ℑ½ΩkðτÞ�

∂τ

�
;

ð31Þ

KkðτÞ≡ 1

2

�
∂Sk
∂ϕR�

k

∂Sk
∂ϕR

k

�
¼ 1

2
ðk2ℑ2½fkðτÞ�jϕR

k j2Þ; ð32Þ

VkðτÞ≡ 1

2
ðk2jϕR

k j2Þ; ð33Þ

QkðτÞ≡ 1

2

�
−

1

Rk

∂
2Rk

∂ϕR
k ∂ϕ

R�
k

�

¼ 1

2
ðkℜ½fkðτÞ� − k2ℜ2½fkðτÞ�jϕR

k j2Þ; ð34Þ

with

EkðτÞ ¼ KkðτÞ þ VkðτÞ þQkðτÞ: ð35Þ

From Eq. (28), Eq. (31) gives the total energy of field
mode, Eq. (32) can be viewed as the “classical” kinetic
term, Eq. (33) is the “classical” potential term, and Eq. (34)
refers to the so-called quantum potential. Their complete
expressions are given in Appendix A, together with the
asymptotic expansions for high and low accelerations of
the coefficients that appear in the wave functional (23). As
mentioned above, when the quantum potential term is
negligible with respect to the others, the classical evolution
is recovered.
Note that, for a ≪ 1 and using Eqs. (24) and (25), we

recover the expressions for the total energy of the
Minkowski vacuum and its parts in the dBB approach;
Ek ¼ k=2, Kk ≈ 0, and Qk ¼ k=2 − Vk.
An important remark: this separation of terms in the total

energy makes sense only in the dBB approach for quantum
theory.
Computing the derivative of the Hamilton-Jacobi equa-

tion (28) with respect to ϕR�
k and using the guidance

equation, we obtain a Klein-Gordon-type equation for the

Bohmian field, with a source term due to the quantum
potential, that is

∂
2ϕR

k

∂τ2
þ k2ϕR

k ¼ −2
∂Qk

∂ϕR�
k

; ð36Þ

introducing to the Bohmian field dynamics a corrective
possibly nonlinear quantum force.

B. Mean values and Unruh temperature

In the previous subsection, we saw that R2 ¼ jΨj2 in the
dBB quantum theory is interpreted as the probability
density associated with an ensemble of trajectories given
in terms of the guidance equations. Hence,

hOðτÞidBB ¼
Z

dϕR
k dϕ

R�
k jΨR

k ½ϕR
k ;ϕ

R�
k ; τ�j2OðϕR

k ;ϕ
R�
k ; τÞ

ð37Þ

is the mean value of a physically meaningful property O
related to the field trajectories [41]. In order to give the
same results as the usual mean values of quantum oper-
ators, the property O, which is not an operator, must be
judiciously chosen. For instance, in the present case, mean
values of the Hamiltonian operator Ĥk are proven to be
equal to the mean value of the property O ¼ Ek as defined
in Eq. (31). However, as commented above, the present
formalism allows the differentiation of the classical parts
from contributions of a quantum nature which the ensemble
average might have (in this case, given by the quantum
potential), which is not possible in the usual formalism.
Hence, the mean energy hEkidBB can be written as

hEkidBB ¼ hKkidBB þ hVkidBB þ hQkidBB; ð38Þ

where we have an explicit term due to the quantum
potential.
Using Eq. (37) with O ¼ Ek defined in Eq. (31) yields

the mean energy as

hEkidBB ¼ k
2
coth

�
πk
a

�
¼ k

�
1

2
þ 1

e
2π
a k − 1

�
; ð39Þ

where we used the fact that
R∞
0 dρρ3e−cρ

2 ¼ 1
2c2, with

ρ ¼ jϕR
k j and c ¼ 2kℜ½fkðτÞ�.

We can explore this result to obtain the mean number of
Rindler particles in the Minkowski vacuum if we use the
known fact that Ĥk ¼ ðn̂k þ 1

2
Þk. Taking the average on

both sides we have that hnkidBB ¼ 1
k hEkidBB − 1

2
, yielding,

hnkidBB ¼ 1

e
2π
a k − 1

; ð40Þ
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which is the Bose-Einstein distribution with Unruh temper-
ature T ¼ a=2π.
For very low temperatures (accelerations), the expo-

nential in the denominator of Eq. (40) goes to infinity, so
that the mean occupation number of Rindler particles in
the Minkowski vacuum is null, meaning that the Rindler
and Minkowski vacua are equivalent. Consequently, the
energy average is just the energy of a single harmonic
oscillator with wave number k ¼ ℏw in the ground state,
hEkidBB ¼ k=2. For high temperatures (accelerations), in
contrast, hEkidBB ¼ T ¼ a=2π, the average energy of a
thermal distribution of oscillators at temperature T,
agreeing with the equipartition theorem.
Let us now calculate the mean values of the different

parts of the energy from Eqs. (32)–(34). They read,

hKkidBB ¼ k
4

ℑ2½fkðτÞ�
ℜ½fkðτÞ�

¼ kcschðπka Þsin2ð2kτÞ
4½coshðπka Þ − cosð2kτÞ� ; ð41Þ

hVkidBB ¼ k
4

1

ℜ½fkðτÞ�
¼ k½coshðπka Þ − cosð2kτÞ�

4 sinhðπka Þ
; ð42Þ

and

hQkidBB ¼ k
4
ℜ½fkðτÞ� ¼

k sinhðπka Þ
4½coshðπka Þ − cosð2kτÞ� : ð43Þ

Note that each of the above expressions has a nontrivial
time dependence, but their sum, the total mean energy,
is time-independent. In Fig. 1 we plot the averages versus
the acceleration a for τ ¼ 0 and τ ¼ π=2. Despite at the
beginning classical and quantum potentials having almost
the same value in both cases, for high accelerations the
quantum potential tends asymptotically to hEkidBB in
Fig. 1(a), while in Fig. 1(b) the main responsible for the
mean energy is the classical potential.
Let us see the limits of these averages for low and high

temperatures:

C. Low-temperature (acceleration) regime: T ≪ 1

In this regime we have

hKkidBB ≈ ksin2ð2kτÞe−k=T ≈ 0; ð44Þ

hVkidBB ≈
k
4
−
k cosð2kτÞe−k=ð2TÞ

2
≈
k
4
; ð45Þ

hQkidBB ≈
k
4
þ k cosð2kτÞe−k=ð2TÞ

2
≈
k
4
: ð46Þ

In this case we recover the usual dBB picture of the vacuum
state; the energy of the field is equally shared between the
classical and quantum potential, with negligible kinetic
energy.

D. High-temperature (acceleration) regime: T ≫ 1

In this case, we have two different situations:

(i) τ ≠ nπ=k, with n an integer
The results are

hKkidBB ≈ Tcos2ðkτÞ; ð47Þ

hVkidBB ≈ Tsin2ðkτÞ; ð48Þ

hQkidBB ≈
k2

16Tsin2ðkτÞ ≈ 0: ð49Þ

Note that in this limit the classical kinetic and
potential energies supply all the total energy T, with
a negligible contribution of the quantum potential.

(ii) τ ¼ nπ=k, with n an integer
The situation changes drastically when τ ¼ nπ=k,

with n an integer. In this case we have

hKkidBB ≈ 0; ð50Þ

hVkidBB ≈
k2

16T
≈ 0; ð51Þ

(a) (b)

FIG. 1. The mean values as functions of the acceleration a for (a) τ ¼ 0 and (b) τ ¼ π=2.
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hQkidBB ≈ T: ð52Þ

At these times, the quantum potential is the main
contribution to the total energy, while the classical terms
yield negligible contributions. Hence, the total mean energy
is constant, but there is a significant shift from classical to
quantum contribution occurring periodically at τ ¼ nπ=k,
which instigates us to think about the possibility of
measuring such an effect.
As a matter of fact, these abrupt changes can be seen

already in the effective Klein-Gordon equation for the
Bohmian field

∂
2ϕR

k

∂τ2
þ k2ϕR

k ¼ −2
∂Qk

∂ϕR�
k

¼ k2ℜ2½fkðτÞ�ϕR
k : ð53Þ

As indicated by Eq. (53), in the case of the wave function
(23), the source term is linear, playing the role of an
effective mass. In the high-temperature regime, T ≫ 1, and
for τ ≠ nπ=k, we get

∂
2ϕR

k

∂τ2
þ k2ϕR

k ≈
k4

16T2sin2ðkτÞϕ
R
k ≈ 0; τ ≠ nπ=k: ð54Þ

The quantum force is negligible, and the Bohmian field
obeys a classical Klein-Gordon equation. However, for
τ ¼ nπ=k, one gets that

∂
2ϕR

k

∂τ2
þ k2ϕR

k ≈ 16T2ϕR
k ; τ ¼ nπ=k; ð55Þ

and now the quantum force drives the field dynamics.
Hence, also in this perspective, there is a substantial change
from classical to quantum dominance in the neighborhood
τ ¼ nπ=k. Since the field dynamics are different for these
two distinct moments, it allows us to speculate whether
such an effect can be observed.

In Fig. 2 we plot all mean energies for accelerations of
order 1. In Fig. 3, on the other hand, we plot the sum of the
classical energies together with the quantum potential in the
case of high accelerations (temperatures); a ¼ 102. One
can see the periodic abrupt jumps from classical to quantum
dominance in the neighborhoods of τ ¼ nπ=k.

G. Field trajectories

In this subsection, we obtain the general solution of the
guidance equations in order to calculate the ensemble of
possible field trajectories. We show that there is a very
particular one with remarkable properties, and we analyze
its behavior within the limits of low and high acceleration.
Integrating the guidance equation (30), we obtain an

explicit expression for the Bohmian field,

ϕR
k ðτÞ ¼ CkðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh

�
πk
a

�
− cosð2kτÞ

s
: ð56Þ

Without loss of generality, we write the integration constant
as CkðaÞ ¼ DkðaÞ=½2k sinhððπk=aÞÞ�1=2. Therefore, the
field trajectory reads,4

ϕR
k ðτÞ ¼

DkðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kℜ½fkðτÞ�

p ¼ DkðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðπka Þ − cosð2kτÞ

2k sinhðπka Þ

s
:

ð57Þ

Written in these terms, the probability density
distribution admits a straightforward form, the Gaussian

FIG. 2. Plot of the average values for k ¼ 0.1 and a ¼ 1.
Despite the dominance of the quantum potential around
τ ¼ nπ=k, the classical terms are still relevant in this case, with
a non-negligible contribution.

FIG. 3. Quantum and classical averages, together with the total
mean energy hEkidBB, for k ¼ 1 and a ¼ 102. In the vicinity of
τ ¼ nπ=k, there is an abrupt change in the quantum and classical
contributions, with hQkidBB rapidly becoming the dominant part
of hEkidBB, while hVkidBB þ hKkidBB suddenly dropping to zero
in a very short range of time.

4Strictly speaking, we should use the absolute value of the
wave number in the exponents due to the reality of the field, as
can be seen by dimensional analysis. However, admitting
decomposition (8), we are restricted to positive values of k,
making the module’s presence unnecessary.
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jΨkj2 ∝ e−jDkðaÞj2 . The total energy of this ensemble of fields
reads

Ek¼k
jDkðaÞj2−1þcoshðπka Þ½coshðπka Þ− jDkðaÞj2cosð2kτÞ�

2½coshðπka Þ−cosð2kτÞ�sinhðπka Þ
:

ð58Þ

From Eq. (58), one can immediately see that the total
energy of the Bohmian fields is time independent if and
only if we make the choice jDkðaÞj2 ¼ 1, so that DkðaÞ
must be just a phase, DkðaÞ ¼ expðiθkðaÞÞ. In this case,
disregarding the normalization factor, the Gaussian distri-
bution part jΨkj2 ∝ e−jDkðaÞj2 of initial conditions for this
subset of possibilities is fixed and it is independent of k
and a. The energy of this particular subset emerging from
Eq. (58) is precisely the mean energy given in (39),

Ek ¼ k

�
1

2
þ 1

e
2π
a k − 1

�
: ð59Þ

Furthermore, all components of the total energy of this
particular Bohmian field are exactly the average values
calculated in the last section, that is, Qk ¼ hQkidBB, Vk ¼
hVkidBB and Kk ¼ hKkidBB [Eqs. (43), (42), and (41)].
Hence, the analysis corresponding to the asymptotic
limits of the average quantities made in the previous
subsection is also valid for every single Bohmian field
with DkðaÞ ¼ expðiθkðaÞÞ, including the periodic abrupt
transitions from classical to quantum dominance discussed
above. These particular Bohmian fields follow the mean
value evolution exactly.
Finally, the asymptotic behaviors of these particular

Bohmian fields, disregarding their phase, read

ϕR
k ¼ 1 − cosð2kτÞe−k=ð2TÞffiffiffiffiffi

2k
p ; T ≪ 1 ð60Þ

ϕR
k ¼

ffiffiffiffiffiffi
2T

p j sinð2kτÞj
k

; T ≫ 1: ð61Þ

H. Power spectrum

In order to present statistical predictions, we calculate
the two-point correlation function, then integrate it over
the phase space. We denote ϕðτ; ξ;ϕiÞ as a solution to the
guidance equations with the initial condition ϕi. In dBB
interpretation, the two-point correlation function is calcu-
lated as an average over all initial field configurations with
the weight jΨðϕi; τiÞj2. If the initial field ϕi is distributed
according to quantum equilibrium jΨðϕi; τiÞj2 then
ϕðτ; ξ;ϕiÞ is distributed according to jΨðϕ; τÞj2 at any
time [45,46], and it is possible to show that [26]

hϕðτ;ξÞϕðτ;ξþ σÞidBB ¼
Z

DϕijΨðϕiðτi;ξÞÞj2ϕðτ;ξ;ϕiÞ

×ϕðτ;ξþ σ;ϕiÞ

¼
Z

DϕjΨðϕðτ;ξÞÞj2ϕðξÞϕðξþ σÞ:

ð62Þ

This means that the two-point function in dBB interpre-
tation is the same as the one calculated in the usual manner.
In the case of the general parametrization of the ground
state (19), the integral (62) results in

hϕðξÞϕðξþ σÞidBB ¼ 1

2π

Z
∞

−∞
dk

1

2jkjℜ½fkðτÞ�
e−ikσ: ð63Þ

Using the expression (63), the power spectrum

PkðτÞ ¼
Z

dξe−ikξhϕðξÞϕð0ÞidBB; ð64Þ

for ξþ σ ¼ 0 is equal to

PkðτÞ ¼
1

2kℜ½fkðτÞ�
¼ coshðπka Þ − cosð2kτÞ

2k sinhðπka Þ
¼ 2

k2
hVkidBB:

ð65Þ

From the last equality, one can see that the correlations
between the field modes are closely connected to the
classical potential [see Eq. (42)].
In the high-temperature regime PkðτÞ can be approxi-

mated by

PkðτÞ ≃
2T
k2

sin2ðkτÞ; ð66Þ

being independent of time for low temperatures because, in
this limit,

PkðτÞ ≃
1

2k
: ð67Þ

It is noteworthy to mention that the findings presented in this
section pertain to the case of a single spatial dimension. In
situations with two or more spatial dimensions, the wave
functional exhibits distinct dependencies on longitudinal and
transverse momenta [31,40] with respect to the acceleration
direction. We continue to have a Bose-Einstein distribution;
however, other quantities, like the Bogoliubov coefficients
themselves, are no longer rotationally invariant [40].

III. COMPLETE MANIFOLD ANALYSIS

In this section, we analyze the complete manifold
problem, i.e., the two-wedge scalar massless field in
(1þ 1)-dimensions, giving de Broglie–Bohm’s prescription
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of the Unruh effect. In Ref. [36], it is argued that if an
observer in the right-Rindler wedge detects nj particles,
then an observer in the left wedge should observe nj
particles as well. In fact, there is a quantum nonlocal
correlation between the modes in the two wedges which,
however, does not violate causality, as in the well-known
quantum correlations arising from entangled states. When
we trace over the degrees of freedom associated with the left
side, the result is a thermal density matrix for the right
wedge, given by a mixed state between right and left sides.
In this sense, in order to describe the scenario in which an
accelerated observer detects a Rindler particle, it is neces-
sary to consider the two-wedge problem. The two-wedge
approach introduces new properties to the Unruh effect,
which appears in the Hawking radiation, since a nonlocal
connection between the fields defined in the two wedges
[36], as the two-wedge Rindler geometry gets features of a
Schwarzschild-like geometry. Since the dBB quantum
theory is manifestly nonlocal, this alternative approach
offers direct regard to these new features, which may be
useful for future analysis.
Let us consider the expansion of the Minkowski field in

plane waves

ϕðt; xÞ ¼
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikxϕM
k ðtÞ: ð68Þ

Using the decomposition (8), the associated ground-state
wave functional becomes

ðΨM
k Þ0½ϕM

k ; t� ¼ Nk exp ð−kðϕM
k Þ2 − iktÞ: ð69Þ

With the purpose of describing the entire Minkowski
space, we analytically extend the right Rindler wedge to the
left side by introducing the two-wedge coordinates.

RH-wedge ðx > 0Þ∶ LH-wedge ðx < 0Þ∶

x ¼ eaξR

a
coshðaτÞ x ¼ eaξL

a
coshðaτÞ

t ¼ eaξR

a
sinhðaτÞ t ¼ eaξL

a
sinhðaτÞ: ð70Þ

In the LH-wedge, the time parameter τ evolves in the
opposite direction, therefore, it can be considered a time-
reversed copy of the RH-wedge [39,40]. The field expan-
sion is Rindler variables is

ϕðτ; ξÞ ¼ θðxÞ
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikξRϕR
k ðτÞ þ θð−xÞ

×
Z

∞

−∞

dkffiffiffiffiffiffi
2π

p eikξLϕL
k ðτÞ; ð71Þ

with ϕR
k equal to the right modes as in the previous case,

and ϕL
k corresponding to the left modes. Here, θðxÞ is the

step function.
Proceeding similarly as in Sec. II, we obtain the

following wave functional at t ¼ 0 [31]

ðΨkðτ¼ t¼ 0ÞÞ0¼Nk exp

�
−kcoth

�
πk
a

�
ðjϕR

k j2þjϕL
k j2Þ

þkcsch

�
πk
a

�
ðϕR

kϕ
L�
k þϕL

kϕ
R�
k Þ

	
; ð72Þ

with Nk a normalization constant. Since at t ¼ τ ¼ 0 both
Rindler and Minkowski spaces share the same Cauchy
hypersurface, we can use Eq. (72) as an initial condition for
the Schrödinger equation

i
∂ΨkðτÞ
∂τ

¼
�
−

∂
2

∂ϕR�
k ∂ϕR

k
−

∂
2

∂ϕL�
k ∂ϕL

k

þ k2ðjϕR
k j2 þ jϕL

k j2Þ
�
ΨkðτÞ: ð73Þ

In this case, the general solution is

ðΨkðτÞÞ0 ¼ Nk expð−kFkðτÞðjϕR
k j2 þ jϕL

k j2Þ
þ kGkðτÞðϕR�

k ϕL
k þ ϕR

kϕ
L�
k Þ þ ΘkðτÞÞ; ð74Þ

with the coefficients

FkðτÞ ¼ coth

�
πk
a
þ2ikτ

�
; GkðτÞ ¼ csch

�
πk
a
þ2ikτ

�
;

ð75Þ

the phase

ΘkðτÞ ¼ − ln

�
sinh

�
πk
a

þ 2ikτ

�	
; ð76Þ

and the normalization constant

NkðτÞ ¼
k
π
sinh

�
πk
a

�
: ð77Þ

To our knowledge, this is the first time Eq. (74), together
with Eqs. (75)–(77), is exhibited, which is the mode-k
Minkowski vacuum wave function solution in terms of the
Rindler fields in both wedges for any Rindler time τ.
The presence of the crossed terms in the wave functional

(74) indicates the existence of a nontrivial correlation
between ϕR

k and ϕL
k [36]. Despite the horizon at t ¼ �x,

the right-wedge field depends on the left-wedge field, even
without interaction between them. This mutual dependence
can be understood when we look at the dBB guidance
equations.
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Turning to the Bohmian theory of the extended case and
writing the wave functional in the polar form ðΨkðτÞÞ0 ¼
RkeiSk , we obtain

Rk ¼ Nk expð−kℜ½FkðτÞ�ðjϕR
k j2 þ jϕL

k j2Þ
þ kℜ½GkðτÞ�ðϕR

kϕ
L�
k þ ϕL

kϕ
R�
k Þ þℜ½ΘkðτÞ�Þ; ð78Þ

Sk ¼ −kℑ½FkðτÞ�ðjϕR
k j2 þ jϕL

k j2Þ þ kℑ½GkðτÞ�ðϕR
kϕ

L�
k

þ ϕL
kϕ

R�
k Þ þ ℑ½ΘkðτÞ�; ð79Þ

where the calligraphic letters ℜ and ℑ refer to the real and
imaginary parts of their respective coefficients, which are
given by

ℜ½FkðτÞ� ¼
sinhð2πka Þ

coshð2πka Þ − cosð4kτÞ ;

ℑ½FkðτÞ� ¼
− sinð4kτÞ

coshð2πka Þ − cosð4kτÞ ; ð80Þ

ℜ½GkðτÞ� ¼
2 sinhðπka Þ cos ð2kτÞ
coshð2πka Þ − cosð4kτÞ ;

ℑ½GkðτÞ� ¼
−2 coshðπka Þ sin ð2kτÞ
coshð2πka Þ − cosð4kτÞ ; ð81Þ

while for the phase, we have that

ℜ½ΘkðτÞ� ¼ −
1

2
ln

�
cosh2

�
πk
a

�
− cos2ð2kτÞ

	
; ð82Þ

ℑ½ΘkðτÞ� ¼ −tan−1
�
coth

�
πk
a

�
tanð2kτÞ

�
: ð83Þ

Then, the Hamilton-Jacobi and continuity equations are,
respectively,

∂Sk
∂τ

þ
X
a¼R;L

��
∂Sk
∂ϕa�

k

∂Sk
∂ϕa

k

�
þ k2jϕa

k j2
	

−
1

Rk

X
a¼R;L

�
∂
2Rk

∂ϕa
k∂ϕ

a�
k

�
¼ 0; ð84Þ

∂R2
k

∂τ
þ

X
a¼R;L

�
∂

∂ϕa
k

�
R2
k
∂Sk
∂ϕa�

k

�
þ ∂

∂ϕa�
k

�
R2
k
∂Sk
∂ϕa

k

�	
¼0: ð85Þ

Consequently, we interpret R2
k as a probability distribution

and ∂Sk
∂ϕa

k
, with a ¼ R, L, as the velocity fields. Hence, the

dBB guidance equations are

∂ϕR
k

∂τ
¼ ∂Sk

∂ϕR�
k

¼ −kℑ½FkðτÞ�ϕR
k þ kℑ½GkðτÞ�ϕL

k ; ð86Þ

∂ϕL
k

∂τ
¼ ∂Sk

∂ϕL�
k

¼ −kℑ½FkðτÞ�ϕL
k þ kℑ½GkðτÞ�ϕR

k ; ð87Þ

which reveals that the right and left modes have, at a first
glance, a nonlocal connection. The change in ϕL

k has an
immediate effect on ϕR

k through the guidance equations and
vice versa. This can be seen also from the effective Klein-
Gordon equations for the Bohmian fields,

∂
2ϕR

k

∂τ2
þk2ϕR

k ¼k2ðℜ2½fk�þℜ2½gk�ÞϕR
k −2k2ℜ½fk�ℜ½gk�ϕL

k ;

ð88Þ

∂
2ϕL

k

∂τ2
þk2ϕL

k ¼k2ðℜ2½fk�þℜ2½gk�ÞϕL
k −2k2ℜ½fk�ℜ½gk�ϕR

k :

ð89Þ

Nevertheless, this system can be decoupled by introduc-
ing the variables

χ1;k ¼
ϕR
k þ ϕL

kffiffiffi
2

p ; χ2;k ¼
ϕR
k − ϕL

kffiffiffi
2

p ; ð90Þ

so that, in terms of χk;1 and χk;2 the guidance equations
implies that

∂χ1;k
∂τ

¼ −kℑ½H1;kðτÞ�χ1;k; ð91Þ

∂χ2;k
∂τ

¼ −kℑ½H2;kðτÞ�χ2;k; ð92Þ

where H1;k and H2;k are time-dependent coefficients with
the following expressions

H1;k ¼ Fk −Gk ¼ tanh

�
πk
2a

þ ikτ

�
; ð93Þ

H2;k ¼ Fk þ Gk ¼ coth

�
πk
2a

þ ikτ

�
: ð94Þ

The corresponding real and imaginary parts of H1;k and
H2;k are

ℜ½H1;kðτÞ� ¼
sinhðπka Þ

coshðπka Þ þ cosð2kτÞ ;

ℑ½H1;kðτÞ� ¼
sinð2kτÞ

coshðπka Þ þ cosð2kτÞ ; ð95Þ
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ℜ½H2;kðτÞ� ¼
sinhðπka Þ

coshðπka Þ − cosð2kτÞ ;

ℑ½H2;kðτÞ� ¼ −
sinð2kτÞ

coshðπka Þ − cosð2kτÞ : ð96Þ

Thereafter, in terms of the new variables, the ground
state (74) can be written as the direct product between two
independent states, that is,

ðΨkðτÞÞ0 ¼
k
π
eΘkðτÞ sinh

�
πk
a

�
e−kH1;kðτÞjχ1;kj2e−kH2;kðτÞjχ2;kj2

≡Ψ1;k½χ1;k; χ�1;k; τ� ⊗ Ψ2;k½χ2;k; χ�2;k; τ�; ð97Þ

The wave functional Ψ2;k corresponds to a squeezed state
[47] with a squeezing parameter rk such that tanh rk ¼
e−πk=a and a squeezing angle αk ¼ −kτ, while Ψ1;k can be
seen in the same way, but with the squeezing angle rotated
by π=2. With this parametrization, we have

ΨA;k½χA;k� ∝ exp

�
−k

1þ e2iαk tanh rk
1 − e2iαk tanh rk

jχA;kj2
�
; ð98Þ

with A ¼ 1; 2. Note that H2;k has the same expression as
fkðτÞ in Eq. (20). Then, Ψ2;k can be seen in the same
manner as the right-wedge wave functional, but with ϕR

k
substituted for χ2;k. Analogously, Ψ1;k is the left version of
the ground state (19). Therefore, the decomposition (97)
can be understood as the product of two decoupled
Minkowski wave functionals for the mode k in Rindler-
like variables.
As in the previous section, one can write the total energy

and its components in terms of the new field variables:

EkðτÞ ¼
1

2

�
k
∂ℑ½H1;kðτÞ�

∂τ
jχ1;kj2 þ k

∂ℑ½H2;kðτÞ�
∂τ

jχ2;kj2

−
∂ℑ½ΘkðτÞ�

∂τ

	
; ð99Þ

KkðτÞ ¼
1

2

h
k2ℑ2½H1;kðτÞ�jχ1;kj2 þ k2ℑ2½H2;kðτÞ�jχ2;kj2

i
;

ð100Þ

VkðτÞ ¼
1

2
½k2jχ1;kj2 þ k2jχ2;kj2�; ð101Þ

QkðτÞ ¼
1

2

h
kðℜ½H1;kðτÞ� þℜ½H2;kðτÞ�Þ

− k2ðℜ2½H1;kðτÞ�jχ1;kj2

þℜ2½H2;kðτÞ�jχ2;kj2Þ
i
; ð102Þ

which are, respectively, the total energy, the kinetic energy,
the classical potential, and the quantum potential, from

where we can see the individual contributions of χ1;k
and χ2;k.
Note that, for a ≪ 1 and using Eqs. (95) and (82), we

recover the expressions for the total energy and its parts of
two noninteracting fields in the Minkowski vacuum in the
dBB approach; Ek ¼ k, Kk ≈ 0 and Qk ¼ k − Vk.
Lastly, the effective Klein-Gordon equations for the

Bohmian fields, (88) and (89), are decoupled in two-
independent equations, namely

∂
2χ1;k
∂τ2

þ k2χ1;k ¼ k2ℜ2½H1;kðτÞ�χ1;k; ð103Þ

∂
2χ2;k
∂τ2

þ k2χ2;k ¼ k2ℜ2½H2;kðτÞ�χ2;k; ð104Þ

which, as before, are Klein-Gordon-type equations sup-
plemented by a linear source of quantum origin.

A. Mean values for the extended geometry

The averages associated with the extended geometry
field trajectories can be computed as

hOðτÞidBB ¼
Z

Dϕk

���Ψk½ϕR
k ;ϕ

R�
k ;ϕL

k ;ϕ
L�
k ; τ�

���2
×OðϕR

k ;ϕ
R�
k ;ϕL

k ;ϕ
L�
k ; τÞ; ð105Þ

with O a meaningful property and Dϕk ¼ dϕR
k dϕ

R�
k

dϕL
k dϕ

L�
k is the modes integration measure. Since the wave

functional (74) has crossed terms involving right and left
modes, it is much easier to calculate such averages using
the χ’s variables. Thus, in terms of χ1;k and χ2;k we have

hOðτÞidBB ¼
Z

Dχk

���Ψk½χ1;k; χ�1;k; χ2;k; χ�2;k; τ�
���2

×Oðχ1;k; χ�1;k; χ2;k; χ�2;k; τÞ; ð106Þ

where we define the measure asDχk¼dχ1;kdχ�1;kdχ2;kdχ
�
2;k.

Taking into account that we can write jΨkj2 as

jΨkj2¼
k2

π2
ℜ½H1;kðτÞ�ℜ½H2;kðτÞ�

×e−2kℜ½H1;kðτÞ�jχ1;kj2e−2kℜ½H2;kðτÞ�jχ2;kj2 ; ð107Þ

the effective mean values, for each wave number, of the
expressions (100), (101), and (102) become, respectively,

hKkidBB ¼ k
4

�
ℑ2½H1;kðτÞ�
ℜ½H1;k�

þ ℑ2½H2;kðτÞ�
ℜ½H2;k�

�

¼ k cothðπka Þsin2ð2kτÞ
coshð2πka Þ − cosð4kτÞ ; ð108Þ
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hVkidBB ¼ k
4

�
1

ℜ½H1;kðτÞ�
þ 1

ℜ½H2;kðτÞ�
�

¼ k
2
coth

�
πk
a

�
;

ð109Þ

hQkidBB ¼ k
4
ðℜ½H1;kðτÞ� þℜ½H2;kðτÞ�Þ

¼ k sinhð2πka Þ
2
h
coshð2πka Þ − cosð4kτÞ

i : ð110Þ

The average energy, which is the sum of the three terms
above, reads,

hEkidBB ¼ k coth

�
πk
a

�
¼ 2k

�
1

2
þ 1

e
2π
a k − 1

�
; ð111Þ

which is twice the energy when we consider just the right
part, being consistent with the fact that each wedge should
contribute with the same amount of energy. Interestingly,
for high accelerations, which is equivalent to taking the
limit of high temperatures, the effective mean energy is 2T.
Therefore, this result is in concordance with the equiparti-
tion theorem, which states that each quadratic term in
Hamiltonian provides T=2 for the mean energy. Note that,
in this case, the average value of the total classical potential
is also time independent, and half of the total average
energy.
As in Sec. (2), we can obtain the mean number of Rindler

particles in the Minkowski vacuum using the Hamiltonian
operator Ĥk ¼ ð2n̂k þ 1Þk, as we have two massless non-
interacting scalar fields. Taking the average on both sides
we have that hnkidBB ¼ ð1k hEkidBB − 1Þ=2, yielding,

hnkidBB ¼ 1

e
2π
a k − 1

; ð112Þ

which is the Bose-Einstein distribution with Unruh temper-
ature T ¼ a=2π for each one of the modes χA;k.
In Fig. 4 we analyze the behavior of the mean values as

we increase the acceleration. For τ ¼ 0 [Fig. 4(a)] quantum

and classical contributions are equivalents, since hQkidBB ¼
hVkidBB. For τ ¼ π=4 [Fig. 4(b)], this equality is valid only
for low values of a, with hQkidBB dropping to zero as the
acceleration grows.
Let us now show the limits of the average parts of the

total energy for low and high temperatures.

B. Low-temperature (acceleration) regime: T ≪ 1

In this regime we have

hKkidBB ≈ 2ksin2ð2kτÞe−k=T ≈ 0; ð113Þ

hVkidBB ≈
k
2
þ ke−k=T ≈

k
2
; ð114Þ

hQkidBB ≈
k
2
þ k cosð4kτÞe−k=T ≈ k

2
: ð115Þ

Again, we recover the usual dBB picture of the Minkowski
vacuum state; the energy of the field is equally shared
between the classical and quantum potential, with negligible
kinetic energy.

C. High-temperature (acceleration) regime: T ≫ 1

There are two different situations:
(i) τ ≠ nπ=ð2kÞ, with n a an integer

The results are

hKkidBB ≈ T; ð116Þ

hVkidBB ≈ T; ð117Þ

hQkidBB ≈
k2

4Tsin2ð2kτÞ ≈ 0: ð118Þ

In this limit the classical kinetic and potential
energies supply all the total energy T, with a
negligible contribution of the quantum potential.

(ii) τ ¼ nπ=ð2kÞ, with n an integer
For these specific time values,

(a) (b)

FIG. 4. The mean values as functions of the parameter a for 4(a) τ ¼ 0 and 4(b) τ ¼ π=4. Note that for τ ¼ 0, hQkidBB ¼ hVkidBB.
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hKkidBB ≈ 0; ð119Þ

hVkidBB ≈ T; ð120Þ

hQkidBB ≈ T: ð121Þ

As mentioned above, the total mean classical potential is
time independent and always contributes half of the total
mean energy. The other half is now supplied by the mean
kinetic energy, with abrupt shifts to the dominance of the
mean quantum potential around τ ¼ nπ=ð2kÞ. Therefore, in
the two-wedges case, the periodic spikes involve only the
mean kinetic and quantum potential energies, interchang-
ing half of the total energy.
Let us now comment on the behavior of the mean values

concerning only each of the fields χ1;k and χ2;k separately.
The function appearing in the part of the mode wave
function (97) corresponding to the second field χ2;k, which
is H2;k, is the same as the one appearing in the mode wave
function for ϕR

k [see Eqs. (23) and (24)], hence the χ2;k
contribution to the total energy and its parts have the same
behavior as before. This means that this mode, as happens
in the nonextended case, is responsible for the sudden
spikes at τ ¼ nπ=k characteristic of the transition between
classical and quantum dominance, explicit at high temper-
atures. For the χ1;k field, however, its associated function
H1;k can be obtained from H2;k by replacing coshðπka Þ −
cosð2kτÞ with coshðπka Þ þ cosð2kτÞ, see Eqs. (95) and (96).
Thus, the properties are similar but the jumps between
classical and quantum dominance for large T due to χ1;k
happen in the neighborhood of τ ¼ ðnþ 1

2
Þπ=k, with n an

integer.
As is the right-wedge case, this can also be seen from

Eqs. (103) and (104). The field χ2;k satisfies Eq. (104),
which is identical to Eq. (53), hence yielding the same
limits for (54) and (55) of the previous section. In the case
of the field χ1;k, however, satisfying Eq. (103), the limits in
the high-temperature regime, T ≫ 1, are

∂
2χ1;k
∂τ2

þ k2χ1;k ≈
k4

16T2cos2ðkτÞ χ1;k ≈ 0;

τ ≠
�
nþ 1

2

�
π

k
; ð122Þ

∂
2χ1;k
∂τ2

þ k2χ1;k ≈ 16T2χ1;k; τ ¼
�
nþ 1

2

�
π

k
: ð123Þ

The Bohmian field χ1;k obeys a classical Klein-Gordon
equation when τ ≠ ðnþ 1

2
Þπ=k, as the quantum force is

negligible. However, in the vicinity of τ ¼ ðnþ 1
2
Þπ=k, it

becomes the dominant force, resulting in a sudden tran-
sition from classical to quantum dominance.

In Fig. 5 we plot all mean energies for accelerations of
order 1. In Fig. 6 we plot the mean kinetic energy together
with the mean quantum potential energy and their sum, for
the case of high accelerations (temperatures); a ¼ 102. It is
evident that near τ ¼ nπ=ð2kÞ the quantum potential and
the kinetic term switch their roles, with hKkidBB dropping
to zero as hQkidBB grows. For large accelerations, this
behavior is characterized by sharp peaks centered at
τ ¼ nπ=ð2kÞ.

F. Extended field trajectories

Similarly to the nonextended case we have a special field
configuration, solution to dBB guidance equations, with
analogous properties of the average values computed in the
last subsection. From Eqs. (91) and (92) we obtain

χ1;kðτÞ ¼
D1;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kℜ½H1;kðτÞ�
p ; χ2;kðτÞ ¼

D2;kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kℜ½H2;kðτÞ�

p :

ð124Þ

FIG. 5. Mean values of the kinetic term and the quantum
potential for the extended case, with k ¼ 0.1 and a ¼ 1. The sum
of hQkidBB and hKkidBB is exactly the average value of the
classical potential hVkidBB, represented as a straight line.

FIG. 6. Representative plot of hQkidBB and hKkidBB with their
sum, hVkidBB, for k ¼ 1 and a ¼ 102. Near τ ¼ nπ=ð2kÞ, the
kinetic contribution sharply shifts to the quantum potential,
which quickly dominates as the kinetic term drops to zero.
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The probability density distribution takes a very simple
form, the Gaussian jΨkj2 ∝ e−jD1;kðaÞj2−jD2;kðaÞj2 . As in
Sec. II, fields with jD1;kj ¼ jD2;kj ¼ 1 are the unique
possibility of Bohmian fields with time-independent energy
(99), which is equal to the average energy given in
Eq. (111). Moreover, each individual part of the total energy
of such Bohmian fields is equal to its own average, namely,
Qk ¼ hQkidBB, Vk ¼ hVkidBB, and Kk ¼ hKkidBB. Hence,

the asymptotic limits of the average quantities calculated in
the previous subsection are also valid for every single
Bohmian field with D1;kðaÞ ¼ expðiθ1;kðaÞÞ; D2;kðaÞ ¼
expðiθ2;kðaÞÞ, including the periodic abrupt shifts from
classical kinetic to quantum potential dominance dis-
cussed above.
The asymptotic behaviors of these particular Bohmian

fields, disregarding their phase, read

FIG. 7. The field trajectories as a function of τ for θ1;k ¼ θ2;k ¼ 0. Each curve corresponds to a different value of k. In the low-
temperature regime, we observe static trajectories for both ϕR

k and ϕL
k , with indistinguishably close quantum trajectories in this last case.

In contrast, in the high-temperature limit we have a nontrivial field dynamics.
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χ1;k ¼
1þ cosð2kτÞe−k=ð2TÞffiffiffiffiffi

2k
p ; T ≪ 1 ð125Þ

χ1;k ¼
ffiffiffiffiffiffi
2T

p j cosðkτÞj
k

; T ≫ 1 ð126Þ

χ2;k ¼
1 − cosð2kτÞe−k=ð2TÞffiffiffiffiffi

2k
p ; T ≪ 1 ð127Þ

χ2;k ¼
ffiffiffiffiffiffi
2T

p j sinðkτÞj
k

; T ≫ 1: ð128Þ

In Fig. 7, we show the field trajectories (124) for ϕR
k and ϕL

k
as functions of τ, assuming null phases. We consider in total
four cases: a ¼ 0.1, a ¼ 1, a ¼ 10, and a ¼ 100, with each
curve representing a different value of k. Within the low-
temperature domain, we observe static trajectories, in
alignment with the expectations derived from Bohmian
mechanics. Conversely, under high-temperature conditions,
the field trajectories exhibit nontrivial behavior. Thus, we
observe that as we increase the temperature, the field
trajectories gain dynamics.

G. Power spectrum for the complete manifold

As in the previous section, we would like to obtain the
power spectrum for the associated right and left modes. In
the case of the two-wedge problem, it is defined as

ðPabÞkðτÞ ¼
Z

∞

−∞
dξe−ikξhϕaðξÞϕbð0ÞidBB; ð129Þ

where ϕa is the inverse Fourier transform of ϕa
k , with

a; b ¼ R, L, while the power spectrum for variables χA;k is

ðPABÞkðτÞ ¼
Z

∞

−∞
dξe−ikξhχAðξÞχBð0ÞidBB; ð130Þ

with χA being the inverse Fourier transform of χA;k,
A;B ¼ 1; 2. The calculation of the correlations among
the χA modes reveals that

hχAðξÞχBð0ÞidBB ¼ 1

2π

Z
∞

−∞
dkeikξ

δAB
2jkjℜ½HA;kðτÞ�

; ð131Þ

with a null crossed correlation. The nonzero components of
the associated power spectrum are

ðP11ÞkðτÞ ¼
1

2kℜ½H1;kðτÞ�
¼ coshðπka Þ þ cosð2kτÞ

2k sinhðπka Þ
; ð132Þ

ðP22ÞkðτÞ ¼
1

2kℜ½H2;kðτÞ�
¼ coshðπka Þ − cosð2kτÞ

2k sinhðπka Þ
: ð133Þ

So, for high temperatures, we have that

ðP11ÞkðτÞ≃
2T
k2

cos2ðkτÞ; ðP22ÞkðτÞ≃
2T
k2

sin2ðkτÞ; ð134Þ

while for low temperatures

ðP11ÞkðτÞ ≃ ðP22ÞkðτÞ ≃
1

2k
: ð135Þ

Such results are very similar to those found in the
nonextended case, being a consequence of the fact that
the wave functional (97) behaves like two independent
Minkowski ground states. As a matter of fact, ðP11Þk and
ðP22Þk are related with the respective contribution to the
classical potential due to χ1;k and χ2;k, that is to say

ðP11ÞkðτÞ ¼
2

k2
hV1;kidBB; ð136Þ

ðP22ÞkðτÞ ¼
2

k2
hV2;kidBB; ð137Þ

where V1;k ¼ 1
2
k2jχ1;kj2 and V2;k ¼ 1

2
k2jχ2;kj2.

It is possible to express the original correlations
hϕaðξÞϕbð0ÞidBB in terms of Eq. (131) such that the power
spectrum (129) becomes

ðPRRÞkðτÞ ¼ ðPLLÞkðτÞ ¼
1

4k

�
1

ℜ½H1;kðτÞ�
þ 1

ℜ½H2;kðτÞ�
�

¼ cothðπka Þ
2k

; ð138Þ

which can be related to the classical potential as follows:

ðPRRÞkðτÞ ¼ ðPLLÞkðτÞ ¼
1

k2
hVkidBB: ð139Þ

Conversely,

ðPRLÞkðτÞ ¼ ðPLRÞkðτÞ ¼
1

4k

�
1

ℜ½H1;kðτÞ�
−

1

ℜ½H2;kðτÞ�
�

¼ cosð2kτÞ
2k sinhðπka Þ

; ð140Þ

indicating a non-null correlation between the right and left
modes. In the high-temperature limit

ðPRRÞkðτÞ ¼ ðPLLÞkðτÞ ≃
T
k2

;

ðPRLÞkðτÞ ¼ ðPLRÞkðτÞ ≃
T
k2

cosð2kτÞ: ð141Þ

Note that in the common spacelike hypersurfaces
τ ¼ t ¼ 0, the results obtained above are identical to the
power spectrum of a classical field at finite temperature in
Minkowski space, see Ref. [48].
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For low accelerations, we have that

ðPRRÞkðτÞ ¼ ðPLLÞkðτÞ ≃
1

2k
;

ðPRLÞkðτÞ ¼ ðPLRÞkðτÞ ≃ 0: ð142Þ

indicating that, in this case, the crossed correlations are
negligible. Thus, if the effect of the horizon is not evident,
the correspondent nonlocal connection between the left and
right wedges can be neglected.

IV. CONCLUSIONS

In this paper, we analyzed the behavior of a massless
scalar field in the Rindler spacetime from the de Broglie–
Bohm (dBB) perspective. Our study aimed to understand
Bohmian aspects of the Unruh effect by considering first
the right Rindler wedge, and then extending our analysis to
include the left side as well. In both cases, we obtained
a Hamilton-Jacobi-like equation for the Bohmian fields,
together with their guidance equations, recovering the
known results of a Bohmian field in the Minkowski vacuum
for low accelerations.
Using the dBB techniques for arbitrary accelerations, we

calculated the average energy, obtaining the Bose-Einstein
distribution with Unruh temperature for the mean value of
the total energy. As the distribution of initial field configu-
rations satisfies the Born rule, the final result obtained using
the dBB approach must be exactly the same as the one using
standard techniques. Therefore, at first glance, there is
nothing new. However, by using the Hamilton-Jacobi-like
equation for the Bohmian fields, the dBB approach offers a
different perspective on the phenomenon, as it allows the
separation of the total mean energy into classical and
quantum parts, which is not possible with the standard
approach. Inspecting these terms, we observed a periodic
interchange between quantum and classical contributions as
the leading cause of temperature-associated effects, more
prominent for large accelerations. More precisely, for
a=k ≫ 1, which can also be viewed as an infrared limit,
this quantum-classical alternation presents highly abrupt
jumps around τ ¼ nπ=ð2kÞ, where n an integer. We do not
know if these effects can be observed. Note that, assuming
the Born rule, the statistical predictions of the dBB quantum
theory are the same as in the usual approach. However,
regarding a quantum phenomenon from a different perspec-
tive can help in the search for new experimental conse-
quences, which would be very hard to be seen using the
standard point of view. In the case of the dBB quantum
theory, there are many concrete examples of this assertion,
see Ref. [49] for details. In the present case, the sudden
transitions between classical and quantum dominance
mentioned above do not appear to be simple artefacts of
the dBB approach, as long as such abrupt jumps also appear
in the mode wave function solutions themselves, see

Eqs. (23) and (74) for a=k ≫ 1 around τ ¼ nπ=k for the
RH-wedge and τ ¼ nπ=ð2kÞ for the extended case. In fact,
they seem to be manifestations of the jumps at the wave
functional level, which may indeed lead to experimental
consequences.
We solved the guidance equations and found a very

peculiar Bohmian field configuration in which its individual
total energy, classical potential, classical kinetic energy, and
quantum potential were all exactly equal to their corre-
sponding mean values, with the emergence of an effective
Unruh temperature. We would like to emphasize that this is
the unique Bohmian field solution with time-independent
energy. Note that the Unruh temperature appears even
within an individual field configuration, making it not only
an averaged property of the quantum state.
We have seen that the Bohmian field in the Rindler frame

obeys an effective Klein-Gordon equation with an effective
mass that depends on the temperature, see Eqs. (54), (55),
(122), and (123). As they mimic a quantum field, they can
perhaps be explored to construct analog models of the
Unruh effect.
In the case of the complete manifold analysis, we have

seen the nonlocal nature of the guidance equations (86)
and (87) for the Bohmian field modes defined in the right
and left wedges; the dynamics of the right (left) mode is
affected by the left (right) mode, even though they are
separated by a horizon. This can be useful to understand
better the entanglement between these two field modes, and
to possibly extract some physical consequences from it,
opening the way for a black hole analysis.
Finally, as a last speculation, we have commented that

the dBB approach can lead to different results from the
standard quantum theory for some period of time, before
reaching quantum equilibrium, when the distribution of
initial field configurations is not given by the Born rule.
Hence, taking the ensemble of field configurations given in
Eqs. (57) and (124), and taking the distributions of the
integration constants DA;kðaÞ different from jΨkj2 at some
initial time, it would be interesting to investigate what kind
of particle distribution would emerge, its associated tem-
perature, if it exists, and how long it would take to reach the
quantum equilibrium. In Ref. [50] it is argued that quantum
black holes can violate the Born rule, with consequences to
the Hawking radiation. The simple model studied here can
be a point of departure to investigate this possibility more
precisely.
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APPENDIX

In this appendix, we write the explicit expressions and
limits used throughout the text.

1. Right-Rindler wedge

The energy obtained via the Hamilton-Jacobi equa-
tion (28) through Eq. (31) is, in terms of ϕR

k , such that

EkðτÞ ¼
1 − coshðπka Þ cosð2kτÞ
½coshðπka Þ − cosð2kτÞ�2 k

2jϕR
k j2

þ k sinhðπka Þ
2½coshðπka Þ − cosð2kτÞ� ;

while the other contributions are

QkðτÞ ¼
sinhðπka Þ

2½coshðπka Þ − cosð2kτÞ� k

−
sinh2ðπka Þ

2½coshðπka Þ − cosð2kτÞ�2 k
2jϕR

k j2;

VkðτÞ ¼
1

2
k2jϕR

k j2;

KkðτÞ ¼
sin2ð2kτÞ

2½coshðπka Þ − cosð2kτÞ�2 k
2jϕR

k j2:

a. Low temperatures

For πk
a ≫ 1, we use the fact that

ℜ½fkðτÞ� ≈ 1; ℑ½fkðτÞ� ≈ 0;

ℜ½ΩkðτÞ� ≈ −
k
4T

; ℑ½ΩkðτÞ� ≈ −kτ:

Therefore, the wave functional (23) can be expressed as

Ψk½ϕR
k ;ϕ

R�
k ; τ� ≈

ffiffiffi
k
π

r
e−kjϕ

R
k j2−ikτ:

b. High temperatures

1) τ ≠ nπ
k , with n an integer

When πk
a ≪ 1, we have the following expansions for the

coefficients

ℜ½fkðτÞ� ≈
k

4Tsin2ðkτÞ ; ℑ½fkðτÞ� ≈ − cotðkτÞ;

ℜ½ΩkðτÞ� ≈ ln
ffiffiffi
2

p
−
1

2
ln ð1 − cosð2kτÞÞ;

ℑ½ΩkðτÞ� ≈ −
π

2
signðtanðkτÞÞ:

Therefore, the wave functional is

Ψk½ϕR
k ;ϕ

R�
k ;τ�≈ kffiffiffiffiffiffiffiffiffi

4πT
p 1

jsinðkτÞjexp
�
−

k2

4Tsin2ð2kτÞ jϕ
R
k j2

�

×expfikcotðkτÞjϕR
k j2− i

π

2
signðtanðkτÞÞg;

2) τ ¼ nπ
k , with n an integer

For these specific times, the quantum potential is the
dominant contribution in the Hamilton-Jacobi equa-
tion (28). In this case

ℜ½fkðτÞ� ≈
4T
k
; ℑ½fkðτÞ� ¼ 0;

ℜ½ΩkðτÞ� ≈ ln

�
4T
k

�
; ℑ½ΩkðτÞ� ¼ 0:

with the wave functional

Ψk½ϕR
k ;ϕ

R�
k ; τ� ≈

ffiffiffiffiffiffi
4T
π

r
exp f−4TjϕR

k j2g:

2. Extended case

The explicit expression for the energy in terms of the
field modes χ1;k and χ2;k is

EkðτÞ ¼ k2
1þ coshðπka Þ cosð2kτÞ
½coshðπka Þ þ cosð2kτÞ�2 jχ1;kj

2

þ k2
1 − coshðπka Þ cosð2kτÞ
½coshðπka Þ − cosð2kτÞ�2 jχ2;kj

2

þ k
sinhð2πka Þ

coshð2πka Þ − cosð4kτÞ :

Conversely, the quantum and classical potentials, together
with the kinetic contribution in the Hamilton-Jacobi
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equation (84), are, respectively

QkðτÞ ¼ −
sinh2ðπka Þ

2½coshðπka Þ þ cosð2kτÞ�2 k
2jχ1;kj2 −

sinh2ðπka Þ
2½coshðπka Þ − cosð2kτÞ�2 k

2jχ2;kj2 þ k
sinhð2πka Þ

coshð2πka Þ − cosð4kτÞ

VkðτÞ ¼
1

2
k2jχ1;kj2 þ

1

2
k2jχ2;kj2;

KkðτÞ ¼
sin2ð2kτÞ

2½coshðπka Þ þ cosð2kτÞ�2 k
2jχ1;kj2 þ

sin2ð2kτÞ
2½coshðπka Þ − cosð2kτÞ�2 k

2jχ2;kj2:

a. Low temperatures

In the low-temperature regime we have that

ℜ½H1;kðτÞ� ≈ℜ½H2;kðτÞ� ≈ 1;

ℑ½H1;kðτÞ� ≈ ℑ½H2;kðτÞ� ≈ 0;

ℜ½ΘkðτÞ� ≈ −
k
2T

; ℑ½ΘkðτÞ� ≈ −2kτ:

So, the wave functional can be written as

Ψk½χ; τ� ≈
k
π
e−kjχ1;kj2−kjχ2;kj2−2ikτ:

b. High temperatures

1) τ ≠ nπ
2k, with n an integer

The expansion of the coefficients for high temperatures
is given by

ℜ½H1;kðτÞ� ≈
k

4Tcos2ðkτÞ ; ℑ½H1;kðτÞ� ≈ tanðkτÞ;

ℜ½H2;kðτÞ� ≈
k

4Tsin2ðkτÞ ; ℑ½H2;kðτÞ� ≈ − cotðkτÞ;

ℜ½ΩkðτÞ� ≈ ln
ffiffiffi
2

p
−
1

2
ln ð1 − cosð4kτÞÞ;

ℑ½ΩkðτÞ� ≈ −
π

2
signðtanð2kτÞÞ:

Therefore the wave functional is

Ψk½χ; τ� ≈
k2

2πT
1

j sinð2kτÞj exp
�
−

k2

4Tcos2ðkτÞ jχ1;kj
2

−
k2

4Tsin2ðkτÞ jχ2;kj
2

�
exp

�
i

�
−k tanðkτÞjχ1;kj2

þ k cotðkτÞjχ2;kj2 −
π

2
signðtanðkτÞÞ

	�
:

2) τ ¼ nπ
2k, with n an integer

For these specific times, we have that

ℜ½H1;kðτÞ� ≈
k
4T

; ℑ½H1;kðτÞ� ≈ 0;

ℜ½H2;kðτÞ� ≈
4T
k
; ℑ½H2;kðτÞ� ≈ 0;

ℜ½ΩkðτÞ� ≈ ln

�
4T
k

�
; ℑ½ΩkðτÞ� ≈ 0:

So, the wave functional can be approximated by

Ψk½χ; τ� ≈
k
π
exp

�
−
k2

4T
jχ1;kj2 − 4Tjχ2;kj2

�
:
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