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We derive from first principles equations for nonrelativistic bosonic, self-interacting dark matter which
can include both a condensed, low momentum “fuzzy” component and one with higher momenta that may
be approximated as a collection of particles. The resulting coupled equations consist of a modified Gross-
Pitaevskii equation describing the condensate and a kinetic equation describing the higher momentum
modes, the “particles,” along with the Poisson equation for the gravitational potential sourced by the
density of both components. Our derivation utilizes the Schwinger-Keldysh path integral formalism and
applies a semiclassical approximation which can also accommodate collisional terms amongst the particles
and between the particles and the condensate to second order in the self-coupling strength. The equations
can therefore describe both cold dark matter and fuzzy dark matter in a unified way, allowing for the
coexistence of both phases and the inclusion of quartic self-interactions.
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I. INTRODUCTION

Although the role of dark matter as one of the main
architects of the cosmic large scale structure is well
established, its physical nature is still practically unknown.
The prevailing model of cold dark matter (CDM) has been
extremely successful in modeling the large-scale evolution
and properties of the Universe [1], describing both the
precise characteristics of the CMB temperature anisotropies
as well as the late time large-scale mass distribution in both
the linear and nonlinear regime. Formally, the CDM model
consists of a collisionless Boltzmann kinetic equation for
the CDM phase space density, coupled to the Poisson
equation for the arising gravitational field. The N-body
solvers which underlie many of CDM’s successful pre-
dictions in the nonlinear regime are meant to sample that
phase space density via the use of effective particles which
trace it; see for example [2,3].
Recently, an alternative idea for the microphysics of dark

matter has been gaining traction among a growing number of
cosmologists and involves novel phenomenology on small
scales; see [4–6] for recent reviews and references to the
literature. Known as fuzzy dark matter (FDM) or ψDM, it

was put forward in [7] to address discrepancies between
CDM and observations on subgalactic length scales [8–10]
and over the past few years has started attracting increasing
attention, especially after the pioneering simulations of [11].
Indeed, an increasing number of ever more sophisticated
simulations have been shedding light on the cosmological
dynamics of fuzzy dark matter; see e.g. [12–17]. The main
idea is that the de Broglie wavelength of the constituent,
bosonic particles can extend to galactic scales (indicatively
≲1 kpc) for an appropriately small particle mass: for DM
halos hostingMilkyWay sized galaxies, with corresponding
typical velocities of v ∼ 250 km=s, this mass would be
around 10−22 eV=c2. This model exhibits wavelike proper-
ties at such cosmological scales and, unlike CDM, FDM is
modeled by a Schrödinger-type wave equation, coupled to
the corresponding Poisson equation. Moreover, such par-
ticles may even exhibit a very weak self-interaction, modi-
fying their primary underlying equation to a nonlinear
Schrödinger equation, making up the self-interacting fuzzy
dark matter model [17–26].
Dark matter made up of bosonic particles can fall

anywhere between the two limiting cases of particle or
wavelike behavior. Given a velocity distribution, particles
of different masses will exhibit wavy properties at different
length scales, if at all, depending on their de Broglie
wavelengths and number density. In particular, if their
dimensionless phase space density ðρ=mÞλ3dB ≳Oð1Þ [27]
their de Broglie wavelegths will exceed their typical
interparticle distance and the formation of a Bose-
Einstein condensate (BEC) is expected. For a DM halo
hosting a Milky Way sized galaxy this would occur for
bosonic dark matter of m≲ 30 eV=c2 [5]. If DM is
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composed of bosons with masses greater than this value, it
is expected that a corpuscular picture and a corresponding
phase space density distribution suffices for the description
of the dynamics. On the other hand, for lower masses, we
are in the realm of wave dark matter, usually described by
the corresponding wave equation. More precisely, con-
densation in a homogeneous, noninteracting 3D gas in
thermal equilibrium occurs when

D ¼ ρ

m
λ3dB ¼ h3

m4

hρi
hjvji3 ≳ ζð3=2Þ ≈ 2.612; ð1Þ

which simply states the necessity to have more than
approximately one particle per de Broglie volume. As
such, this is a general criterion that can also be used in a
dark matter halo consisting of scalar, bosonic particles of
mass m in which case both ρ and v are spatially dependent
and there is no thermal equilibrium. In the latter case,
condensation will thus occur when

DðrÞ ¼
�
h3ρref
m4v3ref

� hρ0ðrÞi
hjv0ðrÞji3 ¼ Dref

hρ0ðrÞi
hjv0ðrÞji3 ≳Oð1Þ: ð2Þ

Here primes refer to dimensionless quantities which can be
accessed via numerical simulation, and

Dref ¼
h3ρref
m4v3ref

ð3Þ

gives a constant reference phase space density which can be
expressed as

Dref ≈ 1.25 × 1090
�
10−22 eV=c2

m

�
4
�

ρref
103M⊙ kpc−3

�

×

�
250 km=s

vref

�
3

: ð4Þ

The value of 250 km=s is chosen as the typical velocity of a
particle in a DM halo hosting a Milky Way-like galaxy. We
see that the strongest influence on Dref comes from the
boson mass value and that to bring Dref ∼Oð1Þ we need
m ∼Oð1Þ eV=c2. However, the radial profile of DðrÞ can
also have an effect as the density is expected to vary by
some orders of magnitude from the center to the edge of a
halo. Hence, for masses relatively close to the eV regime,
one may expect configurations where partially condensed
regions can coexist with the uncondensed phase.
Furthermore, even in the lower mass, fuzzy dark matter
limit where D is very large and the use of a wave equation
may be fully justified, there are important qualitative
differences between the field configuration in the central
soliton and the outside halo [28]. While the solitonic core is
completely coherent and has the characteristics of a true
condensate, the surrounding halo is on average incoherent

and rather turbulent. It may thus be possible that the highly
dynamical halo can be coarsely described as a collection of
“particles,” even for the high occupation numbers corre-
sponding to the lower bosonic masses which validate a
classical field description. We therefore conclude that there
must be regimes where either (a) a mixture of condensed
and noncondensed phases of the same underlying DM
bosonic field physically coexist or (b) a “condensate-
particles” division may offer a convenient approximate
way to describe the full, classical field dynamics.
It is important to remember that whether bosonic dark

matter behaves as a wave (BEC) or a collection of particles
is not a fundamental property of the underlying physical
model, which is a bosonic field of fundamental massm, but
of the particular configuration and the available energy,
more like different phases of the same underlying quantum
field. In this work we obtain equations that can describe
both phases, either in isolation or coexistence, from first
principles. We start from the underlying, fundamental
nonequilibrium Schwinger-Keldysh path integral for a
nonrelativistic, bosonic field of mass m coupled to gravity
and derive a collisional kinetic equation for the particlelike
component along with a nonlinear Schrödinger equation for
the condensate. These are coupled via the field’s quartic
self-interaction, along with the Poisson equation sourced
by the density of the two phases which determines their
common gravitational field.
Our approach draws inspiration from other fields of

physics where bosonic condensates and incoherent par-
ticles can coexist: The best known example of this arises in
the case of superfluid liquid helium, where the superfluid
component coexists with the (usual) normal fluid compo-
nent in thermodynamic equilibrium at a temperature below
some critical value (arising at the so-called Λ critical point),
in the context of the established two-fluid model [29–31].
Nonetheless, the nature and strength of particle interactions
in such systems leads to a distinction between the super-
fluid and the condensate fraction, with liquid helium
exhibiting less than 10% condensate fraction, even in a
pure (T ¼ 0) superfluid [32]. Moreover, the typical spatial
homogeneity of the box renders this a rather partial analogy
to the cosmological setting of inhomogeneous density, with
the significance of inhomogeneous confinement evident in
the discussion below. During the past three decades, other
more weakly interacting systems have come to the fore-
front, whose weakness of interactions facilitates a more
direct dilute Bose gas description. The simplest such
configuration arises in optically/magnetically trapped
atomic gases, thermalized below some characteristic tem-
perature [33–35], but similar condensation features can also
be found in the two-dimensional context of photons weakly
interacting (indirectly) with each other within a dye
medium [36], or driven-dissipative exciton-polariton con-
densates in semiconductor microcavities above some
pumping threshold [37].
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Here we focus for concreteness on the case of ultracold
atomic condensates which (unlike photon, or exciton-
polariton condensates) also exist in three dimensions; in
such systems, the typical existence of an external magnetic/
optical confining potential leads to centrally peaked inho-
mogeneous density profiles, which thus have some
qualitative analogy with the (gravitationally bound) den-
sity-peaked central regions of cosmological halos. Such
analogy is shown in Fig. 1 between the density profiles of a
cosmological (cored, fuzzy) dark matter halo (left) and the
corresponding atomic gas density distribution (right) based
on realistic numerical simulations, with the depicted
densities integrated over the other two (transverse) direc-
tions in both cases. In the well-studied atomic gas case
[Fig. 1(b)], one routinely identifies a coherent component
(condensate) residing in the center of the trap (dash-dotted
blue line), surrounded by a cloud of incoherent (non-
condensate) particles (dashed red line) [38]; moreover, the
two components coexist in the trap center (with the small
dip in the thermal cloud density in such overlap region
arising from repulsive atomic interactions). Such a picture
is fully established and has been directly confirmed in a
range of experiments, with such “bimodal” fits a standard
tool in the ultracold atomic community. Remarkably, this

situation is somewhat analogous to the rich spatial profile
exhibited by gravitationally bound virialized solitonic
cores, known to form in fuzzy dark matter, and their
surrounding incoherent halo. In the latter context, and
building on an extensive body of earlier work analyzing
such density profiles [11–14], Liu et al. [28] significantly
augmented such picture by explicitly demonstrating the
continuous decrease of coherence from the inner coherent
solitonic core [the “condensate,” solid green line in
Fig. 1(a)] which exhibits a very high phase-space density
[≫Oð1Þ], through to the outer “incoherent” regions of
much lower-density which follow the NFW density profile.
In fact, the entire FDM profile can be excellently fitted both
by the combination of a central soliton core and a larger-
distance NFW profile (dashed gray line) [11,13,28,39,40],
and also equally well by the sum of a condensate (solid
green line) and a noncondensate (thin orange line) compo-
nent [28]. Even in such a cored-halo case, the coherent and
incoherent components were also numerically found to
coexist in the central region, although the condensate core
is here significantly more dominant than the incoherent
component in the central region when compared to the
atomic gas case [note the logarithmic scale in Fig. 1(a)]—a
direct consequence of the extremely high condensate
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FIG. 1. Similarity of the respective densities in the context of (a) gravitationally-attractive non-self-interacting FDM and (b) weakly
interacting harmonically trapped cold atomic gases exhibiting partial BEC: in both cases, numerical simulations identify a broad total
density distribution (black lines) featuring a dominant coherent central region representing the BEC, surrounded by an incoherent field
configuration of particles representing the non-BEC. The FDM density distribution features the characteristic soliton expected in the
center of the gravitational potential of a halo, with averaged density outside the solitonic core following the expected NFW profile, also
predicted by corpuscular N-body simulations of CDM. In this case, the BEC is identified as the mode corresponding to the largest
eigenvalue of the one-body density matrix (the so-called Penrose-Onsager mode), with the rest of the particles labeling the incoherent
field: depicted results correspond to the data of Liu et al. [28] based on numerical solution of the Schrödinger-Poisson equations, and are
plotted in terms of appropriate length and density units (see above work). In the atomic case the surrounding cloud is a collection of
harmonically trapped thermal particles following the Maxwell-Boltzmann distribution; data based on the self-consistent Hartree-Fock
theory (see, e.g. [38]). Remarkably, in both (a) virialized FDM and (b) equilibrated cold-atom cases there is a centrally peaked coherent
feature, with the incoherent component still present in that region: the small localized central dip in the incoherent atomic density is due
to (weak) repulsive interactions between atoms (and between the coherent and incoherent parts), with the incoherent component having
a Gaussian distribution (also) at the center in the absence of such interactions. (The presented FDM results do not account for any
interactions.) Note that the FDM density axis is plotted on a logarithmic scale, so the gravitational attraction leads to an extremely high
concentration of central density and corresponding degree of coherence of the total system density within the soliton (due to the high
BEC to total density fraction), whereas the extent of the centrally located incoherent feature (and thus the central condensate density
fraction) in the atomic case depends on the ratio of the system temperature to the corresponding critical temperature for BEC. The
analogy shown here between a gravitationally bound cored-halo and a harmonically trapped cold atomic gas was first pointed
out in Ref. [28].
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fraction in the central region due to the strong gravitational
attraction. Moreover, the outer halo regions were found to
support a dynamically evolving turbulent, quantum vortex
tangle delineating intermediate-scale “granular” regions of
relatively suppressed density fluctuations [28], with such
features washing away after extensive time averaging to
yield the averaged profile shown in Fig. 1(a).
In the context of the above-mentioned atomic systems—

which have been found to exhibit both weak (wave)
turbulence and strong turbulence—one typically uses a
description based on a nonlinear Schrödinger equation,
known as the Gross-Pitaevskii equation, appropriately
generalized to include the coupling of the coherent and
incoherent parts of the system through a variety of
approaches. Various such theoretical models used in
ultracold quantum gases have been summarized in
Refs. [38,41,42] and broadly follow very distinct, yet
notionally rather related, approaches based on effective
field theory [43–45], kinetic theories [31,46–50], or
quantum-optical approaches [51]. The underlying features
lie in the description of either a highly occupied classical
multimode system encompassing condensate plus low-
lying excitations [51], or a purely condensed component
[49], respectively coupled to the higher-lying modes in the
system, which, in their most complete model [31,44,50,52]
are themselves coupled to appropriate kinetic equations
(although numerical implementations of effective field
theories treat this as an effective bath [38,41,51–54]).
Such models are also closely related to a description in
the context of a single classical field equation [55,56],
typically starting from an initial nonequilibrium configu-
ration [51,57]. In fact, the latter equation also reduces, in
appropriate limits and semiclassical assumptions, to a
semiclassical Boltzmann-type equation [41,56,58]; see also
related work on condensation of bosons within (restricted)
applicable regimes [59]. The above mentioned analogy
between underlying theoretical approaches directly con-
nects the modeling of quantum coherent systems to wave
turbulence phenomena. The existence and interconnected-
ness of such seemingly very diverse approaches—whose
power in describing ultracold quantum gases is directly
verified by their successful modeling of a broad range of
experimental observations—demonstrates an inherent flex-
ibility of describing a physical system by different means,
which nonetheless lead to the same results in relevant
regimes of applicability [41].
The aim of this work is to provide a corresponding

overarching theoretical framework, underpinning the study
of different dark matter models, which is motivated by
considerations like the above, is consistent both with a
kinetic equation and with wave turbulence, and directly
reduces to the established CDM and ψDM models in
appropriate limits. Equipped with the understanding of
such diverse models, we use a nonequilibrium field-
theoretic approach (the Schwinger-Keldysh or in-in

formalism) to derive a general framework of coherent
and incoherent modes in a cosmological context.1 We will
arrive at a general cosmological model that encompasses
both the collisionless Boltzmann equation of CDM (in the
limit of no condensate particles) and the ψDM model
(when the incoherent density is ignored). Our formalism
therefore provides a more general framework for studying
different dark matter models, with the different established
frameworks described by a subset of our equations. Future
work will address simulations of our equations in an
attempt to test subtle aspects in the applicability regimes
of each model, whether such a combined model may be
required for some astrophysical observations and, if so,
what constraints may be placed on the combination of mass
and interaction strength. Furthermore, in this work we
focus on the leading, semiclassical dynamics of the con-
densate Φ, and the gravitational potential V, described in
the action by terms of linear order in the “Keldysh fields”
Φq and Vq. A forthcoming publication will treat fluctua-
tions and noise, coming from terms of higher order in these
fields.
It is of course expected that certain spatial regions of the

scalar dark matter configuration may be adequately
described by either the coherent or the incoherent modes
alone. A likely example could be the central regions of the
solitonic cores that form in halos, where the very high
condensate fraction would indicate that the role of the
incoherent part is likely to be small there (and potentially
negligible). Moreover, the incoherent modes may be an
adequate description of the outer parts of the halos. Our
extended model can offer a unified, self-consistent descrip-
tion, and with minimal further assumptions, of a spatially
varying physical configuration, smoothly interpolating as a
function of position between the FDM (solitonic core) and
CDM descriptions, without the explicit need for a poten-
tially ad hoc spatial separation between the two regions.
The paper is structured as follows: Sec. II describes the

Schwinger-Keldysh incarnation of the nonrelativistic action
for a boson of mass m, interacting via gravity and a quartic
self-coupling, and the split into a “slow” (condensate) and a
“fast” (particle) component. We derive an effective action
for the condensate via integrating out the particles.
Equations for the fast component are also described: these
are the Schwinger-Dyson equations for its two-point
function, or the Kadanoff-Baym equations as they are
known in the Schwinger-Keldysh, nonequilibrium context.
Section III then obtains the fundamental dynamical equa-
tions for these two components, namely a Gross-Pitaevskii-
type equation for the condensate and a kinetic equation for
the particles, derived from the two-point function by
utilizing the leading order of a Wigner transform. In both

1The derivation is similar in spirit to [60] which however did
not involve self-interactions or the possible existence of a
condensate.
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equations we include collisional terms up to second order in
the self-coupling. Importantly, we also discuss the various
limits of these equations and how they encompass existing/
established dark matter models. We close with a discussion
of our results and some thoughts of their relation to the
wider landscape of dark matter modeling in Sec. IV. Some
technical details, including the computation of the colli-
sional terms at order in the self-coupling and up to two
loops, are relegated to two appendixes.

II. MODEL AND ACTION FOR THE BOSON

Our starting point is the nonrelativistic action for a boson
of mass m in an expanding universe given by

S ¼
Z

dtd3x

�
iϕ�

∂tϕþ 1

2ma2
ϕ�∇2ϕ −

g
2a3

jϕj4

−mVjϕj2 − a
8πG

ð∇VÞ2
�

ð5Þ

where we have set ℏ ¼ 1 for simplicity. Here, ϕ is the wave
function of the boson, a ¼ aðtÞ is the scale factor describ-
ing the expansion of the universe, g is the coupling of the
boson self-interaction, and V corresponds to the gravita-
tional potential. This action can be obtained from the
relativistic action of a minimally coupled scalar field with
gravity under the assumptions of a weak gravitational field,

slow velocities, and a posterior redefinition of the scalar
field as ϕ → a−3=2ϕ which reabsorbs the derivatives of the
scale factor.
We will work in the Schwinger-Keldysh or “in-in”

formalism [43–45,61–63] which allows the computation
of in-in expectation values and results in real equations of
motion for them, unlike the more commonly used “in-out”
formalism which is more appropriate for the computation
of scattering amplitudes. The Schwinger-Keldysh formal-
ism involves an integration forwards and backwards in time
which in practice can be thought of as a single integration
but with double the degrees of freedom in the fields,
usually denoted as ϕþ and ϕ− on the forward and backward
time contour, along with the extra condition that ϕþðtfÞ ¼
ϕ−ðtfÞ at some final time tf in the far future. Furthermore,
performing a Keldysh rotation

ϕcl ¼ ϕþ þ ϕ−ffiffiffi
2

p ; ϕq ¼ ϕþ − ϕ−ffiffiffi
2

p ð6Þ

and

Vcl ¼ Vþ þ V−

2
; Vq ¼ Vþ − V−

2
ð7Þ

the Keldysh action for the theory (5) can then be written as

S ¼ S½ϕþ; Vþ� − S½ϕ−; V−� ð8Þ

¼
Z

dtd3xϕq�
�
i∂t þ

∇2

2ma2

�
ϕcl þ

Z
dtd3xϕcl�

�
i∂t þ

∇2

2ma2

�
ϕq

−
g
2a3

Z
dtd3xðϕq�ðjϕclj2 þ jϕqj2Þϕcl þ ϕcl�ðjϕclj2 þ jϕqj2ÞϕqÞ

þ 1

4πG

Z
dtd3xaVq∇2Vcl þ 1

4πG

Z
dtd3xaVcl∇2Vq

−m
Z

dtd3xðϕcl�Vqϕcl þ ϕcl�Vclϕq þ ϕq�Vclϕcl þ ϕq�VqϕqÞ ð9Þ

where the minus sign in (8) comes from the backwards
temporal integral and in (9) the action is expressed in terms
of the Keldysh “classical” and “quantum” fields. All
quantities of interest and the main equations of our model
can then be obtained from the generating functional

Z ¼
Z

D½ϕþϕ−VþV−�eiðSþ−S−Þ

¼
Z

D½ϕclϕqVclVq�eiS ð10Þ

where S in the exponent is given by the Keldysh form of the
action, given in (9).

To obtain the dynamical equations for our
“condensateþ particles” system we will split the fields in
a “slow” part, which we will associate with the condensate
and a “fast” one, which we will associate with the corpus-
cular component. In this paper we are interested in a
semiclassical description of the condensate and the gravi-
tational potential V. For this reason, it is enough to keep
terms up to first order in the quantum component of the slow
part of the bosonic field (Φq) and the gravitational potential
(Vq), neglecting any higher orders in these quantities.
However, we will keep higher orders in the fast part of
the boson aswewill be integrating out fluctuations of the fast
fields. In addition, we will consider the Popov approxima-
tion to simplify some computations; see e.g. [45].
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A. Splitting in slow and fast parts

We split the classical and quantum fields in Eq. (8) in terms of a slow part (the condensate) and a fast one (the particles):
ϕcl ¼ Φ0 þ φ and ϕq ¼ Φq þ φq. Explicitly, we have for the Keldysh action

S ¼
Z

dtd3xðΦ�
0 Φq� Þ

�
0 i∂t −Hc

i∂t −Hc 0

��Φ0

Φq

�
þ 1

2

Z
dtd3xð ξ† ξq† Þ

�
0 M

M 0

��
ξ

ξq

�

þ a
4πG

Z
dtd3xðVcl Vq Þ

�
0 ∇2

∇2 0

��
Vcl

Vq

�
−m

Z
dtd3xVqðjΦ0j2 þ φ�φþ φq�φqÞ

−
g
2a3

Z
dtd3x

�
2Φq�Φ0φ

�φ − 2Φq�Φ0hφ�φi þ 2Φq�Φ0φ
q�φq þΦq�Φ�

0φφþΦq�Φ�
0φ

qφq

þ 2Φ�
0Φqφ�φ − 2Φ�

0Φqhφ�φi þ 2Φ�
0Φqφq�φq þΦ0Φqφ�φ� þΦ0Φqφq�φq�

�

−
g
2a3

Z
dtd3x

�
Φq�φ�φφþ 2Φq�φq�φqφþΦq�φ�φqφq þΦqφ�φ�φþ 2Φqφ�φq�φq þΦqφq�φq�φ

þ 2Φ0φ
q�φ�φþΦ0φ

�φ�φq þΦ0φ
q�φq�φq þ 2Φ�

0φ
�φφq þΦ�

0φ
q�φφþΦ�

0φ
q�φqφq

�

−
g
2a3

Z
dtd3x

�
φq�φ�φφþ φ�φq�φqφq þ φ�φ�φφq þ φq�φq�φqφ − 2hφ�φiφ�φq − 2hφ�φiφq�φ

�
ð11Þ

where we have defined the condensate Hamiltonian

Hc ¼ −
1

2ma2
∇2 þmVcl þ g

2a3
jΦ0j2 þ

g
a3

hφ�φi ð12Þ

and

ξ ¼
�

φ

φ�

�
; ξq ¼

�
φq

φq�

�
;

M ¼
� i∂t −Hqp − g

2a3 Φ0Φ0

− g
2a3 Φ

�
0Φ�

0 −i∂t −Hqp

�
ð13Þ

with the “quasiparticle” Hamiltonian2 given by

Hqp ¼ −
1

2ma2
∇2 þmVcl þ g

a3
jΦ0j2 þ

g
a3

hφ�φi: ð14Þ

As we mentioned above, we are only keeping to first order
in the quantum fieldsΦq and Vq since we are interested in a
semiclassical description of the condensate and the gravi-
tational potential. The next order in the tree-level action
involves cubic terms in these q-fields. In contrast, all terms
are kept for the fast, quasiparticle fields φ. Furthermore,
we have placed the slow terms Vcl and jΦ0j2 inside the
Hamiltonians as parts of an effective potential. As we have

introduced an order g term as part of a mean-field
approximation, we must consider any other term of order
g coming from corrections due to fluctuations of the
particle field φ. For this reason, we have added the term
g
a3 hφ�φi in the condensate and particle Hamiltonians, also
subtracting the same quantity from the interaction terms.
This arrangement will be useful later.
In the above grouping of the interaction terms it is

important to highlight that terms with a single φ field have
been omitted as they would not contribute to viable vertices
given our assumption that Φ and φ correspond to “slow”
and “fast” fields. Firstly, terms with one condensate and
one φ as well as terms with three condensates and one φ
cannot be present since such combinations would violate
conservation of energy-momentum. Secondly, terms with
one condensate, one V and a number of φ’s do not appear
since the gravitational potential does not change the fast-
ness or slowness of a particle.
In order to simplify the computations we can make

the (rather common) approximation of dropping the off-
diagonal terms in the matrix M (usually motivated on the
grounds that such terms are smaller, and/or evolve faster
than other slow variables of our choice). This is equivalent
to the so-called Popov approximation, which posits that
hφφi, hφ�φ�i, hφqφqi, and hφq�φq�i can be neglected. In
principle, such terms could also be formally incorporated
via diagonalization of the matrix M. For more details we
refer the reader to Appendix A. With this, we can write the
action as

S ¼ S0 þ SI ð15Þ

2Here we adopt the language found e.g. in Kamenev’s
book [45], noting for completeness that, since the implied
dispersion relation is quadratic in k, this is technically a dressed
single-particle Hamiltonian, reminiscent of the Hartree-Fock
limit routinely used in ultracold quantum gases [31,38].
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where we have further split the action in two pieces defined as

S0 ¼
Z

dtd3rðΦ�
0 Φq� Þ

� −mVq i∂t −Hc

i∂t −Hc 0

��Φ0

Φq

�
þ
Z

dtd3rðφ� φq� Þ
� −mVq i∂t −Hqp

i∂t −Hqp −mVq

��
φ

φq

�

þ 1

4πG

Z
dtd3rðVcl Vq Þ

�
0 a∇2

a∇2 0

��
Vcl

Vq

�
ð16Þ

and

SI ¼ −
g
2

Z
dtd3r
a3

�
2Φq�Φ0φ

�φ − 2Φq�Φ0hφ�φi þ 2Φq�Φ0φ
q�φq þΦq�Φ�

0φφþΦq�Φ�
0φ

qφq

þ 2Φ�
0Φqφ�φ − 2Φ�

0Φqhφ�φi þ 2Φ�
0Φqφq�φq þΦ0Φqφ�φ� þΦ0Φqφq�φq�

�

−
g
2

Z
dtd3r
a3

�
Φq�φ�φφþ 2Φq�φq�φqφþΦq�φ�φqφq þΦqφ�φ�φþ 2Φqφ�φq�φq þΦqφq�φq�φ

þ 2Φ0φ
q�φ�φþΦ0φ

�φ�φq þΦ0φ
q�φq�φq þ 2Φ�

0φ
�φφq þΦ�

0φ
q�φφþΦ�

0φ
q�φqφq

�

−
g
2

Z
dtd3r
a3

�
φq�φ�φφþ φ�φq�φqφq þ φ�φ�φφq þ φq�φq�φqφ − 2hφ�φiφ�φq − 2hφ�φiφq�φ

�
ð17Þ

¼ Sð2ÞI þ Sð3ÞI þ Sð4ÞI : ð18Þ

The first piece S0 defines the propagators used in the
Feynman rules while the second piece SI will provide the
vertices needed for the construction of any propagator
corrections due to the self-interaction or higher order
correlators. Note that we have denoted three general types
of interaction terms involving two, three, and four φ fields
respectively. An important point that we establish as a rule
is that since the Φ fields are slow, they will not be included
inside a loop, but will just sit on external legs. In Fig. 2 we
show the notation used for the condensate and particle lines
that we will use in the Feynman diagrams.

B. Effective action for condensate and Schwinger-Dyson
equations for particles

Wewill firstly compute an approximation to the effective
action for Φ, taking into account the lowest order correc-
tions coming from fluctuations of φ fields. For this purpose
we will use the generating functional

Z ¼
Z

D½ΦVφ�eiS0þiSI : ð19Þ

Expanding the interaction part and arranging, we have

Z ¼
Z

D½ΦV�eiS01
�
1þ

R
D½φ�eiS0φiSIR
D½φ�eiS0φ

þ
R
D½φ�eiS0φ 1

2
ðiSIÞ2R

D½φ�eiS0φ þ � � � þ
�Z

D½φ�eiS0φ ð20Þ

where S01 is the quadratic action of the condensate and the
gravitational potential, and S0φ the quadratic action of the
particles. Integrating out the particles, we can write

Z¼
Z

D½ΦV�eiS01
�
1þihSIi−

1

2
hS2I iþ���

�
ðdetð−iG−1

V ÞÞ−1

ð21Þ
where

G−1
V ¼ G−1

0 −mVqI ð22Þ
with I the identity matrix and

G−1
0 ¼

�
0 i∂t −Hqp

i∂t −Hqp 0

�
: ð23Þ

Due to our arrangement of terms with hφ�φi in the
interaction part, it is easy to check that hSIi ¼ 0. With

FIG. 2. Notation for the lines representing the condensate
(double lines) and the particles (single lines) in Feynman
diagrams. Solid lines refer to classical fields while dashed lines
to quantum fields.
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this, and writing the determinant as an exponential, we can
approximate the functional as

Z ¼
Z

D½ΦV�eiS01−1
2
hS2I i−Trðlnð−iG−1

V ÞÞ: ð24Þ

Now, we consider the term Vq as a perturbative parameter,
so, up to first order in Vq:

Z ¼
Z

D½ΦV�eiS01−1
2
hS2I iþmVqTrðG0Þ ð25Þ

where G0 is the inverse of G−1
0 defined in (23). Its explicit

form is

G0 ¼
�
GK

0 GR
0

GA
0 0

�
ð26Þ

where GRðAÞ stands for the retarded (advanced) propagator
and GK corresponds to the Keldysh propagator. Their
representations in the Feynman rules are shown in Fig. 3.
The term i

2
hS2I i corresponds to the order g2 corrections

to the condensate propagator due to fluctuations of the
particles (φ fields). Thus, this term contains the retarded
(advanced) self-energies of the condensate, denoted by

ΣRðAÞ
ðcondÞðx; x0Þ—the diagrams of the retarded self-energies

are shown in Fig. 4. Note that since we are working up to
order 1 in Φq there is no Keldysh component of the self-
energy here. With this, from (25) we can define the
effective action3

Seff ¼
Z

dtd3rðΦ�
0 Φq� Þ

×

� 0 i∂t −Hc − ΣA
ðcondÞ

i∂t −Hc − ΣR
ðcondÞ 0

��Φ0

Φq

�

þ 1

4πG

Z
dtd3rðVcl Vq Þ

�
0 a∇2

a∇2 0

��
Vcl

Vq

�

−m
Z

dtd3rVqðjΦ0j2 þ iTrðG0ÞÞ: ð27Þ

Since TrðG0Þ ¼ GK ¼ −ihφ�φi and here it is evaluated in
one space-time point (GKðx; xÞ with x ¼ ðt; rÞ), we can
write the Keldysh propagator in terms of the occupation
number of the particles, that we will define as f, as
GKðx; xÞ ¼ −i

P
kð2f þ 1Þ [45]. We will neglect the last

sum over 1, since it gives a vacuum energy which can be
subtracted by means of a renormalization. From this, we
define the particle number density as

ñ ¼
X
k

f: ð28Þ

By the same token, we will write the condensate term jΦ0j2
in terms of a number density. For this, we have to take into
account that in the Schwinger-Keldysh formalism the
normalization condition for the condensate is given by

Z
drjΦ0j2 ¼ 2Nc ð29Þ

where Nc is the number of condensate particles, with this
factor of 2 appearing due to the definition of the Keldysh
rotation; moreover, we note that the expectation value for
two classical fields is hϕclϕcl�i ∼ 2nB þ 1, with nB the total
occupation number. It means that the condensate number
density nc is given by

nc ¼
1

2
jΦ0j2: ð30Þ

With these considerations, the effective action for the
condensate can finally be written as

Seff ¼
Z

dtd3rðΦ�
0 Φq� Þ

×

� 0 i∂t −Hc − ΣA
ðcondÞ

i∂t −Hc − ΣR
ðcondÞ 0

��Φ0

Φq

�

þ 1

4πG

Z
dtd3rðVcl Vq Þ

�
0 a∇2

a∇2 0

��
Vcl

Vq

�

− 2m
Z

dtd3rVqðnc þ ñÞ ð31Þ

with

Hc ¼ −
1

2ma2
∇2 þmVcl þ g

a3
ðnc þ 2ñÞ: ð32Þ

The effective action (31) provides the equations of
motion for the condensate and the gravitational potential
by varying with respect to the q components. However,

FIG. 3. The three propagators for the φ particles. GK is the
cl − cl propagator, GR the cl − q (retarded) propagator, and GA

the q − cl (advanced) propagator. The arrows point from the
annihilation operator to the creation one, i.e. from φ to φ�.

3Note that ΣðcondÞðx; x0Þ is a nonlocal two-point object but we
have suppressed the relevant second integration in (27) to avoid
notational clutter.
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since the particles (φ field) have been integrated out, their
dynamics, and hence ñ, are not available from the above
action. To determine the dynamical equations relevant to
the noncondensed particles we now turn to a different route.
For this, we can write down the Schwinger-Dyson equa-
tions for the particles’ two-point function, considering the
corrections to the propagators coming from the vertices in
SI . Collecting the sum of all 1PI diagrams in the particle
self-energy Σ, the series for the fully dressed particle
propagator G will schematically read like

G ¼ G0 þ G0 ⊗ Σ ⊗ G ð33Þ

if the series is factored from the left, or

G ¼ G0 þ G ⊗ Σ ⊗ G0 ð34Þ

if the series is factored from the right. Here, the product
sign implies appropriate convolutions in spacetime and also
multiplication in the Keldysh matrix space, noting in
particular that the self-energy Σ takes the Keldysh form

Σ ¼
�

0 ΣA

ΣR ΣK

�
: ð35Þ

The left/right factorization is redundant in equilibrium,
where convolutions are simply products in Fourier space.
However, in a nonequilibrium situation the two forms
contain different information [63] and, as we shall see
below, subtracting them leads to a kinetic equation for the
particles [45]. Equation (33) leads to

Z
d4x0½ðGA

0 Þ−1ðx;x0Þ−ΣAðx;x0Þ�GAðx0;yÞ¼δðx−yÞ; ð36Þ

Z
d4x0½ðGR

0 Þ−1ðx;x0Þ−ΣRðx;x0Þ�GRðx0;yÞ¼ δðx−yÞ; ð37Þ

Z
d4x0½ðGR

0 Þ−1ðx; x0Þ − ΣRðx; x0Þ�GKðx0; yÞ

¼
Z

d4x0ΣKðx; x0ÞGAðx0; yÞ; ð38Þ

where we denote x ¼ ðt; rÞ etc. and we have written

ðGR
0 Þ−1ðx; x0Þ ¼ ðGA

0 Þ−1ðx; x0Þ

¼
�
i∂t þ

1

2ma2
∇2 −mVcl −

2g
a3

ðnc þ ñÞ
�

× δðx − x0Þ ð39Þ

where we have implicitly noted the retarded and advanced
initial conditions respectively for the definition of the
operator. Equations (36) and (37) will then give the explicit
form of the advanced and retarded fully dressed propa-
gators, GAðx; yÞ and GRðx; yÞ respectively. The self-energy
Σðx; yÞ, when computed in some approximation, provides
via the above the dressed propagator of the particles
described by the φ field. Summarizing the above quantities,
ΣRðAÞ corresponds to the retarded (advanced) self-energies

for the particles, ΣRðAÞ
ðcondÞ stands for the retarded (advanced)

self-energies for the condensate, nc is the condensate
number density, and ñ the particle number density. It is
important to recall that these self-energies are order g2 or
higher, since the order g was introduced in Hc and Hqp

because we have introduced first the slow varying quan-
tities in the matrices as part of an effective potential.

III. GENERAL EQUATIONS
FOR BOSONIC DARK MATTER

We now use the results of the previous section to obtain
the combined equations for condensed and noncondensed
scalar dark matter.

A. Kinetic equation for the particles

The Keldysh part of the full Schwinger-Dyson equation,
Eq. (38), can be used to provide the kinetic equation for the
particle component [45,62,63]. Following in particular the
analysis of [45], we first parametrize the Keldysh correlator
using a Hermitian matrix F as GK ¼ GRF − FGA, where
Fðx; yÞ is a distribution function depending on two space-
time points. This distribution F can be related with the
occupation number of the particles f, as

F ¼ 2f þ 1: ð40Þ

By multiplying (38) from the right by ððGA
0 Þ−1 − ΣAÞ, using

(36) and (37) and after some algebra, we arrive at

FIG. 4. Feynman diagrams for the condensate retarded self-energy ΣR
ðcondÞ due to φ fluctuations at order g2.
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−
�
i∂t þ

1

2ma2
∇2 − VeffðyÞ; F

�

¼ ΣK − ½ΣR; F� − FðΣR − ΣAÞ ð41Þ

where the left-hand side involves the commutator and we
have defined

Veff ¼ mVcl þ 2g
a3

ðnc þ ñÞ: ð42Þ

Now, we will assume that the fast modes’ intrinsic scales
of spatiotemporal variation are much smaller than both
galactic length scales and the typical evolutionary times we
are considering. To take advantage of this, we will employ
the Wigner transform which for an arbitrary function
Aðy1; y2Þ corresponds to a change of variables to the
central point y ¼ 1

2
ðy1 þ y2Þ and the relative coordinate

y0 ¼ y1 − y2, and then a Fourier transform of the depend-
ence on y0. For functions of slow variation in the central
coordinate y and fast variation in the relative coordinate y0,
the Wigner transform of products of functions, and there-
fore also the commutator, becomes much easier to treat
algebraically.
With these considerations in mind we take a Wigner

transform of (41). For this, when we have to compute a
product of two Wigner transforms, we use the fact that as
Vcl andΦ0 are slow varying fields, and one can assume that
both number densities vary slowly in time. Also, we will
work in a regime where we consider the scale factor aðtÞ as
also slowly varying. Hence, after some algebra and with
(40), we obtain

�
1 −

∂

∂ε
ℜðΣRÞ

�
∂

∂t
fðt; r;kÞ

þ
�

k
ma2

þ∇kℜðΣRÞ
�
∇fðt; r;kÞ

−∇ðVeff þℜðΣRÞÞ∇kfðt; r;kÞ ¼
1

2
Icoll½f� ð43Þ

where

Icoll½f� ¼ iΣK þ 2ð2f þ 1ÞℑðΣRÞ ð44Þ

and here t, r correspond to the central point coordinates, k
is the momentum related with the Fourier transform of the
relative coordinate, and ℜ, ℑ respectively denote real and
imaginary parts. We observe that Eq. (43) corresponds to a
Boltzmann-like equation.

B. Main equations

We are now in a position to present the main equations of
our model. We get the equations of motion for the
condensate and the gravitational potential by varying the
action (31) with respect to Φq� and Vq. On the other hand,

for the particles we use Eq. (43) considering that the
effective potential variation in time is slow and we neglect
the real part of the self-energies, which just contributes
to small shifts in (43). With all of these elements, the
equations for the condensate, particles, and gravitational
potential read

i∂tΦ0 ¼
�
−

1

2ma2
∇2 þ

�
mV þ g

a3
ðnc þ 2ñÞ

�
− iR

�
Φ0

ð45Þ

∂f
∂t

þ k
ma2

∇f −∇
�
mV þ 2g

a3
ðnc þ ñÞ

�
∇kf ¼ 1

2
ðIa þ IbÞ

ð46Þ

∇2V ¼ 4πGm
a

ðnc þ ñÞ ð47Þ

where

Ia ¼ 8π
g2

a6
nc
X
p;l;k

δðεq þ εp − εk − εlÞδðl − p − qþ kÞ

×
�
δðp − rÞ − δðk − rÞ − δðl − rÞ

�

×
h
ð1þ fpÞfkfl − fpð1þ fkÞð1þ flÞ

i
ð48Þ

Ib¼8π
g2

a6
X
p;q;l

δðεpþεq−εk−εlÞδðl−p−qþkÞ

×
h
fpfqðfkþ1Þðflþ1Þ−fkflðfpþ1Þðfqþ1Þ

i
ð49Þ

and

R ¼ 1

4nc

X
r

Ia: ð50Þ

In the equations for Ia and Ib we have used the shorthand
fp for fðt; r;pÞ and εp for the energy function εðr;pÞ. We
note that the term Ib corresponds to collisions between
particles and is number-preserving. On the other hand, the
collisional term Ia represents the process of particles
scattered into and out of the condensate. The R term
reflects this exchange in the condensate equation, driving to
a growth or a decrease of the condensate. Nonetheless, we
note that the total particle number is conserved within our
formalism.
Equations (45)–(50) are the main results of this paper.

The details of the derivation of the self-energies needed to
get these equations and the collisional terms Ia and Ib are
described in Appendix B.
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C. Limits and implications of the main equations

Some comments on the above equations are in order. Our
derivation was rather general, assuming only a separation
of spatiotemporal scales. Therefore, the dynamical equa-
tions encompass all known models involving the under-
lying bosonic field action used here and, in appropriate
limits, reduce to the models that have been used in the
literature, as briefly demonstrated below.

1. Fuzzy dark matter

Firstly, let us consider the limit where there are no self-
interactions (g ¼ 0). In this case there are no collisional or
damping terms (Ia ¼ Ib ¼ R ¼ 0). Also, if we consider the
condensate to be the dominant contribution, neglecting the
higher momentum particles, we recover the Schrödinger-
Poisson equations used in fuzzy dark matter

i∂tΦ0 ¼
�
−

1

2ma2
∇2 þmV

�
Φ0; ð51Þ

∇2V ¼ 4πGm
a

nc: ð52Þ

This set of equations has been extensively analyzed [4] and,
for example, simulated in [11–16].

2. Self-interacting fuzzy dark matter

Now, if we allow g ≠ 0 but we continue ignoring the
particles the equations become

i∂tΦ0 ¼
�
−

1

2ma2
∇2 þmV þ g

a3
nc

�
Φ0; ð53Þ

∇2V ¼ 4πGm
a

nc ð54Þ

which corresponds to the situation of self-interacting fuzzy
dark matter, which has been studied e.g. in [17–26]. Note
that the importance of even a small self-interaction for an
ultralight axionic field was stressed in [64].

3. Vlasov-Poisson CDM

On the other hand, if the high momentum particles are
the dominant component and we can neglect the existence
of the condensate together with g ¼ 0, we recover the
Vlasov-Poisson equations used to describe cold dark matter

∂f
∂t

þ k
ma2

∇f −m∇V∇kf ¼ 0; ð55Þ

∇2V ¼ 4πGm
a

ñ ð56Þ

which are typically used for particles with much higher
masses compared with those used in fuzzy dark matter,

along with the assumption that dark matter is weakly
interacting. The distribution f is what is sampled in
N-body solvers [2,3].

4. Boltzmann-Poisson DM

The simplest extension to the Vlasov-Poisson is a
Boltzmann-Poisson equation, in which the condensate
component is again set to zero, but the collisional term
Ib is explicitly included:

∂f
∂t

þ k
ma2

∇f −∇
�
mV þ 2g

a3
ñ

�
∇kf ¼ 1

2
Ib; ð57Þ

∇2V ¼ 4πGm
a

ñ: ð58Þ

Note the appearance of a term linear in the self-coupling g,
in addition to the collision integral Ib which is quadratic in
g. Such a model could be treated via a fluid approximation
under the assumption of interactions strong enough to
establish local thermodynamic equilibrium over short
timescales.

5. ZNG formalism

The generality of our formalism is further evidenced by
the fact that it completely encompasses the so-called
“Zaremba-Nikuni-Griffin” (or ZNG) formalism used in
ultracold atomic gases [31,38,49]. To see this we consider
the simplified limit—not relevant to the cosmological
setting—when we ignore all gravitational (interaction)
effects, and also the effect of cosmic expansion, done by
setting a ¼ 1. The equations then become

i∂tΦ0 ¼
�
−

1

2m
∇2 þ gðnc þ 2ñÞ − iR

�
Φ0; ð59Þ

∂f
∂t

þ k
m
∇f − 2g∇ðnc þ ñÞ∇kf ¼ 1

2
ðIa þ IbÞ: ð60Þ

This is precisely the set of a coupled dissipative Gross-
Pitaevskii equation and a collisional quantum Boltzmann
equation used within the ZNG formalism of cold atomic
physics to describe the coupled dynamics of a finite
temperature atomic condensate coexisting with a thermal
cloud [31,49]. Such an approach has been used to success-
fully describe a range of experimental observations, includ-
ing damping of various collective modes [31,65], soliton
decay [66], vortex decay [67], Josephson effects [68],
condensate growth dynamics (upon imposing a small
numerical seed to set off the calculations) [50,69], and
even condensate mixtures [70,71].
We therefore see that, in addition to the various limiting

cases exposed above, our description also reproduces
correctly a physical system, namely a cold atomic dilute
gas, where there is a known and extensively studied
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interplay between the condensed and the incoherent par-
ticle components of the underlying field.
We can therefore conclude that the model described by

our equations generalizes current perspectives on the
theoretical description of DM, simultaneously including
various features in a general manner and thus containing
both CDM and the fuzzy dark matter model as its limiting
cases. Furthermore, our model is more general than any of
them due to the presence of self-interactions. Moreover, we
note that if one were to follow our procedure but only keep
terms just up to order g, one would then arrive at the
reduced equations

i∂tΦ0 ¼
�
−

1

2ma2
∇2þ

�
mVþ g

a3
ðncþ2ñÞ

��
Φ0; ð61Þ

∂f
∂t

þ k
ma2

∇f −∇
�
mV þ 2g

a3
ðnc þ ñÞ

�
∇kf ¼ 0; ð62Þ

∇2V ¼ 4πGm
a

ðnc þ ñÞ: ð63Þ

This demonstrates explicitly that, even if collisional terms
are ignored, the coherent and incoherent components of
the system are coupled nontrivially, with condensate and
particles feeling the effect of each other (through mean-
field coupling only in such limit). It is also worth noting
that, consistent with the usual Hartree-Fock considerations,
their effective potentials are slightly different with different
prefactors for nc and ñ in the two equations above.
Collisional terms only appear on the right-hand side of
the Boltzmann equation when considering terms up to
order g2. As a result, in the absence of collisions, not only is
the total number of particles conserved, but also the number
of particles in each of the condensate and noncondensate
components is individually preserved.4

IV. FINAL REMARKS

In this work we have charted a path from a non-
relativistic, bosonic action to a set of dynamical equations
for a generic dark matter model involving a scalar particle
with mass m and quartic self-interaction with self-coupling
strength g. Starting from the fundamental, nonequilibrium
partition function, our final equations describe states where
the dark matter can contain both a coherent (or condensed)
component governed by a wave equation, as well as an
incoherent component corresponding to a collection of

particles described by a (quantum) Boltzmann kinetic
equation for their phase space density. Such Boltzmann
equation includes collisional terms that arise at order g2

in the self-interaction, and thus facilitates the transfer of
particles between the coherent/condensate and incoherent/
particle components. This description thus encompasses a
variety of dark matter models discussed in the literature,
including both corpuscular dark matter (like CDM), and
wave dark matter (like fuzzy dark matter or ψDM) under a
unified framework. Note that both types of dark matter are
described by the same underlying scalar field and the
existence of the two components depends on the model
parameters and the available energy. Such a picture is
directly analogous to the mature, and experimentally con-
firmed, study of coherent and incoherent components in
atomic/condensed-matter systems when the dimensionless
phase-space density ðρ=mÞλ3dB ≳Oð1Þ, which typically
arises (in the context of ultracold atomic gases, or liquid
helium) below some characteristic threshold (or critical)
temperature: in the latter context, the system is typically
described by some appropriately generalized (depending on
the approximations made within different models [38])
version of the Gross-Pitaevskii equation for the coherent
(typically low-momentum) part, self-consistently coupled to
a quantum Boltzmann equation for the incoherent (typically
higher momentum) part of the system, and such mature
description has inspired the presented study.
The description of this fundamental cosmological

bosonic system has attracted a lot of attention in the
literature as an alternative to cold dark matter, which,
due to its bosonic nature, can exhibit condensation and
related wavy features given the right circumstances.
Beyond discussions on structure formation and the result-
ing cored density profile of dark matter halos, attention has
also been drawn more generally to the notion of Bose-
Einstein condensation on cosmological scales and its
possible meaning. An initial suggestion by [73] of gravi-
tational thermalization and the formation of condensed
states with enormous correlation lengths has been critically
investigated in [22]. The latter work noted that gravita-
tionally induced condensation does indeed occur, as sug-
gested by [73], but found that the equilibrium state of light
particles interacting through gravity (and more generally
attractive interactions) must be made up of so-called
Bose stars (solitons), engulfed in an incoherent field,
thus inhibiting the development of very large correlation
lengths. The formation of Bose stars via gravitational
condensation from a random initial condition has been
verified via the work of [74] and a detailed study of the
coherence of gravitationally bound bosonic halos [28]
seems to agree with the suggestion of [22] for an inhibited
correlation length of the equilibrium state. Further work on
the role of gravitation and self-interactions in condensation
has been pursued in [23,24,74–76] where kinetic equations
derived from a wave equation have been used, somewhat

4A mixture of CDM with condensate dark matter was
discussed in [72], where they study such mixing through a halo
model. Here, we are considering a completely different model.
The two components in our equations come from the same initial
action. Thus, our noncondensed particles are of the same nature
as those of the condensate, only belonging to a different physical
phase.

PROUKAKIS, RIGOPOULOS, and SOTO PHYS. REV. D 108, 083513 (2023)

083513-12



analogously to the study of wave turbulence based on a
Boltzmann equation, and is expected to describe well
certain dynamical regimes. Our approach explicitly main-
tains all collisional factors in a more general (quantum)
Boltzmann equation, which is itself coupled to the coherent
degrees of freedom of the system, thus providing a more
extended description of the coupling of coherent and
incoherent parts of the system. This explicit combination
of a wave equation, self-consistently coupled to a (quan-
tum) Boltzmann equation thus facilitates consideration of
both weak wave turbulence and strong turbulence, in the
sense of also facilitating emerging quantum vortex struc-
tures. It would be interesting to compare and contrast such
an approach to the formalism derived here, to delineate
more clearly the regimes of cosmological interest where
their predictions might differ.
A few final comments are in order. The implications of a

condensate-particle mixture for the early, linear stages of
cosmological structure formation are left to be explored and
will be the focus of upcomingwork, including the effects of a
self-coupling [77]. Furthermore, the general conditions
under which such a coupled mixture offers a useful descrip-
tion of bosonic dark mater remain to be clarified. For
example, when solitonic cores have formed in the centers
of halos, the condensed component is highly dominant there
and likely to be the only relevant dynamical entity, irre-
spective of the coupling to the noncondensed component.
However, as demonstrated in [28], a transition region exists
between the core and the outer halo where both components
will be of similar density and hence dynamically relevant and
coupled. And of course the relation between the possible
description of the turbulent outer halo via the Boltzmann
equation still needs to be clarified; see the discussion in
the above paragraph in relation to other works on kinetic
descriptions. Finally, we point out that the equations pre-
sented in this paper reflect the leadingorder in a semiclassical
expansion of the fundamental partition function (10) for the
condensate component. Computation to the next order inΦq

and Vq reveals stochastic forces that act on the condensate
like those described in [44] for the case of a trapped atomic
gas; the relevant derivation of these extended equations is the
subject of a forthcoming publication [77]. Such stochastic
equations may be relevant to the study of the spontaneous
soliton formation described in [23,74].
We close by noting that the starting point of this work,

namely nonequilibrium QFT in its Schwinger-Keldysh
incarnation, has been extensively used to address various
aspects of axionlike particle dynamics; see e.g. [78] for a
recent example. We hope to be able to explore connections
with the formalism developed here in the near future.
Furthermore, our approach may be useful for studying
alternative darkmattermodelswhere the underlying bosonic
dynamics is different from (5) and where an interplay of
condensate dynamics and a coupling to baryonic matter is
relevant, as in [79].
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APPENDIX A: DIAGONALIZATION
AND POPOV APPROXIMATION

Let us consider the particle quadratic part in the action
(11), given by

Sξ ¼
1

2

Z
dtd3rð ξ† ξq† Þ

�
0 M

M 0

��
ξ

ξq

�
: ðA1Þ

To obtain the particle energy spectrum and simplify the
computations,M should be put in a diagonal form. For this
purpose we will use the Bogoliubov transformation:

φðr; tÞ ¼
X
k

ðukðrÞηkðtÞ þ v�kðrÞη�kðtÞÞ; ðA2Þ

φqðr; tÞ ¼
X
k

ðukðrÞηqkðtÞ þ v�kðrÞηq�k ðtÞÞ; ðA3Þ

where the mode functions ukðrÞ and vkðrÞ are determined
via the solution of the Bogoliubov-de Gennes equation

� Hqp
g

2a3 Φ0Φ0

g
2a3 Φ

�
0Φ�

0 Hqp

��
ukðrÞ
vkðrÞ

�
¼ ε0k

�
ukðrÞ
−vkðrÞ

�
ðA4Þ

and are normalized according to

Z
d3rðu�kðrÞulðrÞ − v�kðrÞvlðrÞÞ ¼ δkl: ðA5Þ

The label k refers to the compete set of solutions of the
above eigenfunction equation.
In terms of the variable ξ, the transformation is defined as

ξðr; tÞ¼
X
k

UkðrÞςkðtÞ; ξqðr; tÞ¼
X
k

UkðrÞςqkðtÞ ðA6Þ

with ςðtÞ¼
�
ηkðtÞ
η�kðtÞ

�
, ςqðtÞ¼

�
ηqkðtÞ
ηq�k ðtÞ

�
, andUðrÞ¼

�
ukðrÞ
vkðrÞ

v�kðrÞ
u�kðrÞ

�
.

With this, the quadratic part reads

Sξ ¼
1

2

Z
dtd3r

X
k

ðς†kðtÞU†
kðrÞMUkðrÞςqkðtÞ

þ ςq†k ðtÞU†
kðrÞMUkðrÞςkðtÞÞ: ðA7Þ

This equation can be written in terms of a diagonal matrix
M̃ as
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Sξ ¼
1

2

Z
dt
X
k

ðς†kðtÞM̃kς
q
kðtÞ þ ςq†k ðtÞM̃kςkðtÞÞ ðA8Þ

with M̃k ¼ ði∂t−ε0k
0

0
−i∂t−ε0k

Þ if the following relation is sat-

isfied:

ε0k ¼
ðjukj2 − jvkj2Þ2
jukj2 þ jvkj2

εk ðA9Þ

where εk is an energy eigenvalue of the Hamiltonian Hqp

defined in M.
We will make the approximation that the diagonalization

process does not change the quasiparticle energy spectrum
very much, ε0k ≈ εk. This means that we can approximate
jukj2 ≈ 1 and jvkj2 ≈ 0. In practical terms we are just
ignoring the off-diagonal entries ofM and keeping approx-
imately the same Hamiltonian Hqp with the same field
φðr; tÞ in our action. We observe that with this approxi-
mation

�
0 M̃

M̃ 0

�

≈

0
BBB@

0 0 i∂t −Hqp 0

0 0 0 −i∂t −Hqp

i∂t −Hqp 0 0 0

0 −i∂t −Hqp 0 0

1
CCCA:

ðA10Þ

The inverse of this matrix is such that the elements hφφi,
hφ�φ�i, hφqφqi, and hφq�φq�i are zero, which is the Popov
approximation often used in kinetic models in cold atomic
systems [31,38,80]. Thus, this diagonalization and the
assumption H0

qp ≈ H̄qp (jukj2 ≈ 1 and jvkj2 ≈ 0) is equiv-
alent to making the Popov approximation.

APPENDIX B: COMPUTATION OF THE
ORDER g2 COLLISION TERMS

We will compute the equations of the model up to order
g2 which introduces nonzero collisional terms in (44) and a
modification to the condensate equation. Recall that ΣR and
ΣK start at order g2 since the order g was included in the
effective potential of the Hamiltonian. We will first com-
pute the self-energies which finally lead to the colli-
sional terms.

1. Condensate self-energy ΣR
ðcondÞ

We compute the diagrams that contribute to ΣR
ðcondÞ; see

Fig. 4. Putting them together, we have that

−iΣR
ðcondÞ ¼ −

g2

8a6

h
4i3GRðy; y0ÞGKðy; y0ÞGKðy0; yÞ

þ 2i3GAðy0; yÞGKðy; y0Þ2

þ 2i3GAðy0; yÞGRðy; y0Þ2
i
: ðB1Þ

We can replace the two GRðx; x0Þ in the last term by
ðGRðx; x0Þ −GAðx; x0ÞÞ, since GAðx0; xÞGAðx; x0Þ ¼ 0.
We use the Wigner transform, noting that we work in
a regime where the scale factor a varies slowly.
Furthermore, we define ðGRðpÞ−GAðpÞÞ¼−2πiδðε−εpÞ
and GKðpÞ ¼ −2πiFðpÞδðε − εpÞ. Also, we symmetrize
the first term between k and pþ q − k and then we take the
imaginary part. The real part is just a renormalization to the
particle density; we will neglect the effects of the real parts
in the retarded self-energies. We then perform the energy
integration and we get that the imaginary part of the
condensate self-energy ΣR

ðcondÞ is given by

ℑðΣR
ðcondÞÞ ¼ −

πg2

2a6
X
p;k

δðεq þ εp − εk − εpþq−kÞ

×
h
FðpÞ

�
FðkÞ þ Fðpþ q − kÞ

�

− ðFðkÞFðpþ q − kÞ þ 1Þ
i
: ðB2Þ

2. Particle self-energy ΣR

The diagrams that contribute to the particle retarded self-
energy ΣR are presented in Fig. 5. We write them as

−iΣR ¼ −iΣR
ðaÞ − iΣR

ðbÞ ðB3Þ
where

−iΣR
ðaÞ ¼

g2

4a6
jΦ0j2

h
2GAðy0; yÞGKðy; y0Þ

þ 2GRðy; y0ÞGKðy0; yÞ
þ 2GRðy; y0ÞGKðy; y0Þ

i
; ðB4Þ

−iΣR
ðbÞ ¼ i

g2

8a6

h
2GRðy0; yÞGAðy; y0ÞGRðy; y0Þ

þ 4GKðy0; yÞGKðy; y0ÞGRðy; y0Þ
þ 2GAðy0; yÞGKðy; y0ÞGKðy; y0Þ
þ 2GAðy0; yÞGAðy; y0ÞGAðy; y0Þ
þ 2GAðy0; yÞGRðy; y0ÞGRðy; y0Þ

i
: ðB5Þ

For each term, we take a Wigner transform, considering the
slow variation of a and Φ0 and follow similar steps to
the computation of the condensate self-energy, considering
the symmetrization of the last term in ΣR

ðaÞ and in the first

one for ΣR
ðbÞ to get
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ℑðΣR
ðaÞÞ ¼

πg2

2a6
X
p

jΦ0j2
h
2δðεq þ εp − εk − εpþq−kÞðFðpÞ − Fðpþ q − kÞÞ

− δðεq þ εk − εp − εkþq−pÞðFðpÞ þ Fðkþ q − pÞÞ
i
; ðB6Þ

ℑðΣR
ðbÞÞ ¼

πg2

2a6
X
p;q

δðεp þ εk−q − εk − εp−qÞ
h
Fðk − qÞFðpÞ þ 1 − Fðp − qÞðFðk − qÞ þ FðpÞÞ

i
: ðB7Þ

3. Particle self-energy ΣK

The contributions to the particle self-energy ΣK are depicted in Fig. 6 and are given by

−iΣK ¼ −iΣK
ðaÞ − iΣK

ðbÞ ðB8Þ

where

−iΣK
ðaÞ ¼

g2

4a6
jΦ0j2

h
2GKðy; y0Þ2 þ 4GAðy0; yÞGRðy; y0Þ þ 4GRðy0; yÞGAðy; y0Þ þ 4GKðy; y0ÞGKðy0; yÞ

þ 2GRðy; y0Þ2 þ 2GAðy; y0Þ2
i
; ðB9Þ

−iΣK
ðbÞ ¼ i

g2

4a6

h
2GKðy0; yÞGRðy; y0Þ2 þ 2GKðy0; yÞGKðy; y0Þ2 þ 4GAðy0; yÞGKðy; y0ÞGRðy; y0Þ þ 2GKðy0; yÞGAðy; y0Þ2

þ 4GRðy0; yÞGAðy; y0ÞGKðy; y0Þ
i
: ðB10Þ

We use GRðy0; yÞGAðy; y0Þ þ GAðy0; yÞGRðy; y0Þ ¼ −ðGRðy0; yÞ −GAðy0; yÞÞðGRðy; y0Þ −GAðy; y0ÞÞ and GAðy; y0Þ2 þ
GRðy; y0Þ2 ¼ ðGRðy; y0Þ −GAðy; y0ÞÞ2. Then, we apply a Wigner transform, and as before, symmetrizing the last term in
ΣK
ðbÞ we get

ΣK
ðaÞ ¼

πg2

2ia6
X
p

jΦ0j2
h
4δðεq þ εp − εk − εpþq−kÞðFðpþ q − kÞFðpÞ − 1Þ

þ 2δðεq þ εk − εp − εkþq−pÞðFðkþ q − pÞFðpÞ þ 1Þ
i
; ðB11Þ

FIG. 5. Feynman diagrams for the particle retarded self-energy at order g2. The three upper diagrams correspond to ΣR
ðaÞ; the remaining

corresponds to ΣR
ðbÞ.

UNIFIED DESCRIPTION OF CORPUSCULAR AND FUZZY … PHYS. REV. D 108, 083513 (2023)

083513-15



ΣK
ðbÞ ¼

πg2

ia6
X
p;q

δðεp þ εk−q − εk − εp−qÞ

×
h
Fðp − qÞðFðk − qÞFðpÞ þ 1Þ

− FðpÞ − Fðk − qÞ
i
: ðB12Þ

4. Collisional terms

With the computed self-energies we can construct the
collisional terms for the kinetic equation of the particles.
With the help of (44) we can generate two kinds of
collisional terms:

Ia½fðkÞ� ¼ iΣK
ðaÞ þ 2ð2fðkÞ þ 1ÞℑðΣR

ðaÞÞ; ðB13Þ

Ib½fðkÞ� ¼ iΣK
ðbÞ þ 2ð2fðkÞ þ 1ÞℑðΣR

ðbÞÞ: ðB14Þ

We use explicitly (B6), (B7), (B11), and (B12), after using
(40) in the equations above. Using (30) and after some
algebra we obtain that

Ia ¼ 8π
g2

a6
nc
X
p;l;k

δðεq þ εp − εk − εlÞδðl − p − qþ kÞ

×
�
δðp − rÞ − δðk − rÞ − δðl − rÞ

�

×
h
ð1þ fpÞfkfl − fpð1þ fkÞð1þ flÞ

i
; ðB15Þ

Ib ¼ 8π
g2

a6
X
p;q;l

δðεp þ εq − εk − εlÞδðl − p − qþ kÞ

×
h
fpfqðfk þ 1Þðfl þ 1Þ − fkflðfp þ 1Þðfq þ 1Þ

i
;

ðB16Þ
where we note that F ¼ 2f þ 1.
Finally, we note that the collisional term Ia is related

with (B2) the condensate self-energy. Indeed, defining R as

R ¼ −ℑðΣR
ðcondÞÞ

¼ 2π
g2

a6
X
p;k;l

δðεq þ εp − εk − εlÞδðq − kþ p − lÞ

×
h
fpð1þ fkÞð1þ flÞ − ð1þ fpÞfkfl

i
ðB17Þ

we observe that it satisfies

R ¼ 1

4nc

X
r

Ia: ðB18Þ

FIG. 6. Feynman diagrams for the particle Keldysh self-energy at order g2. The six upper diagrams correspond to ΣK
ðaÞ; the remaining

corresponds to ΣK
ðbÞ.
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Szymańska, R. André, J. L. Staehli, V. Savona, P. B.
Littlewood, B. Deveaud, and Le Si Dang, Bose-Einstein
condensation of exciton polaritons, Nature (London) 443,
409 (2006).

[38] Nick P. Proukakis and Brian Jackson, Finite-temperature
models of Bose-Einstein condensation, J. Phys. B 41,
203002 (2008).

UNIFIED DESCRIPTION OF CORPUSCULAR AND FUZZY … PHYS. REV. D 108, 083513 (2023)

083513-17

https://doi.org/10.1002/andp.201200212
https://doi.org/10.1016/S0370-1573(02)00135-7
https://doi.org/10.1007/s41115-021-00013-z
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1146/annurev-astro-120920-010024
https://doi.org/10.1146/annurev-astro-120920-010024
https://doi.org/10.1007/s00159-021-00135-6
https://doi.org/10.1007/s00159-021-00135-6
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1073/pnas.1308716112
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.3390/galaxies5010017
https://doi.org/10.3390/galaxies5010017
https://doi.org/10.1038/nphys2996
https://doi.org/10.1103/PhysRevD.94.043513
https://doi.org/10.1093/mnras/stx1887
https://doi.org/10.1093/mnras/stx1887
https://doi.org/10.1103/PhysRevD.98.043509
https://doi.org/10.1093/mnras/stab1764
https://doi.org/10.1093/mnras/stab1764
https://doi.org/10.1093/mnras/stad1081
https://doi.org/10.1093/mnras/stad1081
https://doi.org/10.1093/mnras/stad694
https://doi.org/10.1093/mnras/stad694
https://doi.org/10.1088/1475-7516/2007/06/025
https://doi.org/10.1088/1475-7516/2007/06/025
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043531
https://doi.org/10.1103/PhysRevD.84.043532
https://doi.org/10.1103/PhysRevD.84.043532
https://doi.org/10.1111/j.1365-2966.2012.20588.x
https://doi.org/10.1111/j.1365-2966.2012.20588.x
https://doi.org/10.1103/PhysRevD.92.103513
https://doi.org/10.1103/PhysRevD.106.023009
https://doi.org/10.1103/PhysRevD.106.023009
https://doi.org/10.1103/PhysRevD.106.043512
https://doi.org/10.1103/PhysRevD.106.043512
https://doi.org/10.1051/0004-6361/202243496
https://doi.org/10.1093/mnras/stac3386
https://doi.org/10.1093/mnras/stac3386
https://doi.org/10.1093/mnras/stad591
https://doi.org/10.1038/141913a0
https://doi.org/10.1038/141913a0
https://doi.org/10.3367/UFNr.0093.196711j.0495
https://doi.org/10.3367/UFNr.0093.196711j.0495
https://doi.org/10.1103/PhysRev.104.576
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.74.1131
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1038/nature09567
https://doi.org/10.1038/nature05131
https://doi.org/10.1038/nature05131
https://doi.org/10.1088/0953-4075/41/20/203002
https://doi.org/10.1088/0953-4075/41/20/203002


[39] James H. H. Chan, Hsi-Yu Schive, Tak-Pong Woo, and
Tzihong Chiueh, How do stars affect ψDM haloes? Mon.
Not. R. Astron. Soc. 478, 2686 (2018).

[40] Barry T. Chiang, Hsi-Yu Schive, and Tzihong Chiueh,
Soliton oscillations and revised constraints from Eridanus
II of fuzzy dark matter, Phys. Rev. D 103, 103019
(2021).

[41] Quantum Gases: Finite Temperature and Non-Equilibrium
Dynamics: 1 (Cold Atoms), edited by Nick Proukakis, Simon
Gardiner,MatthewDavis, andMarzena Szymańska (Imperial
College Press, London, 2013).

[42] N. G. Berloff, M. Brachet, and N. P. Proukakis, Modeling
quantum fluid dynamics at nonzero temperatures, Proc.
Natl. Acad. Sci. U.S.A. 111, 4675 (2014).

[43] H. T. C. Stoof, Initial stages of Bose-Einstein condensation,
Phys. Rev. Lett. 78, 768 (1997).

[44] Henk T. C. Stoof, Coherent versus incoherent dynamics
during Bose-Einstein condensation in atomic gases, J. Low
Temp. Phys. 114, 11 (1999).

[45] Alex Kamenev, Field Theory of Non-Equilibrium Systems
(Cambridge University Press, Cambridge, England,
2011).

[46] T. R. Kirkpatrick and J. R. Dorfman, Transport theory for a
weakly interacting condensed Bose gas, Phys. Rev. A 28,
2576 (1983).

[47] T. R. Kirkpatrick and J. R. Dorfman, Transport in a dilute
but condensed nonideal Bose gas: Kinetic equations, J. Low
Temp. Phys. 58, 301 (1985).

[48] T. R. Kirkpatrick and J. R. Dorfman, Transport coefficients
in a dilute but condensed Bose gas, J. Low Temp. Phys. 58,
399 (1985).

[49] Eugene Zaremba, Tetsuro Nikuni, and Allan Griffin,
Dynamics of trapped Bose gases at finite temperatures,
J. Low Temp. Phys. 116, 277 (1999).

[50] M. J. Bijlsma, E. Zaremba, and H. T. C. Stoof, Condensate
growth in trapped Bose gases, Phys. Rev. A 62, 063609
(2000).

[51] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and
C.W. Gardiner, Dynamics and statistical mechanics of ultra-
cold Bose gases using c-field techniques, Adv. Phys. 57, 363
(2008).

[52] R. A. Duine and H. T. C. Stoof, Stochastic dynamics of a
trapped Bose-Einstein condensate, Phys. Rev. A 65, 013603
(2001).

[53] H. T. C. Stoof and M. J. Bijlsma, Dynamics of fluctuating
Bose-Einstein condensates, J. Low Temp. Phys. 124, 431
(2001).

[54] I.-K. Liu, S. Donadello, G. Lamporesi, G. Ferrari, S.-C.
Gou, F. Dalfovo, and N. P. Proukakis, Dynamical equili-
bration across a quenched phase transition in a trapped
quantum gas, Commun. Phys. 1, 24 (2018).

[55] Y. Kagan, B. V. Svistunov, and G. V. Shlyapnikov, Kinetics
of Bose condensation in an interacting Bose gas, Sov. Phys.
JETP 75, 387 (1992).

[56] Y. Kagan, Kinetics of Bose-Einstein condensate formation
in an interacting Bose gas, in Bose-Einstein Condensation,
edited by A. Griffin, D.W. Snoke, and S. Stringari
(Cambridge University Press, Cambridge, England, 1995),
p. 202.

[57] Natalia G. Berloff and Boris V. Svistunov, Scenario of
strongly nonequilibrated Bose-Einstein condensation, Phys.
Rev. A 66, 013603 (2002).

[58] C. Connaughton and Y. Pomeau, Kinetic theory and Bose-
Einstein condensation, C. R. Phys. 5, 91 (2004).

[59] D. V. Semikoz and I. I. Tkachev, Kinetics of Bose con-
densation, Phys. Rev. Lett. 74, 3093 (1995).

[60] Pavel Friedrich and Tomislav Prokopec, Field-theoretic
approach to large-scale structure formation, Phys. Rev. D
100, 103527 (2019).

[61] R. D. Jordan, Effective field equations for expectation
values, Phys. Rev. D 33, 444 (1986).

[62] E. Calzetta and B. L. Hu, Nonequilibrium quantum fields:
Closed-time-path effective action, Wigner function, and
Boltzmann equation, Phys. Rev. D 37, 2878 (1988).

[63] Jørgen Rammer, Quantum Field Theory of Non-equilibrium
States (Cambridge University Press, Cambridge, England,
2007).

[64] Vincent Desjacques, Alex Kehagias, and Antonio Riotto,
Impact of ultralight axion self-interactions on the large-
scale structure of the Universe, Phys. Rev. D 97, 023529
(2018).

[65] B. Jackson and E. Zaremba, Quadrupole collective modes in
trapped finite-temperature Bose-Einstein condensates, Phys.
Rev. Lett. 88, 180402 (2002).

[66] B. Jackson, N. P. Proukakis, and C. F. Barenghi, Dark-
soliton dynamics in Bose-Einstein condensates at finite
temperature, Phys. Rev. A 75, 051601 (2007).

[67] B. Jackson, N. P. Proukakis, C. F. Barenghi, and E.
Zaremba, Finite-temperature vortex dynamics in Bose-
Einstein condensates, Phys. Rev. A 79, 053615 (2009).

[68] K. Xhani, E. Neri, L. Galantucci, F. Scazza, A. Burchianti,
K.-L. Lee, C. F. Barenghi, A. Trombettoni, M. Inguscio, M.
Zaccanti, G. Roati, and N. P. Proukakis, Critical transport
and vortex dynamics in a thin atomic Josephson junction,
Phys. Rev. Lett. 124, 045301 (2020).

[69] J. Märkle, A. J. Allen, P. Federsel, B. Jetter, A. Günther, J.
Fortágh, N. P. Proukakis, and T. E. Judd, Evaporative cool-
ing of cold atoms at surfaces, Phys. Rev. A 90, 023614
(2014).

[70] Kean Loon Lee and Nick P. Proukakis, Non-equilibrium
atomic condensates and mixtures: Collective modes, con-
densate growth and thermalisation, J. Phys. B 49, 214003
(2016).

[71] K. L. Lee, N. B. Jørgensen, L. J. Wacker, M. G. Skou, K. T.
Skalmstang, J. J. Arlt, and N. P. Proukakis, Time-of-flight
expansion of binary Bose–Einstein condensates at finite
temperature, New J. Phys. 20, 053004 (2018).

[72] Sophie M. L. Vogt, David J. E. Marsh, and Alex Laguë,
Improved mixed dark matter halo model for ultralight
axions, Phys. Rev. D 107, 063526 (2023),

[73] P. Sikivie and Q. Yang, Bose-Einstein condensation of dark
matter axions, Phys. Rev. Lett. 103, 111301 (2009).

[74] D. G. Levkov, A. G. Panin, and I. I. Tkachev, Gravitational
Bose-Einstein condensation in the kinetic regime, Phys.
Rev. Lett. 121, 151301 (2018).

[75] Ben Bar-Or, Jean-Baptiste Fouvry, and Scott Tremaine,
Relaxation in a fuzzy dark matter halo, Astrophys. J. 871, 28
(2019).

PROUKAKIS, RIGOPOULOS, and SOTO PHYS. REV. D 108, 083513 (2023)

083513-18

https://doi.org/10.1093/mnras/sty900
https://doi.org/10.1093/mnras/sty900
https://doi.org/10.1103/PhysRevD.103.103019
https://doi.org/10.1103/PhysRevD.103.103019
https://doi.org/10.1073/pnas.1312549111
https://doi.org/10.1073/pnas.1312549111
https://doi.org/10.1103/PhysRevLett.78.768
https://doi.org/10.1023/A:1021897703053
https://doi.org/10.1023/A:1021897703053
https://doi.org/10.1103/PhysRevA.28.2576
https://doi.org/10.1103/PhysRevA.28.2576
https://doi.org/10.1007/BF00681309
https://doi.org/10.1007/BF00681309
https://doi.org/10.1007/BF00681133
https://doi.org/10.1007/BF00681133
https://doi.org/10.1023/A:1021846002995
https://doi.org/10.1103/PhysRevA.62.063609
https://doi.org/10.1103/PhysRevA.62.063609
https://doi.org/10.1080/00018730802564254
https://doi.org/10.1080/00018730802564254
https://doi.org/10.1103/PhysRevA.65.013603
https://doi.org/10.1103/PhysRevA.65.013603
https://doi.org/10.1023/A:1017519118408
https://doi.org/10.1023/A:1017519118408
https://doi.org/10.1038/s42005-018-0023-6
https://doi.org/10.1103/PhysRevA.66.013603
https://doi.org/10.1103/PhysRevA.66.013603
https://doi.org/10.1016/j.crhy.2004.01.006
https://doi.org/10.1103/PhysRevLett.74.3093
https://doi.org/10.1103/PhysRevD.100.103527
https://doi.org/10.1103/PhysRevD.100.103527
https://doi.org/10.1103/PhysRevD.33.444
https://doi.org/10.1103/PhysRevD.37.2878
https://doi.org/10.1103/PhysRevD.97.023529
https://doi.org/10.1103/PhysRevD.97.023529
https://doi.org/10.1103/PhysRevLett.88.180402
https://doi.org/10.1103/PhysRevLett.88.180402
https://doi.org/10.1103/PhysRevA.75.051601
https://doi.org/10.1103/PhysRevA.79.053615
https://doi.org/10.1103/PhysRevLett.124.045301
https://doi.org/10.1103/PhysRevA.90.023614
https://doi.org/10.1103/PhysRevA.90.023614
https://doi.org/10.1088/0953-4075/49/21/214003
https://doi.org/10.1088/0953-4075/49/21/214003
https://doi.org/10.1088/1367-2630/aaba39
https://doi.org/10.1103/PhysRevD.107.063526
https://doi.org/10.1103/PhysRevLett.103.111301
https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.1103/PhysRevLett.121.151301
https://doi.org/10.3847/1538-4357/aaf28c
https://doi.org/10.3847/1538-4357/aaf28c


[76] Pierre-Henri Chavanis, Landau equation for self-gravitating
classical and quantum particles: Application to dark matter,
Eur. Phys. J. Plus 136, 703 (2021).

[77] N. P. Proukakis,G.Rigopoulos, andA.Soto (to be published).
[78] Shuyang Cao and Daniel Boyanovsky, Brownian axionlike

particles, Phys. Rev. D 106, 123503 (2022).

[79] Lasha Berezhiani and Justin Khoury, Theory of dark matter
superfluidity, Phys. Rev. D 92, 103510 (2015).

[80] A. Griffin, Conserving and gapless approximations for an
inhomogeneous Bose gas at finite temperatures, Phys.
Rev. B 53, 9341 (1996).

UNIFIED DESCRIPTION OF CORPUSCULAR AND FUZZY … PHYS. REV. D 108, 083513 (2023)

083513-19

https://doi.org/10.1140/epjp/s13360-021-01617-3
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.92.103510
https://doi.org/10.1103/PhysRevB.53.9341
https://doi.org/10.1103/PhysRevB.53.9341

