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We investigate possible traces of the nuclear symmetry energy slope (L) in the gravitational wave
emission of neutron stars. For fixed stellar mass values, we examine how the slope influences the stellar
radius, compactness, the tidal deformability, the frequency of the quadrupole fundamental fluid mode, and
the damping time of the mode due to the gravitational wave emission. We demonstrate that all these
physical quantities are sensitive to the slope and could potentially impose significant constraints on it.
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I. INTRODUCTION

Our knowledge of nuclear physics has taken a great leap
forward in the last decade. However, as of today, there is a
giant fog blurring our vision of a crucial nuclear property:
the slope of the symmetry energy at the saturation point (L).
In the early 2010s, most studies pointed to a relatively low
value of L. For instance, Refs. [1–3] presented upper limits
of 54.6, 61.9, and 66MeV, respectively. However, in the last
couple of years, much higher upper limits have appeared in
the literature. For example, a study of the spectra of pions in
intermediate energy collisions pointed to an upper limit of
117.5 MeV [4], while one of the PREX2 analyses [5]
suggested even larger values. On the other hand, in a recent
paper [6] a potential conflict among these results was
highlighted: the CREX group reported a slope in the range
0 < LðMeVÞ < 51, while the PREX2 results pointed to
76 < LðMeVÞ < 165, both at the 68% confidence level.
Although there is overlapping between them at the 90% con-
fidence level [7], the PREX results are in tension with

CREX, as well as with predictions of chiral effective field
theory [5].
Owing to the potentially conflicting results obtained in

terrestrial laboratories, we turn our attention to studying
neutron stars (NSs), which may provide valuable insights.
Just like in nuclear physics, our knowledge of neutron stars
has dramatically increased in the last decade. We can
highlight the discovery of two-solar mass pulsars, such as
PSR J0348þ 0432 [8], as well as results from the NICER
x-ray telescope [9,10] and the LIGO/VIRGO gravitational
wave observatories [11–13].
In this work, we study how the symmetry energy slope

L affects some neutron star properties. To accomplish
this task, we use quantum hadrodynamics (QHD) with the
traditional σ − ω − ρ mesons [14]. Moreover, to keep
the symmetry energy fixed while varying the slope, we
use two extensions of QHD: to reduce the slope, we add
the nonlinear ω − ρ coupling as presented in the IUFSU
model [15–17], while to increase the slope, we add the
scalar-isovector δ meson [18–20]. Using two different
interactions allows us not only to understand the phenom-
enological point of view about the influence of changes in
L, but also the field theory point of view about the
influence of different fields and couplings.
We start by studying how the slope, L, affects the

classical, macroscopic mass-radius relation [16,21].
Although we demonstrate how the slope affects the entire
neutron star family, we also focus explicitly on two specific
values: the 1.4M⊙ star, which is called the canonical star,
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and the 2.01M⊙ star, which is not only the most probable
mass value of PSR J0348þ 0432 [8], but also the lower
limit of PSR J0740þ 6620, whose gravitational mass is
2.08� 0.07M⊙ [22,23]. Therefore, any equation of state
(EOS) unable to reach at least 2.01M⊙ must be ruled out.
We then analyze the influence of the slope on the

dimensionless tidal parameter Λ [21]. The tidal deform-
ability of a compact object is related to how easily the
object is deformed when subjected to an external tidal field.
A larger tidal deformability indicates that the object is
easily deformable. Conversely, a compact object with a
small tidal deformability parameter is more compact and
more difficult to deform [24]. Binary neutron star mergers,
such as GW170817 detected by the LIGO/VIRGO observa-
tories [11–13], provide us with additional information
about the neutron star’s EOS. In these types of events,
the neutron star components begin to react to their mutual
tidal fields before the merging, and this effect can be
detected in the phase modification of the gravitational wave
impinging on the detector. This tidal response strongly
depends on the neutron star EOS, and therefore important
information can be obtained about it [25–27].
Finally, neutron star oscillations can provide valuable

information about the microphysical properties of dense
matter. Awide variety of pulsation modes can be excited in
newly born compact objects, such as those associated with
the violent dynamics of core-collapse supernovae [28],
starquakes and glitches [29], accretion in a binary system,
or the rearrangement of the star following the conversion of
a hadronic star into a quark star [30,31]. Furthermore, in the
postmerger phase of a binary neutron star system, the
violent dynamics of the merging process can leave behind
a massive neutron star that strongly oscillates [32,33].
Specifically, the fundamental quadrupolar fluid mode of
the remnant is strongly excited and dominates the post-
merger gravitational wave (GW) signal.
Neutron star oscillations can be studied using the

quasinormal mode formalism [34–36]. Research conducted
over the past four decades has demonstrated that the f
mode of nonradial oscillations of neutron stars can yield
crucial insights into the internal structure of these objects.
Specifically, the frequency of this mode is highly depen-
dent on the EOS, thereby providing a valuable means of
probing the dense matter in the core of neutron stars.
Additionally, the f mode is particularly significant as it can
be more easily excited than other higher frequency modes
and can be detected by current gravitational wave detectors.
In this work we will focus on the influence of the slope, L,
on the f mode of neutron stars.

II. NUCLEAR MODEL

A. Quantum hadrodynamics

To describe the nuclear interaction, we use here an
extended version of the QHD [14], which includes the

ω − ρ nonlinear coupling [15–17], as well the scalar-
isovector δ meson [18–20]. In this study we focus on
purely nucleonic matter. The Lagrangian density in natural
units reads as follows:

LQHD ¼ ψ̄N

�
γμ
�
i∂μ− gωωμ− gρ

1

2
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�

− ðMN − gσσ− gδτ⃗ · δ⃗Þ
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2Þþ 1
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1

4
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Here, ψN is the Dirac field of the nucleons, and σ, ωμ, δ⃗,
and ρ⃗μ are the mesonic fields. The g’s are the Yukawa
coupling constants that simulate the strong interaction,MN
is the nucleon mass, andms,mv,mδ, andmρ are the masses
of the σ, ω, δ, and ρ mesons, respectively. The self-
interaction term UðσÞ, introduced in Ref. [37] to fix the
incompressibility, is given by

UðσÞ ¼ κMNðgσσÞ3
3

þ λðgσσÞ4
4

: ð2Þ

The Pauli matrices are denoted by τ⃗, and the antisymmetric
mesonic field strength tensors are given by their usual
expressions: Ωμν ¼ ∂μων − ∂νωμ, and Pμν ¼ ∂μρ⃗ν − ∂νρ⃗μ−
gρðρ⃗μ × ρ⃗νÞ. The γμ are the Dirac matrices, and Λωρ is a
nonlinear isoscalar-isovector mixing coupling that provides
a simple and efficient method of softening the symmetry
energy without compromising the success of the model in
reproducing well-determined ground-state observables [15].
The detailed calculation of the EOS in the mean field
approximation can be found in [14,15,20,38,39] and the
references therein.
The symmetry energy for symmetric nuclear matter is

defined as [18]

SðnÞ ¼ n
8

�
gρ
m�

ρ

�
2

þ k2f
6ðM�2

N þ k2fÞ1=2

−
�
gδ
mδ

�
2 M�2

N n=2
ðM�2

N þ k2fÞ½1þ ðgδ=mδÞ2AðkfÞ�
; ð3Þ

where n is the baryon number density, kf is the Fermi
momentum, m�

ρ ¼ ðm2
ρ þ 2Λωρg2ρg2ωω2

0Þ1=2 is the effective
mass of the meson ρ, M�

N ¼ MN − gσσ0 − gδτ3δ0 is the
nucleon effective mass (it is worth emphasizing that for
symmetric nuclear matter, the δ field is zero), and AðkfÞ is
given by
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AðkfÞ ¼
4

ð2πÞ3
Z

kf

0

d3k
k2

ðM�2
N þ k2Þ3=2 : ð4Þ

Finally, the slope of the symmetry energy at the
saturation point, L, is defined as

L ¼ 3n

�
∂S
∂n

�����
n¼n0

: ð5Þ

We can also define the slope for an arbitrary density, LðnÞ,
as in Ref. [40]:

LðnÞ ¼ 3n

�
∂S
∂n

�
: ð6Þ

B. Parametrization and symmetric nuclear matter

In this work, we use a slightly modified version of the
L3ωρ parametrization proposed in Ref. [41]. The model
parameters and their predictions for symmetric nuclear
matter are presented in Table I. The nuclear constraints
at saturation density, taken from two extensive review
articles [42,43], are also included in Table I. We select
the parameters ðgρ=mρÞ2, ðgδ=mδÞ2, and Λωρ in order to fix
the symmetry energy at the saturation point S0 ¼ 31.7 MeV
(which is slightly higher than the original value, S0 ¼
31.2 MeV [41]), while varying the slope L. The values of
these parameters are reported in Table II.
Figure 1 shows the symmetry energy SðnÞ and its slope

LðnÞ for densities up to twice the saturation density. We
observe that the symmetry energy behaves oppositely for
n=n0 < 1 and n=n0 > 1. Parametrizations with lower slopes
have higher values of SðnÞ for n < n0 and lower values of
SðnÞ for n > n0. This behavior is explained as follows. For
parametrizations with nonlinear ω − ρ coupling, Table II
indicates that those with lower slopes have higher values of
ðgρ=mρÞ2 and Λωρ. The first term in Eq. (3) is more relevant
at lower densities than at higher ones, owing to the fact that
at lower densities, m�

ρ ≃mρ. As the density rises, m�
ρ also

increases (due to its dependence on the ω field, which in
turn increases with the number density), consequently
causing a decrease in ðgρ=m�

ρÞ2. This decline diminishes
the impact of the first term in Eq. (3).

When we include the scalar-isovector δ meson, we
observe that the contribution of the terms with the param-
eters ðgρ=mρÞ2 and ðgδ=mδÞ2 increase as the slope of the
symmetry energy increases. In this case, we have a com-
petition between the repulsive vector ρ meson and the
attractive scalar δ meson. Since the vector field increases
with the cube of the Fermi momentum, while the scalar field
grows linearly [14], the attractive field dominates at lower
densities, while the repulsive field dominates at higher
densities. The symmetry energy at twice the saturation
density ranges from 45 MeV for a slope of L ¼ 44 to
85 MeV for a slope of L ¼ 116 MeV.

TABLE I. Model parameters used in this study and their
predictions for symmetric nuclear matter at saturation density.
The phenomenological constraints were taken from Refs. [42,43].

Parameters Constraints Our model

ðgσ=msÞ2 12.108 fm2 n0ðfm−3Þ 0.148–0.170 0.156
ðgω=mvÞ2 7.132 fm2 M�=M 0.6–0.8 0.69
κ 0.004138 K (MeV) 220–260 256
λ −0.00390 S0 (MeV) 28.6–34.4 31.7
� � � � � � B=A (MeV) 15.8–16.5 16.2

TABLE II. Model parameters selected to set the symmetry
energy at S0 ¼ 31.7 MeV.

L (MeV) ðgρ=mρÞ2 (fm2) ðgδ=mδÞ2 (fm2) Λωρ

44 8.40 0 0.0515
60 6.16 0 0.0344
76 4.90 0 0.0171
92 4.06 0 0
100 7.23 0.92 0
108 10.41 1.85 0
116 13.48 2.76 0
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FIG. 1. Symmetry energy SðnÞ and its slope LðnÞ as a function
of nucleon density up to twice the saturation density.
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For the slope at an arbitrary density, LðnÞ, we obtain
analogous results, i.e., the values of lower L0 present a
larger value of LðnÞ up to densities around 0.5n0, and then
the results are reversed. We find that the slope at n ¼ 0.5n0
is approximately the same, Lð0.5n0Þ ≈ 44 MeV. How-
ever, at twice the saturation density, the slope varies
from Lð2n0Þ ¼ 83 MeV for L ¼ 44 MeV to Lð2n0Þ ¼
412 MeV for L ¼ 116 MeV. These behaviors can be
explained by the nature of the couplings, analogous to
the behavior of the symmetry energy.

III. STELLAR STRUCTURE AND TIDAL
DEFORMABILITY

To investigate the effects of the nuclear symmetry
energy slope on neutron star properties, we obtain the
EOS of locally charge-neutral nuclear matter by including
leptons (electrons and muons) in the system. Additionally,
we assume that nuclear matter is in equilibrium under
weak interactions and that the system is at zero temper-
ature. To describe the outer crust and inner crust of the
neutron star, we utilize the Baym-Pethick-Sutherland
(BPS) EOS [44] and the Baym-Bethe-Pethick (BBP)
EOS [45], respectively. We use the BPSþ BBP EoS up
to the density of 0.0089 fm−3 for all values of L, and from
this point on, we use the QHD EOS, as suggested in
Ref. [46]. In Ref. [47], the authors compare the BPSþ
BBP crust EOS with a unified EOS. They show that for the
canonical star, there is a variation in the radius of
60 m < R1.4 < 150 m. For a radius of 13 km, this implies
an uncertainty around 1%. Once we have the crustþ core
EOS, the stellar structure is calculated by means of the
Tolman-Oppenheimer-Volkoff (TOV) equations [48]:

dp
dr

¼ −
mϵ

r2

�
1þ p

ϵ

��
1þ 4πpr3

m

��
1 −

2m
r

�
−1
; ð7Þ

dm
dr

¼ 4πr2ϵ: ð8Þ

Here, ϵ, p, and m represent the energy density, pressure,
and mass at the radial position r, respectively. We adopt
units such that G ¼ c ¼ 1.
Figure 2 displays the EOS and the TOV solutions for

different values of L. Although the EOS curves are beta
stable, while the slope LðnÞ curves are relative to sym-
metric matter, both present similar behavior; i.e., the EOS is
stiffer for low values of L up to n ≃ 0.5 n0. From this point
on, this feature is reversed, and low values of L present
softer EOS. This can be understood by expanding the EoS
of asymmetric matter in terms of its symmetric compo-
nents. Various theoretical studies (see, for instance
Ref. [49]) have shown that the energy per nucleon, E, of
asymmetric nuclear matter can be well approximated by

Eðn; αÞ ¼ Eðn; α ¼ 0Þ þ SðnÞα2 þOðα4Þ ð9Þ

in terms of the baryon number density n ¼ nn þ np, the
isospin asymmetry α ¼ ðnn − npÞ=ðnn þ npÞ, the energy
per nucleon in symmetric nuclear matter Eðn; α ¼ 0Þ, and
the bulk nuclear symmetry energy SðnÞ. The pressure is

given by p ¼ n2 ∂ðϵ=nÞ
∂n , and the energy per nucleon is related

to the energy density as E ¼ ϵ=n. Therefore,

pðn; αÞ ¼ pðn; α ¼ 0Þ þ n
3
α2LðnÞ þ n2SðnÞ ∂ðα

2Þ
∂n

þ � � �
ð10Þ

where pðn; α ¼ 0Þ is the pressure of symmetric matter.
Neglecting the variation of α2 with n, we obtain that the
lowest order correction to pðn; α ¼ 0Þ is directly related
to LðnÞ:

pðn; αÞ ≈ pðn; α ¼ 0Þ þ n
3
α2LðnÞ: ð11Þ
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FIG. 2. The figure depicts the EOS (upper panel) and mass-
radius relationship (lower panel) for different L values, along with
observational constraints mentioned in the text. In this figure, we
take M0 to represent the solar mass. The EOS curves converge at
approximately 0.5n0, where all models have the same L (see
Fig. 1). Beyond this point, a larger L results in a stiffer EOS.
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Given that the first term is the same for all choices of L, the
latter equation shows clearly why the slope LðnÞ curves
relative to symmetric matter present similar behavior to the
pressure of beta stable matter around n ¼ 0.5n0. However,
as the inner-outer core transition, around 2n0, is approached,
the curves start to converge and exhibit similar levels of
stiffness since the nuclear interaction at high density is
dominated by the ω meson. The correlation between L and
the radii of NSs (i.e., that models with larger L have larger
radii) has been well established in the literature for theω − ρ
coupling [16,21]. In our study, we show that this correlation
can also be extended to cases where the δmeson is included.
Regarding the maximum mass, it varies from 2.30M⊙ up to
2.39M⊙. Additionally, we observe that parametrizations
with smaller values of L—and therefore with the ω − ρ
coupling—exhibit slightly lower maximum masses com-
pared with those with higher slope values—and therefore
with the scalar-isovector δ coupling.
We present a comparison of our results with recent

constraints on the properties of neutron stars in Fig. 2.
One of the most significant constraints is the existence of
two-solar mass NSs, which has been well-established by
observations of pulsars such as PSR J1614 − 2230 [50],
PSR J0348þ 0432 [8], and PSR J0740þ 6620 [51].
Recent NICER observations have also constrained the
radius of PSR J0740þ 6620 to be between 11.41 and
13.69 km [23]. Another, less stringent, constraint is the
radius of the canonical 1.4M⊙ star. While Ref. [52] suggests
an upper limit of only 11.1 km, Ref. [53] raises the limit to
11.9 km. Meanwhile, two NICER teams have pointed to a
limit of 13.85 km [9] and 14.26 km [10] (68% credibility).
We adopt the larger of these values as a conservative limit on
the radius of the canonical star. These constraints are
represented by the hatched areas in Fig. 2. Notice that
the constraint on the mass and radius of PSR J0740þ 6620
is satisfied for all values of L, although for L ¼ 116 MeV,
this constraint is close to the boundary of the 68%
credibility region. Concerning the radius of the canonical
star, we observe that even though PREX2 implies that
the slope could be as high as 143 MeV, a value of
L ¼ 116 MeV already leads to Rð1.4Þ > 14.26 km.
In recent years, the theory of relativistic tidal effects in

binary systems has been the focus of intense research.
Below, we provide a summary of the procedure for
computing the dimensionless tidal parameter Λ, which
measures how easily an object is deformed by an external
tidal field. It is defined as follows:

Λ ¼ 2k2
3C5

; ð12Þ

whereM is the mass of the compact object and C ¼ GM=R
is its compactness. The parameter k2 is known as the
second-order Love number and is given by (see Ref. [54])

k2 ¼
8C5

5
ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ�

× f2C½6 − 3yR þ 3Cð5yR − 8Þ�
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� lnð1 − 2CÞg−1;

ð13Þ

where yR ¼ yðr ¼ RÞ and yðrÞ is obtained by solving

r
dy
dr

þ y2 þ yFðrÞ þ r2QðrÞ ¼ 0: ð14Þ

The coefficients FðrÞ and QðrÞ are given by
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; ð15Þ
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c2s
−

6

4πr2

��
1 −

2m
r

�
−1

−
4m2

r4

�
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�
2
�
1 −

2m
r

�
−2
; ð16Þ

where c2s ≡ dp=dϵ is the squared speed of sound. The
boundary condition for Eq. (14) at r ¼ 0 is given by
yð0Þ ¼ 2. To obtain the tidal Love number, we use the
EOS of Sec. II and integrate the TOV equations along
with Eq. (14).
In Fig. 3 we show C, k2, and Λ as a function of the

neutron star mass. As expected, the lower the slope, the
higher the star’s compactness. However, the Love number
k2 also increases when we reduce the slope, which creates a
competition between C and k2 in the determination of Λ, at
least for stars withM < 1.8M⊙. Nonetheless, it can be seen
that Λ, which depends on both C and k2, mostly decreases
with decreasing slope. This trend is valid for both models,
i.e., the one with the ω − ρ coupling and the one with the
scalar-isovector δ meson coupling.
The tidal parameter of the canonical star, Λð1.4Þ, is also a

useful tool to constrain L, but different restrictions are
presented in the literature, and they are mutually exclusive.
For instance, the analysis of the GW170817 event in
Ref. [13] constrained the dimensionless tidal parameter to
be between 70 and 580, which suggests a rather soft EOS.
Meanwhile, in Ref. [5] the PREX2 experiment, combined
with results from the NICER x-ray telescope, constrained
the tidal parameter to be between 642 and 955, which
suggests a rather stiff EOS. (Nevertheless, it is worth
mentioning that the PREX2 and CREX results are still
being debated in the community [6]). As observed, the
parametrizations that incorporate the ω − ρ coupling, and
hence have lower values of L, align with the results from
Ref. [13]. Conversely, the parametrizations that include the
coupling with the scalar-isovector δ meson and therefore
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have higher values of L align with Ref. [5]. For
L ¼ 92 MeV, the value of Λð1.4Þ ¼ 639 falls into an
ambiguous range.
We will now specifically focus on the role of L in two

cases: the canonical 1.4M⊙ star and the 2.01M⊙ star. As
previously emphasized, the radius of the canonical star
increases with the slope L, ranging from 12.58 km to
14.30 km. The tidal parameter of the canonical star also
increases with L, although the models with the lowest L
values (44 and 60MeV) are almost indistinguishable. When
the parameter L is larger, the EOS becomes stiffer. A stiffer
EOS means that matter is more resistant to compression,
leading to a larger radius for a given NS mass. With the
mass of the NS held constant, the tidal deformability scales
with the fifth power of the NS radius. Consequently, a stiffer
EOS leads to a larger tidal deformability for a given mass
value. This accounts for the positioning of the Λ curves in
the lower panel of Fig. 3; those corresponding to higher
L values are situated above those associated with lower
L values. It is worth noting that, except for L ¼ 116 MeV,
all other parametrizations result in Rð1.4Þ < 14.26 km,
which agrees with [5,10], and Λð1.4Þ < 800, in agreement
with Ref. [11]. Regarding the 2.01M⊙ neutron stars, we
observe that their radii also increase with L and fall in the
range of 12.40–13.82 km. However, the Love number
k2ð2.01Þ exhibits a more erratic behavior, in contrast to
k2ð1.4Þ which exhibits a monotonically decreasing trend
with L. Finally, we have 40 < Λð2.01Þ < 70. In Table III,
we provide a summary of some of the main properties of
neutron stars for various values of the slope L.

IV. NEUTRON STAR OSCILLATIONS

In the near future, gravitational wave observatories are
expected to detect pulsation modes of compact stars that are
excited in binary mergers and newly born compact objects
associated with core-collapse supernovae. Among the vast
family of oscillation modes of compact stars, the quad-
rupolar (l ¼ 2) fundamental (f) mode is crucial because it
is highly probable that it will be significantly excited,
thereby enabling its detection by the upcoming generation

TABLE III. For each value of the slope L, we give the maximum mass and the properties of the canonical 1.4M⊙
star and the 2.01M⊙ star.

L (MeV) MmaxðM⊙Þ Rð1.4Þ (km) Cð1.4Þ k2ð1.4Þ Λð1.4Þ Rð2.01Þ (km) Cð2.01Þ k2ð2.01Þ Λð2.01Þ

44 2.31 12.58 0.165 0.0947 515 12.40 0.240 0.0500 42
60 2.30 12.74 0.163 0.0885 513 12.47 0.239 0.0473 40
76 2.30 12.99 0.160 0.0841 535 12.59 0.236 0.0452 40
92 2.34 13.48 0.155 0.0839 639 13.04 0.228 0.0469 51
100 2.37 13.73 0.151 0.0813 685 13.34 0.223 0.0476 58
108 2.38 13.99 0.149 0.0799 728 13.59 0.219 0.0478 63
116 2.39 14.30 0.146 0.0796 812 13.82 0.215 0.0482 70

 0.12

 0.16

 0.2

 0.24

 0.28

 1.2  1.4  1.6  1.8  2  2.2

C

M/M0

L=44 MeV
L=60 MeV
L=76 MeV
L=92 MeV

L=100 MeV
L=108 MeV
L=116 MeV

 0.03

 0.05

 0.07

 0.09

 0.11

 1.2  1.4  1.6  1.8  2  2.2

k 2

M/M0

L=44 MeV
L=60 MeV
L=76 MeV
L=92 MeV

L=100 MeV
L=108 MeV
L=116 MeV

 0

 200

 400

 600

 800

 1000

 1.2  1.4  1.6  1.8  2  2.2

GW

170817

PREX2

�

M/M0

L=44 MeV
L=60 MeV
L=76 MeV
L=92 MeV

L=100 MeV
L=108 MeV
L=116 MeV

FIG. 3. The compactness (top), the second Love number
(middle), and the dimensionless tidal parameter (bottom) as a
function of the neutron star mass for different values of L.
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of instruments. Observations of f-mode oscillations can
provide valuable information about the internal structure
and composition of neutron stars. For example, the fre-
quency and damping rate of the f-mode oscillation can be
used to constrain the EOS of the dense matter in the star’s
core (see [55–58] and references therein). Here, we will
explore the possibility of constraining the nuclear sym-
metry energy slope from f-mode observations.
Nonradial oscillations of neutron stars are analyzed

using first-order perturbation theory within the framework
of general relativity. Inside the star, the static Schwarschild-
like metric is perturbed, and it is given by [59,60]

ds2 ¼ −eνð1þ rlH0Yl
meiωtÞdt2 − 2iωrlþ1H1Yl

meiωtdtdr

þ eλð1 − rlH0Yl
meiωtÞdr2 þ r2ð1 − rlKYl

meiωtÞ
× ðdθ2 þ sin2θdϕ2Þ; ð17Þ

where Ylmðθ;ϕÞ are the spherical harmonics and the
functions H0, H1, and K depend only on r. The
Lagrangian three-vector fluid displacement ξj describes
the small amplitude motion of the perturbed configuration
and can be represented in terms of perturbation functions
WðrÞ and VðrÞ as

ξr ¼ rl−1e−λ=2WYl
meiωt; ð18Þ

ξθ ¼ −rl−2V∂θYl
meiωt; ð19Þ

ξϕ ¼ −rlðr sin θÞ−2V∂ϕYl
meiωt: ð20Þ

As shown in Refs. [34,59,60], perturbed Einstein’s equa-
tions inside the star (0 < r < R) are reduced to the
following first-order linear system of differential equations:

H0
1 ¼ −

1

r

�
lþ 1þ 2Meλ

r
þ 4πr2eλðp − ϵÞ

�
H1

þ eλ

r
½H0 þ K − 16πðϵþ pÞV�; ð21Þ

K0 ¼ H0

r
þ lðlþ 1Þ

2r
H1 −

�ðlþ 1Þ
r

−
ν0

2

�
K

− 8πðϵþ pÞeλ=2r−1W; ð22Þ

W0 ¼ −ðlþ 1Þr−1W þ reλ=2
�
e−ν=2γ−1p−1X

− lðlþ 1Þr−2V þ 1

2
H0 þ K

�
; ð23Þ

X0 ¼ −lr−1X þ ðϵþ pÞeν=2
2

��
1

r
þ ν0

2

�
H0

þ
�
rω2e−ν þ lðlþ 1Þ

2r

�
H1 þ

�
3

2
ν0 −

1

r

�
K

− lðlþ 1Þr−2ν0V − 2r−1
�
4πðϵþ pÞeλ=2

þ ω2eλ=2−ν −
r2

2
ðe−λ=2r−2ν0Þ0

�
W
�
; ð24Þ

where the prime denotes a derivative with respect to r, γ is
the adiabatic index

γ ¼ ðϵþ pÞ
p

dp
dϵ

; ð25Þ

X is given by

X ¼ ω2ðϵþ pÞe−ν=2V −
p0

r
eðν−λÞ=2W þ 1

2
ðϵþ pÞeν=2H0;

ð26Þ

and H0 fulfills the algebraic expression

�
3Mþðlþ2Þðl−1Þ

2
rþ4πr3p

�
H0

¼8πr3e−ν=2X−
�
1

2
lðlþ1ÞðMþ4πr3pÞ−ω2r3e−ðλþνÞ

�
H1

þ
�
1

2
ðlþ2Þðl−1Þr−ω2r3e−ν

−r−1eλðMþ4πr3pÞð3M−rþ4πr3pÞ
�
K: ð27Þ

The fluid quantities outside the neutron star vanish, and
as a result the perturbation equations of the vacuum
Schwarschild metric reduce to the Zerilli equation:

d2Z
dr�2

¼ ½VZðr�Þ − ω2�Z; ð28Þ

where the Zerilli function Zðr�Þ and its derivative
dZðr�Þ=dr� can be expressed as functions of the metric
perturbations H0ðrÞ and KðrÞ using the transformation
provided in Eqs. (A27)–(A34) of Ref. [59] [notice that
there is a typographical error in Eq. (A29) of [59]; see, e.g.,
[61]]. In the equations above, Zðr�Þ depends on the
“tortoise” coordinate, which is given by r� ¼ rþ
2M lnðr=ð2MÞ − 1Þ, and the effective potential VZðr�Þ is
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VZðr�Þ ¼
ð1 − 2M=rÞ
r3ðnrþ 3MÞ2 ½2n

2ðnþ 1Þr3

þ 6n2Mr2 þ 18nM2rþ 18M3�; ð29Þ

where n ¼ ðl − 1Þðlþ 2Þ=2.
The physical solution of the oscillation equations must

satisfy the following boundary conditions: (a) The func-
tions describing the oscillatory behavior of the star must be
regular at r ¼ 0. (b) The Lagrangian perturbation in
pressure must be zero at the surface of the star, which
implies that X must vanish at r ¼ R. For given values for l
and ω, there exists a unique solution that satisfies the above
boundary conditions inside the star. (c) Finally, at r ¼ ∞,
the physical solution of the Zerilli equation must describe
purely outgoing gravitational radiation.

The f-mode frequency and damping time are shown in
Fig. 4 as a function of the stellar mass for different values of
the nuclear symmetry energy slope L. The top panel shows
that an increase in L causes a systematic decrease in the
gravitational wave frequencies. This behavior can be
explained by the stiffening of the EOS as the value of L
increases. If a star has a stiffer EOS, its radius tends to be
larger for a given mass, which in turn decreases its average

density. Consequently, since the frequency of the f-mode
scales with

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
, the stiffer the EOS, the smaller the

oscillation frequency, as demonstrated in Fig. 2 of Ref. [56].
A complementary effect was noted in Ref. [62]. In this
work, the authors also found that a stiffer EOS results in a
lower f-mode frequency by varying the effective nucleon
mass. In our work, this effect is noticeable for all the
parameters examined. However, for masses greater than
1.8M⊙ and for L ≤ 76 MeV, this effect is relatively small.
The bottom panel shows that an increase in the value of L
results in an increase in the damping time. This effect is
more pronounced for small masses and becomes less
noticeable for masses above 2M⊙. In Table IV, we present
the f-mode frequencies and damping times for stars with
masses of 1.4M⊙ and 2.01M⊙. For both mass values, an
increase in L results in a decrease in the f-mode frequency
and an increase in its damping time. However, as already
discussed in Fig. 4, the effect of L is less pronounced for
more massive stars compared with less massive ones.

V. SUMMARY AND CONCLUSIONS

In this work we investigated the impact of the symmetry
energy slope L on various properties of neutron stars
employing QHD with σ − ω − ρ − δ mesons. We main-
tained a fixed value of symmetry energy at n ¼ n0 while
varying the slope L at n0. Specifically, we decreased L by
introducing the nonlinear ω − ρ coupling and increased it
by including the scalar-isovector δmeson. A strongerω − ρ
coupling led to a lower slope, whereas a stronger δ meson
coupling resulted in a higher slope. Parametrizations with
higher slopes had lower values of the symmetry energy at
n < n0 and higher values at n > n0. For n≳ 0.5n0, the
slope LðnÞ follows a trend consistent with the slope L
defined at n0. Specifically, as L increases, so too does LðnÞ,
as seen in Fig. 1. A similar behavior is observed in the
pressure of the beta-stable matter (Fig. 2).
The maximum mass of a neutron star tends to increase

slightly (less than 4%) with an increase in the slope L.
Meanwhile, the stellar radius is more sensitive to variations
in L, increasing as L increases. For instance, Table III
shows that when L rises from 44 to 116 MeV, the radius
Rð1.4Þ of a canonical 1.4M⊙ star experiences an increase of
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FIG. 4. Frequency (top) and damping time (bottom) as a
function of the neutron star mass for different values of L.

TABLE IV. Frequency and damping time for the 1.4M⊙ and
2.01M⊙ stars.

L (MeV) fð1.4Þ (kHz) τð1.4Þ (ms) fð2.01Þ (kHz) τð2.01Þ (ms)

44 1.72 245 1.95 154
60 1.70 251 1.95 154
76 1.66 264 1.94 156
92 1.57 297 1.85 165
100 1.52 316 1.80 173
108 1.48 335 1.76 178
116 1.44 354 1.72 184
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approximately 15%. Our M − R curves for low values of L
(i.e., in the range expected from neutron matter and nuclear
binding energies, and also from measurements excluding
PREX) are in excellent agreement with the 68% credibility
contour for the mass and radius of PSR J0030þ 0451 [10]
and PSR J0740þ 6620 [22] and the 90% credible level of
the coalescing objects in the GW170817 event [13].
However, as the value of L increases, the M-R curves shift
toward larger radii. At around L ∼ 116 MeV, the radius of
the 1.4M⊙ star is outside the upper boundary of the NICER
constraint on the radius of PSR J0030þ 0451, which places
an upper limit of 14.26 km at the 68% level [10]. When even
larger values of L are considered, specifically those falling
within the upper segment of the range provided by PREX2,
we find that the resulting M − R curves exhibit some
tension with the aforementioned astrophysical observations,
specially with GW170817.
Our study also involved calculating the dimensionless

tidal deformability Λ across a range of values for L. Our
results, depicted in Fig. 3, show that Λ generally increases
as the slope L increases. It is worth noting that Λ exhibits a
significant sensitivity to variations in L. For instance,
Table III shows that Λð1.4Þ varies between 515 and
812 MeV and Λð2.01Þ varies between 40 and 70 MeV as
L increases from 44 to 116 MeV, corresponding to a
variation in Λ of approximately 60%–70%. These results
are especially promising in light of the upcoming LIGO-
Virgo-KAGRA observing period O4 scheduled for 2023,
which is expected to enable resolution of the dimensionless
effective tidal deformability with 7 times greater accuracy
than was achieved during O2 [63]. If such precise deter-
minations become available, they could potentially impose
significant constraints on the parameter L.

Finally, we focused on the impact of L on the frequency
and damping time of the f mode. We have demonstrated
that augmenting the value of L results in a consistent
reduction in the frequency, which can be ascribed to the
increased stiffness of the core’s EOS. In fact, a higher
stiffness results in a greater radius for a given mass, thereby
leading to a decrease in the star’s average density. Hence,
given that the frequency of the f mode scales with

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
,

the larger the L (stiffer EOS), the lower the oscillation
frequency. Although the frequency exhibits a significant
sensitivity to variations in L for L≳ 70 MeV, we note that
for masses beyond 1.8M⊙ and L ≤ 76 MeV, this effect is
relatively minor. Furthermore, our analysis demonstrated
that an increase in L resulted in an increase in the f-mode
damping time, with this effect being more conspicuous for
lower masses and higher L values. Although challenging,
the detection of f-mode signals is expected to become a
reality in the near future, due to the continued improvements
in the sensitivity of GW observatories. The ability to detect
f-mode frequencies and damping times would provide an
additional independent tool to limit the range of possible
values for the slope L.
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