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We calculate deviations in cosmological observables as a function of parameters in a class of connection-
based models of quantum gravity. In this theory nontrivial modifications to the background cosmology can
occur due to a distortion of the wave function of the Universe at the transition from matter to dark energy
domination (which acts as a “reflection” in connection space). We are able to exclude some regions of
parameter space and show with projected constraints that future experiments like DESI will be able to
further constrain these models. An interesting feature of this theory is that there exists a region of parameter
space that could naturally alleviate the S8 tension.
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I. INTRODUCTION

One of the most striking features ofΛCDM cosmology is
the recent transition from decelerated to accelerated expan-
sion. While the dynamics of this transition through the lens
of the concordance model is well understood and has been
studied ad nauseam, it was recently pointed out [1] that
from the perspective of some theories of quantum gravity,
such a transition can result in a novel evolution of the
background cosmology. The reason is that the expansion
rate ȧ directly maps to the (connection or gauge field)
degree of freedom of the gravitational theory and the
semiclassical limit at the transition breaks down. This
manifests as a brief enhancement in the Hubble parameter
around dark energy—matter equality.
This feature is restricted to the quantization of first order

gravity, a connection based formulation of general relativity
that is quantized in the connection representation. In the
standard (second order) formulation of general relativity
the connection is not a tensor but a mere expression of the
coordinate choice (to the point where it can be made to
vanish locally). But this is not the only formulation: for
example in the Einstein-Cartan formulation and its suc-
cessors (e.g. the Ashtekar formalism), the connection is a
tensor (a 1-form) and it plays the role of the gauge field
for an internal symmetry group [Lorentz SOð3; 1Þ or its
complexification SUð2Þ] so that the theory looks like a
Yang-Mills gauge theory. The gravitational connection
(sometimes called spin connection) is then similar to the
electromagnetic gauge field Aμ. For example, in the
Ashtekar formulation even classically one ends up with
Poisson brackets between the electric field (the densitized

inverse triads, related to the metric) and the connection
(from which a magnetic field is derived).
Classically, this “connection-based” representation of

general relativity is mostly equivalent to the metric for-
mulation, but can have several advantages, e.g., coupling
gravity to fermions, a feature that played a pivotal role in
the development of loop quantum gravity [2]. But indeed,
the matter is partly mathematical cosmetics until quantiza-
tion comes into play. Then, the two approaches are similar
to quantizing starting from the position or the momentum
representation: even though the two descriptions are
formally dual, in nonstandard situations (such as in
quantum gravity) they may imply radically different views
on boundary conditions, integration contours, and inner
product measures. Indeed this is what makes the differ-
ence here.
Here, we are interested in the effects of the recent dark

energy–matter transition in the context of the connection
representation because of the predictive effects on the
dynamical evolution of the connection variable b ¼ ȧ.
Classically, b decreases before the transition (decelerated
expansion ḃ ¼ ä < 0) reaches a minimum, and then
increases (accelerated expansion ḃ ¼ ä > 0). During the
dark energy–matter transition, interference of incident
and reflected waves manifests a brief enhancement in the
Hubble parameter, but more importantly, still, the wave
function is squashed against the minimum bwall, creating a
skewed wave function, and so a bias towards larger Hubble
parameters [1].
While it is possible to directly constrain deviations to the

background cosmology, if modifications of this nature are
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large enough they can also appreciably alter the growth of
large-scale structure (LSS) and low-l features in the cosmic
microwave background (CMB) via the integrated Sachs-
Wolfe (ISW) effect. In this work, we explicitly calculate the
novel signatures present in this class of quantum gravity
models.
In Sec. II we review the model of quantum cosmology

considered in this work, in Sec. III the relevant cosmo-
logical signatures are reviewed, and in Sec. IV we discuss
the implication of our results.

II. THEORY OF QUANTUM COSMOLOGY

The model studied here is a generalization of unimodular
gravity [3–8] based on [9]. In this formulation the cosmo-
logical constant is no longer a coupling constant, but rather
an integration constant, or a constant as a result of the
equations of motion: a constant on-shell only. Since Λ
appears in the phase space (rather than being a parameter)
it has a dual variable, which acts as a physical time
variable (this turns out to be unimodular or 4-volume time
on-shell [10,11]) As a result, the wave function of the
Universe in these theories does not obey the standard
Wheeler-DeWitt equation but rather a Schrödinger-like
equation. One benefit of this approach is that one is not
faced with the same normalization issues that typically
plague solutions to the Wheeler-DeWitt equation [12]1

since we can now superpose waves with different Λ to
form wave packets.
Critically, this approach also avoids the issue of time in

quantum gravity [14,15], because as already mentioned,
the canonical conjugates to the integration constants in
these theories are great candidates for a cosmic time. For
example, the cosmological constant is conjugate to the
4D volume of past observers. This approach can also be
extended more generally to constants derived from a perfect
fluid which will also have a conjugate corresponding to a
cosmic time. When one fluid dominates over the other, we
can think of that fluid’s conjugate serving the role of a clock
for the Universe. We will now outline some of the details of
the model considered in this work. For more details see [1].

A. Classical theory

The Einstein-Cartan action in the connection based
formulation and a homogeneous and isotropic mini-
superspace model is given by2

SGR ¼ 3Vc

8πG

Z
dt

�
ḃa2 þ Naðb2 þ kÞ

�
; ð1Þ

where the connection variable is b ¼ ȧ=N, N is the lapse
function, Vc ¼

R
d3x is the coordinate 3-volume from the

slicing, and k ¼ 0;�1 is the standard curvature term. In this
paper we are interested in the effects at the transition from
matter to dark energy domination. Thus, we consider a
cosmological model for two perfect fluids with equations
of state w ¼ 0 and w ¼ −1. A perfect fluid in the mini-
superspace representation is defined at the level of the
action as [17,18]

Sfl ¼
Z

dt ðUτ̇ − Na3VcρnÞ ð2Þ

with U the total (conserved) particle number, n ¼ U=a3Vc
is the number density, and τ a Lagrange multiplier.
Assuming the standard evolution of a fluid with equation
of state w one can define a new conserved variable

m ¼ 8πGρ0
3Vc

�
U
Vc

�
1þw

ð3Þ

from which we can write down an alternative form of
Eq. (2) (see also [19–21])

SðwÞfl ¼ 3Vc

8πG

Z
dt

�
ṁχ − N

m
a3w

�
: ð4Þ

With this in hand we can now write down our full action for
gravity with dark matter and dark energy,

SGR ¼ 3Vc

8πG

Z
dt

�
ḃa2 þ ṁχ1 þ Λ̇χ2

− Na

�
−ðb2 þ kÞ þm

a
þ Λ

3
a2
��

: ð5Þ

This action implies the corresponding set of nonvanishing
Poisson brackets,

fb; a2g ¼ fm; χ1g ¼ fΛ; χ2g ¼ 8πG
3Vc

; ð6Þ

where we can view b as a coordinate and a2 as it conjugate
momentum. Additionally, we have our “constants”m andΛ
along with their conjugate time variable. Now we can write
down the Hamiltonian density for the theory,

H ¼ 3Vc

8πG
Na

�
−ðb2 þ kÞ þm

a
þ Λ

3
a2
�
: ð7Þ

Hamilton’s equations for N give the Hamiltonian con-
straint,

−
�
b2 þ k

	þm
a
þ Λ

3
a2 ¼ 0; ð8Þ

1Recent progress suggests this problem may actually be
surmountable [13].

2We should note that in this case it is trivial to check that
reducing the action and deriving the equations of motion and
reducing the equations of motion is equivalent, but for more
general symmetries this could be a complex issue [16].
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which is just the Friedmann equation. Going forward we
will now make two simplifications. First we will abandon
the variables for dark energy in favor of a canonically
transformed pair, ϕ ¼ 3=Λ and Tϕ ¼ −3χ2=ϕ2, and second
we will define a potential VðbÞ ¼ ðb2 þ kÞ. As demon-
strated in [1,22–24] the Hamiltonian constraint can then be
recast in the form of two constraints,

h�ðbÞa2 −m2 ¼ 0; ð9Þ

where one will hold before the bounce and the other
afterwards.

B. Quantum theory

We can now quantize the theory by promoting the
classical Poisson bracket [Eq. (6)] to a commutation
relation,

h
b̂; â2

i
¼ i

l2P
3Vc

ð10Þ

with the reduced Planck length lp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGNℏ

p
. Making the

choice of representation that diagonalizes b̂we can write its
conjugate operator as

â2 ¼ −ih
∂

∂b
ð11Þ

with h ¼ l2P=3Vc the “effective Planck parameter” [25]. We
now have ingredients to define a two-branch first order
formulation of a quantum theory of gravity after combining
Eqs. (9) and (11),

�
−ihh�ðbÞ

∂

∂b
−m2

�
ψ ¼ 0; ð12Þ

which is a Wheeler-DeWitt equation for the connection
representation. To generalize the Chern-Simons functional
the following linearizing variable is defined:

X�ðbÞ ¼
Z

db
h�ðbÞ

: ð13Þ

The general solution is a superposition of different valued
constants α ¼ ðm2;ϕÞ for spatial monochromatic functions
ψ sðb;αÞ which are normalized such that jψ sj2 ¼ 1=ð2πhÞD
and the total solution is of the form

ψðb;TÞ ¼
Z

dαAðαÞ exp
�
−
i
h
α · T

�
ψ sðb;αÞ; ð14Þ

where T is the conjugate time to α and D is the number of
conserved parameters α. Here ψ s is made up of an incident
and a reflected wave, associated with X�.

Since we would want to reproduce a semiclassical limit

at late times, the choice forA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ðαi0; σαiÞ

q
correspond-

ing to wave packets with Gaussian amplitudes

AðαiÞ ¼
1

ð2πσ2i Þ1=4
exp

�
−
ðαi − αi0Þ2

4σ2i

�
ð15Þ

leads to wave packets of the form

ψ�iðb; TiÞ ¼
1

ð2πσ2Ti
Þ1=4 exp

�
−
�
Xeff
�iðbÞ − Ti

	
2

4σ2Ti

�
ð16Þ

where σTi
¼ h=2σi and Xeff

�iðbÞ is an effective functional
adapted to wave packets in the saddle point approximation
(see [1,23,24] for details). The probability for a given b at
Ti in the semiclassical limit can be found to be

Pðb; TiÞ ¼
���� dX

eff
þi

db

����jψþj2þ
���� dX

eff
−i

db

����jψ−j2 ð17Þ

(see [1,24] for more details; no interference terms appear
in the semiclassical approximation). From this, one can
then calculate modifications induced in the Hubble para-
meter as

b̄ðTϕÞ ¼
Z

∞

bΛ

dbPðb;TϕÞb; ð18Þ

where bΛ is the value at dark energy–matter equality and
the contribution to the Hubble parameter originating from
quantum effects is explicitly given as

HQ ¼ b̄ − b
a

ð19Þ

such that we can think of the Hubble parameter as the sum
of the classical background solution and this new quantum
addition: H ¼ HC þHQ.

III. COSMOLOGICAL IMPRINTS

Deviations from the standard ΛCDM expansion history
in the late Universe will impact the growth of structure and
can be constrained from observational probes ranging from
measurements of the growth factor fσ8 and the late-ISW
effect. However, before we can calculate quantum effects
our first step is to calculate the standard, classical ΛCDM
cosmology. For this we use the best-fit Planck 2018
parameters given by [26],

H0 ¼ 67.32 km=s=Mpc; 100ωb ¼ 2.283;

ωcdm ¼ 0.1201; 109As ¼ 2.210;

ns ¼ 0.9661; τreio ¼ 0.0543; ð20Þ
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to calculate the cosmology with the Boltzmann code
CLASS [27]. Separately, we then calculate the expected
deviations in the expansion rate due to quantum effects in
the very late Universe for a range of values for σTϕ

. Since
the Λ clock becomes unreliable as we enter deeper into
matter domination, we smoothly interpolate between the
quantum effects at the bounce and the classical solution at
higher redshifts, i.e. HQ → 0. This is to be expected since
the relevant semiclassical wave function will correspond to
the matter clock as we move to higher redshifts and away
from the bounce.
In the left panel of Fig. 1 we show the evolution of the

fractional change in the Hubble parameter for a set of
different values of σTϕ

=b3Λ, while in the right panel of Fig. 1
we show the evolution ofH=ð1þ zÞ ¼ ȧ, i.e. the expansion
rate, against direct Baryon Acoustic Oscillations measure-
ments from BOSS DR12 [28], BOSS DR14 quasars [29],
and BOSS Ly-α [30] as well as the best fit H0 values from
SH0ES [31] and for Planck 2018 [26]. Notice that the
deviation from the classical evolution in the Hubble
parameter becomes more pronounced for larger values of
σTϕ

=b3Λ, which also results in a characteristic flattening of
the evolution of the expansion rate. This effect can be
understood as directly stemming from the increase in
variance for the wave packets which results in a more
pronounced skewness of the wave function. In turn, this
lends itself to a bias for larger values of the Hubble
parameter and an impact on the cosmology for a larger
range of redshifts around the bounce.

It is worth noting that the region of parameter space
suggested in [1] that could alleviate the Hubble tension
(σTϕ

=b3Λ ≈ 0.30) is not favored (due to the BOSS DR12
measurements).

A. Signatures in the matter power spectrum

Beyond modifications at the background level, there
will also be an impact on the evolution of perturbations.
Changes in the abundance and evolution of the various
constituents of the Universe is readily encoded in the matter
power spectrum. Current and future probes of the matter
power spectrum can then be leveraged to distinguish
between different models of dark matter, extensions of
general relativity, and dark energy.
The growth of linear perturbations can be derived from

the time evolution of the growth factor,

D00ðτÞ ¼ −aHD0ðτÞ þ 3

2
a2ρMDðτÞ; ð21Þ

where primes denote derivatives with respect to conformal
time. To establish the sensitivity of the cosmology from
varying σTϕ

we have plotted the deviation in the growth
factor from ΛCDM in Fig. 2. We also include the projected
constraints for the Dark Energy Spectroscopic Instrument
(DESI) [32] for changes in the growth factor relative to
ΛCDM from the Bright Galaxy Survey (BGS) at very low
redshifts, with the Main Survey (MS) around z ≈ 1, and at
higher redshifts with the Lyman-α survey (Ly-α). As we

FIG. 1. Left: the fractional change in the Hubble parameter from the base ΛCDM model, with best-fit Planck 2018 parameters from
Eq. (20), for different parameter values of the quantum cosmology model. Right: evolution of the expansion rate for cosmologies
considered in this work along with various experimental constraints.
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anticipate, before dark energy–matter equality the evolution
is identical to the classical expectation until the bounce
where the semiclassical limit breaks down and we see
values of σTϕ

=b3Λ ≳ 0.10 are likely to be constrained
by DESI.
Another important probe of new physics is the growth

rate of perturbations, f ≡ d logD=d log a, which can be
measured directly with supernova (but only for very low
redshifts) and with galaxy surveys like BOSS through
redshift-space distortions (RSD) [33]. For the latter, this
stems from distortions along the line of sight in the
distribution of galaxies (in redshift space) stemming from
an induced peculiar velocity as they are drawn toward the
center of potential wells. This can be measured from the
galaxy power spectrum which can be decomposed as

Pgðk; μk; zÞ ¼ Pðk; zÞðb1 þ fμ2kÞ2 þ PN; ð22Þ

where Pðk; zÞ is the standard linear matter power spectrum,
b1 is the galaxy bias, μk ¼ êz · k̂ the angle between the
wave vector and line of sight, and PN is shot noise. From
Eq. (22) it is clear that it is not possible to disentangle the
growth rate from the matter power spectrum, thus the actual
observable from galaxy surveys is the redshift dependant
quantity fσ8 where σ8 can be thought of as the amplitude of
the power spectrum but is defined as the RMS linear-theory
mass fluctuation in a sphere of radius 8 h−1Mpc. In k space
this is calculated as an integral over the matter power
spectrum,

σ8ðzÞ2 ¼
Z

d log kWðkRÞ2k3Pðk; zÞ; ð23Þ

where WðkRÞ is a window function of scale 8 h−1Mpc.
In Fig. 2 we plot the evolution of fσ8ðzÞ relative to

constraints from RSD measurements from BOSS
DR11 [34], WiggleZ [35], SDSS LRG [36], VVDS [37],
VIPERS [38], FastSound [39], 2dFGRS [40], and
6dFGRS [41]. As we would expect from a model that
results in an enhancement in the Hubble parameter, there is
a corresponding suppression in the growth of structure
relative to the baseline ΛCDM model. This is rather
unique among models that make modifications in the
gravitational sector as typically this leads to an enhance-
ment in the growth rate, e.g. scalar-tensor theories. For the
curves in Fig. 2 we calculate the χ2 values for the plotted
data points. For ΛCDM we find that χ2 ∼ 14 and we find
for σTϕ

=b3Λ ¼ 0.05, 0.10, 0.20 that χ2 ∼ 9, 7, 19 respec-
tively. This implies that there could be a region in parameter
space that improves the fit between data and model for
0≲ σTϕ

=b3Λ ≲ 0.20 but more careful data analysis would be
required to make a more definitive statement. Quantifying
in terms of the S8 parameter (S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
) for

σTϕ
=b3Λ ¼ 0.05, 0.10, 0.20, this results in a suppression

∼3%, 5%, and 12% respectively. Interestingly, the sup-
pression in this region of parameter space is enough to help
alleviate the S8 tension [42].

FIG. 2. Left: deviation in the growth factor from the base ΛCDM cosmology with projected constraints from DESI. Right: evolution of
fσ8 for ΛCDM (dashed), with parameters from Eq. (20), and for the quantum cosmology model with differing values of σTϕ

(solid).
Over plotted are constraints on fσ8ðzÞ from RSD measurements from galaxy surveys.
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B. Signatures in the CMB

While CMB power spectra encode rich information
about the physics around recombination, it is also a probe
of other processes at intervening epochs leading up to
today. Relevant to the model considered here, changes in
the growth of structure in the late-Universe can be probed
via the late-ISW effect [43] defined as

ΘISWðn̂Þ ¼ 2

Z
τ0

τdec

dτΦ0; ð24Þ

which is an integral from recombination to today over the
rate of change of the potential and can serve as a sensitive
probe of new physics beyond the ΛCDM model. The
angular power spectrum for the late-ISW effect is given by

CISW
l ¼ 8

π

Z
d log k k3

�����
Z

dτ
∂Φk

∂τ
jlðkτÞ

����
2

; ð25Þ

where we have transitioned to Fourier space and jlðkτÞ is
the spherical Bessel function. The Poisson equation in k
space gives the Newtonian potential which, ignoring the
velocity perturbations, can be written as

Φk ¼ 3H2
0Ωm

2k2
D
a
δðkÞ: ð26Þ

Equation (26) can then be differentiated with respect to
conformal time to get

∂Φk

∂τ
¼ 3H2

0Ωm

2k2
δðkÞ

�
∂D
∂a

ȧ −
D
a
H

�
; ð27Þ

and then be combined with Eqs. (25) and (27) to yield the
expression of the full angular power spectrum,

CISW
l ¼ 18

π
H4

0Ω2
m

Z
d logk

k
PðkÞ

�Z
dτHDðf−1ÞjlðkτÞ

�
2

;

ð28Þ

where PðkÞ is the matter power spectrum. Having solved
for the background cosmology and evolution of perturba-
tions it is then straightforward to numerically calculate the
late-ISW contribution to the CMB using Eq. (28).
In Fig. 3 we show the full temperature power spectrum

for different values of σTϕ
together with the base ΛCDM

model. We see the impact of the quantum effects as an
excess of power at low l relative to ΛCDM. This behavior
is easy to understand given the explicit dependence on the
Hubble parameter in Eq. (28). However, from these results
it is evident that the late-ISW effect in this model is not as
constraining relative to the other observables as it is limited
by cosmic variance—only values of σTϕ

=b3Λ ≳ 0.30 are

likely to be distinguishable from the standard concordance
model prediction.

IV. DISCUSSION AND CONCLUSION

In this work we explored the cosmological signatures of
a recently proposed model of quantum cosmology [1],
where quantum uncertainties in the physical clock are
particularly evident about the time of the transition to
accelerated expansion. One of the features of this model
that was identified in the original work is that there is an
enhancement in the Hubble parameter around the transition
from matter to dark energy domination. Extending the
previous work, we have shown that the growth of structure
can strongly constrain the parameter space of this model.
In particular, future measurements of the growth factor by
DESI will be able to constrain the parameter space for
values of σTϕ

=b3Λ ≳ 0.10. Furthermore, the redshift evolu-
tion of fσ8 measured from RSD will be a sensitive probe of
modification to the cosmology in this theory. While this
model can also be constrained by the late-ISW effect, the
parameter space that can be probed is limited due to cosmic
variance.
In [1] it was suggested that the model of quantum

cosmology considered here could potentially address the
Hubble tension. While we have not explored this sugges-
tion rigorously through a Markov chain Monte Carlo
analysis, it seems unlikely given current data that this
can be accommodated by the parameter space. Indeed, it is

FIG. 3. CMB temperature power spectrum including contribu-
tion from the late-ISW effect for ΛCDM (dashed), with param-
eters from Eq. (20), and for the quantum cosmology model with
differing values of σTϕ

(solid). The gray band corresponds to
cosmic variance.
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well known that late-time resolutions to the Hubble tension
tend to be very well constrained relative to early-Universe
modifications—namely those which work on the basis of
injecting energy density before recombination to modify
the size of the sound horizon [44]. That said, this motivates
exploring the possible quantum effects at a transition
between matter and radiation domination. Indeed, one
of the “unsettling” features of models like early dark
energy [45] (that are quite successful at addressing the
Hubble tension) is their why now problem, i.e. why do they
turn on at matter-radiation equality. It would be interesting
to study if quantum effects in a model like the one studied
here could work as an early Universe solution to the Hubble
tension—though since there will be no reflection in the
connection, it is not clear that it will be as nearly as strong
of an effect as observed here. At most there will be a
refraction/diffraction of the wave.
While the prospects for the model considered here to

address the H0 tension are bleak, it does show some
promise for potentially alleviating another growing tension
in cosmology, the S8 tension. A particularly interesting
feature of this tension is that low-redshift probes (z ≤ 1) of

the clustering of galaxies is lower than that inferred from
the CMB and CMB lensing which probes from today to
recombination [46]. Given that this period is around the
same time that dark energy becomes dominate in the
Universe, it would be interesting if the observed suppres-
sion was somehow connected. Indeed, in the context of the
model considered here there is no why now? problem, i.e.
the suppression in structure growth is a direct consequence
of the dark energy–matter transition. Recently, some
success was seen with a similar idea [47] where the
transition triggers new dynamics in the dark sector to alter
the growth of structure and alleviate the tension. We leave
further study of the implications of this model for the
growth of LSS and the possibility of alleviating the Hubble
tension with similar dynamics to those studied here but at
matter-radiation equality for future work.

ACKNOWLEDGMENTS

We thank Stephon Alexander and Marc Kamionkowski
for useful conversations. S. M. K is partially supported by
the NSF No. PHY-2014052.

[1] B. Alexandre and J. Magueijo, Possible quantum effects at
the transition from cosmological deceleration to accelera-
tion, Phys. Rev. D 106, 063520 (2022).

[2] T. Thiemann, Modern canonical quantum general relativity,
arXiv:gr-qc/0110034.

[3] W. G. Unruh, Unimodular theory of canonical quantum
gravity, Phys. Rev. D 40, 1048 (1989).

[4] L. Smolin, The quantization of unimodular gravity and the
cosmological constant problems, Phys. Rev. D 80, 084003
(2009).

[5] K. V. Kuchař, Does an unspecified cosmological constant
solve the problem of time in quantum gravity?, Phys. Rev. D
43, 3332 (1991).

[6] A. Daughton, J. Louko, and R. D. Sorkin, Initial conditions
and unitarity in unimodular quantum cosmology, in 5th
Canadian Conference on General Relativity and Relativistic
Astrophysics (5CCGRRA) (1993), arXiv:gr-qc/9305016.

[7] R. Sorkin, Role of time in the sum-over-histories framework
for gravity, Int. J. Theor. Phys. 33, 523 (1994).

[8] R. Sorkin, Forks in the road, on the way to quantum gravity,
Int. J. Theor. Phys. 36, 2759 (1997).

[9] M. Henneaux and C. Teitelboim, The cosmological constant
and general covariance, Phys. Lett. B 222, 195 (1989).

[10] L. Bombelli, W. E. Couch, and R. J. Torrence, Time as
spacetime four-volume and the Ashtekar variables, Phys.
Rev. D 44, 2589 (1991).

[11] L. Smolin, Unimodular loop quantum gravity and the
problems of time, Phys. Rev. D 84, 044047 (2011).

[12] E. Witten, A note on the Chern-Simons and Kodama wave
functions, arXiv:gr-qc/0306083.

[13] S. Alexander, L. Freidel, and G. Herczeg, An inner product
for 4D quantum gravity and the Chern-Simons-Kodama
state, Classical Quantum Gravity 40, 145010 (2023).

[14] C. J. Isham, Canonical quantum gravity and the problem of
time, NATO Sci. Ser. C 409, 157 (1993).

[15] K. V. Kuchar, Time and interpretations of quantum gravity,
Int. J. Mod. Phys. D 20, 3 (2011).

[16] M. E. Fels and C. G. Torre, The principle of symmetric
criticality in general relativity, Classical Quantum Gravity
19, 641 (2002).

[17] J. D. Brown, Action functionals for relativistic perfect
fluids, Classical Quantum Gravity 10, 1579 (1993).

[18] J. D. Brown, Tunneling in perfect-fluid (minisuperspace)
quantum cosmology, Phys. Rev. D 41, 1125 (1990).

[19] S. Gielen and N. Turok, Quantum propagation across
cosmological singularities, Phys. Rev. D 95, 103510 (2017).

[20] S. Gielen and L. Menéndez-Pidal, Singularity resolution
depends on the clock, Classical Quantum Gravity 37,
205018 (2020).

[21] S. Gielen and L. Menéndez-Pidal, Unitarity, clock depend-
ence and quantum recollapse in quantum cosmology,
Classical Quantum Gravity 39, 075011 (2022).

[22] J. Magueijo, Cosmological time and the constants of nature,
Phys. Lett. B 820, 136487 (2021).

[23] J. Magueijo, Connection between cosmological time and the
constants of nature, Phys. Rev. D 106, 084021 (2022).

[24] S. Gielen and J. a. Magueijo, Quantum analysis of the recent
cosmological bounce in comoving Hubble length, Phys.
Rev. D 107, 023518 (2023).

QUANTUM GRAVITY SIGNATURES IN THE LATE UNIVERSE PHYS. REV. D 108, 083507 (2023)

083507-7

https://doi.org/10.1103/PhysRevD.106.063520
https://arXiv.org/abs/gr-qc/0110034
https://doi.org/10.1103/PhysRevD.40.1048
https://doi.org/10.1103/PhysRevD.80.084003
https://doi.org/10.1103/PhysRevD.80.084003
https://doi.org/10.1103/PhysRevD.43.3332
https://doi.org/10.1103/PhysRevD.43.3332
https://arXiv.org/abs/gr-qc/9305016
https://doi.org/10.1007/BF00670514
https://doi.org/10.1007/BF02435709
https://doi.org/10.1016/0370-2693(89)91251-3
https://doi.org/10.1103/PhysRevD.44.2589
https://doi.org/10.1103/PhysRevD.44.2589
https://doi.org/10.1103/PhysRevD.84.044047
https://arXiv.org/abs/gr-qc/0306083
https://doi.org/10.1088/1361-6382/acde3d
https://doi.org/10.1142/S0218271811019347
https://doi.org/10.1088/0264-9381/19/4/303
https://doi.org/10.1088/0264-9381/19/4/303
https://doi.org/10.1088/0264-9381/10/8/017
https://doi.org/10.1103/PhysRevD.41.1125
https://doi.org/10.1103/PhysRevD.95.103510
https://doi.org/10.1088/1361-6382/abb14f
https://doi.org/10.1088/1361-6382/abb14f
https://doi.org/10.1088/1361-6382/ac504f
https://doi.org/10.1016/j.physletb.2021.136487
https://doi.org/10.1103/PhysRevD.106.084021
https://doi.org/10.1103/PhysRevD.107.023518
https://doi.org/10.1103/PhysRevD.107.023518


[25] J. D. Barrow and J. Magueijo, A contextual Planck para-
meter and the classical limit in quantum cosmology,
Found. Phys. 51, 22 (2021).

[26] N. Aghanim et al. (Planck Collaboration), Planck 2018
results. I. Overview and the cosmological legacy of Planck,
Astron. Astrophys. 641, A1 (2020).

[27] D. Blas, J. Lesgourgues, and T. Tram, The cosmic linear
anisotropy solving system (CLASS). Part II: Approximation
schemes, J. Cosmol. Astropart. Phys. 07 (2011) 034.

[28] S. Alam et al. (BOSS Collaboration), The clustering of
galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: Cosmological analysis of the
DR12 galaxy sample, Mon. Not. R. Astron. Soc. 470,
2617 (2017).

[29] P. Zarrouk et al., The clustering of the SDSS-IV extended
Baryon Oscillation Spectroscopic Survey DR14 quasar
sample: Measurement of the growth rate of structure from
the anisotropic correlation function between redshift 0.8 and
2.2, Mon. Not. R. Astron. Soc. 477, 1639 (2018).

[30] J. E. Bautista et al., Measurement of baryon acoustic
oscillation correlations at z ¼ 2.3 with SDSS DR12 Lyα-
Forests, Astron. Astrophys. 603, A12 (2017).

[31] A. G. Riess et al., A comprehensive measurement of the
local value of the Hubble constant with 1 km s−1 Mpc−1

uncertainty from the Hubble space telescope and the SH0ES
team, Astrophys. J. Lett. 934, L7 (2022).

[32] A. Aghamousa et al. (DESI Collaboration), The DESI
experiment part I: Science, targeting, and survey design,
arXiv:1611.00036.

[33] N. Kaiser, Clustering in real space and in redshift space,
Mon. Not. R. Astron. Soc. 227, 1 (1987).

[34] L. Samushia, B. A. Reid, M. White, W. J. Percival, A. J.
Cuesta, L. Lombriser et al., The clustering of galaxies in the
SDSS-III DR9 Baryon Oscillation Spectroscopic Survey:
Testing deviations from Λ and general relativity using
anisotropic clustering of galaxies, Mon. Not. R. Astron.
Soc. 429, 1514 (2013).

[35] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S.
Croom et al., The WiggleZ Dark Energy Survey: The
growth rate of cosmic structure since redshift z ¼ 0.9,
Mon. Not. R. Astron. Soc. 415, 2876 (2011).

[36] L. Samushia, W. J. Percival, and A. Raccanelli, Interpreting
large-scale redshift-space distortion measurements,
Mon. Not. R. Astron. Soc. 420, 2102 (2012).

[37] L. Guzzo et al., A test of the nature of cosmic acceleration
using galaxy redshift distortions, Nature (London) 451, 541
(2008).

[38] S. de la Torre et al., The VIMOS Public Extragalactic
Redshift Survey (VIPERS). Galaxy clustering and redshift-
space distortions at z ¼ 0.8 in the first data release,
Astron. Astrophys. 557, A54 (2013).

[39] T. Okumura et al., The Subaru FMOS galaxy redshift survey
(FastSound). IV. New constraint on gravity theory from
redshift space distortions at z ∼ 1.4, Publ. Astron. Soc. Jpn.
68, 38 (2016).

[40] W. J. Percival et al. (2dFGRS Collaboration), The 2dF
Galaxy Redshift Survey: Spherical harmonics analysis of
fluctuations in the final catalogue, Mon. Not. R. Astron.
Soc. 353, 1201 (2004).

[41] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, G. B. Poole, L. Campbell, Q. Parker, W. Saunders,
and F. Watson, The 6dF Galaxy Survey: z ≈ 0 measure-
ments of the growth rate and σ8, Mon. Not. R. Astron. Soc.
423, 3430 (2012).

[42] E. Abdalla et al., Cosmology intertwined: A review of the
particle physics, astrophysics, and cosmology associated
with the cosmological tensions and anomalies, J. High
Energy Astrophys. 34, 49 (2022).

[43] W. Hu and S. Dodelson, Cosmic microwave background
anisotropies, Annu. Rev. Astron. Astrophys. 40, 171 (2002).

[44] M. Kamionkowski and A. G. Riess, The Hubble tension and
early dark energy, arXiv:2211.04492.

[45] T. Karwal and M. Kamionkowski, Dark energy at early
times, the Hubble parameter, and the string axiverse,
Phys. Rev. D 94, 103523 (2016).

[46] S.-F. Chen, M. White, J. DeRose, and N. Kokron, Cosmo-
logical analysis of three-dimensional BOSS galaxy cluster-
ing and Planck CMB lensing cross correlations via
Lagrangian perturbation theory, J. Cosmol. Astropart. Phys.
07 (2022) 041.

[47] V. Poulin, J. L. Bernal, E. Kovetz, and M. Kamionkowski,
The sigma-8 tension is a drag, Phys. Rev. D 107, 123538
(2023).

TOOMEY, KOUSHIAPPAS, ALEXANDRE, and MAGUEIJO PHYS. REV. D 108, 083507 (2023)

083507-8

https://doi.org/10.1007/s10701-021-00433-0
https://doi.org/10.1051/0004-6361/201833880
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/sty506
https://doi.org/10.1051/0004-6361/201730533
https://doi.org/10.3847/2041-8213/ac5c5b
https://arXiv.org/abs/1611.00036
https://doi.org/10.1093/mnras/227.1.1
https://doi.org/10.1093/mnras/sts443
https://doi.org/10.1093/mnras/sts443
https://doi.org/10.1111/j.1365-2966.2011.18903.x
https://doi.org/10.1111/j.1365-2966.2011.20169.x
https://doi.org/10.1038/nature06555
https://doi.org/10.1038/nature06555
https://doi.org/10.1051/0004-6361/201321463
https://doi.org/10.1093/pasj/psw029
https://doi.org/10.1093/pasj/psw029
https://doi.org/10.1111/j.1365-2966.2004.08146.x
https://doi.org/10.1111/j.1365-2966.2004.08146.x
https://doi.org/10.1111/j.1365-2966.2012.21136.x
https://doi.org/10.1111/j.1365-2966.2012.21136.x
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1016/j.jheap.2022.04.002
https://doi.org/10.1146/annurev.astro.40.060401.093926
https://arXiv.org/abs/2211.04492
https://doi.org/10.1103/PhysRevD.94.103523
https://doi.org/10.1088/1475-7516/2022/07/041
https://doi.org/10.1088/1475-7516/2022/07/041
https://doi.org/10.1103/PhysRevD.107.123538
https://doi.org/10.1103/PhysRevD.107.123538

