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Structure formation in the Universe has been well studied within the Eulerian and Lagrangian
perturbation theories, where the latter performs substantially better in comparison with N-body
simulations. Standing out is the celebrated Zel’dovich approximation for dust matter. In this work, we
recall the description of gravitational noncollisional systems and extend both the Eulerian and Lagrangian
approaches by including, possibly anisotropic, velocity dispersion. A simple case with plane symmetry is
then studied with an exact, nonperturbative approach, and various approximations of the derived model are
then compared numerically. A striking result is that linearized Lagrangian solutions outperform models
based on Burgers’ equation in the multistream regime in comparison with the exact solution. These results
are finally extended to a 3D case without symmetries, and master equations for the evolution of all parts of
the perturbations are derived. The particular 3D case studied corresponds to a maximally anisotropic
collapse, which involves an approximation based on the estimation of importance of the different levels of
spatial derivatives of the local deformation field.
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I. INTRODUCTION

Structures in the Universe, such as galaxies and their
clustering into superunits, originate in the gravitational
collapse of large, dilute matter clouds. These collapsing
clouds are well described by a fluid of massive particles in
gravitational interaction but with no collisions with each
other, a so-called collisionless self-gravitating flow, treated
in terms of deviations from the homogeneous expansion
of the Universe, described by the commonly adopted
Friedmann-Lemaître-Robertson-Walker (FLRW) models.
Gravitational interactions in these systems are to date
mostly described in Newtonian theory [1,2], although first
studies of this kind were done in the general-relativistic
(GR) framework [3,4]. The dynamics of the collapse is
described by the laws of hydrodynamics, which can be
derived from conservation laws in Hamiltonian phase space
through various approaches, including continuum mean-
field approximation (Vlasov equation) or the Klimontovic
coarse-graining approach [5,6]. However, these equations
are highly nonlinear and do not admit analytical solutions
in the general case. First attempts at describing structure
formation in the late Universe used linearized versions of
perturbation theory, referred to as the Eulerian perturbation

theory. This theory is based on the assumption that the
density contrast (i.e., the dimensionless deviation from the
mean density of the universe model) is small. However,
although the volume-averaged density contrast over large
regions of the Universe (typically of radius ∼10 Mpc) is
of order unity, it can reach much larger values in galaxy
clusters (∼10) or in galaxies themselves (∼105). For this
reason, the Eulerian perturbation theory is insufficient, and
other approaches have to be investigated.
Part of the nonlinearity of the hydrodynamical equations

stems from the convective derivative that accounts for the
motion of the fluid elements. For this reason, the Eulerian
description of the fluid is not best suited, and a Lagrangian
approach is more efficient [7–9]. In the Lagrangian picture,
fluid elements themselves constitute the coordinate system,
assumed to be constant along the flow, so that there is no
longer the need to account for their motion with respect to a
Eulerian reference system. Following what was done in
Eulerian perturbation theory, new perturbative approaches,
based on the Lagrangian framework, appeared. Among
them is the celebrated Zel’dovich approximation [10,11],
which for the first time described the collapsing elements as
highly anisotropic structures (pancakes), rather than spheri-
cally symmetric structures as it was understood before.
These theories provide solutions for higher-order approx-
imations and encompass nonlinearity to a better extent than
Eulerian theories, yielding much more accurate results,
even competing with those of many-body simulations. For
a summary and a comprehensive list of references, see the
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historical account on the Lagrangian approach in Newtonian
cosmology in the otherwise GR-based review [12].1

All the models mentioned above admit analytical expres-
sions for the evolution of the density contrast in the most
simple systems, called dust fluids, in which the interaction
between fluid elements is only described by gravitation.
However, dust fluids have their shortcomings in describing
structure formation: as there is no other interaction than
gravity between fluid elements, stable structures have a
hard time to form in such a system, since they can only be
supported by vorticity. The need for a counteracting force
led to the development of models including velocity
dispersion [14], which were shown to create vorticity in
the flow [15]. In the simplest case velocity dispersion was
modeled as an isotropic pressure that allowed stabilizing
the structures arising from the collapse. Elliptic galaxies are
examples of velocity dispersion-supported structures.
Eulerian and Lagrangian perturbative theories were adapted
to these new models, along with a phenomenological
extension of Zel’dovich’s approximation, aiming at
describing the system after shell-crossing singularities first
appeared—coined the “adhesion approximation” [16] that
has been derived from kinetic theory in [17], reviewed
in [6] with an explicit coarse-graining method that includes
deviations from mean-field gravity. Lagrangian methods
have been developed to access this regime through effective
pressure forces [18,19], also emphasizing the emergence
of vorticity and the impact of anisotropic stresses on the
matter power spectrum [20]. Numerical studies started to
be performed to check existing models’ predictions and
explore nonanalytical solutions [21,22]; for recent papers
see [23–27]. The reader may again consult the summary
paper [12] for further references on the investigation of
analytical models and simulations.
In this work, we aim at exploring Lagrangian and non-

perturbative approaches to collisionless, self-gravitating flows
with anisotropic velocity dispersion within Newtonian cos-
mology. We will first recall the basic equations in Eulerian
and Lagrangian coordinates in Secs. II and III. In Sec. IV
we will study the case of plane-symmetric perturbations,
both analytically and numerically. In particular, the effect of
the size and average density of the clouds on the properties
of the collapse phase will be investigated using our
numerical integration engine. In Sec. V we will extend
our reasoning to a more general three-dimensional case
without symmetries. In particular, we will be interested in
the performance of a Lagrangian linearization of multi-
stream forces in comparison with exact integration of the

equations and with models based on Burgers’ equation. We
conclude in Sec. VI, and we dedicate Appendices to the
presentation of proofs and details on the analytical and
numerical methods.

II. THE EULER-JEANS-NEWTON SYSTEM

To set notations, we use Einstein’s summation conven-
tion for repeated indices regardless of their (up or down)
position (the Newtonian metric is Euclidean). Derivatives
with respect to Eulerian coordinates fxig are denoted
by a subscript comma, and derivatives with respect to
Lagrangian coordinates fXig are denoted by a subscript
vertical bar, e.g.

∂f
∂xi

≔ ∂if ≔ f;i;
∂f
∂Xi

≔ fji:

Vector differential operators without a subscript indicate
differentiation with respect to Eulerian coordinates. Vector
differential operators with subscript 0 indicate differentia-
tion with respect to Lagrangian coordinates, e.g.

∇ ·A ¼ Ak;k; ∇0 ·A ¼ Akjk:

Other coordinate systems will be explicitly denoted by an
appropriate subscript.

A. General formulation

We consider a fluid embedded into Galilei-Newton
spacetime described by its Hamiltonian phase space density
fðt;x; vÞ in Eulerian phase space coordinates for positions
and velocities. Under the hypothesis that the acceleration b
is given by the gravitational field g and is therefore velocity
independent, the evolution equation for the phase space
density f is given by the Vlasov equation (see e.g. [5,17]),

∂f
∂t

þ vi
∂f
∂xi

þ gi
∂f
∂vi

¼ 0: ð1Þ

The first moments of this equation provide evolution
equations in space for the rest mass and momentum density
(higher-order velocity tensors are constructed in the same
fashion),

ρ ≔ m
Z

fd3v; ρv̄i ≔ m
Z

vifd3v; ð2Þ

in the form

∂

∂t
ρþ ∂

∂xi
ðρv̄iÞ ¼ 0; ð3aÞ

∂

∂t
ðρv̄iÞ þ

∂

∂xj
ðρvivjÞ ¼ ρgi: ð3bÞ

1Zel’dovich’s approximation has then been transposed to the
GR framework (the GR form of Zel’dovich’s approximation
will not be treated in this work, see [13] and subsequent papers in
the series for a derivation), where perturbations are no longer
described within the global vector space of a Galilei-Newton
spacetime, but are intrinsic perturbations of spatial coframe fields
in the local rest frames of the fluid.
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Introducing the reduced second velocity moment tensor,

Πij ≔ ρðvivj − viv̄jÞ; ð4Þ

and the Lagrangian time derivative dt ¼ ∂t þ v̄k∂k, we can
write (3) as the Euler-Jeans equation

ρ
d
dt

v̄i ¼ ρgi −
∂

∂xj
Πij: ð5Þ

The reduced second velocity moment tensor is symmetric
and acts like a stress tensor, the divergence of which creates
a (multistream) force that counteracts the gravitational field
strength. An evolution equation can be found for this
tensor, using the second velocity moment of the Vlasov
equation (details can be found in Appendix A), in the form

d
dt

Πij ¼ −
�
∂v̄k
∂xk

Πij þ
∂v̄i
∂xk

Πjk þ
∂v̄j
∂xk

Πki

�
−

∂

∂xk
Lijk; ð6Þ

where Lijk is the third reduced velocity moment

Lijk ≔ ρðvi − v̄iÞðvj − v̄jÞðvk − v̄kÞ: ð7Þ

However, this equation cannot yield a closed system, due to
the introduction of the third-order tensor Lijk. One way to
close it is to consider that deviations from the mean velocity
are small (which is valid in the previrialization regime and
before any shell crossing), typically jv − v̄j ∼ ϵjv̄j, which
allows to estimate the higher-order moments Πij ∼ ρϵ2jv̄j2
and Lijk ∼ ρϵ3jv̄j3. If ϵ is small enough, one can drop the
Lijk term in (6). For later stages of evolution, the omission
of the third-order term remains phenomenological, which
should be kept in mind when solutions of the following
system are studied. With this truncation of the hierarchy,
the resulting system, along with the Newtonian field
equations for the gravitational field strength, is called the
Euler-Jeans-Newton (EJN) system and reads

d
dt

ρ ¼ −ρv̄k;k; ð8aÞ

d
dt

v̄i ¼ gi −
1

ρ
Πij;j; ð8bÞ

d
dt

Πij ¼ −½v̄k;kΠij þ v̄i;kΠjk þ v̄j;kΠki�; ð8cÞ

g½i;j� ¼ 0; gk;k ¼ Λ − 4πGρ: ð8dÞ

B. Hubble-comoving frame and deviation fields

As it is usually done in cosmology, we introduce
Eulerian Hubble-comoving coordinates q ¼ x=aðtÞ with
the isotropic and homogeneous expanding Friedmannian

background [with scale factor aðtÞ], and we split the
dependent variables as follows [2,6]:

v̄ðq; tÞ ¼ vH þ uðq; tÞ; ð9aÞ

gðq; tÞ ¼ gH þ wðq; tÞ; ð9bÞ

ρðq; tÞ ¼ ρH½1þ δðq; tÞ�; ð9cÞ

Πijðq; tÞ ¼ πHij þ πijðq; tÞ; ð9dÞ

where homogeneous quantities are given in the background
by vH ¼ ȧq, gH ¼ äq and πHij ¼ pHa2δij.

2 The homo-
geneous density ρH is given by the integral of the continuity
equation ρH ¼ ρHi=a3, where ρHi denotes the background
density at some initial time. The variables u;w and δ are
usually called peculiar velocity, peculiar acceleration and
density contrast. In Hubble-comoving coordinates, the
differential operators transform as

∇ ¼ 1

a
∇q;

∂

∂t

����
x
¼ ∂

∂t

����
q
−Hq · ∇q; ð10Þ

withH ¼ ȧ=a the Hubble function. Within this framework,
we can split the EJN system (8) using (9). Assuming
Friedmann’s differential equations to hold for the (possibly
relativistic) background model (in particular, neglecting
any backreaction of inhomogeneities on the latter), we
obtain the EJN system for the deviation fields:

d
dt

δþ 1

a
ð1þ δÞ ∂uk

∂qk
¼ 0; ð11aÞ

d
dt

ui þHui ¼ wi −
1

a
1

ρHð1þ δÞ
∂

∂qj
πij; ð11bÞ

d
dt

πij þ 5Hπij ¼ −
1

a

�
∂uk
∂qk

πij þ
∂ui
∂qk

πjk þ
∂uj
∂qk

πki

�

− pHa2
��

7H þ 1

a
∂uk
∂qk

�
δij

þ 1

a

�
∂ui
∂qj

þ ∂uj
∂qi

��
; ð11cÞ

∂wi

∂qj
−
∂wj

∂qi
¼ 0;

∂wk

∂qk
¼ −4πGaρHδ: ð11dÞ

2We, henceforth, omit the overbar for the homogeneous and
the deviation fields with the understanding that both are mean
quantities in the fluid description.
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III. LAGRANGIAN FORMULATION OF THE
EULER-JEANS-NEWTON SYSTEM

In this section, we base our analysis on the detailed
investigation for an isotropic-pressure supported fluid
in [18], and generalize to nonisotropic velocity dispersion.
The reader may also consult the investigation in [20] within
the Lagrangian picture, emphasizing the impact of aniso-
tropic stresses in dispersion-supported fluids.

A. Lagrangian picture

We consider that the Eulerian coordinates x can be
related to the Lagrangian coordinates, X, via a time-
dependent diffeomorphism f, that is

x ¼ fðX; tÞ; ð12Þ

with fðX; t0Þ ¼ X. Lagrangian coordinates stay attached to
fluid elements along their trajectories, meaning in particular
that d

dtX ¼ 0. The Lagrangian time derivative thus merely
reads as the partial time derivative in the Lagrangian frame,

d
dt

¼ ∂

∂t

����
X
¼ ∂

∂t

����
x
þ v · ∇: ð13Þ

We also define the Jacobian matrix of the transfor-
mation from Lagrangian to Eulerian coordinates, and its
determinant,

JikðX; tÞ ≔ ∂fi
∂Xk

; JðX; tÞ ≔ det JikðX; tÞ: ð14Þ

According to usual calculus rules, volume elements then
transform as

d3x ¼ Jd3X: ð15Þ

In the Lagrangian framework, the diffeomorphism f is
the only dynamical variable. The velocity and acceleration
fields are directly given by the definitions

vðX; tÞ ¼ ḟðX; tÞ; bðX; tÞ ¼ ̈fðX; tÞ: ð16Þ

The continuity equation, which represents the total rest
mass conservation within a compact domain Dt (evolving
in time in the Eulerian frame, but its boundaries are
comoving with the fluid), is solved by an exact integral
for the density field as a functional of f. Indeed,

d
dt

MDt
¼ 0

¼ d
dt

Z
Dt

ρðx; tÞd3x ¼ d
dt

Z
Dt0

ρðX; tÞJðX; tÞd3X

¼
Z
Dt

1

J
d
dt

ðρðX; tÞJðX; tÞÞd3x; ð17Þ

which implies that the quantity ρJ is conserved along flow
lines, i.e.

ρJ ¼ ρiJi ≔ CðXÞ ⇒ ρðX; tÞ ¼ CðXÞ
JðX; tÞ : ð18Þ

(Since Ji ¼ 1, C ¼ ρi.)

B. Lagrangian derivative

In the process of getting rid of Eulerian coordinates, we
need to transfer Eulerian derivatives to the Lagrangian
frame [18]. To do so, we consider the inverse diffeo-
morphism of f,

h ≔ f−1; i:e: X ¼ hðx; tÞ: ð19Þ

Using this definition, we can write

∂

∂xi
¼ ∂hk

∂xi

∂

∂Xk
¼ J−1ik

∂

∂Xk
; ð20aÞ

and with the definition of the adjoint matrix,

adJik ≔
1

2
ϵklmϵipqfpjlfqjm; ð20bÞ

we get the transformation rule

∂

∂xi
¼ 1

2J
ϵklmϵipqfpjlfqjm

∂

∂Xk
: ð20cÞ

To further lighten the notations, we define the functional
determinant

J ðA;B;CÞ ¼ ∂ðA;B;CÞ
∂ðX1; X2; X3Þ

¼ ϵiklAjiBjkCjl: ð21aÞ

The functional determinant satisfies the usual rules of
determinants, plus the Leibniz rule,

J ðAD;B;CÞ ¼ AJ ðD;B;CÞ þDJ ðA;B;CÞ: ð21bÞ

Using this notation and Eq. (20c), the Eulerian derivative of
a field A can be written as

A;i ¼
1

2J
ϵiklJ ðA; fk; flÞ: ð22Þ
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C. Lagrangian form of the field equations

As it has been said above, the continuity equation and the
momentum conservation equation are automatically solved
in the Lagrangian picture through definitions and an exact
integral,

v ¼ ḟ; b ¼ ̈f; ρ ¼ ρ0J0
J

: ð23Þ

Let us now consider the field equations of the Euler-Jeans-
Newton system. With (8b), we can first write

g ¼ bþ 1

ρ
ψ; ψ i ≡ Πij;j ¼ πij;j: ð24Þ

Using vector identities, Eq. (8d) takes the form

∇ × bþ 1

ρ
∇ ×ψ −

1

ρ2
∇ρ ×ψ ¼ 0; ð25aÞ

∇ · bþ 1

ρ
∇ ·ψ −

1

ρ2
ψ · ∇ρ ¼ Λ − 4πGðρþ 3pHÞ:

ð25bÞ

As we may consider a relativistic Friedmannian back-
ground, the homogeneous pressure pH appears in the
acceleration law and as a source of the gravitational field
(in general relativity, a pressure is self-gravitating, whereas
it is not in Newtonian cosmology). We then transform the
Eulerian derivatives as in (22), and we recall the identity
ϵjikϵjlm ¼ δilδkm − δimδkl, to obtain the Lagrange-Jeans-
Newton system (LJN):

1

J
J ðf̈k; fk; fiÞ þ

1

ρJ
J ðψk; fk; fiÞ −

1

ρ2J
ψkJ ðρ; fk; fiÞ ¼ 0; ð26aÞ

1

2J
ϵkijJ ðf̈k; fi; fjÞ þ

1

2ρJ
ϵkijJ ðψk; fi; fjÞ −

1

2ρ2J
ϵkijψkJ ðρ; fi; fjÞ ¼ Λ − 4πGðρþ 3pHÞ: ð26bÞ

Replacing ψk by its Lagrangian expression ψk ¼ πkp;p ¼ 1
2J ϵpqrJ ðπkp; fq; frÞ, this becomes

1

J
J ðf̈k; fk; fiÞ þ

1

2ρJ
ϵpqrJ

�
1

J
J ðπkp; fq; frÞ; fk; fi

�
−

1

2ρ2J2
ϵpqrJ ðρ; fk; fiÞJ ðπkp; fq; frÞ ¼ 0; ð27aÞ

1

2J
ϵkijJ ðf̈k; fi; fjÞ þ

1

4ρJ
ϵkijϵpqrJ

�
1

J
J ðπkp; fq; frÞ; fi; fj

�
−

1

4ρ2J2
ϵkijϵpqrJ ðρ; fi; fjÞJ ðπkp; fq; frÞ

¼ Λ − 4πGðρþ 3pHÞ: ð27bÞ

We now introduce a common approximation3 in cosmol-
ogy: writing ρðX; tÞ ¼ ρHðtÞð1þ δðX; tÞÞ, we consider
that at the initial time ti, the density contrast is small,
so that the density is approximately homogeneous
ρðX; tiÞ ≈ ρHðtiÞ. This approximation is particularly good
at the time of recombination (or time of decoupling,

ti¼ trec¼∼3.8×105y). Therefore, we have Cji≔CH ji¼0

that simplifies the equations substantially. We use the
notation CH to remind the reader of this step, CH ¼
ρHJ ¼ ρHðtiÞ. Using this approximation and the integral
(23) for the density, the LJN system (27) simplifies to

1

J
J ðf̈k; fk; fiÞ þ

1

2CHJ
ϵpqrJ ðJ ðπkp; fq; frÞ; fk; fiÞ ¼ 0; ð28aÞ

1

2J
ϵkijJ ðf̈k; fi; fjÞ þ

1

4CHJ
ϵkijϵpqrJ ðJ ðπkp; fq; frÞ; fi; fjÞ ¼ Λ − 4πGðρþ 3pHÞ: ð28bÞ

Finally, we decompose πij ¼ pδij þ Δij into an isotropic kinetic pressure function and a traceless part, and we make the
further assumption that the isotropic pressure is also barotropic, that is p ¼ αðρÞ. Using the antisymmetry of the Levi-Civita
tensor and of the functional determinant, one can show that the LJN system takes the following form (where α0 indicates the
derivative dα=dρ):

3This approximation can be formally avoided through an exact argument that can be found in Appendix A of [18].
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1

J
J ðf̈k; fk; fiÞ þ

1

2CHJ
ϵpqrJ ðJ ðΔkp; fq; frÞ; fk; fiÞ ¼ 0; ð29aÞ

1

2J
ϵkijJ ðf̈k; fi; fjÞ þ

�
CHα

00

2J5
þ α0

J4

�
J ðJ; fi; fjÞJ ðJ; fi; fjÞ −

α0

2J3
J ðJ ðJ; fi; fjÞ; fi; fjÞ

þ 1

4CHJ
ϵkijϵpqrJ ðJ ðΔkp; fq; frÞ; fi; fjÞ ¼ Λ − 4πG

�
CH

J
þ 3pH

�
: ð29bÞ

D. Principal scalar invariants

We now wish to define the useful notion of principal
scalar invariants of a tensor. Given an order 2 tensor A ¼
ðAijÞ in three dimensions, with eigenvalues λ1, λ2, λ3, the
following quantities are independent of the frame in which
the tensor is written [28]:

IðAÞ ¼ TrðAÞ ¼ Aii ¼ λ1 þ λ2 þ λ3; ð30aÞ

IIðAÞ ¼ 1

2
ðTrðAÞ2 − TrðA2ÞÞ ¼ 1

2
ðAiiAjj − AijAjiÞ

¼ λ1λ2 þ λ2λ3 þ λ1λ3; ð30bÞ

IIIðAÞ ¼ detA ¼ 1

6
ϵijkϵlmnAilAjmAkn ¼ λ1λ2λ3: ð30cÞ

In particular, we are interested in the invariants of the
gradient of the deformation field dP describing the
deviation from the homogeneous and isotropic background
expansion. We can write

fðX; tÞ ¼ aðtÞ½Xþ PðX; tÞ�; ð31Þ

with PðX; tÞ the scaled deviation from the background, and
we define I ¼ Ið∇0PÞ; II ¼ IIð∇0PÞ; III ¼ IIIð∇0PÞ, where
∇0 indicates the gradient with respect to the Lagrangian
coordinates, with components Pijj. Using the above def-
initions and the properties of the Levi-Civita tensor, one can
show the following identities [28]:

ϵijkJ ðXi; Xj; XkÞ ¼ 6; ϵijkJ ðXi; Xj; PkÞ ¼ 2I

ϵijkJ ðXi; Pj; PkÞ ¼ 2II; ϵijkJ ðPi; Pj; PkÞ ¼ 6III;

ð32Þ

which in turn yield an expression for the Jacobian deter-
minant of the Lagrangian transformation

J ¼ detð∇0fÞ ¼ a3ð1þ Iþ IIþ IIIÞ: ð33Þ

IV. NONPERTURBATIVE PLANE-SYMMETRIC
GRAVITATIONAL COLLAPSE WITH

VELOCITY DISPERSION

A. Motivation

The first two sections of this work gave the theoretical
framework needed to investigate large-scale structure for-
mation in the late Universe. In the following, we will apply
this framework to systems with isotropic (plane-symmetric)
and anisotropic (three-dimensional) velocity dispersion,
with a nonperturbative approach.
Before diving into those cases, it is useful to remind of

the results obtained from standard Eulerian perturbation
theory (see e.g. [2], for a systematic list of the different
approximations involved and the notion of “nonperturba-
tive,” see [19]). Starting from the Euler-Jeans-Newton
system in the Eulerian comoving picture (11), considering
only isotropic pressure with a dynamical equation of state
πij ¼ pδij ¼ αðρÞδij, and keeping only terms of order 1 in
peculiar fields, one obtains the following Eulerian evolu-
tion equation for the density contrast δ:

∂
2

∂t2

����
q
δþ 2H

∂

∂t

����
q
δ − 4πGρHδ ¼

α0

a2
∇2

qδ: ð34Þ

The right-hand side of this equation may not be linear due
to the term α0ðρÞ, which can have any dependence on ρ and
shall then be linearized too. Here we can also introduce a
characteristic length for self-gravitating systems with pres-
sure, called Jeans’ length, and reading

L2
J ¼

α0

4πGρH
; ð35Þ

so that the above equation can be rewritten as

∂
2

∂t2

����
q
δþ 2H

∂

∂t

����
q
δ − 4πGρHδ ¼ 4πGρH

L2
J

a2
∇2

qδ: ð36Þ

Jeans’ length represents the typical size of the self-gravi-
tating system below which the system collapses under its
own gravity, and above which it expands (for more details
on Eulerian perturbation theory and self-gravitating sys-
tems stability, see [5]).
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Moving now to the LJN system (29) with isotropic
pressure, using the ansatz (31) and linearizing with respect
to P, one obtains a similar evolution equation for the
longitudinal (irrotational) part PL of P:

P̈L þ 2HṖL − 4πGρHPL ¼ α0

a2
∇2

0P
L; ð37Þ

which can be written in terms of δ using the (linearized)
relation δ ¼ −∇0 · P ¼ −∇0 · PL. However, it is to be noted
that Lagrange-linear equations are not Euler linear, due to
the presence of the convective derivative. The Lagrangian
approach is intrinsically nonlinear. Yet, although Lagrange-
linear approximation allows us to encompass nonlinearity to
some extent, it is still a perturbative approach and relies on
various approximations, which can be found in detail in [19],
along with the most general evolution equation for the
perturbations.
In the following, we will first solve the LJN system (29)

in the case of plane symmetry exactly using Burgers’
equation and Fourier analysis, which removes the aniso-
tropy of velocity dispersion and renders the equations more
manageable. Then, we will move on to three-dimensional
anisotropic deviations, which we will solve by using a

“locally one-dimensional” approach arising from a maxi-
mal anisotropy hypothesis.

B. Plane-symmetric collapse

In the case of plane symmetry, a solution for the
Lagrange-linearized version of (29) has been found in [29].
Here we will take the same path to obtain the evolution
equation for the deviation field (in Newtonian theory), but
we will then explore a different approach to find solutions
to the latter, which will be useful to solve the 3D case. Note
that in the case of an Einstein–de Sitter background, exact
solutions in the form of power series have been made
explicit in [23–25].
We start with the following ansatz for the deformation

field:

f1 ¼ aðX1 þ P1ðX1; tÞÞ; f2 ¼ aX2; f3 ¼ aX3;

ð38Þ

where the background is expanding in all three dimensions,
but the deviations from isotropic expansion only happen in
one direction. The goal here is to find a closed equation for
the evolution of the deviation P1. Using our ansatz, we can
calculate the different terms of Eq. (29b)4:

J ¼ a3ð1þ P1j1Þ; ð39aÞ

J ðJ; fi; fjÞ ¼ a5ϵ1ijP1j11; ð39bÞ

J ðJ ðJ; fi; fjÞ; fi; fjÞ ¼ 2a7P1j111; ð39cÞ

J ðΔkp; fq; frÞ ¼ a2ϵ1qrΔkpj1; ð39dÞ

ϵkijϵpqrJ ðJ ðΔkp; fq; frÞ; fi; fjÞ ¼ 4a4Δ11j11; ð39eÞ

ϵkijJ ðf̈k; fi; fjÞ ¼ 6äa2ð1þ P1j1Þ þ 4ȧa2Ṗ1j1 þ 2a3P̈1j1; ð39fÞ

which finally lead to the equation

3
ä
a
þ 2

ȧ
að1þ P1j1Þ

Ṗ1j1 þ
P̈1j1

1þ P1j1

þ
�

CHα
00

a5ð1þ P1j1Þ5
þ 2α0

a2ð1þ P1j1Þ4
�
P2
1j11

−
α0

a2ð1þ P1j1Þ3
P1j111 þ

a
CHð1þ P1j1Þ

Δ11j11

¼ Λ − 4πG

�
CH

a3ð1þ P1j1Þ
þ 3pH

�
: ð40Þ

Injecting Friedmann’s acceleration law for the homo-
geneous background,

3
ä
a
¼ Λ − 4πG

�
CH

a3
þ 3pH

�
; ð41Þ

we are left with

2
ȧ
a
Ṗ1j1 þ P̈1j1 þ

�
CHα

00

a5ð1þ P1j1Þ4
þ 2α0

a2ð1þ P1j1Þ3
�
P2
1j11

−
α0

a2ð1þ P1j1Þ2
P1j111 þ

a
CH

Δ11j11

¼ 4πG
CH

a3
P1j1; ð42Þ

4Equation (29a) is trivial with this ansatz.
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which can conveniently be rewritten as a derivative,�
P̈1 þ 2HṖ1 −

4πGCH

a3
P1

�
j1

¼
�

α0P1j11
a2ð1þ P1j1Þ2

−
a
CH

Δ11j1

�
j1
: ð43Þ

Relevant initial conditions are prescribed, following the
notations developed in the relativistic context in [30,31],

P1 ¼ 0; Ṗ1 ¼ U1; P̈1 ¼ W1 − 2HU1; ð44Þ

where Pi, Ui, and Wi are shorthand notations for the
deviation fields, peculiar velocity and acceleration at the
initial time ti. However, within the homogeneous approxi-
mation CH ji ¼ 0 used previously, there is no initial peculiar
acceleration [see the field equations (11d) with δ ≈ 0], so
that we can take Wi ≈ 0. Using these initial conditions, the
integration constant arising when integrating (43) can be set
to zero, leaving us with

P̈1 þ 2HṖ1 −
4πGCH

a3
P1 ¼

α0P1j11
a2ð1þ P1j1Þ2

−
a
CH

Δ11j1:

ð45Þ

Linearizing this equation with respect to P1 and neglecting
anisotropy Δ11, we find an equation similar to (37). Now,
pursuing our nonperturbative approach, we need to close
the previous equation. To do so, we have to relate the
velocity dispersion to other variables of the system. As the
velocity field is homogeneous in the directions X2 and X3,
the only nonvanishing component of the peculiar-velocity
dispersion tensor πij is π11, so that we can write

πij ¼

0
B@ π11 0 0

0 0 0

0 0 0

1
CA ¼

0
B@

1
3
π11 0 0

0 1
3
π11 0

0 0 1
3
π11

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
pδij

þ

0
B@

2
3
π11 0 0

0 − 1
3
π11 0

0 0 − 1
3
π11

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Δij

: ð46Þ

The evolution equation for πij (11c) reads for the only
component π11:

∂π11
∂t

þ u1
a
∂π11
∂q1

þ 5Hπ11 ¼ −
1

a
∂u1
∂q1

ð3π11 þ pHa2Þ

− 7pHaȧ: ð47Þ

After the time of recombination, Friedmann’s expansion
law starts to be dominated by matter, and we may neglect
the background pressure pH (being, however, nonvanishing
also in the matter-dominated regime) leaving only

∂π11
∂t

þ u1
a
∂π11
∂q1

þ 5Hπ11 ¼ −
3

a
∂u1
∂q1

π11: ð48Þ

Solutions of this equation are polytropic with adiabatic
exponent γ ¼ 3 (see Appendix A for proof):

π11 ¼ βa4ρ3; ð49Þ

where β can be chosen constant with appropriate initial
conditions. Knowing this, the right-hand side of Eq. (45)
simplifies to

P̈1 þ 2HṖ1 −
4πGCH

a3
P1 ¼ −

3βC2
H

a4ð1þ P1j1Þ4
P1j11: ð50Þ

C. Explicit solution

Equation (50) has been solved in [29] after linearization
in P1 using Fourier analysis, and the following expression
was found:

P1ðX1; tÞ ¼
Z

∞

−∞
C1ðX1 − SÞAðS; tÞdS; ð51Þ

where

AðS; tÞ ¼ lim
y→0þ

�
a
2y

þ 2Re

�
GðSÞ

Z
∞

ð
ffiffiffi
6c
a

p
−iSÞ y

e−z

z
dz

��

with GðSÞ ¼ aS2 þ i
ffiffiffiffiffiffiffiffi
6ac

p
S

2c
	 ffiffiffiffi

6c
a

q
− iS



and C1ðX1Þ ¼

Z
k21e

−k2
1eik1X1dk1: ð52Þ

Here, we want to be more general than the linear approxi-
mation. In the case of plane symmetry, both the peculiar
acceleration w and the peculiar velocity u have only one
nonzero component in the direction q1, and are therefore
parallel, so that we can write in general

w ¼ hðq; tÞu: ð53Þ

This condition is not generally verified in the absence of
symmetry in the model, but is usually postulated as an
approximation (so-called “slaving condition”). Assuming
further that the proportionality factor h is the same as in the
Eulerian linear dust (pressureless) model (and in particular,
only depends on time), we obtain the so-called adhesion
approximation [16], [6,32]:
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w ¼ hðtÞu; hðtÞ ¼ 4πGρH
b

ḃ
;

b̈þ 2Hḃ − 4πGρHb ¼ 0: ð54Þ

This approximation is supposed to be valid in the weakly
nonlinear regime with pressure, before any shell-crossing
singularities appear. Injecting this approximation into the
EJN system (11), along with the expression (49) for the
pressure term, changing the time variable to b and rescaling
the peculiar velocity as ũ ¼ u1=aḃ, we obtain the equation:

dũ
db

¼ μðρ; tÞ ∂
2ũ
∂q21

; μðρ; tÞ ¼ 3βρ2H;0ð1þ δÞ b

a4ḃ2
: ð55Þ

The coefficient μ formally plays the role of a time and
density-dependent viscosity term, although the equations
are fully time reversible. If μ is high enough, the viscosity
term in the above equation can prevent the system from
developing shell-crossing singularities. Setting μ as con-
stant, the above equation is Burgers’ equation, which
solutions are known analytically [33]. Using the Cole-
Hopf transform

ũ ¼ −2μ
∂

∂q1
lnϕ; ð56Þ

Burgers’ equation (with periodic boundary conditions)
turns into a heat equation for ϕ,

∂ϕ

∂b
¼ μ

∂
2ϕ

∂q21
: ð57Þ

This equation can be solved using Fourier analysis, and
then inverting the Cole-Hopf transform leads to the general
solution of (55) with constant viscosity and initial condition
ũð0; q1Þ ¼ Ũðq1Þ:

ũðq1; bÞ ¼ −2μ
∂

∂q1
lnA

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πμb

p
Z

∞

−∞
expBds;

B ¼
�
−
ðq1 − sÞ2

4μb
−
1

2

Z
s

0

ŨðξÞdξ
�
: ð58Þ

In order to study the constant μ approximation (which was
the assumption in the adhesion approximation), we will
solve numerically Eq. (55), however, taking into account
the time dependence of μ. The spatial dependence (coming
from δ) will not be considered for the time being. In this
approximation, the viscosity coefficient μðtÞ reads

μðtÞ ¼ 3βρ2H;0
b

a4ḃ2
: ð59Þ

To compute this quantity, we need to provide the evolution
of parameters a and b along with their derivatives. In a flat
universe (with no curvature) and with the constraint that
aðtiÞ ¼ bðtiÞ ¼ 1 where ti is the initial time, these read [34]

aðτÞ ¼ r1=3sinh2=3ðωτÞ; ð60aÞ

hðτÞ ¼ 1

a
da
dτ

¼ 2ω

3

1

tanhðωτÞ ; ð60bÞ

bðτÞ ¼ 5

6

r1=3ffiffiffi
x

p Bx

�
5

6
;
2

3

�
; ð60cÞ

db
dτ

ðτÞ ¼ 5

2
r4=3

h
a3

ffiffiffi
x

p �
x5=6ð1 − xÞ−1=3 − 1

2
Bx

�
5

6
;
2

3

��
;

ð60dÞ
where r ¼ 8πGρH;i=Λ is the matter to dark energy ratio in
the Universe at initial time, τ ¼ Hit, and where Hi is the
initial value of the Hubble parameter, ω ¼ ffiffiffiffiffiffi

3Λ
p

=2Hi, and
x ¼ 1=ð1þ ra−3Þ. Bxða; bÞ denotes the incomplete beta
function,

Bxða; bÞ ¼
Z

x

0

ta−1ð1 − tÞb−1dt: ð61Þ

From now on, we will denote with an overdot the
derivative with respect to τ. With values of cosmological
parameters at present time taken from [35], we derive their
values at the initial time, chosen at the time of recombi-
nation,

Hi ¼ 1.357 × 106 km s−1Mpc−1;

Ωi;Λ ¼ 2.49 × 10−9; Ωi;m ¼ 1 − Ω0;Λ; ð62Þ

the obtained evolution of a, b and their derivatives is
represented in Figs. 1 and 2, for t∈ ½0; 2t0�. As expected, we

FIG. 1. Evolution of the parameters a and b from 0 to 2t0.
Values of cosmological constants are taken from [35].
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see that b ∼ a ∼ t2=3 (as in an Einstein–de Sitter universe
model) for a ≪ 1, and that b converges to a finite value
when a ≫ 1, whereas a grows exponentially due to the
dark energy term.

D. Numerical simulation results

In order to compare the different approximations that
were made above with the exact solution of the non-
perturbative equation (50), we numerically integrate it and
compare the predicted evolution at different times with
the various approximations. All simulations start from
the time of recombination, where the scale factor is taken
to be unity. Every equation is integrated using implicit
second-order finite-differences schemes [33]. We first
integrate both the exact and the linearized versions
of Eq. (50) in Lagrangian coordinates (recall that the
overdot is merely a partial time derivative). The resulting
P1ðX1; tÞ is then mapped to Eulerian Hubble-comoving
space as P1ðq1; tÞ ¼ P1ðX1 þ P1ðX1; tÞ; tÞ for later com-
parison with the other simulations. Initial conditions are
P1ðX1; tiÞ ¼ 0 in order to match the requirement
XðtiÞ ¼ xðtiÞ, and Ṗ1ðX1; tiÞ ¼ UðX1Þ, where U is the
initial peculiar-velocity field. Boundary conditions are
assumed periodic.
Then, Burgers’ equation with time-dependent viscosity

(55) is integrated in Eulerian Hubble-comoving coordi-
nates, where the total derivative db reads db ¼ ∂b þ ũ=a∂q1 .
Initial conditions are ũðq1; tiÞ ¼ Ũðq1Þ and boundary
conditions are assumed periodic. Finally, the same pro-
cedure is applied to solve Burgers’ equation with constant
viscosity, where the value of μ is taken as the average value
of the time-dependent viscosity coefficient over the inte-
gration interval. However, there is always a degree of
freedom in the definition of μ, as the constant β is a priori
unknown. In our simulations, the value of β will be

manually adjusted so that Burgers’ solution coincides best
with the exact solution.
The integration time interval is the same for all the

simulations. Its end is determined by the time when δ
locally reaches a magnitude that renders the nonlinear term
in (50) divergent. In order to realize shell crossing for some
coherence scale, the initial peculiar-velocity profile is taken
of the simple form

Ũðq̂Þ ¼ sin

�
2πq̂
L

�
; ð63Þ

where Ũ; q̂ and L are the dimensionless initial peculiar
velocity, spatial coordinate and length of the spatial domain
of the simulation (see Appendix B for the definition of the
dimensionless variables).

1. Comparison of the different approximations

First, all of the equations are integrated over a spatial
domain of length L ¼ 1, from a scale factor a − 1 ¼ 0 to a
scale factor a − 1 ¼ 1.01 × 10−3. The value of β̃ (see
Appendix B) was adjusted to β̃ ¼ 1.5 × 10−2 such that
all approximations agree best with the exact integration.
Figure 3 shows the results obtained for the perturbation
field, the peculiar velocity, and the density contrast right
before shell crossing happens (note the almost vertical
tangent of the exact peculiar-velocity field), around q̃ ¼ 0.5
where the deviations between both models are the largest.
A first observation to make is that the results obtained

within the adhesion approximation and Burgers’ equation
are almost identical either with variable or average viscos-
ity. However, no conclusion can be drawn here, as the time
interval of the simulation is so small that the viscosity
parameter μðtÞ almost does not change at all during that
interval. The bottom-right panel of Fig. 3 shows the local
error ϵ ¼ Pexact − Papprox between each approximation of
the perturbation field and its exact solution. Overall, all
three approximations are accurate within a local error under
1% almost everywhere. However, the Lagrange-linear
approximation astonishingly exhibits a smaller error than
that of the adhesion approximation, which may show that
the restricting assumptions underlying the latter are
stronger than those of the “mere” Lagrange linearization
of the exact equation (50). To reduce the number of
approximations made in this case, one may try to use
the divergence equation (11d) with the slaving condition
(53) to write δ as a function of u, leading to the
conservation law,

∂ũ
∂b

¼ ∂

∂q

�
μðtÞ ∂ũ

∂q
−
1

2
ũ2 −

μðtÞb
2

�
∂ũ
∂q

�
2
�
; ð64Þ

instead of Burgers’ equation. The added nonlinearity might
help improve the description of shell crossing, which is

FIG. 2. Evolution of the parameters h ¼ ȧ=a and ḃ=b from 0 to
2t0. Values of cosmological constants are taken from [35].
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where all the approximations appear to break down, as
shown by the density contrast plots.

2. Impact of the cloud’s initial parameters

The value of the dimensionless parameter β̃ entering in
all the collapse equations plays a significant role for the
timescale of the collapse. Indeed, β̃ is linked to the cloud’s
initial Jeans’ length and density via

β̃ ¼ 3βρH;i

4πGL2
J;i
; ð65Þ

which means that large values of β̃ correspond to denser
clouds, which should therefore collapse faster than larger
and more dilute ones. Figure 4 shows the perturbation and
density contrast fields obtained with the Lagrange exact
model, integrated from a − 1 ¼ 0 to a − 1 ¼ 1.4 × 10−1,
with the parameter β̃ ranging from 1 × 10−3 to 1 × 10−2. It
appears clearly that the smaller the value of β̃, the later shell
crossing happens, with the maximum density contrast
decreasing with decreasing β̃.
In order to study this dependence in more detail, we

integrate the Lagrange exact model until shell crossing with

0.4 0.45 0.5 0.55 0.6
−1.5
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−0.5

0

0.5

1
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q̃

P̃
[×
10
]
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BAM

0.4 0.45 0.5 0.55 0.6
−1

−0.5
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1
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ũ

LEX
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BVM
BAM

0.4 0.45 0.5 0.55 0.6
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3

4

q̃
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BVM
BAM

0.4 0.45 0.5 0.55 0.6

−10

−5

0
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q̃

[×
10

3
]
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BAM

FIG. 3. Comparison of the three different approximations with the exact solution of Eq. (50). We adjusted β̃ ¼ 1.5 × 10−2 such that all
approximations agree best with the exact integration. Top left: rescaled perturbation P̃. Top right: rescaled peculiar velocity ũ. Bottom
left: density contrast δ (exact). Bottom right: error P̃exact − P̃approx. LEX ¼ Lagrange exact; LLN ¼ Lagrange linear; BVM ¼ Burgers’
equation with time-dependent viscosity; BAM ¼ Burgers’ equation with average viscosity.
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varying values of β̃ within 10−7 and 10−1. Figure 5 shows
the scale factor at which shell crossing happens for each
value of β̃ on a semilogarithmic scale. For very low values
of β̃, the effect of velocity dispersion is completely
negligible and the cloud collapses as in the dust model,
which results in a constant value of a at shell crossing.
The asymptotic value of a is in agreement with the value
a − 1 ¼ 1.792ð2Þ × 10−1 obtained when taking β̃ ¼ 0.
Higher values of β̃ lead, however, to an earlier shell
crossing, which confirms the qualitative observations made

in Fig. 4. Our numerical integration code did not allow us to
explore values of β̃ greater that 10−1.
Another important parameter is the initial size, L, of the

cloud. Indeed, smaller clouds should collapse faster than
larger ones. Figure 6 shows the perturbation and density
contrast fields obtained with the Lagrange exact model,
integrated from a − 1 ¼ 0 to a − 1 ¼ 1.6 × 10−1, with the
parameter β̃ ¼ 10−3, for various initial cloud sizes. In the
plots, the domain size has been rescaled to fit within
q∈ ½0; 1� so that the results can be compared. Clearly, shell
crossing happens later the larger the cloud. In order to
quantify this dependence, we integrate the Lagrange exact
model until shell crossing with various initial domain sizes
L∈ ½1; 100� for different values of β̃. Figure 7 shows the
scale factor at which shell crossing happens for each value
of L on a logarithmic scale. It appears that, for both small
and large values of L, the dependence is of power-law type,
with the impact of β̃ being mostly relevant for small
clouds. A power law of the form a − 1 ¼ a0Lr is then
fitted to the obtained data for both L∈ ½1; 5� and
L∈ ½40; 100�, for each value of β̃. Results are gathered
in Table I. All values of β̃ lead to similar L dependence,
with an exponent of r ≈ 1.2 for small clouds and r ≈ 1 for
large clouds. For the latter, the behavior becomes inde-
pendent of the value of β̃. This indicates that the effect of
velocity dispersion is mostly significant in small matter
clouds, and tends to be negligible in larger ones. In small
clouds, the effect of velocity dispersion can be seen in the
prefactor a0, which decreases rapidly with increasing β̃.

FIG. 5. Scale factor at shell-crossing time for various values of
the β̃ dimensionless parameter.

FIG. 4. Perturbation and density contrast fields obtained for various values of the dimensionless parameter β̃ at a scale factor
a − 1 ¼ 1.4 × 10−1. Plots with β̃ ¼ 0 are added for reference and correspond to the dust model.
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However, no clear analytical dependence between a0 and β̃
can be inferred from the available data. Also, our current
numerical simulation does not allow us to gather data for
very large clouds L≳ 100.

V. THREE-DIMENSIONAL GRAVITATIONAL
COLLAPSE WITH VELOCITY DISPERSION

In this section we aim at extending the results previously
obtained in the plane-symmetric case to a more general case
without any particular symmetry, in the spirit of [36].

A. Maximal anisotropy and estimate
of importance of derivatives

Three-dimensional collapsing fluids were first under-
stood in the case of spherically symmetric systems, which
allowed for nonlinear analytical developments. However,
the work of Zel’dovich (e.g., among many others, [10,11])
has shown that these systems are not spherically symmetric,
but instead pancakelike, exhibiting maximal anisotropy
in one particular direction. Another way of saying this
is to consider the scalar invariants of the Lagrangian
perturbation tensor Pijj (that have been defined previously).
Maximal anisotropy implies that this tensor has one domi-
nating eigenvalue, which wemay call λ1: λ1 ≫ λ2; λ3, which
implies that the first scalar invariant is dominating the other
two: I ≫ II, III, see the appendix of [37] for a recent
collection of arguments and numerical tests.
This approximation only takes into account the qualita-

tive kinematics of the collapse, without any consideration
on the magnitude of the individual coefficients Pijj.
However, it can be shown in the context of general
relativity that both the perturbation gradient Pijj and its
first derivatives Pijjk, respectively related to the perturba-
tions of the three-metric gij and the spatial connection
coefficients Γi

jk, can be considered small in regular systems
(i.e., without singularities) [38]. However, the second

FIG. 6. Perturbation and density contrast fields obtained for various initial domain sizes L with the parameter β̃ ¼ 10−3 at a scale
factor a − 1 ¼ 1.6 × 10−1.

FIG. 7. Scale factor at shell-crossing time for various initial
cloud sizes L. Dashed lines correspond to the fitted power laws
for choices of β̃ whose parameters are given in Table I.

TABLE I. Power law coefficients for the dependence of the
shell-crossing time on the initial cloud size L.

β̃

L∈ ½1; 5� L∈ ½40; 100�
a0 r a0 r

0 0.172(9) 1.24(4) 0.3(1) 1.04(7)
10−2 0.13(1) 1.26(5) 0.29(9) 1.06(7)
10−1 0.107(8) 1.23(5) 0.25(3) 1.08(3)
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derivatives (related to the spatial curvature) are not typically
small in those systems. Although in Newtonian cosmology
spacetime is flat, the analogy and the two-scale argument
of [38] prevails algebraically in the Lagrangian represen-
tation of the Newtonian system with the Lagrangian metric,
gkl ¼ δijfijkfjjl, and the same arguments allow to estimate
the smallness in magnitude of the different levels of
derivatives. The reader may consult the explicit presenta-
tion of this correspondence in [39].
Taking into account both of these approximations

(i.e. the perturbation gradient itself and its first derivatives
are small), one can simplify the expressions involved in
Eq. (29) by neglecting all nonlinear terms in the perturba-
tions or their first derivatives, along with terms proportional
to II and III, but keeping second derivatives.

B. Field equations

Using the hypotheses made above, the remaining terms
involved in (29) read

J¼ a3ð1þ IÞ ¼ a3ð1þPkjkÞ; ð66aÞ

J ðJ; fi; fjÞ ¼ a5ϵkijIjk; ð66bÞ

J ðJ ðJ; fi; fjÞ; fi; fjÞ ¼ 2a7Ijkk; ð66cÞ

ϵkijJ ðf̈k; fi; fjÞ ¼ 6
ä
a
a3ð1þ IÞ þ 4Ha3İþ 2a3̈I:

ð66dÞ

Moreover, considering that the anisotropy Δij is bound to
the same level of approximation imposed on the whole
perturbation gradient, the last term evaluates to

ϵkijϵpqrJ ðJ ðΔkp; fq; frÞ; fi; fjÞ ¼ 4a4Δkpjpk: ð66eÞ
Injecting all the above expressions into the field equa-
tion (29b), one obtains

3
ä
a
þ 2H

İ
1þ I

þ
̈I

1þ I
−
α0

a2
Ijkk

ð1þ IÞ3 þ
a
CH

Δkpjpk
1þ I

¼ Λ − 4πG

�
CH

a3ð1þ IÞ þ 3pH

�
: ð67Þ

Injecting Friedmann’s equation (41) and linearizing with
respect to I then yields

̈Iþ 2Hİ − 4πG
CH

a3
I ¼ α0

a2
ð1 − 2IÞ∇2

0Iþ
a
CH

Δkpjpk: ð68Þ

The form of this equation is reassuring, as the left-hand side
is the well-known time-derivative operator appearing in
every perturbative development discussed in Sec. IVA.
The Laplacian term on the right-hand side is also the same
as in Lagrangian-linear perturbation theory, reminiscent

of Eq. (37). The remaining term encodes the effects of the
anisotropy of the velocity dispersion. It is to be noted
though, that the Lagrangian Laplacian appearing in the
right-hand side is only Lagrangian due to the linearization
in the first invariant I and its gradient. Quadratic terms in I
and all Lagrange-nonlinear terms neglected above sum up
to the full Eulerian Laplacian.
Now we proceed by determining equations of state for

the isotropic pressure p and the anisotropic dispersion
Δij, in the form p ¼ αðρÞ and Δij ¼ βijðρ; vÞ. The (full)
velocity field v, being the source of anisotropy in the
system, the anisotropic part of the velocity dispersion
tensor must be a function of the latter, and not only of the
density. At this point it is useful to introduce the kinematic
decomposition of the full Eulerian velocity gradient vi;j:

vi;j ¼
1

3
θδij þ σij þ ωij; ð69Þ

where θ ¼ vk;k ¼ −ρ̇=ρ is the rate of expansion, σij the
shear tensor (symmetric and traceless) and ωij the vorticity
tensor (antisymmetric). Using the definition (9a) of the
peculiar velocity, we can write this decomposition for the
peculiar velocity as

1

a
∂ui
∂qj

¼ 1

3
ðθ − 3HÞδij þ σij þ ωij: ð70Þ

Injecting this decomposition into the Euler-Jeans equa-
tion (11c), we obtain

d
dt

ðpδij þ ΔijÞ þ
5

3
θðpδij þ ΔijÞ ¼ −2½pσij þ σikΔkj�:

ð71Þ

Taking the trace of this equation and taking into account
that both σij and Δij are traceless yields

3
ṗ
p
þ 5θ ¼ −2σikΔki: ð72Þ

This has once again the expected form, leading in the
isotropic limit Δij ¼ 0 to the classical polytropic solution
p ∝ ρ5=3 reminiscent of an adiabatic ideal gas, which is a
correct analogy if we consider our system as a dilute fluid
of massive particles, the difference being the kinetic
pressure source which does not originate from collisions
between particles but from (isotropic) velocity dispersion.
However, here the anisotropic part of the velocity
dispersion has a feedback effect on the isotropic pressure,
which alters the equation of state and makes p become also
velocity dependent (via the shear tensor).5

5With Eq. (72) we also recover the equation of state of the
background dispersion for vanishing shear [40], [17].
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Here, in accordance with our approximation that the
perturbation gradient Pijj is small, we make the approxi-
mation that the peculiar velocities are small, which in turn
implies that also both the shear and the anisotropic velocity
dispersion are small. Keeping only order 1 terms in both σij
and Δij in the previous equations leads to

d
dt

ðpδij þ ΔijÞ þ
5

3
θðpδij þ ΔijÞ ¼ −2pσij; ð73aÞ

ṗ
p
þ 5

3
θ ¼ 0; ð73bÞ

and the trace equation is immediately solved by p ¼ κρ5=3,
where κ can be set constant with appropriate initial
conditions. Injecting back this solution into the first
equation then yields

Δ̇ij þ
5

3
θΔij ¼ −2κρ5=3σij: ð74Þ

It is interesting here to see that Δij indeed depends on the
total velocity field v, and not only on the peculiar velocity,
despite the Hubble velocity being isotropic. For the sake of
consistency, we translate this equation into the Lagrangian
picture. Using the integrals (23) for ρ and v, we obtain the
following expressions:

θ ¼ J̇
J
; ð75aÞ

p ¼ κ
CH

J5=3
; ð75bÞ

σij ¼
1

4J

�
ϵjklJ ðḟi; fk; flÞ þ ϵiklJ ðḟj; fk; flÞ

�
: ð75cÞ

Within our approximations on the importance of different
levels of derivatives, these reduce to

θ ¼ 3H þ İ; ð76aÞ

p ¼ C5=3
H

a5

�
1 −

5

3
I

�
; ð76bÞ

σij ¼
1

2
ðṖijj þ ṖjjiÞ −

1

3
İδij; ð76cÞ

and we are finally left with the following system:

̈Iþ 2Hİ − 4πG
CH

a3
I ¼ 5

3

κC2=3
H

a4

�
1 −

8

3
I

�
∇2
0Iþ

a
CH

Δkpjpk;

ð77aÞ

Δ̇ij þ 5HΔij ¼ −
κC5=3

H

a5

�
Ṗijj þ Ṗjji −

2

3
İδij

�
: ð77bÞ

Yet this system is not closed, as it contains nine unknowns
(three coefficients of the perturbation vector P and six co-
efficients of the symmetric anisotropic velocity dispersion
tensor) and only eight equations [one scalar equation (77a),
six equations (77b) plus the traceless condition on Δij].
In order to close the system, one may use the first set of
Lagrangian equations (29a), which gives three more
equations in the form

∇0 ×

�
P̈þ 2HṖþ a

CH
∇0 · Δ

�
¼ 0: ð77cÞ

This set of equations can be viewed as evolution equations
for the whole perturbation gradient tensor Pijj, decomposed
into its trace, traceless symmetric and antisymmetric parts.
Using the notations of [30] in the GR setting, we write the
Lagrange-Newton counterpart,

Pijj ¼
1

3
Pδij þSij þPij; ð78Þ

where we defined P ¼ Pkjk ¼ I, Sij ¼ PðijjÞ − P=3δij and
Pij ¼ P½ijj�. The previous equations then finally read

P̈þ2HṖ−4πGρHP¼ 5

3

κρ2=3H

a2

�
1−

8

3
P

�
∇2
0P

þ 1

a2ρH
Δkpjpk; ð79aÞ

κρ5=3H Ṡij þ Δ̇ij þ 5HΔij ¼ 0; ð79bÞ

ϵijk

�
P̈kjþ2HṖkjþ

1

a2ρH
Δkpjpj

�
¼ 0: ð79cÞ

C. Discussion

Looking at the previous set of equations governing the
evolution of the perturbation gradient, it is interesting to
note the similarity with the plane-symmetric case, and in
particular Eqs. (45) and (50). Indeed, linearizing the former
with respect to P1; P1j1 and P1j11 as prescribed by the
GR analogy, we recover an equation much similar to (79a).
The main difference between the two comes from the
equation of state, which for the plane-symmetric case was
p ∝ ρ3 and in the approximate 3D case is p ∝ ρ5=3. This
only changes the coefficient in front of the Laplacian,
which we may call the speed of sound. Indeed, for such a
self-gravitating fluid, the speed of sound waves can be
defined as
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c2s ¼
dp
dρ

¼ α0ðρÞ ¼ 5

3
κρ2=3H ; ð80Þ

which allows to interpret Eq. (79) as a nonlinear wave
equation, rewritten in the form

P̈ −
c2s
a2

∇2
0Pþ 2HṖ − 4πGρHP ¼ 8

3

c2s
a2

P∇2
0P

þ 1

ρHa2
Δkpjpk: ð81Þ

The first two terms form the d’Alembertian of P which
drives the evolution of waves in the fluid. The other terms
are a damping term in Ṗ, source terms in P and Δ, and a
nonlinear term in P∇2

0P. The linearized trace equation thus
describes the propagation of “sound waves” in a self-
gravitating fluid with velocity dispersion. However, the
nonlinearity that appears here is a highly approximated
result where higher-order nonlinear terms in P and ∇0P
were neglected.
The other main difference with the plane-symmetric

case is that the off-diagonal terms of the perturbation
gradient are a priori nonzero. The expression for Δij is
then not immediate, and is instead given by the evolution
equation (79b). The nonzero anisotropic dispersion then
becomes a source term for the vorticity in Eq. (79c). Indeed,
one can show that the vorticity vector ωi ¼ 1=2ϵijkωkj

(where ωij ¼ v½i;j� is the vorticity tensor as defined pre-
viously) can be expressed in the linearized Lagrangian
picture as

ωi ¼
1

2
ϵijkṖkj; ð82Þ

so that Eq. (79c) reads

ω̇i þ 2Hωi þ
2

a2ρH
ϵijkΔkpjpj ¼ 0: ð83Þ

(A perturbative expansion for the vorticity field’s evolution
equation is given in [20].) Now let us look at an interesting
limiting case. Going back to our main hypothesis that the
perturbation gradient is dominated by one eigenvalue,
which can be time and space dependent, we consider that
locally, the eigendirections of the perturbation gradient and
the velocity dispersion tensor πij are coincident, so that we
can diagonalize both of them simultaneously. This way, we
can locally restrict ourselves to a case where πij is also
dominated by one eigenvalue, which physically corre-
sponds to the velocity dispersion being significant only
in the direction of the collapse. This locally 1D approxi-
mation leads to a situation that is similar to the plane-
symmetric case, where we consider the velocity dispersion
tensor to only have one significant term on its diagonal,
with all other terms being negligible along with their

derivatives. The vorticity equation then becomes the usual
linearized Kelvin-Helmholtz transport equation [7], [8],

ω̇þ 2Hω ¼ 0; ð84aÞ

which is solved by the linearized exact Cauchy integral

ω ¼ Ω
a2

; Ω ¼ ωðX; t ¼ tiÞ: ð84bÞ

VI. CONCLUSION AND OUTLOOK

In this work, the formulation of the Newtonian equations
describing a collisionless, self-gravitating fluid with veloc-
ity dispersion has been derived both in standard Eulerian
coordinates ðx; tÞ, as well as in Hubble-comoving coor-
dinates ðq; tÞ, leading to the general Euler-Jeans-Newton
system under the hypothesis of truncation of the third
reduced velocity moment. Then the Lagrangian formu-
lation of this system has been derived, leading to the
Lagrange-Jeans-Newton system, consisting of only ten
independent equations (four field equations and six evo-
lution equations for the components of Πij) instead of 14 in
the Euler-Jeans-Newton system (as Euler and continuity
equations are automatically solved in the Lagrangian
picture).6

Using the Lagrangian framework, the special case of
plane symmetry was studied, reducing the four field
equations to only one nontrivial equation for the perturba-
tion field P1. This case would describe the collapse of a
string embedded into a three-dimensional relativistic back-
ground. The remaining equation is nonlinear and does not
admit analytical solutions, but it can be linearized and then
solved analytically using Fourier analysis (see [29]). Trying
another path to approximate the solution of the general,
nonlinear equation, the adhesion approximation has been
applied to the Euler-Jeans-Newton system, resulting into
an equation for the peculiar-velocity field in the form of
Burgers’ equation, where the effective viscosity coefficient
depends on both space and time. From there, two further
approximations were made, the first being to merely get rid
of the spatial dependence and considering only a time-
dependent coefficient, and the second to consider a con-
stant coefficient, the value of which being obtained by time
averaging the previous time-dependent coefficient. The
interest of the latter approximation is the existence of
rather simple analytical solutions to Burgers’ equation with
constant coefficient. To compare these two new models to
the linearized Lagrangian equation, both the exact equation

6Both of these systems are overdetermined, but can be
rewritten (over a simply connected spatial domain) using the
gravitational potential Φ such that g ¼ −∇Φ with Φ the solution
of Poisson’s equation ∇2Φ ¼ 4πGρ − Λ instead of the gravita-
tional field equations for g, ∇ × g ¼ 0;∇ · g ¼ Λ − 4πGρ, where
the existence of Φ is ensured by Poincaré’s lemma.
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and the three approximations were integrated numerically
and results compared with each other at the time of shell
crossing. Overall, all three approximations are in good
agreement with the exact solution, but the adhesion
approximation performs a bit worse than the Lagrange-
linear approximation. This may come from the neglected
spatial dependence of the viscosity coefficient, which can
be taken into account in the form of Eq. (64). It might be
interesting to investigate numerical solutions to this
equation in order to extend the idea of the adhesion
approximation.
Investigating on the intuitive idea that the size and

density of the initial collapsing cloud has an impact on
the dynamics of the said collapse, the exact Lagrangian
equation was integrated for various initial domain sizes and
densities, and the time of first shell crossing was identified.
Results show that the crossing time expressed in terms of
the scale factor aðtÞ − 1 is, as expected, a decreasing
function of the initial density and an increasing function
of the initial size of the cloud. For very small or very large
clouds, this behavior is well approximated by a power law
of the initial cloud size, and overall exhibits a nontrivial
dependence on the dimensionless parameter β̃ linked to the
initial density. Further investigation of the parameter space
is needed to conclude on any analytical relation between
those quantities.
In the last section of this work, the Lagrangian formalism

was applied to the general case of a three-dimensional
collapsing cloud without any particular symmetry. In this
case it has been shown that the dynamics of the collapse
can be rendered locally one-dimensional using physical
considerations on the magnitude of the invariants of the
perturbation tensor. Within this approximation, rather
simple evolution equations were found for the various
kinematic parts of the Lagrangian perturbation tensor.
In particular, the equation for its trace part is similar to
the one obtained in the plane-symmetric approximation,
except for the equation of state linking the trace of the
velocity dispersion tensor to the density. An interesting
further work would be to study this equation under various
approximations. In particular, dropping the nonlinear term
and assuming a spatially constant proportionality between
P and Δijjji (which can be justified by the coinciding
eigendirections of the tensors) may open possible analytical
developments on the obtained master equation.
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APPENDIX A: PROOFS

1. Moments of the Vlasov equation

We consider the phase space density as a function of
Eulerian phase space coordinates and time, fðxi; vi; tÞ, and
we start by specifying our integration domain. We take a
domain Ωv included in the velocity phase subspace. We
first calculate the zeroth velocity moment of the Vlasov
equation, expressing the conservation of the phase space
volume [5]:

m
Z
Ωv

�
∂f
∂t

þ vi
∂f
∂xi

þ gi
∂f
∂vi

�
d3v: ðA1Þ

The first two terms are readily integrated by swapping the
integral and the differential operators:

m
Z
Ωv

∂f
∂t

¼ ∂

∂t

Z
Ωv

mfd3v≕
∂

∂t
ρ; ðA2Þ

m
Z
Ωv

vi
∂f
∂xi

¼ ∂

∂xi

Z
Ωv

mvifd3v≕
∂

∂xi
ðρv̄iÞ: ðA3Þ

In the third term, as g does not depend on the velocities, we
can take it out of the integral and use Stokes’ theorem to
write

m
Z
Ωv

gi
∂f
∂vi

¼ mgi

Z
∂Ωv

fd2Av: ðA4Þ

Now we make the physical assumption that the high-
velocity states are rare,

∀ n∈N vnfð·; ·; vÞ⟶
v→∞

0: ðA5Þ

In practice, we suppose that the phase space density is cut
off at some finite velocity that is contained in the velocity
subspace. Under this assumption, we have in particular
that, for a large enough Ωv,Z

∂Ωv
vnfd2Av ¼ 0; ðA6Þ

and the third term we were calculating vanishes, leaving the
desired continuity equation for the rest mass density ρ.
Now, we consider the first velocity moment:

m
Z
Ωv

vi

�
∂f
∂t

þ vj
∂f
∂xj

þ gj
∂f
∂vj

�
d3v: ðA7Þ

As before, the first two terms are readily integrated

m
Z
Ωv

vi
∂f
∂t

¼ ∂

∂t

Z
Ωv

mvifd3v≕
∂

∂t
ðρv̄iÞ; ðA8Þ
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m
Z
Ωv

vivj
∂f
∂xj

¼ ∂

∂xj

Z
Ωv

mvivjfd3v ≔
∂

∂xj
ðρvivjÞ: ðA9Þ

The third term can be integrated by parts:

m
Z
Ωv

vigj
∂f
∂vj

d3v

¼ mgj

Z
Ωv

vi
∂f
∂vj

d3v

¼ mgj

0
BB@
Z
∂Ωv

vifd2Av −
Z
Ωv

f
∂vi
∂vj|{z}
¼δij

d3v

1
CCA: ðA10Þ

The integrated term vanishes as f is cut off, and we are left
with

m
Z
Ωv

vigj
∂f
∂vj

d3v ¼ −gi
Z
Ωv

mfd3v ¼ −ρgi; ðA11Þ

which yields the momentum conservation equation. To
obtain the Euler-Jeans equation, we start by injecting the
Lagrangian time derivative into this equation, which yields

d
dt

ðρv̄iÞ − v̄j
∂

∂xj
ðρv̄iÞ ¼ ρgi −

∂

∂xj
ðρvivjÞ: ðA12Þ

Now, using the continuity equation,

d
dt

ρ ¼ −ρ∇ · v; ðA13Þ

we rewrite

d
dt

ðρv̄iÞ ¼ ρ
d
dt

v̄i þ v̄i
d
dt

ρ ¼ ρ
d
dt

v̄i − ρv̄i
∂

∂xj
v̄j; ðA14Þ

which leads to

ρ
d
dt
v̄i ¼ ρgi−

∂

∂xj
ðρvivjÞþvj

∂

∂xj
ðρv̄iÞþ ρv̄i

∂

∂xj
v̄j

¼ ρgi−
∂

∂xj
ðρvivjÞþ

∂

∂xj
ðρviv̄jÞ

¼ ρgi−
∂

∂xj
ðρðvivj −viv̄jÞÞ≕ρgi−

∂

∂xj
Πij; ðA15Þ

where we have defined the reduced second velocity
moment Πij ¼ ρðvi − v̄iÞðvj − v̄jÞ ¼ ρðvivj − v̄iv̄jÞ.

2. Evolution of the reduced second velocity moment

We calculate the second velocity moment of the Vlasov
equation, using the same techniques as above, and find

∂

∂t
ðρvivjÞ þ

∂

∂xk
ðρvivjvkÞ ¼ ρðgivj þ gjv̄iÞ: ðA16Þ

Reexpressing the third reduced velocity moment,

Lijk ≔ ρðvi − v̄iÞðvj − v̄jÞðvk − v̄kÞ
¼ ρðvivjvk − viv̄jv̄kÞ − ½v̄iΠjk þ v̄jΠki þ v̄kΠij�;

ðA17Þ

writing the Lagrangian time derivative of Πij,

d
dt

Πij ¼
∂

∂t
ðρvivjÞ −

∂

∂t
ðρviv̄jÞ þ v̄k

∂

∂xk
Πij; ðA18Þ

and using the previous velocity moment equations, we
arrive at

d
dt

Πij ¼ −
�
∂v̄k
∂xk

Πij þ
∂v̄i
∂xk

Πjk þ
∂v̄j
∂xk

Πki

�
−

∂

∂xk
Lijk:

ðA19Þ

3. EJN system for peculiar quantities

To show Eq. (11), we recall the expressions of the
homogeneous quantities: vH ¼ ȧq;gH ¼ äq;ρH ¼ ρH0

=a3,
and πHij ¼ pHa2δij. Injecting the decomposition (9) into
(8a), one obtains

d
dt

½ð1þ δÞρH� þ ð1þ δÞρH
�
∂vHk

∂xk
þ ∂uk

∂xk

�
¼ 0: ðA20Þ

The Lagrangian time derivative is invariant under the
transformation from inertial Eulerian to Hubble-comoving
Eulerian coordinates, so that we only have to transform
the Eulerian derivatives. Expanding the different terms, we
rewrite the above expression in the form

ρH
d
dt
δþ 1

a
ð1þδÞρH

∂uk
∂qk

þð1þδÞ
�
d
dt
ρHþρH

1

a
∂vHk

∂qk

�
¼ 0:

ðA21Þ

We now show that the bracketed term is zero, using the
expressions for ρH and vH:

d
dt

ρH þ ρH
1

a
∂vHk

∂qk
¼ d

dt

ρH0

a3
þ ρH0

a3
ȧ
a
∂qk
∂qk

¼ −3ρH0

ȧ
a4

þ 3ρH0

ȧ
a4

¼ 0: ðA22Þ

This leaves us with

d
dt

δþ 1

a
ð1þ δÞ ∂uk

∂qk
¼ 0: ðA23Þ
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Now, we move to the momentum conservation equation:

ð1þ δÞρH
d
dt

ðvHi
þ uiÞ ¼ ð1þ δÞρHðgHi þ wiÞ

−
∂

∂xj
ðπHij þ πijÞ: ðA24Þ

As before, we transform the equation into the Hubble-
comoving coordinates, and we make use of the expressions
for the background quantities. In particular, as πHij is
homogeneous, its gradient vanishes, leaving

ð1þ δÞρH
d
dt

ðȧqiÞ þ ð1þ δÞρH
d
dt

ui

¼ ð1þ δÞρHäqi þ ð1þ δÞρHwi −
1

a
∂

∂qj
πij: ðA25Þ

As an aside, we calculate

d
dt

ðȧqiÞ ¼ äqi þ ȧq̇i ¼ äqi þHui; ðA26Þ

which gives after reinjecting in the above equation

ð1þ δÞρHðäqi þHuiÞ þ ð1þ δÞρH
d
dt

ui

¼ ð1þ δÞρHäqi þ ð1þ δÞρHwi −
1

a
∂

∂qj
πij; ðA27Þ

which simplifies to

d
dt

ui þHui ¼ wi −
1

a
1

ð1þ δÞρH
∂

∂qj
πij: ðA28Þ

We continue with the evolution equation for the reduced
peculiar-velocity moment tensor πij:

d
dt

ðpHa2δij þ πijÞ ¼ −
1

a

��
ȧ
∂qi
∂qk

þ ∂ui
∂qk

�
ðpHa2δjk þ πjkÞ þ

�
ȧ
∂qj
∂qk

þ ∂uj
∂qk

�
ðpHa2δki þ πkiÞ

þ
�
ȧ
∂qk
∂qk

þ ∂uk
∂qk

�
ðpHa2δij þ πijÞ

�
: ðA29Þ

First, we can expand the lhs and use the identity ∂qjqi ¼ δij on the rhs, then expand it:

2pHȧaδij þ
d
dt

πij ¼ −
1

a

��
ȧδik þ

∂ui
∂qk

�
ðpHa2δjk þ πjkÞ þ

�
ȧδjk þ

∂uj
∂qk

�
ðpHa2δki þ πkiÞ þ

�
3ȧþ ∂uk

∂qk

�
ðpHa2δij þ πijÞ

�

−
1

a

�
5pHȧa2δij þpHa2

�
∂ui
∂qj

þ ∂uj
∂qi

þ ∂uk
∂qk

δij

�
þ 5ȧπij þ

∂ui
∂qk

πjk þ
∂uj
∂qk

πki þ
∂uk
∂qk

πij

�
: ðA30Þ

Finally, regrouping similar terms and rearranging the expression, we obtain

d
dt

πij þ 5Hπij ¼ −
1

a

�
∂ui
∂qk

πjk þ
∂uj
∂qk

πki þ
∂uk
∂qk

πij

�
− pHa2

�
1

a

�
∂ui
∂qj

þ ∂uj
∂qi

�
þ
�
1

a
∂uk
∂qk

þ 7H

�
δij

�
: ðA31Þ

The irrotationality constraint on the gravitational field
becomes

ä
a
∇q × q|fflfflffl{zfflfflffl}

¼0

þ 1

a
∇q × w ¼ 0 ⇒ ∇q × w ¼ 0; ðA32Þ

while the divergence equation becomes

ä
a
∂qk
∂qk

þ 1

a
∂wk

∂qk
¼ Λ − 4πGρHð1þ δÞ

⇔ 3
ä
a
þ 1

a
∂wk

∂qk
¼ Λ − 4πGρHð1þ δÞ; ðA33Þ

and with the Friedmannian acceleration law for the (even-
tually relativistic) background,

3
ä
a
¼ Λ − 4πGðρH þ 3pHÞ; ðA34Þ

we finally have

∂wk

∂qk
¼ 4πGað3pH − ρHδÞ: ðA35Þ

In the Newtonian case, there is no background pressure, so
one may take pH ¼ 0. Keeping terms in pH accounts for
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the relativistic pressure in the background, which may or may not be relevant. In this paper, we are eventually neglecting it
for our purpose of comparing solutions.

4. Lagrangian field equations

Proving Eqs. (25)–(27) is straightforward, making use of usual vector calculus identities and of the Lagrangian form of
the Eulerian derivative. To prove Eq. (28), we write on the one hand, using Leibniz rule,

1

2ρJ
J
�
1

J
J ðΠkp; fq; frÞ; fk; fi

�
¼ 1

2ρJ

�
1

J
J ðJ ðΠkp; fq; frÞ; fk; fiÞ −

1

J2
J ðΠkp; fq; frÞJ ðJ; fk; fiÞ

�

¼ 1

2CHJ
J ðJ ðΠkp; fq; frÞ; fk; fiÞ −

1

2CHJ2
J ðΠkp; fq; frÞJ ðJ; fk; fiÞ; ðA36Þ

writing ρ ¼ CH=J with CH ji ¼ 0. On the other hand,

−
1

2ρ2J2
J ðρ; fk; fiÞJ ðΠkp; fq; frÞ ¼ −

1

2C2
H
J
�
CH

J
; fk; fi

�
J ðΠkp; fq; frÞ

¼ 1

2CHJ2
J ðJ; fk; fiÞJ ðΠkp; fq; frÞ; ðA37Þ

so that these terms cancel out with the second term of the first expression, leaving only the desired terms in (28). To prove
(29) from there, we expand Πkp ¼ pδkp þ Δkp and make use of the properties of contracted Levi-Civita tensors, to obtain

1

J
J ðf̈k; fk; fiÞ þ

1

2CHJ
ϵkqrJ ðJ ðp; fq; frÞ; fk; fiÞ þ

1

2CHJ
ϵpqrJ ðJ ðΔkp; fq; frÞ; fk; fiÞ ¼ 0; ðA38Þ

1

2J
ϵkijJ ðf̈k; fi; fjÞ þ

1

2CHJ
J ðJ ðp; fi; fjÞ; fi; fjÞ þ

1

4CHJ
ϵkijϵpqrJ ðJ ðΔkp; fq; frÞ; fi; fjÞ ¼ Λ − 4πGρ: ðA39Þ

The first and last terms of each equation are already those that appear in (29), so that we are only interested in the terms
involving p. The one in the first equation can be shown to be zero. Indeed, using the equation of state p ¼ αðρÞ,

1

2CHJ
ϵkqrJ ðJ ðp; fq; frÞ; fk; fiÞ ¼

1

2CHJ
ϵkqrJ ðα0J ðρ; fq; frÞ; fk; fiÞ

¼ 1

2CHJ
ϵkqr½α0J ðJ ðρ; fq; frÞ; fk; fiÞ þ α00J ðρ; fq; frÞJ ðρ; fk; fiÞ�; ðA40Þ

and by antisymmetry properties, the last term in the brackets is zero. For the first term, we rewrite

α0

2CHJ
ϵkqrJ ðJ ðρ; fq; frÞ; fk; fiÞ ¼

α0

2J
ϵkqrJ

�
J
�
1

J
; fq; fr

�
; fk; fi

�

¼ α0

2J
ϵkqr

�
−

1

J2
J ðJ ðJ; fq; frÞ; fk; fiÞ þ

2

J3
J ðJ; fq; frÞJ ðJ; fk; fiÞ

�
: ðA41Þ

Here, we can again use the antisymmetry properties to get rid of the last term, but we may actually keep a part of it, to put the
remaining terms into the form

α0

2CHJ
ϵkqrJ ðJ ðρ; fq; frÞ; fk; fiÞ ¼ −

α0

J
ϵkqr

�
1

2J2
J ðJ ðJ; fq; frÞ; fk; fiÞ −

1

2J3
J ðJ; fq; frÞJ ðJ; fk; fiÞ

�
; ðA42Þ

where the bracketed term is the Lagrangian form of the vector identity ∇ × ∇J ¼ 0, hence the first equation of (29) is
proven.
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For the second equation, the proof is straightforward:

1

2CHJ
J ðJ ðp; fi; fjÞ; fi; fjÞ ¼

1

2CHJ
½α0J ðJ ðρ; fi; fjÞ; fi; fjÞ þ α00J ðρ; fi; fjÞJ ðρ; fi; fjÞ�

¼ 1

2CHJ

�
α0J

�
J
�
CH

J
; fi; fj

�
; fi; fj

�
þ α00J

�
CH

J
; fi; fj

�
J
�
CH

J
; fi; fj

��

×
1

2CHJ

�
Cα0

�
−

1

J2
J ðJ ðJ; fi; fjÞ; fi; fjÞ þ

2

J3
J ðJ; fi; fjÞJ ðJ; fi; fjÞ

�

þ α00C2
H

J4
J ðJ; fi; fjÞJ ðJ; fi; fjÞ

�

¼
�
CHα

00

2J5
þ α0

J4

�
J ðJ; fi; fjÞJ ðJ; fi; fjÞ −

α0

2J3
J ðJ ðJ; fi; fjÞ; fi; fjÞ: ðA43Þ

5. 1D isotropic pressure

We wish to prove the stated solution of Eq. (48). We
postulate a solution of the form π11 ¼ βaμργ , with β an
arbitrary constant. We then have

∂π11
∂t

¼ βaμργ−1
�
μρH þ γ

∂ρ

∂t

�
ðA44Þ

∂π11
∂q1

¼ βγaμργ−1
∂ρ

∂q1
: ðA45Þ

We also recall the continuity equation

∂ρ

∂t
þu1

a
∂ρ

∂q1
¼−

ρ

a
∇q · ðȧqþuÞ ¼−3ρH−

ρ

a
∂u1
∂q1

: ðA46Þ

Injecting everything into Eq. (48), we obtain

ð5þ μ − 3γÞρH þ ð3 − γÞ ρ
a
∂u1
∂q1

¼ 0; ðA47Þ

which is generally satisfied only for γ ¼ 3 and μ ¼ 4.

6. Expressions for a and b

We start by rewriting Friedmann’s equation (restricted to
vanishing background pressure pH) in the adimensional
form,

ä ¼ −
Ω0

m

2a2
þ Ω0

Λa; ðA48Þ

where Ω0
m ¼ 8πGρH;0

3H2
0

and Ω0
Λ ¼ Λ

3H2
0

are the matter and dark

energy density parameters at the present time in the FLRW
universe model, and the overdot now denotes the derivative
with respect to τ. One can easily verify that the given
expression for aðτÞ satisfies this equation. We then
obtain h by differentiation. Now, starting from the equation
for b in (54), and using a as a new time variable

(differentiation with respect to a is denoted by a 0), we
can rewrite

ȧ2b00 þ
�
äþ 2

ȧ2

a

�
b0 −

3Ω0
m

2a3
b ¼ 0: ðA49Þ

Integrating Friedmann’s equation in the absence of curva-
ture allows to write ȧ2 as a function of a,

ȧ2 ¼ Ω0
m

a
þΩ0

Λa
2; ðA50Þ

which can then be injected, along with Friedmann’s
equation, into the previous equation for b, yielding

b00 þ 3ðr0 þ 2a3Þ
2aðr0 þ a3Þ b

0 −
3r0

2a2ðr0 þ a3Þ b ¼ 0; ðA51Þ

where we introduced r0 ¼ Ω0
m=Ω0

Λ. This equation admits
non-Liouvillian solutions that can be written in terms of the
hypergeometric function 2F1. The change of dependent
variable

y ¼ b exp

�Z
3ðr0 þ 2a3Þ
4aðr0 þ a3Þ da

�

¼ ½a3ða3 þ r0Þ�1=4bðaÞ ¼
�

r2x
ð1 − xÞ2

�
1=4

bðxÞ ðA52Þ

maps the above equation to its so-called “normal form,”

y00 ¼ I1ðxÞy I1ðxÞ ¼
3ð4a6 þ 20a3rþ 7r2Þ

16a2ða3 þ rÞ2 ; ðA53Þ

where I1ðxÞ is called the invariant of the equation. Two
equations such as (A51) can be mapped onto each other if
their normal form coincides after a change of independent
variable ξ ¼ ak. To simplify the calculations, we look for
the exponent k such that the exponents found in the
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numerator of the invariant of the transformed equation,
I0ðξÞ, are the lowest integers possible. In our case, we make
the transformation ξ ¼ a3, resulting in

I0ðξÞ ¼ −
20ξ2 þ 4r0ξþ 11r20
144ξ2ðξþ r0Þ2

: ðA54Þ

The hypergeometric equation,

xðx − 1Þy00 þ ½ðμþ νþ 1Þx − σ�y0 þ μνy ¼ 0; ðA55Þ

admits the normal form (also known as Q-form)

y00

y
¼ ½ðμ− νÞ2 − 1�x2 þ 2½2μν− ðμþ ν− 1Þσ�xþ σðσ − 2Þ

4x2ðx− 1Þ2 :

ðA56Þ

We now look for a Möbius’ transformation of the inde-
pendent variable

x ¼ αξþ β

γξþ δ
; ðA57Þ

mapping the invariant of the hypergeometric equation,
I
2
F1
ðxÞ to I0ðξÞ. After the transformation, one can write

I
2
F1
ðξÞ ¼ ω2ξ

2 þ 2ω1ξþ ω0

ðσ1ξþ σ2Þ2ðσ3ξþ σ4Þ2ðσ5ξþ σ6Þ2
; ðA58Þ

where

ω0 ¼ Δ2ðβ2Aþ 2βδBþ δ2CÞ ðA59aÞ

ω1 ¼ Δ2ðαβAþ ðαδþ βγÞBþ γδCÞ ðA59bÞ

ω2 ¼ Δ2ðα2Aþ 2αγBþ γ2CÞ ðA59cÞ

σ1 ¼ α; σ2 ¼ β ðA59dÞ

σ3 ¼ γ; σ4 ¼ δ ðA59eÞ

σ5 ¼ α − γ; σ6 ¼ β − δ ðA59fÞ

Δ ¼ αδ − βγ ðA59gÞ

A ¼ 1

4
½ðμ − νÞ2 − 1� ðA59hÞ

B ¼ 1

4
½2μν − ðμþ ν − 1Þσ� ðA59iÞ

C ¼ 1

4
σðσ − 2Þ: ðA59jÞ

We first identify the poles of both invariants, which yields
the coefficients of the Möbius transform:

x ¼ ξ

ξþ r0
: ðA60Þ

Then we inject these values in the coefficients ωi of the
numerator, and we find the possible hypergeometric coef-
ficients:

μ ¼ 5

6
; ν ¼ 1

3
; σ ¼ 11

6
: ðA61Þ

The solutions of this hypergeometric equation then yield
the solution of (A51) by reverting all the transformations.
Solutions satisfying the correct boundary condition
bða → 0Þ ∼ a and lima→∞ b < ∞ yield both growing
and decaying modes:

b− ¼ ðr0xÞ−1=2 ðA62aÞ

bþ ¼ 5

6

r1=30 ffiffiffi
x

p Bx

�
5

6
;
2

3

�
: ðA62bÞ

APPENDIX B: NUMERICAL METHODS

1. Adimensional equations

In all the following, the overdot denotes the derivative
with respect to the rescaled time variable τ ¼ Hit.

a. 1D master equation

In order to adimensionalize Eq. (50), we define the
following rescaled quantities:

P̃ ¼ P1

Li
J
; X̃ ¼ X1

Li
J
; β̃ ¼ β

β0
; Li

J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3β0ρH;i

4πG

r
:

ðB1Þ

The scaling factor Li
J is the Jeans length of the system at

initial time. Although β is a constant, it is not dimensionless
and is a priori unknown, giving a degree of freedom in the
global magnitude of the viscosity. To emphasize this
arbitrary choice, we split β into its dimensional value β0
and a dimensionless coefficient β̂. In these new variables,
Eq. (50) reads

∂
2P̃
∂τ2

þ 2h
∂P̃
∂τ

−
σ

a3
P̃ ¼ −β̃

σ

a4
∂
2P̃

∂X̃2

�
1þ ∂P̃

∂X̃

�
−4
; ðB2Þ

where σ ¼ 3Ωi
m=2. The parameters a and σ are determined

by the initial time τi, and the only free parameter is β̃. This
equation is of second order in time, and although it might
be integrated numerically in its current form, it is easier and
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more adapted to our solver (see Appendix B 2) to rewrite it
as a system of two first order partial differential equations
(PDEs) in time. Let

ξ ¼ P̃; η ¼ ∂P̃
∂τ

; ðB3Þ

then the previous equation can be written as

ξ̇ ¼ η

η̇ ¼ −2hηþ σ

a3
ξ − β̃

σ

a4
ξ00

ð1þ ξ0Þ4 ; ðB4Þ

where an overdot denotes a partial derivative with respect to
time and a prime denotes a partial derivative with respect to
space. Note that the linearized version of this system can be
written in the matrix form,

Ż ¼
"

0 1

σ
a3

	
1 − β̃ σ

a
∂
2

∂X̃2



−2h

#
Z; Z ¼

�
ξ

η

�
: ðB5Þ

b. Burgers’ equation

In order to adimensionalize Eq. (55), we use the previous
rescaled variables, to which we add

û ¼ ũ
Li
J
: ðB6Þ

In these new variables, Burgers’ equation reads

∂û
∂b

þ û
∂û
∂q̂

¼ μ̂
∂
2û
∂q̂2

; μ̂ ¼ β̂
3Ωi

m

2
ð1þ δÞ b

a4ḃ
: ðB7Þ

The dependence in δ will be put aside in the numerical
integration of this equation.

2. Numerical scheme

Consider a generic PDE of the form

∂u
∂t

¼ LðuÞ þ NðuÞ þ g; ðB8Þ

where u is the unknown function of space and time, L is a
linear spatial differential operator acting on u, N is a
nonlinear operator acting on u (that does not imply any time
differentiation) and g is a given function of space and time.
Let Δt;Δx be the time and space steps and N, J be the
number of time and space intervals, so that the discretized
space and time variable read fxjg ¼ x0;…; xJ and ftng ¼
t0;…; tN . Let Un be the approximation of the solution at
time tn. We denote respectively by Ln, NðUnÞ and gn the
matrix representation of the linear operator L, the approxi-
mation of NðuÞ and of g at time tn, after taking into account

boundary conditions. In all the calculations, the first spatial
derivatives will be computed using a first-order centered
differences scheme and the second spatial derivatives with
the standard three-point centered differences scheme:

∂u
∂x

→
Un

jþ1 −Un
j−1

2Δx
;

∂
2u
∂x2

→
Un

jþ1 − 2Un
j þUn

j−1

Δx2
: ðB9Þ

At each time step, the evolution of u is approximated using
a second-order accurate Crank-Nicholson scheme for the
linear part of the equation, and a second-order accurate
Adams-Bashforth scheme for the nonlinear part. Taking
into account the periodic boundary conditions that sum up
to identifying x0 with xJ, we obtain the following expres-
sion at each time step:

Unþ1
J ¼ Unþ1

0 ; ðB10aÞ

Unþ1
½0∶J−1� ¼

�
1 −

Δt
2
Lnþ1

�
−1
O

O ¼
��

1þ Δt
2
Ln

�
Un

½0∶J−1� þ
Δt
2
ð3NðUn

½0∶J−1�Þ

−NðUn−1
½0∶J−1�ÞÞ þ

Δt
2
ðgnþ1 þ gnÞ

�
; ðB10bÞ

where Un
½0∶J−1� denotes the vector constituted of the first J

components of Un. The first time step cannot use a second
order Adams-Bashforth scheme for the nonlinear term, and
we therefore jump-start the solver using a simple forward
Euler scheme:

U1
J ¼ U1

0; ðB11aÞ

U1
½0∶J−1� ¼

�
1 −

Δt
2
L1

�
−1
��

1þ Δt
2
L0

�
U0

½0∶J−1�

þ ΔtNðU0
½0∶J−1�Þ þ

Δt
2
ðg1 þ g0Þ

�
ðB11bÞ

As an example, let us consider Burgers’ equation (B7),
which reads (letting all the hats down for the sake of
readability)

∂u
∂b

¼ μ
∂
2u
∂q2

− u
∂u
∂q

: ðB12Þ

Here, there is no source term hence g ¼ 0. We identify the
linear and nonlinear terms,

L ¼ μ
∂
2

∂q2
; NðuÞ ¼ −u

∂u
∂q

; ðB13Þ

and their following discrete approximation, taking into
account periodic boundary conditions, reads
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Ln ¼ μðtnÞ
Δq2

2
666666664

−2 1 1

1 . .
.

. .
. . .

. . .
.

. .
.

1

1 1 −2

3
777777775
J×J

; ðB14Þ NðUn
½0∶J−1�Þ ¼

1

2Δq

2
666666664

Un
0ðUn

J−1 − Un
1Þ

Un
1ðUn

0 −Un
2Þ

..

.

Un
J−2ðUn

J−3 − Un
J−1Þ

Un
J−1ðUn

J−2 − Un
0Þ

3
777777775
: ðB15Þ
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