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Model-independent mass limits assess the robustness of current cosmological measurements of the
neutrino mass scale. Consistency between high-multipole and low-multiple cosmic microwave background
observations measuring such scale further valuates the constraining power of present data. We derive here
up-to-date limits on neutrino masses and abundances exploiting either the Data Release 4 of the Atacama
Cosmology Telescope (ACT) or the South Pole Telescope polarization measurements from SPT-3G,
envisaging different nonminimal background cosmologies and marginalizing over them. By combining
these high-l observations with supernova Ia, baryon acoustic oscillations (BAO), redshift space distortions
(RSD) and a prior on the reionization optical depth fromWMAP data, we find that the marginalized bounds
are competitive with those from Planck analyses. We obtain

P
mν < 0.139 eV andNeff ¼ 2.82� 0.25 in a

dark energy quintessence scenario, both at 95% CL. These limits translate into
P

mν < 0.20 eV and
Neff ¼ 2.79þ0.30

−0.28 after marginalizing over a plethora of well-motivated fiducial models. Our findings
reassess both the strength and the reliability of cosmological neutrino mass constraints.

DOI: 10.1103/PhysRevD.108.083509

I. INTRODUCTION

Cosmological bounds on neutrino masses are reaching
limits close to the lower bounds derived from neutrino
oscillation data [1–3]:

X
mν >

� ð0.0591� 0.00027Þ eV ðNOÞ
ð0.0997� 0.00051Þ eV ðIOÞ ; ð1Þ

obtained by assuming that the lightest neutrino mass is
zero, and

Δm2
21 ¼ ð7.50� 0.21Þ × 10−5 eV2;

jΔm2
31j ¼

� ð2.550� 0.025Þ × 10−3 eV2 ðNOÞ
ð2.450� 0.025Þ × 10−3 eV2 ðIOÞ ; ð2Þ

where Δm2
ij ≡m2

i −m2
j . The sign of Δm2

31 determines the
type of neutrino mass ordering, being positive for normal
ordering (NO) and negative for inverted ordering (IO).
Interestingly, the tightest bound on

P
mν < 0.09 eV at

95% CL [4–6] is comparable to the IO lower bound. In

addition, one expects near future observations from
ongoing galaxy surveys, such as DESI [7,8], to improve
current limits, eventually reaching the NO predictions (in
the absence of a signal). Even if data are not informative
enough to claim a tension between cosmological and
terrestrial, neutrino oscillation bounds [9], it is timely
to reassess the robustness of neutrino mass limits, as
such a tension could strongly depend on the underlying
fiducial cosmology. In this regard, Bayesian model com-
parison techniques offer the ideal tool for computing
model-marginalized cosmological parameter limits, avoid-
ing the biases due to the fiducial cosmology; see Ref. [10]
for a pioneer study applied to neutrino mass limits. The
former method was extended to scenarios including a freely
varying neutrino mass abundances (parametrized via Neff )
or a hot-dark matter axion component in Refs. [6,11].
However, in these previous studies the neutrino mass limits
were driven by the input from Planck CMB data.
In order to reinforce and, to some extent, to convey with

particle physics constraints on the neutrino properties
(mass, hierarchy and abundances), not only model-inde-
pendent mass limits are required: Consistency tests
between limits from high-multipole and low-multiple
CMB probes are also mandatory. In this spirit, we present
here model-marginalized limits on the neutrino mass

P
mν

and on the relativistic degrees of freedom Neff exploiting
data from the ACT and SPT damping tail CMB
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experiments, analyzed in combination with the previous
WMAP CMB probe. Other low redshift probes, such as
type Ia Supernovae and BAO will also be considered in the
numerical analyses. The structure of the paper is as follows.
We start from Sec. II, which contains a dedicated descrip-
tion of the statistical method exploited here to derive
model-marginalized bounds on the neutrino properties.
The following Sec. III and Sec. IV describe the cosmo-
logical observations and fiducial cosmologies considered
here, respectively, while Sec. V is devoted to our numerical
implementation. In Sec. VI, we illustrate and discuss the
main results of our analyses to conclude in Sec. VII.

II. BAYESIAN METHOD

In this study, we want to compare how different
cosmological models fit well different CMB data sets
and determine for each data combination a robust,
model-marginalized constraint on some neutrino proper-
ties. In order to do this, we follow the approach described
for example by [10] and summarized in the following. Let
us consider a set of models Mi, which in our case, are
extensions of some initial model. We will consider that all
the models have the same prior probability. Applying
Bayesian model comparison, the posterior probability for
each model within the considered set can be written as

pi ¼
ZiP
jZj

¼ Bi0P
jBj0

; ð3Þ

where Zi is the Bayesian evidence of the ith model, and
Bi0 ¼ Zi=Z0 is the Bayes factor of model i with respect to
the favored model M0 within the set. Notice that the sum
on j includes model i.
Let us now consider the posterior distribution function

for some parameter x, common to all models in the set.
Within the ith model, after applying the dataset d, the
parameter x has a posterior distribution pðxjd;MiÞ. Using
the posterior probability for each model, we can compute
the model-marginalized posterior distribution pðxjdÞ for
the parameter x over the entire set of models by using

pðxjdÞ≡X

i

pðxjd;MiÞpi ¼
P

ipðxjd;MiÞBi0P
jBj0

: ð4Þ

Since one of the goals of our analysis is to study neutrino
mass bounds, we have to face the fact that the likelihoods
under consideration (see next section) are open with respect
to logðΣmνÞ, in the sense that no lower limit on this
quantity emerges from current cosmological probes. In
order to avoid the prior dependence of the credible
intervals, see, e.g., [6,12–14], one can adopt a method
called relative belief updating ratioR; see e.g. [15]. Given
a parameter x for which the likelihood is open, it is
convenient to define

Rðx1; x2jd;MÞ ¼ pðx1jd;MÞ=πðx1jMÞ
pðx2jd;MÞ=πðx2jMÞ ; ð5Þ

where pðxijd;MÞ and πðxijMÞ are, respectively, the
values of the posterior and prior distributions1 at xi within
some modelM and when considering the dataset d. In case
of simple posteriors and priors, it is easy to show that R is
equivalent to a likelihood ratio test, but for more compli-
cated cases, the results can deviate from those one could
obtain with the frequentist method that only considers the
likelihood in two points, instead of the full parameter space
volume. At the computational level, however, R can be
obtained from a Markov Chain Monte Carlo (MCMC)
without the need of dedicated log-likelihood minimiza-
tions. Moreover, it is possible to show that R is equivalent
to a Bayes factor between two submodels of model M,
each of them obtained by fixing the value of x to x1 and x2,
respectively.
The above definition of Rðx1; x2jdÞ can be easily

extended to perform a model marginalization. Assuming
that the parameter x is shared among all the models of the
set and that its prior is the same in all models, one can write:

Rðx1; x2jdÞ ¼
pðx1jdÞ=πðx1Þ
pðx2jdÞ=πðx2Þ

; ð6Þ

where pðxjdÞ is the model-marginalized posterior in
Eq. (4). In our specific case, in order to study neutrino
mass bounds, we will consider x2 ¼ 0 and show the
dependency RðΣmν; 0jdÞ.

III. DATASETS

Our baseline datasets consist of:
(i) The Atacama Cosmology Telescope DR4 likelihood

[16,17], combined with WMAP nine-year observa-
tions data [18,19] and a Gaussian prior on
τ ¼ 0.065� 0.015, as done in Ref. [17]. This data-
set is always considered in combination with the
Pantheon catalog, which includes a collection of
1048 B-band observations of the relative magnitudes
of Type Ia supernovae [20], as well as together with
baryon acoustic oscillations (BAO) and redshift
space distortions (RSD) measurements obtained
from a combination of the spectroscopic galaxy
and quasar catalogs of the Sloan Digital Sky Survey
(SDSS) [21] and the more recent eBOSS DR16 data2

[22,23]. For simplicity, we refer to this combined
dataset as “ACT” in the following analysis.

1We assume that the prior of x is independent on the other
parameters in the model.

2It’s worth noting that when we combine the DR12 data with
the eBOSS DR16 data, we only use the first two redshift bins
from DR12 in the 0.2 < z < 0.6 range, which are further divided
into the 0.2 < z < 0.5 and 0.4 < z < 0.6 regions.
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(ii) The South Pole Telescope polarization measure-
ments SPT-3G [24] of the TE EE spectra are
combined with WMAP nine-year observations data
[18,19] and a Gaussian prior on τ ¼ 0.065� 0.015.
Similar to the ACT case, we also include the
Pantheon catalog of type Ia supernovae [20], along
with the BAO and RSDmeasurements obtained from
the same combination of SDSS and eBOSS DR16
measurements [21–23]. This combined dataset is
referred to as “SPT” in our analysis.

IV. MODELS

A key point in our analysis is to derive robust bounds on
the neutrino mass from high multipole CMB experiments
marginalizing over a plethora of possible background
cosmologies. Therefore, along with the six ΛCDM para-
meters (the amplitude As and the spectral index ns of scalar
perturbations, the baryon Ωbh2 and the cold dark matter
Ωch2 energy densities, the angular size of the sound
horizon at recombination θMC and the reionization optical
depth, τ), we include the sum of neutrino masses

P
mν and,

in a second step, we also add the number of relativistic
degrees of freedom, parametrized viaNeff . We model

P
mν

as three massive neutrinos with a normal hierarchy,3

but we assume an uninformative prior as in Table I.
When

P
mν < 0.06 eV, one massive and two massless

neutrinos are considered. Neff is parametrized as the active
neutrinos contribution to the energy density when they are
relativistic. The expected value is Neff ¼ 3.044 [26–28]
(see also [29]), and any additional contribution will be
given by extra dark radiation coming from additional
degrees of freedom at recombination, such as relativistic
dark matter particles or GWs. It is possible to have Neff <
3.044 for three active massless neutrinos in case of low-
temperature reheating [30], so we do not impose a lower
prior on this parameter. We then explore a number of
possible extensions of these close-to-minimal neutrino
cosmologies, enlarging the parameter space including
one or more parameters, such as a running of the scalar
index (αs), a curvature component (Ωk), a nonvanishing
tensor-to-scalar ratio (r), the dark energy equation of state
parameters (w0 and wa), the lensing amplitude (Alens), the
primordial helium fraction (YHe) and the effective sterile
neutrino mass (meff

ν;s) (see Table I for the priors adopted in
the cosmological parameters). A word of caution is man-
datory here. Notice that the models here considered assume
that neutrinos interact exclusively via weak interacting

processes, excluding, for simplicity, a vast number of
very appealing nonstandard neutrino cosmologies in which
neutrinos exhibit interactions beyond the Standard Model
(SM) of elementary particles. Should that be the case, the
cosmological neutrino mass bounds will be considerably
relaxed; see Ref. [31] for a a complete review of possible
scenarios. Examples of beyond the SM neutrino interacting
cosmologies include possible decays or annihilations of
neutrinos into lightest degrees of freedom [32,33] in which
a significant relaxation of the neutrino mass constraint is
found (

P
mν < 0.42 eV at 95% CL) [34], late-time neu-

trino mass generation models [35,36], where cosmological
constraints could be completely evaded [37], and long-
range neutrino interactions [38,39]. Keeping the former
restrictions in mind, in the following, we describe the
possible extensions considered here, all of them assuming
that neutrinos do not show interactions beyond the SM and
therefore restricting ourselves to the simplest subset of
possible fiducial cosmologies:

(i) Curvature density, Ωk. Recent data analyses of the
CMB temperature and polarization spectra from
Planck 2018 team exploiting the baseline Plik
likelihood suggest that our Universe could have a
closed geometry at more than three standard devia-
tions [40–43]. These hints mostly arise from TT
observations, which would otherwise show a lensing
excess [44–46]. In addition, analyses exploiting the
CamSpec TT likelihood [47,48] point to a closed
geometry of the Universe with a significance above
99% CL. Furthermore, an indication for a closed
universe is also present in the BAO data, using
effective field theories of large scale structure [49].
These recent findings strongly motivate one to leave
the curvature of the Universe as a free parameter [50]

TABLE I. List of uniform prior distributions for cosmological
parameters.

Parameter Prior

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
100θMC [0.5, 10]
τ 0.065� 0.015
logð1010ASÞ [1.6, 3.9]
ns [0.8, 1.2]
P

mν (eV) [0, 5]
Neff [0.05, 10]

r [0, 3]
Ωk ½−0.3; 0.3�
w0 ½−3; 1�
wa ½−3; 2�
αs ½−1; 1�
Alens [0, 10]
YHe [0.1, 0.5]
meff

ν;s [0, 3]

3Apart from the difference in the lower limit on the sum of
neutrino masses, the assumption on the mass ordering is not
expected to alter our results. The differences induced by con-
sidering degenerate mass eigenstates versus a more correct mass
ordering are exceedingly small to be detected even by future
experiments [25]; thus, they cannot alter our conclusions based
on current observations.
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and obtain limits on the neutrino mass and abun-
dances in this context.

(ii) The running of scalar spectral index, αs. In simple
inflationary models, the running of the spectral
index is a second order perturbation, and it is
typically very small. However, specific models
can produce a large running over a range of scales
accessible to CMB experiments. Indeed, a nonzero
value of αs alleviates the ∼2.7σ discrepancy in the
value of the scalar spectral index ns measured
by Planck (ns ¼ 0.9649� 0.0044) [40,51] and
by the Atacama Cosmology Telescope (ACT)
(ns ¼ 1.008� 0.015) [17]; see Refs. [52–54]. As
previously stated, the different fiducial cosmologies
considered here are the most economical and sim-
plest scenarios to be addressed, enough to illustrate
the main goal of the manuscript. We have therefore
not considered here models in which the primordial
power spectrum is further modified not only with a
running of the scalar spectral index but also either
via features in its shape or by a description via a
number of nodes in k [55,56], an addition that will
be performed elsewhere.

(iii) The tensor-to-scalar ratio r. Within this extended
model, we allow the tensor perturbations to vary as
well, along with scalar ones. Contributions to r arise
from the CMB B-mode polarization from either
primordial gravitational waves or gravitational weak
lensing. We therefore expect a larger effect for the
observational data set where the polarization input is
more relevant (as it is the case of SPT).

(iv) Dynamical dark energy equation of state. Cosmo-
logical neutrino mass bounds become weaker if the
dark energy equation of state is taken as a free
parameter. Even if current data fits well with the
assumption of a cosmological constant within the
minimal ΛCDM scenario, the question of having an
equation of state parameter different from −1 re-
mains certainly open. Along with constant dark
energy equation of state models, in this manuscript,
we shall also consider the possibility of having a
time-varying wðaÞ described by the Chevalier-
Polarski-Linder parametrization (CPL) [57,58]:

wðaÞ ¼ w0 þ ð1 − aÞwa; ð7Þ

where a is the scale factor, equal to a0 ¼ 1 at the
present time, and wða0Þ ¼ w0 is the value of the
equation of state parameter today. Dark energy
changes the distance to the CMB consequently
pushing it farther (closer) if w < −1 (w > −1) from
us. This effect can be balanced by having a larger
matter density or, equivalently, by having more
massive hot relics, leading to less stringent bounds

on the neutrino masses. Accordingly, the mass
bounds of cosmological neutrinos will become
weaker if the dark energy equation of state is taken
as a free parameter.

(v) The lensing amplitude Alens. CMB anisotropies get
blurred due to gravitational lensing by the large scale
structure of the Universe: Photons from different
directions are mixed, and the peaks at large multi-
poles are smoothed. The amount of lensing is a
precise prediction of the ΛCDM model: The con-
sistency of the model can be checked by artificially
increasing lensing by a factor Alens [45] (a priori an
unphysical parameter). Within the ΛCDM picture,
Alens ¼ 1. Planck CMB data shows a preference for
additional lensing. Indeed, the reference analysis of
temperature and polarization anisotropies suggest
Alens > 1 at 3σ. The lensing anomaly is robust against
changes in the foreground modeling in the baseline
likelihood andwas already discussed in previous data
releases, although it is currently more significant due
to the lower reionization optical depth preferred by
the Planck 2018 data release. A recent result from the
Atacama Cosmology Telescope is compatible with
Alens ¼ 1 [17], but the results are consistent with
Planck within uncertainties. Barring systematic er-
rors or a rare statistical fluctuation, the lensing
anomaly could have an explanation within new
physics scenarios. Closed cosmologies [42] have
been shown to solve the internal tensions in Planck
concerning the cosmological parameter values at
different angular scales, alleviating theAlens anomaly.
Neutrinos strongly affect CMB lensing, and there-
fore, their mass is degenerate with its amplitude,
showing

P
mν and Alens a positive correlation, since

increasing the neutrino mass reduces the smearing of
the acoustic peaks, as a larger value of

P
mν

increases the suppression to the small scale matter
power [46,59–62]. Also, nonstandard long-range
neutrino properties can lead to unexpected lensing
and dilute the preference for Alens ≠ 1 [39].

(vi) The helium fractionYHe. It is verywell-known that the
number of relativistic degrees of freedom is degenerate
with the primordial helium fraction, due to the effect of
these two parameters in the CMB damping tail. Silk
damping refers to the suppression in power of the
CMB temperature anisotropies on scales smaller than
the photon diffusion length. Varying bothNeff and the
fraction of baryonic mass in Helium (that is, YHe)
changes the ratio of Silk damping to sound horizon
scales, leading to a degeneracy between these two
parameters. Therefore, a much larger error on the
neutrino abundance (parametrized via Neff ) is ex-
pected when considering YHe a free parameter in
the extended cosmological model.
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(vii) The effective sterile neutrino mass meff
ν;s. Finally, we

should also consider the case in which the additional
degrees of freedom refer to massive sterile
neutrino states. If the extra massive sterile neutrino
state has a thermal spectrum, its physical mass is
ðΔNeffÞ−3=4meff

ν;s, while in case of a nonresonant
production [63] the physical mass is ðΔNeffÞ−1meff

ν;s.
The constraints on the neutrino parameters will
obviously depend on the amount of hot dark matter
in the form of additional (sterile) massive neutrino
states.

One may be worried that the considered selection of
models is somewhat incomplete. For example, one might
expect that we presented an analysis with more than one or
all the above-mentioned parameters varying at the same
time, in addition to the base model. In such high-
dimensional models, we observe a natural reduction in
the constraining power on the total neutrino mass (see,
e.g., [46]). As a result, incorporating extensions with many
parameters might, in principle, lead to a weakening of the
bound on the neutrino mass. However, it is essential to take
into account that high-dimensional models with numerous
varying parameters are typically disfavored based on the
Occam’s razor principle. To put it more quantitatively,
models with fewer parameters generally present stronger
Bayesian evidence compared to those with a higher number
of parameters. Consequently, in practice, when marginal-
izing over the model, scenarios with numerous parameters
carry significantly less weight in the average of the
posteriors, and we do not expect them to influence
significantly the results derived in this study.

V. NUMERICAL IMPLEMENTATION

To derive observational constraints within the different
extended cosmological models discussed in the previous
section, we perform Markov Chain Monte Carlo (MCMC)
analyses using the publicly available package CosmoMC

[64,65] and computing the theoretical model with the latest
version of the Boltzmann code CAMB [66,67].
The prior distributions for all the parameters involved in

our MCMC sampling are reported in Table I. We choose
uniform priors across the range of variation, except for the
optical depth where a Gaussian prior τ ¼ 0.065� 0.015 is
adopted, as indicated in Sec. III. In addition, we consider
two different cases for the DE equation of state w0: In one
case, we assume the flat prior reported in Table I while, in
the other case, we force w0 > −1.
For model comparison, we compute the Bayesian

Evidence of the different models and estimate the Bayes
factors using the publicly available package MCEvidence.4

In this regard, it is important to note that the estimation of
Bayes factors, based on the MCMC results, is weakly
dependent on the chosen priors for cosmological para-
meters. The impact of a uniform prior on

P
mν has been

extensively discussed in the literature, and we refer to
Refs. [12,14,15,70–74] for further details (see also
Ref. [75] for similar considerations on the tensor amplitude
r). On the other hand, in a recent study [11], we have
evaluated the difference in the Bayesian factors estimated
using MCEvidence and those obtained by means of proper
nested sampling algorithms such as PolyChord [76,77].

TABLE II. Constraints on Σmν and other parameters from the ΛCDMþP
mν model and its extension, and negative logarithms of the

Bayes factors with respect to the preferred model within each data combination. Upper limits are at 95% CL, while two-sided ones are at
68% CL.

Cosmological
model − ln BF

P
mν

(eV) Neff Ωk αs r w0 wa Alens

þP
mν ACT 5.10 < 0.176 � � � � � � � � � � � � � � � � � � � � �

SPT 5.96 < 0.197 � � � � � � � � � � � � � � � � � � � � �
þP

mν þ Neff ACT 2.59 < 0.155 2.78� 0.25 � � � � � � � � � � � � � � � � � �
SPT 2.96 < 0.238 3.20� 0.31 � � � � � � � � � � � � � � � � � �

þP
mν þ Ωk ACT 0.56 < 0.271 � � � 0.0027� 0.0032 � � � � � � � � � � � � � � �

SPT 1.08 < 0.264 � � � 0.0013þ0.0030
−0.0034 � � � � � � � � � � � � � � �

þP
mν þ αs ACT 1.16 < 0.196 � � � � � � 0.0117� 0.0076 � � � � � � � � � � � �

SPT 1.06 < 0.215 � � � � � � 0.0054� 0.0092 � � � � � � � � � � � �
þP

mν þ r ACT 1.60 < 0.189 � � � � � � � � � < 0.184 � � � � � � � � �
SPT 2.55 < 0.217 � � � � � � � � � < 0.207 � � � � � � � � �

þP
mν þ w0 ACT 1.49 < 0.244 � � � � � � � � � � � � −1.036� 0.037 � � � � � �

SPT 1.74 < 0.259 � � � � � � � � � � � � −1.024� 0.037 � � � � � �
þP

mνþðw0>−1Þ ACT 0.33 < 0.159 � � � � � � � � � � � � < −0.951 � � � � � �
SPT 1.31 < 0.180 � � � � � � � � � � � � < −0.946 � � � � � �

þP
mνþw0þwa ACT 0.0 < 0.361 � � � � � � � � � � � � −0.951þ0.082

−0.096 −0.46þ0.52
−0.35 � � �

SPT 0.0 < 0.353 � � � � � � � � � � � � −0.963þ0.080
−0.094 −0.34þ0.50

−0.33 � � �
þP

mν þ Alens ACT 1.04 < 0.184 � � � � � � � � � � � � � � � � � � 0.997þ0.077
−0.086

SPT 2.14 < 0.176 � � � � � � � � � � � � � � � � � � 0.916� 0.074
Marginalized ACT � � � < 0.24 � � � � � � � � � � � � � � � � � � � � �

SPT � � � < 0.30 � � � � � � � � � � � � � � � � � � � � �

4github.com/yabebalFantaye/MCEvidence [68,69].
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In particular, we employed a dedicated set of simulations
where a 3D multimodal Gaussian likelihood was used to
constrain a three-parameter model as the simplest case
and then compared it with two different models featuring
four parameters. The Bayesian evidences obtained with
MCEvidence were found to be consistently larger than those
obtained with PolyChord by a factor of approximately e.
When calculating the logarithm of the Bayes factors, the
discrepancy between MCEvidence and PolyChord ranged
between −0.5 and 0.2 for all the considered cases. We
consider this difference not significant enough to have a
substantial impact on the marginalized bounds derived in
this work.

VI. RESULTS

A. Total neutrino mass

Table II summarizes the 95% CL limits on the total
neutrino mass

P
mν obtained for the two datasets consid-

ered in this study, within the different cosmological models
discussed in Sec. IV. We also present the 68% CL con-
straints on the additional free parameters within each
fiducial cosmology.
Comparing the constraints obtained for different param-

eters, we observe that the constraining power of the two
datasets is quite similar, although ACT is more restrictive
than SPT when dealing with the total neutrino mass.
Indeed, within a minimal ΛCDMþP

mν extension, at
95% CL, we get

P
mν < 0.176 eV from ACTand

P
mν <

0.197 eV from SPT, respectively. Notice that these limits,
even if they are less competitive than those found with
Planck data, are still very constraining.
Regarding the results for the additional parameters, it is

worth noting that both ACT and SPT are in agreement,
within one standard deviation, with a flat spatial geometry
(Ωk ¼ 0), a lensing amplitude consistent with its ΛCDM
value (Alens ¼ 1), and a constant dark energy equation of
state (wa ¼ 0), matching also the expected value for a
cosmological constant (w0 ¼ −1). Nonetheless, ACT
shows a decrease at slightly more than 1σ in the value
of the effective number of relativistic degrees of freedom
(Neff ¼ 2.78� 0.25), while SPT is in good agreement with
the expected value for this parameter. Concerning the
inflationary sector of the theory, it is worth mentioning
that both datasets suggest a small and positive running of
the spectral index (αs). However, while SPT is consistent
with αs ¼ 0 within one standard deviation, ACT prefers a
nonvanishing running (αs ¼ 0.0117� 0.0076) at about
1.5σ. Finally, regarding the amplitude of tensor modes,
we obtain the 95% CL limits of r < 0.184 for ACT and
r < 0.207 for SPT. While ACT is more constraining than
SPT on primordial tensor modes, these bounds are not very
competitive when compared to the most recent updated
limits (r < 0.035 at 95% CL from the joint analysis of
BK18 [78,79] and Planck 2018 data), as expected, due to

the absence of B-mode polarization in the data combina-
tions considered here.
By following the methodology detailed in Sec. II, one

can marginalize over this range of models and obtain a
model-marginalized limit on the total neutrino mass for
both datasets. In the case of ACT, we find

P
mν < 0.24 eV

at a 95% CL, while for SPT, the limit is
P

mν < 0.30 eV at
a 95% CL, confirming that ACT provides stronger con-
straints. These results are depicted in Fig. 1, where we show
the marginalized posterior distribution function of the total
mass of neutrinos for both experiments, along with the
corresponding result obtained using Planck data. Notice
that one of the yellow lines is above R ¼ 1 at small Σmν,
because of an extremely mild preference for Σmν ≃
0.007 eV in the þΣmν þ Neff þ w scenario when using
ACT data. The figure demonstrates that all experiments
provide very competitive bounds, with ACT being more

FIG. 1. Upper panel: Posteriors of Σmν within each model for
the ACT (yellow) and SPT (light blue) data combinations, plus
model-marginalized posteriors for the ACT (red), SPT (blue) and
Planck data combination (magenta, from [6]). The vertical dotted
lines indicate the minimum values for Σmν obtained within
normal (0.06 eV) or inverted (0.1 eV) neutrino mass ordering.
Lower panel: Same color coding than in the upper panel, but in
this case, the quantity depicted isRðΣmν; 0Þ. The horizontal lines
show values at which R is either e−1 or e−3.
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constraining than SPT but less constraining than Planck.5

However, the most important feature to notice here is that
each of them is robust, as they provide model-independent
constraint, and they are consistent among themselves,
clearly stating the robustness of current cosmological
neutrino mass bounds.

B. Effective number of relativistic neutrinos

Table III presents the 68%CL constraints on the effective
number of relativistic degrees of freedom in the early
universe, Neff . These constraints are derived under different
background cosmologies, whose additional free parameters
are also provided in the same table for both datasets.
Firstly, it is worth noting that the results forNeff obtained

from the SPT data remain pretty consistent with the
expected value from the Standard Model, and the con-
straints in the minimal ΛCDMþ Neff extension reads
Neff ¼ 3.14� 0.29 at 68% CL. On the other hand, the
agreement between the value predicted by ACT forNeff and
the Standard Model reference value depends, to some
extent, on the background cosmology. Specifically, both
in the minimal extension (Neff ¼ 2.77� 0.24 at 68% CL)
and in more complicated cosmologies, we systematically
observe the same mild shift of Neff toward lower values
compared to the Standard Model expectations, with a
statistic significance ranging between one and two standard
deviations.6

AllowingNeff to vary has implications for the constraints
on the other parameters in the various cosmologies, some-
times changing the conclusions discussed in the previous
subsection. For instance, while both ACT and SPT remain
still consistent with a spatially flat Universe, when con-
sidering curvature, the preference of ACT for a smaller Neff
increases at the level of 1.5σ. In addition, the ACT
preference for a positive running is now significantly
diluted. Most notably, we observe a preference at slightly
more than one standard deviation for a phantom dark
energy equation of state, as well as a 1σ indication for a
dynamical behavior. Lastly, as previously stated, we have
also considered an extension involving the effective sterile
neutrino mass meff

ν;s. Since a sterile neutrino contributes to
increase the effective number of relativistic degrees of
freedom, in this case, we necessarily have Neff > 3.
Therefore, we can only obtain only an upper bound on
the additional contribution to the radiation energy-density
in the early Universe, which is found to be Neff < 3.37 and
Neff < 3.82 at 95% CL for ACT and SPT, respectively. The
ACT preference for a lower value of Neff is evident and
translates into an upper limit on the mass of the sterile
neutrino that is much less constraining for ACT
(meff

ν;s < 0.556 eV) than for SPT (meff
ν;s < 0.251 eV), due

to the strong degeneracy between these two parameters.
Similarly to what is done with the neutrino mass, also in

this case, we marginalize over the different models (exclud-
ing the extension involving the effective sterile neutrino,
which would artificially bias the results toward higher
values of Neff ) and obtain robust model-marginalized limits
on Neff for both datasets. The results are summarized in
Fig. 2, which shows the posterior distribution function of
Neff for ACT and SPT, as well as their comparison with the

TABLE III. Same as in Table II but for the ΛCDM þ Neff model and its extensions. Notice that the model including meff
ν;s as a free

parameter is not included in the marginalization.

Cosmological model − ln BF Neff
P

mν Ωk αs meff
ν;s w0 wa YHe

þNeff ACT 4.90 2.77� 0.24 � � � � � � � � � � � � � � � � � � � � �
SPT 6.44 3.14� 0.29 � � � � � � � � � � � � � � � � � � � � �

þNeff þ
P

mν ACT 1.18 2.78� 0.25 < 0.155 � � � � � � � � � � � � � � � � � �
SPT 2.66 3.20� 0.31 < 0.238 � � � � � � � � � � � � � � � � � �

þNeff þ Ωk ACT 0.61 2.68� 0.25 � � � 0.0034� 0.0029 � � � � � � � � � � � � � � �
SPT 1.52 3.13� 0.30 � � � 0.0002� 0.0029 � � � � � � � � � � � � � � �

þNeff þ αs ACT 0.80 2.97� 0.29 � � � � � � 0.0100� 0.0091 � � � � � � � � � � � �
SPT 1.98 3.24� 0.33 � � � � � � 0.0076� 0.0099 � � � � � � � � � � � �

þNeff þ w0 ACT 1.63 2.67� 0.25 � � � � � � � � � � � � −1.047� 0.037 � � � � � �
SPT 2.22 3.12� 0.32 � � � � � � � � � � � � −1.012� 0.036 � � � � � �

þNeff þ ðw0 > −1Þ ACT 0.0 2.82� 0.23 � � � � � � � � � � � � < −0.955 � � � � � �
SPT 2.04 3.22� 0.30 � � � � � � � � � � � � < −0.937 � � � � � �

þNeff þ w0 þ wa ACT 0.38 2.57� 0.26 � � � � � � � � � � � � −0.953� 0.088 −0.48þ0.44
−0.35 � � �

SPT 0.0 3.06þ0.31
−0.35 � � � � � � � � � � � � −0.987þ0.076

−0.086 −0.14þ0.40
−0.29 � � �

þNeff þ YHe ACT 3.05 2.94þ0.38
−0.45 � � � � � � � � � � � � � � � � � � 0.231þ0.027

−0.024

SPT 6.24 3.83þ0.46
−0.56 � � � � � � � � � � � � � � � � � � 0.187� 0.032

þNeff þmeff
ν;s ACT Ignored < 3.37 � � � � � � � � � < 0.556 � � � � � � � � �

SPT Ignored < 3.82 � � � � � � � � � < 0.251 � � � � � � � � �
Marginalized ACT � � � 2.79þ0.30

−0.28 � � � � � � � � � � � � � � � � � � � � �
SPT � � � 3.21þ0.34

−0.33 � � � � � � � � � � � � � � � � � � � � �

5The purple line that reports the model-marginalized Planck
results is taken from [6].

6It is possible to have values of Neff < 3.044 for three active
massless neutrinos in case of low-temperature reheating (see
Ref. [30]).
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result obtained by using the Planck data. From the figure,
we can observe that ACT and SPT exhibit a similar
precision, although ACT mildly favors Neff < 3, resulting
in a 68% CL marginalized limit of Neff ¼ 2.79þ0.30

−0.28 . On the
other hand, SPT suggests Neff > 3, yielding a marginalized
bound of Neff ¼ 3.21þ0.34

−0.33 at 68% CL. We would like to
emphasize that for both datasets, the marginalized limits
show an excellent agreement consistent with the Standard
Model predictions.

C. Joint analysis of
P

mν and Neff

Table IV shows the results obtained after freely varying
simultaneously both the total neutrino mass sum and the
effective number of relativistic degrees of freedom in
several possible fiducial cosmologies. Within the minimal
ΛCDMþP

mν þ Neff , ACT data provies a 95% CL
upper limit on

P
mν < 0.155 eV and a 68% CL

constraint on Neff ¼ 2.78� 0.25. Instead, for SPT obser-
vations, the bounds above are

P
mν < 0.238 eV and

Neff ¼ 3.20� 0.31. These results confirm that ACT pro-
vides slightly stronger constraints compared to SPT and
show the very same mild ACT’s preference for Neff < 3
than that found in the previous section.
As concerns the constraints on the additional parameters,

simultaneously varying Neff and
P

mν does not change
significantly the conclusions drawn in the previous sec-
tions: We find the same mild preference for positive values
of the running of the spectral index and an indication at a
slightly more than one standard deviation in favor of a
phantom equation of state for dark energy.
As in the previous sections, we marginalize here over the

different fiducial cosmologies, finding joint model-mar-
ginalized limits for the two parameters. For ACT, the limits
are

P
mν < 0.2 eV and Neff ¼ 2.79þ0.30

−0.28 , while for SPT,
they read

P
mν < 0.3 eV and Neff ¼ 3.21þ0.35

−0.32 . These
results are basically identical to those derived separately
for the total neutrino mass and the effective number of
relativistic degrees of freedom discussed in the previous
subsections, clearly stating the important conclusion that
current cosmological measurements are powerful enough
to disentangle between the physical effects induced by the
neutrino mass and those induced by the effective number of
degrees of freedom; i.e., even if they are degenerate in
terms of the total dark mass-energy density, the observ-
ables are sensitive to their (independent) footprints.

VII. CONCLUSIONS

As cosmological constraints on neutrino masses
approach the lower bounds derived from neutrino oscil-
lation data, the need for model-independent mass limits
becomes increasingly important to evaluate the reliability

FIG. 2. The same as in the upper panel of Fig. 1, but for Neff.
The vertical line indicates Neff ¼ 3.044 [26–28].

TABLE IV. Same as in Table II but for the ΛCDM þ Σmν þ Neff and its extensions. Notice that the model including meff
ν;s as a free

parameter is not included in the marginalization.

Cosmological model − ln BF

P
mν

(eV) Neff Ωk αs meff
ν;s w0 YHe

þP
mν þ Neff ACT 4.71 < 0.155 2.78� 0.25 � � � � � � � � � � � � � � � � � �

SPT 4.74 < 0.238 3.20� 0.31 � � � � � � � � � � � � � � � � � �
þP

mν þ Neff þΩk ACT 0.50 < 0.230 2.69� 0.25 0.0038þ0.0029
−0.0033 � � � � � � � � � � � �

SPT 0.0 < 0.309 3.19� 0.32 0.0012� 0.0034 � � � � � � � � � � � �
þP

mν þ Neff þ αs ACT 0.67 < 0.224 3.00� 0.32 � � � 0.0107� 0.0096 � � � � � � � � �
SPT 0.41 < 0.325 3.40þ0.35

−0.42 � � � 0.010� 0.011 � � � � � � � � �
þP

mν þ Neff þ w0 ACT 1.61 < 0.203 2.68� 0.25 � � � � � � � � � −1.050� 0.039 � � �
SPT 0.79 < 0.279 3.16� 0.32 � � � � � � � � � −1.021� 0.039 � � �

þP
mν þ Neff þ ðw0 > −1Þ ACT 0.0 < 0.139 2.82� 0.25 � � � � � � � � � < −0.953 � � �

SPT 0.17 < 0.217 3.27� 0.32 � � � � � � � � � < −0.937 � � �
þP

mν þ Neff þ YHe ACT 2.74 < 0.188 2.97þ0.42
−0.52 � � � � � � � � � � � � 0.230þ0.029

−0.024
SPT 4.8 < 0.365 4.15þ0.55

−0.69 � � � � � � � � � � � � 0.179� 0.033
þP

mν þ Neff þmeff
ν;s ACT Ignored < 0.162 < 3.38 � � � � � � < 0.561 � � � � � �

SPT Ignored < 0.224 < 3.86 � � � � � � < 0.232 � � � � � �
Marginalized ACT � � � < 0.20 2.79þ0.30

−0.28 � � � � � � � � � � � � � � � � � �
SPT � � � < 0.30 3.21þ0.35

−0.32 � � � � � � � � � � � � � � � � � �
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of current cosmological measurements of the neutrino mass
scale. In addition, it is crucial to assess the consistency
between high-multipole and low-multipole cosmic micro-
wave background observations in measuring this scale to
further evaluate their agreement and the global constraining
power of the available data.
In this work, we consider a plethora of possible back-

ground cosmologies resulting from the inclusion of one or
more parameters, such as a running of the scalar index (αs),
a curvature component (Ωk), a nonvanishing tensor-to-
scalar ratio (r), the dark energy equation of state parameters
(w0 and wa), the lensing amplitude (Alens), the primordial
helium fraction (YHe) and the effective sterile neutrino mass
(meff

ν;s). For each background cosmology, we derive up-to-
date limits on neutrino masses and abundances by exploit-
ing either the Data Release 4 of the Atacama Cosmology
Telescope (ACT) or the South Pole Telescope polarization
data from SPT-3G, always used in combination with
WMAP nine-year observation data, the Pantheon catalog
of Type Ia Supernovae and the BAO and RSD measure-
ments obtained from the same combination of SDSS and
eBOSS DR16 observations. Our methodology therefore
provides Planck-free constraints on neutrino masses
and abundances and serve as a calibration of Planck-
independent data sets, addressing both the consistency
and the robustness of current cosmological bounds on
neutrino properties.
Following the Bayesian method outlined in Sec. II, we

first marginalize over the different fiducial models to
determine a robust, model-marginalized constraint on the
neutrino mass from both ACTand SPT datasets. Our results
are reported in Table II. For the dataset involving the ACT
measurements of the damping tail, we find

P
mν <

0.24 eV at 95% CL, while when ACT is replaced with
SPT, the limit changes to

P
mν < 0.30 eV. In Fig. 1, we

compare these results with those obtained by exploiting the
Planck data in Ref. [6]. We notice that, while all experi-
ments provide very competitive bounds, ACT is more
constraining than SPT (but still less constraining than
Planck).
We repeat the same procedure for the effective number of

relativistic degrees of freedom Neff , obtaining the model-
marginalized limits reported in Table III. In this case, we
notice that ACT slightly favors Neff < 3, resulting in a
68% CL marginalized limit of Neff ¼ 2.79þ0.30

−0.28 . On the

other hand, SPT suggests Neff > 3, yielding a marginalized
bound of Neff ¼ 3.21þ0.34

−0.33 at 68% CL. In both cases,
however, the marginalized constraints are consistent within
one standard deviation with the Standard Model predic-
tions, as well as with the results obtained by using Planck
(see also Fig. 2 where the marginalized 1D posteriors are
shown for all cases).
Finally, we perform a joint analysis of both the total

neutrino mass and the effective number of relativistic
degrees of freedom, deriving model-marginalized limits
when both parameters are allowed to vary in nonstandard
background cosmologies. In this case, our results are
summarized in Table IV and read

P
mν < 0.2 eV, Neff ¼

2.79þ0.30
−0.28 for ACT and

P
mν < 0.3 eV, Neff ¼ 3.21þ0.35

−0.32
for SPT.
Our results reassess the robustness and reliability of

current cosmological bounds on neutrino properties, at
least in the simplest extensions of the ΛCDM model. If
neutrinos exhibit nonstandard interactions beyond the
canonical weak processes dictated by the SM of elementary
particles, the limits could be significantly relaxed.
Restricting ourselves to a plethora of the most economical
scenarios, we find the neutrino mass and abundances
bounds to be very stable, also when model–marginalizing
over them. On the other hand, measurements of the CMB at
different multipoles offer very similar and consistent
results.
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