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The idea of neutrino-assisted early dark energy (νEDE), where a coupling between neutrinos and the
scalar field that models early dark energy (EDE) is considered, was introduced with the aim of reducing
some of the fine-tuning and coincidence problems that appear in usual EDE models. In order to be relevant
in ameliorating theH0 tension, the contribution of EDE to the total energy density (fEDE) should be around
10% near the redshift of matter-radiation equality. We verify under which conditions νEDE models can
fulfill these requirements for a model with a quartic self-coupling of the EDE field and an exponential
coupling to neutrinos. We find that in the situation where the EDE field is frozen initially, the contribution
to fEDE can be significant but it is not sensitive to the neutrino-EDE coupling and does not address the EDE
coincidence problem. On the other hand, if the EDE field starts already dynamical at the minimum of the
effective potential, it tracks this time-dependent minimum that presents a feature triggered by the neutrino
transition from relativistic to nonrelativistic particles. This feature generates fEDE in a natural way at around
this transition epoch, which roughly coincides with the matter-radiation equality redshift. For the set of
parameters that we considered we did not find values that satisfy the requirements on the background
cosmological evolution to mitigate the Hubble tension in a natural way in this particular νEDE model.

DOI: 10.1103/PhysRevD.108.083512

I. INTRODUCTION

Despite its great success in being able to describe a vast
amount of observables from different epochs of the
evolution of the Universe, the standard spatially flat
ΛCDM model has recently been under stress mainly from
the so-called Hubble tension arising from measurements of
the Hubble constant from the cosmic microwave back-
ground (CMB) data in comparison to local measurements
(for recent reviews, see [1–3]). One of the most promising
solutions to the Hubble tension is a class of models called
early dark energy (EDE) [4–9]. The current status of EDE
models proposed to resolve the Hubble tension was
recently reviewed in [10].
A non-negligible amount of a new dark energy compo-

nent that becomes dynamical at around the matter-radiation
equality era and quickly dissipates afterwards would
decrease the sound horizon that enters the indirect meas-
urement of the Hubble constant from the CMB data,
leading to an increase in the estimated value of the
Hubble parameter today; hence EDE can ameliorate the
Hubble tension [11]. In fact, the existence of EDE has
already been proposed in the context of late quintessence

models with global attractor solutions and its effect on the
CMB and structure formation were studied in [12,13]. In
the more recent versions of EDE motivated by the Hubble
tension, a scalar field with an axionlike or a pure ϕ4

potential was proposed to model the EDE component
[5,6,14]. It has been shown that if EDE contributes with
a fraction fEDE ≈ 10% of the total energy density of the
Universe in an epoch with redshift around log10ðzÞ ∼ 3.5,
its presence is expected to decrease the statistical signifi-
cance of the Hubble tension (see, e.g., [7]).
However, in the standard EDE scenario, some level of

fine-tuning is necessary in order to solve the Hubble
tension: the scalar field mass and its initial conditions
need to have specific values in order for the EDE model to
contribute the required amount of energy density at around
the matter-radiation equality epoch. This is sometimes
referred to as the EDE coincidence problem.
Some models were proposed to address the EDE

coincidence problem by introducing a coupling of the
EDE field to matter fields. For instance, a coupling of EDE
to dark matter as a trigger for its dynamics was recently
studied in [15,16].
Another similar mechanism was proposed in [17,18],

where a coupling of the EDE field to neutrinos was
introduced. There are two distinct consequences of intro-
ducing such a coupling: (i) a modification in the original
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EDE field potential leading to a new effective potential and
(ii) a dynamical effect of a “kick” to the EDE field. This kick
is associated with the transition of neutrinos from being
relativistic to nonrelativistic particles when the temperature
of theUniverse falls below T ¼ OðmνÞ, which causes a jump
in the trace of the neutrino energy-momentum tensor. This
jump can displace the value of the EDE field that then starts
its oscillations anddissipation. Thismechanismcan naturally
trigger the EDE field at around the matter-radiation equality
since the temperature at this epoch is approximately at the
scale of neutrino masses.
In this paper, we explore this neutrino-assisted EDE

model (νEDE) in more detail. In order to do this, we
developed an implementation of the νEDE model in CAMB

1

at the background level to analyze the evolution of the EDE
scalar field in the time-dependent effective potential given
some initial conditions and model parameters and the
computations are consistently performed in the Einstein
frame. We study two cases for the initial conditions: the
field starting either at some arbitrary value or starting at the
minimum of the effective potential (see, e.g., Brax et al.
[19]). In the first case we consider the field initially frozen
at an arbitrary value by Hubble friction (jV 00

eff=H
2j < 1). In

the second case, we chose parameters of the model such
that the field has already relaxed to the minimum of the
effective potential.
We show that in the first case the model can result in a

cosmologically significant amount of fEDE at the redshift
required to ameliorate the Hubble tension. However, using
the approach proposed in [16], we point out that this result
is not due to the neutrino-EDE coupling and it does not
address the EDE coincidence problem. In the second case,
the model provides a natural value for the initial condition
of the EDE field given by the minimum of the effective
potential [17,18,20]. Nevertheless, we find that the con-
tribution to fEDE is too small for addressing the Hubble
tension.
An important feature of the νEDE model is the neutrino

kick [17,18] which may occur by a similar mechanism
previously studied in [19,21–23]. The latter are chameleon
models addressing the late dark energy with a different
class of self-interaction potentials. In the model studied
here we do not see the effects of the neutrino kick on the
EDE field with a displacement from the minimum of the
effective potential by solving its field evolution equation.
Rather, we show that the jump in the trace of the neutrino
energy-momentum tensor is reflected in a change in the
minimum of the effective potential that the EDE is
following adiabatically. It is this change that leads to an
increase in fEDE.
This paper is organized as follows. In Sec. II we present a

summary of the model, and proceed to Sec. III for a
description of the methods used in the background analysis.

Our results are presented in Sec. IV where we differentiate
the discussion in the two regimes described above: in
Sec. IVA the field is initially frozen by Hubble drag while
in Sec. IV B the field is initially dynamical. In both
scenarios we compute the fraction of EDE and assess
the importance of the neutrino-EDE coupling. We present
our conclusions in Sec. V.

II. NEUTRINO-ASSISTED EDE

The idea of neutrinos coupled to a dark energy field was
introduced in the so-called “mass-variable neutrinos”
(MaVaN) models, since this coupling induces a variation
of the neutrino mass due to the cosmic evolution of the
background dark energy (also known as quintessence)
field [24,25]. The effects of mass-varying neutrinos on
the CMB anisotropies and large scale structure (LSS), both
at the background and perturbative levels, were studied in
[26–28]. The issue of fine-tuning was discussed in the
context of quintessence models in [29] and more recently in
MaVaNmodels in [30]. We now present a brief summary of
the model.
Consider a general action of the following form:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2

plR −
1

2
∇μϕ∇μϕ − VðϕÞ

�

þ Sdm½Ψdm; g̃dmμν � þ Sb½Ψb; g̃bμν�
þ Sγ½Ψγ; g̃

γ
μν� þ Sν½Ψν; g̃νμν�; ð1Þ

where Ψdm, Ψb, Ψγ, and Ψν are the dark matter, baryons,
photon, and neutrino fields, respectively, MPl ≡ ð8πGÞ−1=2
is the reduced Planck mass and g is the determinant of the
metric gμν in the Einstein frame. The Jordan-frame metric,
g̃μν, for each species is related with gμν by g̃iμν ¼ A2

i ðϕÞgμν,
where i represents all the components cited above. It is
interesting to note that in the case Adm ¼Ab ¼Aγ ¼Aν ¼ 1

and VðϕÞ ¼ μ4½1 − cosðϕ=fÞ�n, where f is the energy scale
where a shift symmetry is spontaneously broken and μ is a
small explicit shift symmetry-breaking breaking energy
scale that generates an axionlike potential, one obtains the
canonical uncoupled axion-like EDE model [4,5]. When
Ab ¼ Aγ ¼ Aν ¼ 1, Adm ≡ A ¼ expðβϕ=MplÞ and VðϕÞ ¼
λϕ4 we obtain the chameleon EDE model, recently studied
in [15]. Finally, when Adm ¼ Ab ¼ Aγ ¼ 1, Aν≡A¼
expðβϕ=MplÞ, and VðϕÞ¼ λϕ4=4 we obtain the neutrino-
assisted EDE (νEDE) model studied in [17,18]. This is
the model considered in the following. Notice that νEDE
has the same framework and is described by the same
equations as for the MaVaNs model, the main difference
being that for the latter case, the quintessence potential is
VðϕÞ ¼ V0 expð−σϕÞ which is required to achieve the late
time cosmic acceleration.
The coupling function that changes the metric between

the Einstein and Jordan frames can be related to the1https://github.com/cmbant/CAMB.
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time-varying neutrino mass as mνðϕÞ ¼ mν0AðϕÞ where
mν0 is the neutrino mass today. The average neutrino
energy density (ρν) and pressure (pν) are given in terms
of an integral over the comoving momentum (q) of the
usual unperturbed Fermi-Dirac distribution f0ðqÞ:

ρνðϕÞ ¼
1

a4

Z
q2dqdΩϵf0ðqÞ; ð2Þ

pνðϕÞ ¼
1

3a4

Z
q2dqdΩ

q2

ϵ
f0ðqÞ; ð3Þ

f0ðqÞ ¼
gν
h3P

1

eq=kBTν0 þ 1
; ð4Þ

ϵ2 ¼ q2 þ a2m2
νðϕÞ; ð5Þ

where gν, Tν0, hP, kB are the number of spin degrees of
freedom, the neutrino temperature today, the Planck and
Boltzmann constant, respectively. In Eq. (4) we have
assumed that neutrinos decoupled from the primordial
plasma when they are still relativistic, so the phase-space
distribution preserves the Fermi-Dirac form with a depend-
ence only on the comoving momentum.
Taking the time derivative of Eq. (2) and using that the

energy conservation is determined by the coupled system of
neutrinos and the scalar field, we obtain the modified
Klein-Gordon equation,

ϕ̈þ 3Hϕ̇þ dVðϕÞ
dϕ

¼ −
d lnmνðϕÞ

dϕ
ðρν − 3pνÞ; ð6Þ

where dot is the derivative with respect to time. The self-
interaction EDE potential assumed in this work is

VðϕÞ ¼ λϕ4=4: ð7Þ

This is the potential used in the so-called “rock ‘n’ roll”
models of EDE [31].
In addition, it is interesting to notice that taking the

derivative of Eq. (2) with respect to the scalar field results in

dρνðϕÞ=dϕ ¼ ðd lnmν=dϕÞðρν − 3pνÞ: ð8Þ

For definiteness we are going to adopt a coupling of the
form

AðϕÞ ¼ expðβϕ=MplÞ; ð9Þ

where β is a dimensionless constant factor giving the
coupling strength between neutrinos and the EDE field.
The fact that in EDE models the energy density must
dissipate quickly after recombination ensures thatmνðϕÞ →
mν0 today. With this choice of interaction the Klein-Gordon
equation takes the familiar form:

ϕ̈þ 3Hϕ̇þ dVðϕÞ
dϕ

¼ −
β

Mpl
Θν; ð10Þ

where Θν ≡ −ρν þ 3pν is the trace of the energy-
momentum tensor for the neutrinos. Therefore, one can
define an effective potential where

V 0
eff ¼ V 0ðϕÞ − β

Mpl
Θν; ð11Þ

and using Eq. (8) we write the redshift-dependent effective
potential as

VeffðϕÞ ¼ VðϕÞ þ ρνðϕ; zÞ: ð12Þ

An important quantity throughout this work is the
redshift-dependent minimum of the effective potential
given by [18]2:

ϕmin ¼ −
�
βΘν

λMPl

�
1=3

: ð13Þ

The free parameters of the model are the scalar field self-
coupling constant λ, a parameter β that characterizes the
scalar field coupling to neutrinos, and the initial conditions
for the field ϕi and ϕ̇i. In the following we will adopt three
degenerate neutrinos with

P
mν0 ¼ 0.3 eV which is below

the upper bound found in [32] with Planck data only.

III. A BACKGROUND ANALYSIS OF THE
NEUTRINO-ASSISTED EDE

As previously stated, the free parameters of the model are
λ, β, and ϕi (we will assume ϕ̇i ¼ 0, i.e. the field is frozen
initially). In order to gain some intuition on the parameter λ,
notice that in the axionlike EDE potential with
VðϕÞ ¼ μ4½1 − cosðϕ=fÞ�n, an expansion around the mini-
mum for n ¼ 1 gives the axion mass ma ¼ μ2=f and the
quartic coupling λ ¼ m2

a=f2. In scalar field models, it is well
known that the field becomes dynamical (i.e. it “thaws”)
when its mass is of the order of the Hubble parameter.
Therefore, if we want the EDE field to become dynamical
before recombination (H ≈ ð1 eVÞ2=MPl ≈Oð10−27Þ eV)
and assuming a typical symmetry breaking scale of
f ¼ 1015 GeV, one expects very small values of the self-
coupling of λ ¼ Oð10−100Þ. Even in anharmonic potentials
with n > 1, this behavior is present [5], and in our case the
value of λ controls the epochwhenEDEbecomes dynamical,
with a redshift usually denoted by zc. More generally, the
field becomes dynamical when [19]

2Notice that since we are working in the Einstein frame there is
an implicit dependence of Θν on the field and the coupling
constant β. This dependence can be neglected only if
jβϕ=MPlj ≪ 1. We take this dependence into account in our
numerical code.
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V 00
eff

H2
¼ Oð1Þ: ð14Þ

Another important quantity in EDE models is the
maximum contribution of the EDE component to the total
energy budget of the Universe at zc, denoted by fEDE:

fEDEðzcÞ ¼
ρEDEðzcÞ
ρtotðzcÞ

; ð15Þ

and it is determined by the model parameters. In fact, in an
EDE model there is a simple relation between λ, ϕi, and zc:

λ ≈
T4
0

9M2
Plϕ

2
i
ð1þ zcÞ4; ð16Þ

where T0 is the CMB temperature today.
The solution to the Hubble tension in EDE models

should fulfill the basic requirements [9,16],

fEDE ∼ 0.1 and log10 zc ∼ 3.5; ð17Þ

and that the EDE field is dynamical just prior to matter-
radiation equality. However, usual EDE models suffer from
a coincidence problem due to the arbitrary initial con-
ditions. Extensions of EDE models including interactions
with other components such as dark matter [15] or
neutrinos [17,18] may address the EDE coincidence prob-
lem via some triggering mechanism [16]. In order to
investigate the impact of the new coupling β to the fraction
of EDE produced in the extended model we introduce the
quantity

Δ≡ fEDE
fβ¼0
EDE

; ð18Þ

which is defined by the ratio between the fraction of EDE
for the coupled (β ≠ 0) and uncoupled (β ¼ 0) scenarios. In
the limit that Δ → 1 the fEDE is mainly sourced by the bare
potential [16].
In the top panel of Fig. 1, we show an example of the

background evolution for cold dark matter (CDM), photons
(γ), neutrinos ν and the EDE scalar field plus a cosmo-
logical constant (ϕþ Λ) where the conditions in Eq. (17)
are satisfied. In the bottom panel, one can see that in this
case the quantity Δ is close to 1 at the EDE peak
(z ∼ 2 × 103), indicating that the coupling to neutrinos is
not relevant to generating fEDE. We will show below cases
with the opposite situation.

IV. INITIAL VALUE OF THE EDE FIELD

Previously we assumed an arbitrary initial value for the
EDE field. We now want to address this issue in more
detail. We identify two situations: (a) the field is still frozen
initially and starts to follow the minimum of the effective
potential after its thawing and (b) the field is already
dynamical initially and therefore it follows the minimum of
the effective potential. This separation is somewhat arbi-
trary since at large enough redshifts the field is frozen.
However, in practical terms, we need to choose an initial
redshift from which we start evolving the field numerically.
The separation between these two regimes at a given
redshift zi can be estimated by the condition

V 00
effðϕminÞ
H2

¼ 3λ1=3β2=3
�

Θν

H3MPl

�
2=3

����
zi

¼ Oð1Þ: ð19Þ

In Fig. 2 we show the contours in the parameter space
ðλ; βÞ where the field is already dynamical at some given
redshifts. The figure provides estimates of the values of
these coupling separating the two cases.
The motivation for studying these two cases separately

below is that in the first case one could argue that the initial

FIG. 2. Values of λ and β for which jV 00
eff=H

2 − 1j ¼ 0.1 for
zi ¼ 103; 104 and 105. For regions above the curves the field is
dynamical at the corresponding redshift.

FIG. 1. The background evolution for cold dark matter (CDM),
photons (γ), neutrinos ν and the scalar field plus a cosmological
constant (ϕþ Λ). The parameters used are β ¼ 10,ϕi ¼ −0.6MPl,
and log10 λ ¼ −109. The surge of EDE is around z ∼ 2 × 103. The
bottom panel shows the quantity defined in Eq. (18) which is the
ratio between the coupled and uncoupled cases.
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value of the frozen field does not have a natural value
whereas in the second case the value of the field is naturally
close to the minimum of the effective potential. Indeed we
find different dynamical behaviors in these two cases.

A. Field initially frozen

In Fig. 3 we plot the effective potential given in Eq. (12)
as a function of the field for different values of the redshift
starting at zi ¼ 105 for β ¼ 10 and λ ¼ 10−109, where
ρνðϕ; zÞ is given by Eq. (2). At high redshifts, the neutrino
contribution dominates and it is a smooth function of ϕ. At
lower redshifts, the contribution from VðϕÞ to the effective
potential starts to become more relevant. For these param-
eters, we plot the evolution of the field for three different
values of ϕi: one starting at the minimum of the effective
potential and the other two are chosen arbitrarily for
comparison. We also show the minimum of the effective
potential given by Eq. (13) that, due to the coupling,
evolves with redshift.
In all the cases the field is frozen at zi, corresponding to

the first line in the plot. We find numerically that for the
initial values of the field that we chose it remains frozen
until approximately the redshift that satisfies Eq. (16) is
reached. Notice that as the neutrino contribution becomes
small at lower redshifts, the minimum of the effective
potential approaches the minimum of the bare potential
VðϕÞ at ϕ ¼ 0.
After thawing the field starts to roll in the effective

potential tracking and oscillating around its minimum. This

behavior of the field is shown both by the inset enlarged
view in Fig. 3 and at the top panel of Fig. 4, where one can
see the field relaxing to ϕ ¼ 0, dissipating the energy
density contained in it.
In the bottom panel of Fig. 4 we show the contribution to

fEDE in this example. One can see that there could be a
significant contribution depending on the initial value of the
field. However, the coupling to neutrinos does not seem to
play a large role in this case. We investigate this issue by
computing the evolution of the field with the same initial
conditions but without a coupling to neutrinos (β ¼ 0). This
is shown as the dashed lines in the bottom panel of Fig. 4,
where one can see that although the coupling introduces
changes in the behavior of the field the modification
to the maximum of fEDE is negligible. In the case of the
largest contribution, we find jfEDE=fβ¼0

EDE − 1j ¼ 5 × 10−4.
Therefore, in this case one needs the usual fine-tuning of
initial conditions found in regular EDE models in order to
have a significant contribution to fEDE.

B. Field initially dynamical

In this subsection we are interested in studying the case
where the field is already dynamical at the initial redshift
considered. The motivation is that in this case the field is
already tracking the minimum of the effective potential and
hence its value is not arbitrary. We will show below that in
order for the field to become dynamical at an early redshift,
a larger value of the self-coupling constant is necessary but
this leads to a small fraction of EDE.

FIG. 3. The orange lines are snapshots for the effective
potential for decreasing values of redshift [the first line from
top to bottom starts at zi ¼ 105 and the redshift interval between
two subsequent lines is log10ðzn=znþ1Þ ≈ 0.41]. The black stars
indicate the minimum of the effective potential and the blue,
purple and red dots are the scalar field evolution starting at
different initial conditions as indicated in the label. Notice that in
the case represented by the purple dots the field starts at the
minimum of the effective potential but does not follow it until
thawing. Also is shown an enlarged view of the region where the
field is dynamical and oscillates around the minimum of the
effective potential. In this figure we used β ¼ 10 and λ ¼ 10−109.

FIG. 4. The scalar field evolution and the fraction of energy
density for the same three initial conditions as in Fig. 3:
ϕi=MPl ¼ −0.6;−0.24, 0 for the blue, purple, and red lines,
respectively. The dashed lines in the bottom panel show the
uncoupled case with all other parameters kept fixed at the same
values.
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We begin by showing some examples of this behavior in
Fig. 5. We choose parameters in such a way that the field
becomes dynamical and starts to oscillate around the
minimum of the effective potential at some z ¼ Oð105Þ.
More specifically, we start the field evolution at a high
redshift z ¼ 107 at ϕi=MPl ¼ −10−4, where it is still frozen
and show how it approaches the minimum of the effective
potential at z ¼ Oð105Þ for different values of β and λ. We
also show that the difference is minimal when compared
to the evolution starting at z ¼ 105 with the field at the
minimum of the effective potential.
We now turn to the contribution of the EDE field ϕ to the

energy density of the Universe, showing in Fig. 6 the
behavior of fEDE for the cases described above.We compare
the numerical computation with the analytical estimate
obtained by assuming that the EDE field is at the minimum
of the effective potential [Eq. (13)] and that the dominant
contribution comes from the bare potential VðϕÞ [18]:

fEDE ¼ 1

12

β4=3

λ1=3

�
ΘνðϕÞ

H3=2M5=2
Pl

�
4=3

; ð20Þ

computed assuming that βϕ=MPl < 1 in order to use the
approximate expression Eq. (13). However, in the equation
abovewe use the value of ϕ from CAMB. One can see that the
analytical estimate is a reasonable approximation of the
average of the oscillations in fEDE. We also notice that even
for large values of the coupling (β ¼ 1000) a cosmologically
significant level of fEDE is not obtained.

3 The same behavior

is also seen if one decreases the field self-coupling λ, as
expected from Eq. (20) shown in the bottom panel of Fig. 6:
an increase in fEDE is obtained for smaller values of λ at the
cost of a decrease in the relevant redshift zc. Amore thorough
investigation including a comparison with data using a
Bayesian analysis is necessary to reach a more definitive
conclusion of whether this case can help to ease the H0

tension.
A prominent feature of νEDE models is the kick in the

EDE field provided by the coupling with neutrinos that
occurs when neutrinos transition from the relativistic to the
nonrelativistic regimes. An intriguing possibility is that this
mechanism could explain the EDE coincidence problem
since the neutrino mass energy scale roughly coincides
with the matter-radiation equality epoch. We now want to
assess the impact of the neutrino coupling in the contri-
bution of the EDE field to the total energy density.
In order to evaluate the impact of the coupling to

neutrinos we will use the criteria in Eq. (18) and compare
the two cases, with and without coupling. In both cases we
start the field evolution at the minimum of the effective
potential at z ¼ 105 in the situation where the field is
already dynamical but in the first case we study the full
model whereas in the second case we set the neutrino
coupling β to zero, keeping all other parameters equal. In
Fig. 7 we show a comparison in fEDE for both cases, and
one can see that the effect of the neutrino-EDE coupling is
prominent. Although the contribution is the same initially,
in the uncoupled case the field tends to zero (the minimum
of the bare potential) while the coupled case follows

FIG. 5. The full colored lines are the field evolution for ϕi ¼
−10−4MPl at zi ¼ 107 and considering different values of the
parameters β and λ as indicated in the label. Each field tracks its
minimum as described by Eq. (13) and it is indicated by the
different stylized black lines. The dotted colored lines are the field
evolution starting at zi ¼ 105 in their respective minimum for the
same set of parameters β and λ.

FIG. 6. Fraction of EDE for the same set of parameters as in
Fig. 5. The different stylized black lines are the analytic
prediction for the fEDE according to Eq. (20).

3In principle it is possible to obtain a significant amount of
EDE for still larger values of β. Indeed, we find that β ≥ Oð106Þ
could in principle lead to fEDE ¼ Oð10%Þ but these large values
of β cannot be considered natural.
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Eq. (13) which for larger β can significantly differ from
zero. This results in a large difference between the two
cases, which impacts fEDE by several orders of magnitude.

V. CONCLUSION

Neutrino-assisted early dark energy models were intro-
duced with the aim of reducing some of the fine-tuning
required in usual EDE models with respect to the param-
eters characterizing the scalar field self-coupling and its
initial displacement. The idea that a “neutrino kick”
occurring around the matter-radiation equality epoch could
trigger the EDE field is interesting for addressing the EDE
coincidence problem.
In this work we developed an implementation of the

νEDEmodel in CAMB at the background level to study fEDE
and Δ, quantifying the EDE scalar field contribution to the
total energy density and the impact of the neutrino-EDE
coupling, respectively. We have performed this analysis
considering two cases depending on whether or not the
EDE field is frozen at the initial redshift of its evolution. We
find that if the field is initially frozen, its value can be
arbitrary and the model can help in ameliorating the Hubble
tension. However, since Δ ∼ 1 the neutrino-EDE coupling
is not relevant in this case and the EDE coincidence
problem is not addressed.
In contrast, as pointed out in [18,20], the opposite

scenario is attractive since there is a natural initial value
for the field: the minimum of the effective potential, ϕmin,
which is time dependent. We show that the field follows
ϕmin without experiencing a significant dynamical kick
from its evolution equation, i.e. without a displacement
from the minimum. However, ϕmin is affected by the
change in the trace of the neutrino energy-momentum
tensor, which generates a bump in fEDE since the field
follows the minimum.

We find that on average fEDE is well reproduced by the
analytical prediction in Eq. (20). Furthermore, from Fig. 7
one can see that in this regime the neutrino-EDE coupling
plays a non-negligible role, leading to large modifications
in fEDE. However, the attained value of fEDE does not
satisfy the criteria in Eq. (17) for easing the Hubble tension.
One might think that decreasing the value of the self-
coupling λ would increase the value of fEDE, as follows
from Eq. (20). This is correct but one should notice that this
would also imply in a field that is frozen until later times
[since it results in a smaller V 00ðϕÞ], which changes this
model to the first case discussed above. In addition, we
verified that couplings as large as β ¼ 1000 do not produce
a significant amount of EDE.
We conclude that νEDE models, with a self-interaction

potential and a coupling of the type VðϕÞ ∝ ϕ4 and
AðϕÞ ¼ expðβϕ=MPlÞ, respectively, do not seem to natu-
rally provide a significant amount of early dark energy
which is one of the criteria usually required for the model
to ease the Hubble tension. However, a more thorough
investigation is certainly needed. Different potentials and
couplings should be analyzed, such as the ones proposed in
Ref. [16] where a model with EDE interacting with dark
matter is studied using a monodromy-type potential and a
ϕ2 coupling. Additionally, a successful model must not
only be able to alleviate the Hubble tension at the back-
ground level but also produce perturbations that agree with
the current CMB and LSS data. Hence, a comparison with
data using Bayesian statistics at the perturbative level (as
implemented in [26–28] for neutrinos coupled to a quintes-
sence field) is necessary in order to reach a more definitive
conclusion of whether this class of models is capable of
alleviating the H0 tension and possibly the S8 tension as
well. In particular, the integrated contribution of νEDE in
addition to its peak value contribution should be carefully
analyzed.4 It could be interesting to further study νEDE
models using data from large galaxy surveys, such as the
Dark Energy Survey and the imminent Rubin Telescope’s
Legacy Survey of Space and Time.
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FIG. 7. A comparison of fEDE between the coupled and
uncoupled (β ¼ 0) scenarios with the field starting at the
minimum of the effective potential at z ¼ 105 while keeping
fixed all the other cosmological and model parameters. The
purple line is the case with largest fEDE shown in the bottom
of Fig. 6.

4We thank Mark Trodden for calling our attention to this point.
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